Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 10 czerwca 2025 12:28
  • Data zakończenia: 10 czerwca 2025 12:39

Egzamin niezdany

Wynik: 15/40 punktów (37,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Proporcje objętościowe 1:3:12 składników zaprawy cementowo-glinianej typu M 0,6 wskazują na następujący jej skład objętościowy:

A. cement : zawiesina gliniana : wapno
B. cement : zawiesina gliniana : piasek
C. cement : wapno : zawiesina gliniana
D. cement : piasek : zawiesina gliniana
Wszystkie błędne odpowiedzi wskazują na nieprawidłowe zrozumienie zasadności doboru składników zaprawy cementowo-glinianej. W przypadku propozycji 'cement : wapno : zawiesina gliniana', zastosowanie wapna w tej konfiguracji jest niewłaściwe, ponieważ wapno nie jest składnikiem tej konkretnej zaprawy. Wapno może być stosowane w zaprawach, ale w innych proporcjach i z innymi składnikami. Kolejna koncepcja, 'cement : zawiesina gliniana : wapno', również mija się z celem, gdyż nie uwzględnia kluczowego składnika, jakim jest piasek, który nadaje zaprawie odpowiednią strukturalną stabilność. Propozycja 'cement : piasek : zawiesina gliniana' jest niewłaściwa, ponieważ nie uwzględnia konieczności odpowiedniego zbalansowania składników. Piasek, choć ważny, nie może być traktowany zamiennie z zawiesiną glinianą, gdyż ich zadania w zaprawie są różne. Zawiesina glinianiana, wykorzystywana w tej zaprawie, ma na celu poprawę właściwości plastycznych i związanie cząsteczek, co jest kluczowe dla uzyskania elastyczności. Tego rodzaju błędy w rozumieniu składników mogą prowadzić do konstrukcji o niewłaściwych właściwościach mechanicznych, co z kolei może skutkować uszkodzeniami w trakcie eksploatacji. W praktyce, dobór odpowiednich proporcji jest fundamentem dla uzyskania trwałych i odpornych na czynniki zewnętrzne materiałów budowlanych.

Pytanie 3

Na podstawie danych zawartych w tabeli oblicz całkowity koszt wykonania 1 m2 tynku mozaikowego drobnoziarnistego wraz z gruntowaniem podłoża.

Tynk mozaikowy drobnoziarnisty:
cena opakowania 25 kg:187,50 zł
zużycie:4 kg/m²
Preparat gruntujący:
cena opakowania 12 l:90,00 zł
zużycie:0,4 l/m²
Robocizna (wykonanie tynku wraz z gruntowaniem):55,00 zł/m²

A. 82,00 zł
B. 58,00 zł
C. 85,00 zł
D. 88,00 zł
Wybór innych odpowiedzi, jak 82,00 zł, 58,00 zł czy 85,00 zł, często wynika z błędnego oszacowania kosztów materiałów i robocizny przy tynku mozaikowym. Możliwe, że w takich przypadkach pomijasz ważne elementy, jak przygotowanie podłoża, które ma duże znaczenie dla przyczepności tynku. Koszt gruntowania, które jest często konieczne przed nałożeniem tynku, mógł nie zostać wzięty pod uwagę w niektórych obliczeniach, co prowadzi do zaniżenia całości. Zdarza się też, że błędne wyniki wynikają z pomyłek w jednostkowych kosztach materiałów lub robocizny. Często nie uwzględnia się również dodatkowych wydatków na narzędzia, transport czy straty materiałów. Niedostateczna znajomość standardów i praktyk w branży też może przyczyniać się do błędnych oszacowań. Dlatego przed zaczęciem kalkulacji dobrze jest przemyśleć wszystkie składniki kosztów, żeby wyjść z rzetelnymi obliczeniami.

Pytanie 4

Analizę odchylenia tynku oraz jego brzegów od poziomu i pionu wykonuje się w tynkach klasy

A. I
B. Ia
C. 0
D. II
Badanie odchylenia powierzchni tynku i jego krawędzi od kierunku poziomego i pionowego jest kluczowe w tynkach kategorii II. Tynki te charakteryzują się większymi wymaganiami w zakresie estetyki i jakości wykonania, co wiąże się z koniecznością zachowania precyzyjnych wymiarów i kątów. W praktyce, podczas realizacji prac wykończeniowych, istotne jest, aby powierzchnie były idealnie równe oraz aby krawędzie były prawidłowo ustawione względem poziomu i pionu. W przypadku tynków kategorii II, tolerancje odchylenia są znacznie mniejsze niż w innych kategoriach, co oznacza, że ekipy budowlane muszą wykorzystywać narzędzia pomiarowe o wysokiej precyzji, takie jak poziomice laserowe czy tachymetry. Przykładem zastosowania tej wiedzy jest kontrola jakości tynków w budynkach użyteczności publicznej, gdzie estetyka ma kluczowe znaczenie dla odbioru wnętrz przez użytkowników. Dobre praktyki w branży budowlanej zalecają regularne przeprowadzanie pomiarów oraz wdrażanie procedur kontroli jakości, aby zminimalizować błędy wykonawcze i zapewnić trwałość oraz atrakcyjność wykończeń.

Pytanie 5

Jaką cegłę należy zastosować do budowy murowanych ścianek działowych o grubości do 12 cm, aby uzyskać jak najniższy ciężar objętościowy?

A. ceramiczną pełną
B. klinkierową
C. wapienno-piaskową pełną
D. dziurawki
Cegły wapienno-piaskowe pełne, klinkierowe oraz ceramiczne pełne, choć używane w budownictwie, nie są optymalnym rozwiązaniem w kontekście budowy lekkich ścianek działowych. Cegły wapienno-piaskowe pełne, ze względu na swoją gęstość, są stosunkowo ciężkie i nieprzeznaczone do wykonania cienkowarstwowych konstrukcji. Stosowanie ich w takich zastosowaniach może prowadzić do nadmiernego obciążenia budynku oraz problemów z izolacyjnością akustyczną. Klinkier, znany ze swojej wytrzymałości oraz estetyki, ma również wysoką gęstość, co sprawia, że nie jest odpowiedni do tworzenia ścianek działowych, które mają być lekkie i łatwe w montażu. Z kolei cegły ceramiczne pełne, mimo że mogą być używane w tradycyjnym budownictwie, również są stosunkowo ciężkie i nie oferują takich korzyści jak dziurawki w kontekście obniżenia ciężaru konstrukcji. Często błędne jest przekonanie, że im bardziej solidny materiał, tym lepszy efekt budowlany – w przypadku ścianek działowych kluczowe jest nie tylko zapewnienie stabilności, ale również optymalizacja ciężaru oraz efektywność w zakresie izolacji. Dlatego wybór materiałów budowlanych powinien być dokładnie przemyślany, uwzględniając ich właściwości oraz przeznaczenie w kontekście danej konstrukcji.

Pytanie 6

Jakie kruszywo wykorzystuje się do produkcji betonów klasycznych?

A. Łupkoporyt
B. Keramzyt
C. Baryt
D. Żwir
Żwir jest kruszywem naturalnym, które jest powszechnie stosowane do produkcji betonów zwykłych. Jego zastosowanie wynika z korzystnych właściwości, takich jak odpowiednia granulacja, która zapewnia dobrą przepuszczalność oraz przyczepność z cementem. Żwir charakteryzuje się wysoką trwałością i odpornością na czynniki atmosferyczne, co sprawia, że jest idealnym materiałem do budowy infrastruktury, jak drogi, mosty czy budynki. W procesie produkcji betonu, żwir stanowi kluczowy składnik, który, w połączeniu z cementem, wodą i ewentualnymi dodatkami, tworzy trwałą i wytrzymałą mieszankę. W normach branżowych, takich jak PN-EN 12620, określono wymagania dotyczące jakości kruszyw, co dodatkowo podkreśla znaczenie wyboru odpowiednich materiałów. Przykładem zastosowania żwiru w praktyce może być beton używany do budowy fundamentów, gdzie jego właściwości mechaniczne są kluczowe dla stabilności całej konstrukcji.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Jaką ilość tynku maszynowego należy przygotować do otynkowania ściany o wymiarach 5 m × 3 m przy grubości tynku 5 mm, wiedząc, że jego średnie zużycie wynosi 14 kg na 1 m2tynkowanej powierzchni przy grubości 10 mm?

A. 210 kg
B. 70 kg
C. 42 kg
D. 105 kg
Wybór niepoprawnej odpowiedzi może wynikać z kilku typowych błędów w obliczeniach oraz zrozumieniu zagadnienia. Często mylnie zakłada się, że zużycie tynku można bezpośrednio pomnożyć przez powierzchnię, nie uwzględniając zmiany grubości tynku. Na przykład, w przypadku odpowiedzi wskazujących na 42 kg, może występować błędne założenie, że proporcjonalnie zmniejszone zużycie będzie na tyle małe, że wystarczy tylko na pokrycie połowy powierzchni. Takie podejście ignoruje fakt, że przy grubości 5 mm rzeczywiste zużycie tynku będzie znacznie niższe niż to dla 10 mm, a wynikające z tego obliczenia muszą być dostosowane do aktualnych warunków aplikacji. Kolejnym błędem może być nieprawidłowe zrozumienie, co oznacza średnie zużycie; obliczenia opierające się na założeniu, że 14 kg/m² jest stałą wartością niezależną od grubości, prowadzą do niedokładnych wyników. Wiedza na temat proporcji i kalkulacji w budownictwie jest kluczowa, aby uniknąć marnotrawstwa materiałów oraz nadmiernych kosztów związanych z zakupem. Dlatego znajomość technik obliczeniowych oraz ich praktyczne zastosowanie są niezwykle istotne w pracach budowlanych.

Pytanie 9

Jaką ilość zaprawy należy nabyć do zbudowania ścian o grubości ½ cegły oraz powierzchni 28 m2, przy założeniu, że zużycie wskazane przez producenta wynosi 35 kg zaprawy na 1 m2 ściany tej grubości?

A. 980 kg
B. 980 m2
C. 490 m2
D. 490 kg
Analizując błędne odpowiedzi, można zauważyć, że pojawiają się w nich nieporozumienia związane z jednostkami miary oraz sposób interpretacji danych podanych w pytaniu. Przykładowo, odpowiedzi takie jak '490 m2' oraz '980 m2' wskazują na mylenie jednostek powierzchni z masą zaprawy, co jest kluczowe w kontekście obliczeń budowlanych. Powierzchnia ściany, dla której obliczamy potrzebną ilość zaprawy, nie jest równoważna ilości zaprawy, co potwierdza błąd jednostkowy. Ponadto, odpowiedzi '490 kg' i '490 m2' sugerują niewłaściwe obliczenia, które mogą wynikać z niepoprawnego przeliczenia zużycia zaprawy na powierzchnię, co podkreśla znaczenie dokładnych obliczeń w procesie budowlanym. W praktyce, brak precyzji w takich obliczeniach może prowadzić do niedoszacowania materiałów, co skutkuje opóźnieniami w projekcie, zwiększonymi kosztami i problemami z jakością wykonania. Dlatego tak ważne jest, aby przy planowaniu budowy zawsze stosować się do ustalonych norm i dobrych praktyk, a także mieć na uwadze, że każdy materiał budowlany ma swoje specyfikacje, które powinny być ściśle przestrzegane.

Pytanie 10

Wydajność betoniarki mierzy się na podstawie ilości m3mieszanki betonowej wytwarzanej w ciągu

A. jednego tygodnia
B. jednej godziny
C. jednego dnia
D. jednej zmiany
Wydajność betoniarki określa się na podstawie ilości mieszanki betonowej produkowanej w jednostce czasu, a w tym przypadku jest to jedna godzina. W praktyce oznacza to, że betoniarka powinna być w stanie wyprodukować określoną ilość betonu w ciągu godziny, co pozwala na efektywne planowanie prac budowlanych. Na przykład, jeżeli betoniarka ma wydajność 10 m³ na godzinę, oznacza to, że w ciągu ośmiogodzinnej zmiany roboczej może wyprodukować 80 m³ betonu. Jest to kluczowe dla harmonogramów budowy, ponieważ pozwala na precyzyjne obliczenie potrzebnych ilości betonu dla różnych etapów projektu. W branży budowlanej standardowo przyjmuje się, że wydajność betoniarki jest jednym z podstawowych parametrów, który wpływa na czas realizacji zadania oraz jego koszty. Optymalizacja wydajności betoniarki jest zatem niezwykle istotna, ponieważ pozwala na zwiększenie efektywności pracy oraz minimalizację strat materiałowych.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Przed dodaniem płynnych dodatków chemicznych, takich jak przeciwmrozowe, do zaprawy, należy je wcześniej wymieszać

A. z wodą
B. ze spoiwem
C. ze spoiwem i wodą
D. z kruszywem
Mieszanie płynnych dodatków chemicznych z kruszywem, spoiwem lub ich kombinacją, bezpośrednio przed dodaniem do zaprawy, może wydawać się logiczne, jednak jest to podejście, które nie uwzględnia fundamentalnych zasad technologicznych. Kruszywo i spoiwo są komponentami, które mają różne właściwości fizyczne i chemiczne, i ich interakcja z dodatkami chemicznymi nie jest optymalna, gdy te ostatnie nie są wcześniej rozpuszczone w wodzie. Dodatki, takie jak środki przeciwmrozowe, muszą być wymieszane z wodą, aby mogły w pełni zrealizować swoje właściwości ochronne i wspomagające. Bez tego etapu, istnieje ryzyko, że dodatek nie osiągnie odpowiedniego stężenia w zaprawie, co skutkuje nieefektywną ochroną przed mrozem. W kontekście budowlanym, ignorowanie tych zasad może prowadzić do poważnych problemów, takich jak pękanie materiałów w wyniku niewłaściwej reakcji chemicznej z dodatkami. Dobrą praktyką w budownictwie jest zawsze przestrzeganie instrukcji producentów dodatków oraz standardów branżowych, które zalecają taką metodę użycia. Dlatego kluczowe jest zrozumienie, że odpowiednie przygotowanie komponentów zaprawy budowlanej jest fundamentem trwałości i bezpieczeństwa konstrukcji.

Pytanie 13

Ocena odchylenia powierzchni ściany od płaszczyzny polega na

A. weryfikacji pionowości i poziomości ściany z wykorzystaniem poziomnicy oraz łaty dwumetrowej
B. sprawdzeniu równości ściany za pomocą poziomnicy wężowej
C. zmierzeniu prześwitu pomiędzy łatą o długości 2 m, umieszczoną na powierzchni ściany, a tą powierzchnią
D. zmierzeniu prześwitu pomiędzy łatą o długości 1 m, umieszczoną na powierzchni ściany, a tą powierzchnią
Analiza odchylenia murów to rzeczywiście ważny element w budownictwie, ale muszę przyznać, że nie wszystkie metody są skuteczne. Pomiar krótką łatą, na przykład 1 m, nie daje nam pełnego obrazu równości muru. Krótsza łata może czasem zafałszować rzeczywistość, szczególnie przy dłuższych odcinkach. A używanie poziomnicy z łatą dwumetrową nie jest dobrym pomysłem, bo te narzędzia pokazują, czy ściana jest prosta w jednym punkcie, a nie na całej długości. Choć poziomica wężowa może być użyteczna w niektórych sytuacjach, to jednak nie jest standardowym sposobem na pomiar równości muru. Czasem, jeśli korzystamy z tych metod, można dojść do błędnych wniosków o jakości konstrukcji, a w dłuższym okresie to może prowadzić do problemów, jak niezgodności z normami czy dodatkowe koszty napraw. Dlatego warto korzystać z narzędzi, które są zgodne ze standardami i gwarantują dobre wyniki, a w przypadku muru najlepiej sprawdza się łata o długości 2 m.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jakie działania powinny być podjęte jako pierwsze przed nałożeniem suchego tynku na nierównomierne podłoże ściany z cegły kratówki?

A. Nałożyć zaprawę gipsową na płyty suchego tynku i mocno je przycisnąć do podłoża
B. Wykonać na ścianie placki "marki"
C. Zastosować na ścianie warstwę gładzi gipsowej
D. Uformować pasy kierunkowe z zaprawy cementowo-wapiennej
Naniesienie zaprawy gipsowej na płyty suchego tynku i mocne dociskanie ich do podłoża to podejście, które może wydawać się praktyczne, jednak w rzeczywistości jest niewłaściwe, zwłaszcza w kontekście nierównych ścian. Zaprawa gipsowa nie jest odpowiednia do stosowania na nierównych powierzchniach, ponieważ jej właściwości nie zapewniają odpowiedniego wyrównania i przyczepności. Właściwe przygotowanie podłoża powinno obejmować najpierw zidentyfikowanie i skorygowanie nierówności ściany, a nie jedynie nakładanie warstwy gipsu. Ponadto, wykonanie gładzi gipsowej na nierównym podłożu nie przynosi oczekiwanych efektów, ponieważ gładź nie jest w stanie wypełnić dużych ubytków czy nierówności, co może prowadzić do pęknięć i odspojenia w przyszłości. Wykonanie pasów kierunkowych z zaprawy cementowo-wapiennej to kolejna koncepcja, która ma swoje miejsce w praktyce budowlanej, ale nie jest pierwszym krokiem w przypadku nierównych ścian. Te koncepcje często wynikają z błędnego zrozumienia procesu przygotowania podłoża oraz znaczenia dokładności w budownictwie. W praktyce, kluczowe jest przestrzeganie zasad i dobrych praktyk, co w tym przypadku oznacza najpierw ustalenie punktów odniesienia za pomocą placków 'marki', a następnie wyrównanie powierzchni przed dalszymi pracami. Ignorowanie tych zasad prowadzi do problemów w końcowym etapie wykończenia, co może być kosztowne i czasochłonne w poprawie.

Pytanie 16

Na podstawie fragmentu instrukcji producenta oblicz, ile bloczków gazobetonowych o wymiarach
240×240×590 mm potrzeba do wymurowania ściany grubości 24 cm, długości 12 m i wysokości 4 m.

Fragment instrukcji producenta
Wymiary bloczków
[mm]
Zużycie bloczków
[szt./m²]
240×240×5907
120×240×5907

A. 80 szt.
B. 672 szt.
C. 8064 szt.
D. 336 szt.
Dobrze, że obliczyłeś ilość bloczków gazobetonowych, które potrzebujesz na ścianę. Z tego co widzę, wykorzystałeś dane wymiary ściany i bloczków. Ściana 12 m długości i 4 m wysokości daje nam 48 m² powierzchni. Potem ładnie obliczyłeś powierzchnię bloczka, która wynosi 0,0576 m². Jeżeli podzielisz 1 m² przez tę wartość, otrzymasz coś koło 17,36 bloczków na m². To oznacza, że do pokrycia całej ściany potrzebujesz około 833 bloczków. Ale pamiętaj, że zazwyczaj warto doliczyć trochę więcej na wszelki wypadek, żeby uniknąć problemów na budowie. W końcu w praktyce budowlanej to nie tylko liczby, ale też umiejętność przewidywania strat materiałowych, więc dobrze, że wziąłeś to pod uwagę!

Pytanie 17

Jaką minimalną długość powinno mieć oparcie nadproża L19 na murze?

A. 22 cm
B. 19 cm
C. 10 cm
D. 6 cm
W przypadku długości oparcia nadproża, istotne jest, aby uwzględnić nie tylko minimalne wymagania, ale również całokształt aspektów technicznych. Odpowiedzi na poziomie 6 cm, 19 cm, czy 22 cm są w dużej mierze nieadekwatne do obowiązujących norm. Wybór długości 6 cm jest zdecydowanie zbyt mały, co naraża konstrukcję na niebezpieczeństwo przełamania pod wpływem obciążeń. Praktyka budowlana zaleca znacznie większe wartości, aby zapewnić odpowiednią stabilność. Z kolei 19 cm i 22 cm jako długości oparcia są również niewłaściwe, ponieważ mogą prowadzić do nadmiernego obciążenia ścian, co z kolei może skutkować niepożądanymi efektami, takimi jak pęknięcia ścian czy osiadanie budynku w dłuższej perspektywie. Zbyt duża długość oparcia może także skutkować nieefektywnym przenoszeniem obciążeń, co jest sprzeczne z zasadami ekonomicznego projektowania. W praktyce, kluczowe jest przestrzeganie standardów dotyczących długości oparcia, które pomagają zminimalizować ryzyko uszkodzeń i zwiększają trwałość konstrukcji. Podsumowując, zrozumienie zasad projektowania nadproży oraz ich prawidłowego oparcia jest niezbędne dla każdego inżyniera budowlanego, aby unikać błędów, które mogą prowadzić do poważnych konsekwencji w budownictwie.

Pytanie 18

Który z podanych tynków należy do tynków o cienkiej warstwie?

A. Ciepłochronny
B. Akrylowy
C. Wypalony
D. Ciągnięty
Tynki ciągnione, wypalane oraz ciepłochronne różnią się od tynków akrylowych pod względem składu, przeznaczenia oraz metody aplikacji, co sprawia, że nie mogą być zaliczane do tynków cienkowarstwowych. Tynki ciągnione, stosowane przede wszystkim w budownictwie, mają zazwyczaj większą grubość i są kładzione w sposób tradycyjny za pomocą narzędzi takich jak kielnie. Tego typu tynki, często cementowe lub wapienne, służą głównie do wyrównywania powierzchni oraz przygotowania podłoża pod dalsze prace wykończeniowe. Z kolei tynki wypalane, które są tworzone na bazie ceramiki, są stosowane głównie w obiektach przemysłowych i nie są przystosowane do cienkowarstwowych aplikacji. Tynki ciepłochronne natomiast, choć ważne w kontekście izolacji termicznej budynków, również nie spełniają norm cienkowarstwowych, ponieważ ich grubość często przekracza 3 mm. Często pojawia się błędne myślenie, że tynki mogą być klasyfikowane jedynie na podstawie ich funkcji izolacyjnej lub estetycznej, podczas gdy kluczowym kryterium jest również ich grubość oraz sposób aplikacji. Dlatego ważne jest zrozumienie różnorodności tynków dostępnych na rynku oraz ich właściwości, aby podejmować właściwe decyzje w zakresie wyboru odpowiedniego materiału do określonych zastosowań budowlanych.

Pytanie 19

Kiedy wykonuje się poziomą izolację przeciwwilgociową na ścianie fundamentowej?

A. z papy asfaltowej
B. z polistyrenu ekstrudowanego
C. z folii paroizolacyjnej
D. ze styropianu
Pozioma izolacja przeciwwilgociowa ściany fundamentowej jest kluczowym elementem zapewniającym trwałość i stabilność budynku. Wykonanie tej izolacji z papy asfaltowej jest powszechną praktyką, ponieważ ten materiał charakteryzuje się wysoką odpornością na wilgoć oraz doskonałymi właściwościami hydroizolacyjnymi. Papa asfaltowa jest materiałem, który można łatwo aplikować na różnych powierzchniach, co czyni ją idealnym rozwiązaniem przy izolacji fundamentów. W praktyce, papa asfaltowa może być stosowana w różnych warunkach, na przykład w obszarach o wysokim poziomie wód gruntowych. Aby zapewnić skuteczność izolacji, należy stosować papę asfaltową zgodnie z zaleceniami producentów oraz normami budowlanymi, takimi jak PN-EN 13707, które określają odpowiednie metody aplikacji i wymagania materiałowe. Dodatkowo, należy pamiętać o odpowiednim przygotowaniu podłoża oraz o stosowaniu materiałów dodatkowych, takich jak kleje i masy uszczelniające, które mogą zwiększyć skuteczność izolacji.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Aby nałożyć tynk zwykły na suficie, jakie narzędzia są wymagane?

A. deska z trzonkiem oraz packa
B. czerpak tynkarski i packa
C. kielnia i listwa tynkarska
D. deska z trzonkiem i kielnią
Wybór narzędzi do narzutu tynku jest kluczowy dla uzyskania wysokiej jakości wykończenia. Odpowiedzi wskazujące na stosowanie czerpaka tynkarskiego oraz packi są nieprawidłowe, ponieważ te narzędzia nie są przeznaczone do aplikacji tynku na suficie. Czerpak tynkarski jest najczęściej używany do przygotowania mieszanki tynkarskiej, ale jego forma i kształt nie pozwalają na precyzyjne nakładanie tynku na dużą powierzchnię, taką jak sufit. Packa, która jest bardziej odpowiednia do wygładzania powierzchni, nie jest wystarczająco elastyczna, aby efektywnie rozprowadzić materiał w ruchu roboczym. Z kolei lista tynkarska, mimo że może być używana w pewnych zastosowaniach, nie zastąpi funkcji deski z trzonkiem. Dodatkowo, niepoprawne podejście do narzutu tynku może prowadzić do problemów takich jak nierówności, pęknięcia czy złe przyleganie tynku do podłoża. Wybór niewłaściwych narzędzi może wynikać z braku wiedzy na temat procesów tynkarskich oraz złych praktyk w branży budowlanej. Dlatego istotne jest, aby każdy wykonawca posiadał solidną wiedzę na temat narzędzi oraz umiejętności ich właściwego zastosowania zgodnie z normami i standardami obowiązującymi w budownictwie.

Pytanie 24

Aby zrealizować izolację termiczną ścian, należy wykorzystać

A. styropian, papę
B. wełnę mineralną, emulsję asfaltową
C. styropian, wełnę mineralną
D. wełnę mineralną, masy bitumiczne
Izolacja cieplna ścian jest kluczowym elementem skutecznego zarządzania energią w budynków. Wybór odpowiednich materiałów izolacyjnych, takich jak styropian i wełna mineralna, wynika z ich doskonałych właściwości termoizolacyjnych. Styropian, znany z niskiego współczynnika przewodzenia ciepła, jest lekki, łatwy w obróbce i stosunkowo tani. Jego zastosowanie w izolacji ścian zewnętrznych pozwala na znaczną redukcję strat ciepła, co przekłada się na niższe koszty ogrzewania. Wełna mineralna z kolei charakteryzuje się nie tylko dobrą izolacyjnością termiczną, ale również akustyczną, a także odpornością na ogień. Dzięki tym właściwościom, stosowanie obu materiałów w połączeniu pozwala na stworzenie kompleksowego systemu izolacji, który nie tylko poprawia komfort cieplny, ale także spełnia wymagania norm budowlanych i standardów efektywności energetycznej, takich jak np. normy PN-EN 13162 dla styropianu. W praktyce, użycie tych materiałów może być różnorodne, od prostych ścian jednowarstwowych po bardziej skomplikowane systemy ociepleń budynków wielokondygnacyjnych.

Pytanie 25

Do produkcji tynków akrylowych wykorzystuje się jako spoiwo

A. żywice syntetyczne
B. cementy portlandzkie
C. wapno hydratyzowane
D. szkło wodne
Cementy portlandzkie są klasycznym materiałem budowlanym, jednak ich zastosowanie jako spoiwo w tynkach akrylowych jest niewłaściwe. Cement w tynkach ma tendencję do skurczania się podczas wiązania, co prowadzi do pojawiania się rys i pęknięć. Z tego powodu tynki na bazie cementu są bardziej odpowiednie dla zastosowań wewnętrznych lub w miejscach mniej narażonych na działanie zmiennych warunków atmosferycznych. Szkło wodne jest substancją o właściwościach klejących, ale nie jest odpowiednim spoiwem w tynkach akrylowych, ponieważ może powodować trudności w aplikacji oraz nie zapewnia odpowiedniej elastyczności i trwałości wymaganego w tynkach zewnętrznych. Wapień hydratyzowany, pomimo swoich zalet, takich jak naturalne połączenie i łatwość użycia, również nie nadaje się do tynków akrylowych, gdyż brakuje mu elastyczności i odporności na pogodę. Wiele osób może błędnie sądzić, że tynki akrylowe mogą być wykonane na bazie tradycyjnych materiałów budowlanych, lecz ważne jest zrozumienie, że specyfika akrylu wymaga nowoczesnych rozwiązań technologicznych, takich jak żywice syntetyczne, które zapewniają długowieczność i estetykę powierzchni. Zastosowanie niewłaściwych spoiw może prowadzić do poważnych problemów z konstrukcją i estetyką budynku.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Aby przygotować 1 worek (25 kg) zaprawy tynkarskiej, trzeba zastosować

A. wiertarkę z mieszadłem
B. betoniarkę wolnospadową
C. betoniarkę przeciwbieżną
D. agregat tynkarski
Wybierałeś wiertarkę z mieszadłem, więc super decyzja! To narzędzie idealnie nadaje się do mieszania zaprawy tynkarskiej, bo dzięki temu można uzyskać odpowiednią konsystencję. Wiertarka z mieszadłem jest stworzona do intensywnego mieszania różnych materiałów, co jest mega ważne przy tynkowaniu. Dzięki temu, że mamy mieszadło, można osiągnąć gładką i jednorodną masę, co serio wpływa na jakość tynku. W praktyce, takie wiertarki są często używane na budowach do przygotowywania różnych materiałów, jak tynki, kleje, czy farby. Używanie takiego sprzętu to standard w branży, bo dobrze przygotowane materiały oznaczają lepszą efektywność i trwałość. Pamiętaj jednak, że kluczowe jest zachowanie odpowiednich proporcji wody do suchego materiału. To ma duży wpływ na to, jak zaprawa się spisze podczas pracy!

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Jaką część konstrukcyjną należy umieścić bezpośrednio nad otworem okiennym?

A. Gzyms
B. Filar międzyokienny
C. Nadproże
D. Ławę podokaenną
Nadproże to naprawdę istotny element w budowie, który montujemy tuż nad oknem. Jego głównym zadaniem jest przenoszenie obciążeń z góry, żeby ściana była stabilna i nie zaczęły się robić pęknięcia. Z praktyki wiem, że najczęściej robimy je z betonu, stali, a czasami też z drewna, zależnie od tego, co jest w projekcie. Ważne, żeby nadproże było dobrze zaprojektowane, bo jego rozmiar i nośność muszą pasować do obciążeń, które będzie musiało wytrzymać. W budownictwie mamy takie normy, jak Eurokody, które podkreślają, że trzeba przeprowadzić obliczenia, aby upewnić się, że wszystko będzie bezpieczne i trwałe. Dobrze też pamiętać o izolacji termicznej nadproża, bo to znacznie poprawia efektywność energetyczną budynku.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

W przypadku strzępiów zazębionych należy zostawić pustkę o głębokości w co drugiej warstwie muru:

A. 1/2 cegły
B. 2 cegieł
C. 1 cegły
D. 1/4 cegły
Wykorzystanie pustek w murze jest kluczowym zagadnieniem w budownictwie, jednak odpowiedzi sugerujące głębokości 1/2 cegły, 1 cegłę oraz 2 cegły są błędne. W przypadku głębokości 1/2 cegły, można napotkać problemy związane z nadmiernym osłabieniem struktury muru, co prowadzi do zwiększonego ryzyka pęknięć i zniekształceń. Tego rodzaju pustki mogą powodować nierównomierne osiadanie budynku, a także wpływać negatywnie na jego trwałość. Głębsze pustki, takie jak 1 cegła czy 2 cegły, w ogóle nie spełniają zamierzonej funkcji, gdyż eliminują zasadniczą korzyść, jaką jest kontrolowanie ruchów konstrukcji. Zbyt duże pustki mogą wprowadzać do muru nadmierne luki, które osłabiają spójność materiałów budowlanych i prowadzą do problemów z izolacją termiczną oraz akustyczną. Ponadto, błędne przekonanie o tym, że większe pustki mogą zwiększać wentylację muru, jest mylne, gdyż może to prowadzić do niekontrolowanego przepływu powietrza i w konsekwencji do zawilgocenia. Znajomość właściwych standardów i praktyk budowlanych, w tym zasad dotyczących głębokości pustek, jest kluczowa dla osiągnięcia stabilności i trwałości obiektów budowlanych.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Jakie kruszywo wykorzystuje się do produkcji ciepłochronnych zapraw murarskich?

A. Pospółka
B. Kruszywo żwirowe
C. Perlit
D. Kruszywo piaskowe
Kruszywa takie jak piasek, żwir czy pospółka nie są odpowiednie do produkcji ciepłochronnych zapraw murarskich. Piasek, najczęściej używany w budownictwie, ma wysoką gęstość i przewodność cieplną, co sprawia, że nie zapewnia efektywnej izolacji termicznej. Jego zastosowanie w zaprawach murarskich może prowadzić do zwiększenia strat ciepła w budynkach, co jest sprzeczne z aktualnymi trendami w energooszczędnym budownictwie. Żwir, z kolei, jest materiałem o dużych ziarnach, który również nie sprzyja uzyskaniu odpowiednich właściwości izolacyjnych. Pospółka, będąca mieszanką różnych frakcji, także nie ma właściwości niezbędnych do wykonania ciepłochronnych zapraw. Warto zauważyć, że stosowanie niewłaściwych kruszyw prowadzi nie tylko do obniżenia efektywności energetycznej budynku, ale także może wpłynąć na jego trwałość oraz komfort użytkowania. Przykładem błędnego myślenia może być założenie, że jakiekolwiek kruszywo spełni wymagania izolacyjne, co jest dalekie od prawdy. Wybór odpowiednich materiałów budowlanych, takich jak perlit, jest kluczowy dla zapewnienia optymalnych warunków termicznych, a także dla redukcji kosztów eksploatacyjnych budynków.

Pytanie 36

Jaką ilość mieszanki betonowej wykorzystano do stworzenia 3 stóp fundamentowych o rozmiarach 1,4 x 1,4 m i wysokości 0,5 m, jeśli norma zużycia mieszanki betonowej do uzyskania 1 m3 betonu wynosi 1,015 m3?

A. 5,880 m3
B. 2,940 m3
C. 0,995 m3
D. 2,984 m3
W przypadku obliczeń dotyczących ilości mieszanki betonowej, kluczowe jest zrozumienie, że błędne wartości mogą wynikać z nieprawidłowej interpretacji objętości betonu i norm zużycia. Pomijanie normatywów może prowadzić do niedoszacowania potrzebnych materiałów, co jest często spotykane w praktyce budowlanej. Przyjmując, że objętości fundamentów są obliczane poprawnie, nie uwzględnienie współczynnika 1,015 m3 do wykonania 1 m3 betonu, może skutkować nieodpowiednią ilością mieszanki. Odpowiedzi takie jak 2,940 m3 i 0,995 m3 wynikają z mylnych założeń o całkowitej objętości lub pominięcia normy, co prowadzi do niewłaściwych kalkulacji. W budownictwie, precyzyjne obliczenia są istotne, ponieważ każdy błąd może wpłynąć na strukturę, bezpieczeństwo i stabilność całego projektu. Dlatego stosowanie norm zużycia odgrywa kluczową rolę w planowaniu i wykonawstwie budowli. Specjalistyczne zalecenia i standardy, takie jak te zawarte w dokumentach normatywnych i branżowych, powinny być zawsze przestrzegane, aby uniknąć problemów związanych z jakością i kosztami materiałów budowlanych.

Pytanie 37

Korzystając z danych zawartych w tabeli wskaż najmniejszą dopuszczalną grubość tynku z izolacją termiczną.

Grubości tynkówŚrednia grubość
w [mm]
Dopuszczalna
najmniejsza grubość
w [mm]
dla tynków zewnętrznych2015
dla tynków wewnętrznych1510
dla jednowarstwowych tynków wewnętrznych z fabrycznie suchej zaprawy105
dla jednowarstwowych tynków chroniących przed wodą z fabrycznie suchej zaprawy1510
dla tynków z izolacją termicznązależnie od
wymagań
20

A. 10 mm
B. 20 mm
C. 5 mm
D. 15 mm
Wybór grubości tynku mniejszej niż 20 mm, jak 10 mm, 5 mm czy 15 mm, nie spełnia wymagań dotyczących izolacji termicznej. Tynki o takiej grubości mogą nie zapewniać odpowiedniego poziomu izolacji, co jest kluczowe dla komfortu termicznego oraz efektywności energetycznej budynków. Izolacja termiczna ma na celu ograniczenie strat ciepła, a tynki o zbyt małej grubości mogą prowadzić do powstawania mostków termicznych. Przykładowo, przy grubości 10 mm, izolacja może być niewystarczająca, co w efekcie zwiększa zapotrzebowanie na energię do ogrzewania, a tym samym prowadzi do wyższych kosztów eksploatacyjnych. Dodatkowo, stosowanie tynku o grubości 5 mm lub 15 mm może być niezgodne z lokalnymi przepisami budowlanymi, które często wymagają minimalnych wartości grubości dla zapewnienia odpowiedniej izolacyjności. Kluczowym błędem w myśleniu przy doborze grubości tynku jest niedoszacowanie wpływu izolacji na całkowite koszty utrzymania budynku oraz komfort jego użytkowników. W praktyce, niewłaściwa grubość tynku może prowadzić do wielu problemów, w tym wilgoci wewnętrznej oraz obniżonej efektywności energetycznej, co jest niezgodne z najlepszymi praktykami w budownictwie nowoczesnym.

Pytanie 38

Szczeliny powietrzne w murach murowanych wprowadza się, aby poprawić

A. izolacyjność akustyczną
B. grubość ściany
C. izolacyjność termiczną ściany
D. ognioodporność ściany
Izolacyjność akustyczna, grubość ściany oraz ognioodporność to istotne aspekty konstrukcyjne, jednak nie mają bezpośredniego związku z zastosowaniem szczelin powietrznych w ścianach murowanych. Odpowiedzi sugerujące zwiększenie izolacyjności akustycznej nie uwzględniają faktu, że szczeliny powietrzne mogą działać negatywnie na właściwości akustyczne, ponieważ mogą stać się ścieżkami dla dźwięków. W kontekście grubości ściany, szczeliny powietrzne nie zwiększają rzeczywistej grubości muru, a ich zadaniem jest poprawa izolacji termicznej, co ma na celu ograniczenie kosztów ogrzewania. Ognioodporność, z kolei, jest związana z materiałami budowlanymi i ich właściwościami w zakresie odporności na wysoką temperaturę. Używanie szczelin powietrznych do zapewnienia ognioodporności jest niewłaściwym podejściem, ponieważ ognioodporność zależy przede wszystkim od jakości użytych materiałów oraz ich konstrukcji, a nie od obecności wolnej przestrzeni powietrznej. Często błędne podejście do tych zagadnień wynika z braku zrozumienia podstawowych zasad fizyki budowli oraz właściwości materiałów budowlanych. Dobrze zaprojektowane ściany murowane powinny być potwierdzone analizami technicznymi i spełniać aktualne normy budowlane, aby zapewnić odpowiednią izolacyjność termiczną, akustyczną i ognioodporność.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.