Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 3 czerwca 2025 01:36
  • Data zakończenia: 3 czerwca 2025 01:47

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Areometr działa w oparciu o zmianę głębokości zanurzenia pływaka pomiarowego w elektrolicie w zależności od

A. właściwości chemicznych elektrolitu
B. temperatury wrzenia elektrolitu
C. temperatury krzepnięcia elektrolitu
D. gęstości elektrolitu
Areometr to takie fajne urządzenie, które mierzy gęstość cieczy, w której jest zanurzone. Działa to na zasadzie prawa Archimedesa, które mówi, że na ciało zanurzone w cieczy działa siła wyporu, równa ciężarowi wypartej cieczy. W praktyce, gdy pływak areometru zanużasz w jakimś płynie, jego głębokość zanurzenia zmienia się w zależności od gęstości tego płynu. Im cieplejsza ciecz, tym mniej pływak się zanurza, co pozwala na odczytanie gęstości na skali. Areometry są super popularne w laboratoriach chemicznych czy w przemyśle spożywczym, a także w elektrotechnice, gdzie pomagają w badaniach stężenia elektrolitów w akumulatorach. Ważne, żeby regularnie kalibrować te urządzenia, żeby były jak najdokładniejsze, co zresztą jest zgodne z normami ISO. Wiedza o tym, jak areometry funkcjonują w różnych elektrolitach, jest mega ważna w przemyśle, bo precyzyjny pomiar gęstości jest kluczowy dla jakości produktów.

Pytanie 2

Gdy zostanie wykryte uszkodzenie przegubu kulowego półosi napędowej, co należy zrobić?

A. zastosować napawanie
B. poddąć go nawęglaniu
C. wymienić go na nowy
D. zastosować galwanizację
Wymiana uszkodzonego przegubu kulowego półosi napędowej jest jedynym skutecznym rozwiązaniem w przypadku stwierdzenia jego uszkodzenia. Przegub kulowy jest kluczowym elementem układu napędowego, który zapewnia przenoszenie momentu obrotowego oraz umożliwia ruch w różnych płaszczyznach. Gdy przegub ulega uszkodzeniu, może to prowadzić do poważnych problemów, takich jak nadmierne zużycie innych podzespołów, uszkodzenie skrzyni biegów czy drgań podczas jazdy, co wpływa na bezpieczeństwo. Wymiana przegubu na nowy zapewnia, że wszystkie właściwości mechaniczne i materiale są zgodne z normami producenta, co przekłada się na długotrwałość i niezawodność pojazdu. W praktyce, wymiana przegubu kulowego powinna być przeprowadzana z zachowaniem standardów jakości, takich jak użycie oryginalnych części zamiennych oraz przestrzeganie procedur montażowych, aby zminimalizować ryzyko przyszłych awarii. Trzeba również zwrócić uwagę na regularne przeglądy i konserwację układu napędowego, aby wcześniej wychwycić ewentualne uszkodzenia.

Pytanie 3

Podczas przeprowadzania głównego remontu, po całkowitym zdemontowaniu silnika, jako pierwsze

A. elementy należy poddać ocenie.
B. części należy umyć.
C. elementy należy poddać regeneracji.
D. można przystąpić do montażu nowych elementów.
W trakcie naprawy głównej silnika, umycie wszystkich części jest kluczowym krokiem, który należy podjąć po demontażu. Celem mycia jest usunięcie wszelkich zanieczyszczeń, takich jak olej, smar, pył oraz inne osady, które mogłyby zagrażać dalszej pracy silnika. W procesie mycia wykorzystuje się różne metody, takie jak mycie ultradźwiękowe, chemiczne czy za pomocą wysokociśnieniowych myjek, które są zgodne z branżowymi standardami. Na przykład, czyszczenie za pomocą myjki ciśnieniowej może skutecznie usunąć zanieczyszczenia z trudno dostępnych miejsc. Warto również zwrócić uwagę na dobór odpowiednich środków czyszczących, które nie będą miały negatywnego wpływu na materiały, z których wykonane są części. Po dokładnym umyciu, części powinny być dokładnie osuszone, aby uniknąć korozji. Taki proces mycia przed weryfikacją i regeneracją zapewnia, że inspekcja i ewentualne naprawy są przeprowadzane na czystych elementach, co zwiększa ich żywotność i efektywność całego silnika.

Pytanie 4

Diagnosta wykonał analizę, w trakcie której zauważył, że pedał hamulca jest zbyt miękki, a jego opór zwiększa się przy kolejnych naciśnięciach. Co nie jest przyczyną tej usterki?

A. rozszczelnienie układu w trakcie jego naprawy
B. nieszczelność w układzie
C. niewłaściwe działanie zaworu korekcyjnego
D. zbyt niski poziom płynu w zbiorniku
Zjawisko zbyt miękkiego pedału hamulca jest zazwyczaj wynikiem problemów z układem hydraulicznym hamulców. Rozszczelnienie układu podczas naprawy to jedno z możliwych źródeł awarii, w którym usunięcie lub niewłaściwe zamontowanie uszczelek prowadzi do wycieku płynu. W takim przypadku, powietrze dostaje się do układu, co skutkuje obniżonym ciśnieniem w systemie hamulcowym i odczuciem miękkości pedału. Nieszczelność układu również ma podobny efekt, gdzie wyciek płynu hamulcowego prowadzi do zmniejszenia efektywności hamowania, a pedał pod wpływem nacisku staje się coraz bardziej 'miękki'. Zbyt niski poziom płynu w zbiorniku jest kolejnym czynnikiem, który może prowadzić do podobnych objawów; brak odpowiedniej ilości płynu znacznie obniża ciśnienie w układzie, co jest odczuwalne na pedale hamulca. W praktyce, każdy mechanik powinien regularnie kontrolować stan płynu hamulcowego oraz szczelność układu, aby uniknąć niebezpiecznych sytuacji na drodze. Wnioskując, nieprawidłowa praca zaworu korekcyjnego nie jest bezpośrednio związana z opisanym problemem, co może prowadzić do mylnych wniosków, że problemy z hamowaniem wynikają z tej właśnie części. Ważne jest zrozumienie, że zawór korekcyjny reguluje ciśnienie, ale nie jest jego źródłem w przypadku hydraulicznych problemów z płynem.

Pytanie 5

Aby przeprowadzić weryfikację wałka rozrządu, należy użyć

A. płyty traserskiej
B. czujnika zegarowego
C. manometru
D. średnicówki
Czujnik zegarowy jest kluczowym narzędziem w weryfikacji wałka rozrządu, ponieważ pozwala na precyzyjne pomiary i sprawdzenie ustawień wałka w zakresie tolerancji producenta. Dzięki swojej konstrukcji umożliwia on dokładne wskazanie wszelkich odchyleń od normy, co jest szczególnie istotne w kontekście precyzyjnego działania silnika. Używając czujnika zegarowego, mechanik może z łatwością monitorować ruch wałka i oceniać, czy jego położenie jest zgodne z wymaganiami technicznymi. Przykładowo, w silnikach o wysokich obrotach, precyzyjne ustawienie rozrządu jest kluczowe dla osiągnięcia optymalnej mocy i efektywności paliwowej. Ponadto, stosowanie czujnika zegarowego jest zgodne z zasadami dobrej praktyki inżynieryjnej, co zapewnia nie tylko zgodność z normami, ale również bezpieczeństwo i niezawodność pracy silnika. Warto również zwrócić uwagę, że czujniki zegarowe są często używane w połączeniu z innymi narzędziami pomiarowymi, co zwiększa dokładność i możliwości diagnostyczne. W przypadku wątpliwości dotyczących precyzji pomiarów, czujnik zegarowy staje się niezastąpionym narzędziem w warsztacie.

Pytanie 6

Symbol 16V wskazuje na

A. silnik rzędowy z szesnastoma cylindrami
B. silnik widlasty z szesnastoma cylindrami
C. silnik Wankla
D. silnik szesnastozaworowy
Oznaczenie silnika 16V odnosi się do liczby zaworów w każdej głowicy cylindrów silnika, co w przypadku silników czterocylindrowych oznacza, że każdy cylinder ma po cztery zawory: dwa ssące i dwa wydechowe. Takie rozwiązanie pozwala na lepsze napełnienie cylindrów mieszanką paliwowo-powietrzną oraz efektywniejsze odprowadzanie spalin, co przekłada się na wyższą moc silnika oraz lepszą ekonomikę spalania. Silniki 16V są powszechnie stosowane w nowoczesnych pojazdach, co czyni je standardem w przemyśle motoryzacyjnym. Przykładem mogą być popularne jednostki napędowe w pojazdach marki Volkswagen czy Honda, które charakteryzują się dużą wydajnością i oszczędnością paliwa. Zastosowanie technologii 16V jest zgodne z dobrymi praktykami konstrukcyjnymi, które dążą do optymalizacji parametrów silnika. Warto również dodać, że silniki z większą liczbą zaworów mogą osiągać lepsze osiągi przy wyższych prędkościach obrotowych, co jest istotne w kontekście sportowego charakteru niektórych pojazdów.

Pytanie 7

Parownik stanowi składnik systemu

A. wydechowego
B. chłodzenia
C. klimatyzacji
D. smarowania
Parownik, jako jeden z kluczowych elementów systemu klimatyzacji, odgrywa fundamentalną rolę w procesie chłodzenia powietrza wewnętrznego. Działa na zasadzie odparowania czynnika chłodniczego, który w parowniku przyjmuje ciepło z otoczenia, co prowadzi do obniżenia temperatury powietrza. W praktyce oznacza to, że ciepłe powietrze z pomieszczenia przechodzi przez parownik, gdzie jest schładzane, a następnie wydmuchiwane z powrotem do wnętrza, co znacznie poprawia komfort użytkowników. W standardowych systemach klimatyzacyjnych, takich jak jednostki split czy centralne systemy wentylacji, parowniki są projektowane zgodnie z normami ASHRAE oraz ISO, co zapewnia ich wysoką efektywność energetyczną i niezawodność. Wiedza na temat działania parowników ma kluczowe znaczenie nie tylko dla inżynierów, ale także dla techników zajmujących się serwisowaniem systemów klimatyzacyjnych, ponieważ wszelkie problemy w ich funkcjonowaniu mogą prowadzić do obniżonej wydajności systemu oraz zwiększonego zużycia energii.

Pytanie 8

Zjawisko, w którym siła hamująca osłabia się, a następnie zanika w wyniku przegrzania, na przykład podczas długotrwałego hamowania, to

A. honowanie
B. przyczepność
C. pochłanianie
D. fading
Fading to proces, który zachodzi w układach hamulcowych, polegający na osłabieniu siły hamującej w wyniku ich przegrzania. W praktyce oznacza to, że podczas długotrwałego hamowania, na przykład w trakcie intensywnego zjazdu ze wzniesienia, materiały hamulcowe mogą osiągnąć temperatury, które prowadzą do zmiany ich właściwości. W przypadku hamulców tarczowych, nadmierne ciepło może powodować, że klocki hamulcowe tracą skuteczność, co jest szczególnie niebezpieczne w sytuacjach wymagających dużej precyzji i odpowiedzialności, jak np. na torze wyścigowym czy w transporcie publicznym. W branży motoryzacyjnej stosuje się różne materiały, takie jak węgiel lub ceramika, które mają lepsze właściwości cieplne, zmniejszając ryzyko fadingu. Praktyczne zrozumienie tego zjawiska jest kluczowe dla inżynierów projektujących systemy hamulcowe oraz dla kierowców, którzy muszą być świadomi ograniczeń swoich pojazdów, szczególnie w trudnych warunkach drogowych.

Pytanie 9

Jak odbywa się identyfikacja pojazdu?

A. prawa jazdy
B. dokumentacji OC
C. tabliczki znamionowej
D. dokumentacji AC
Identyfikacja pojazdu za pomocą tabliczki znamionowej jest kluczowym elementem w procesie rejestracji oraz weryfikacji pojazdów. Tabliczka ta zawiera unikalny numer VIN (Vehicle Identification Number), który jest przypisany do każdego pojazdu i pozwala na jego jednoznaczną identyfikację. Dzięki temu możliwe jest uzyskanie istotnych informacji dotyczących historii pojazdu, takich jak jego dane techniczne, historia wypadków, czy zmiany właścicieli. W praktyce, tabliczki znamionowe są umieszczane w standardowych lokalizacjach, takich jak deska rozdzielcza, w oknie przedniej szyby lub na wewnętrznej stronie drzwi kierowcy. Znajomość lokalizacji tabliczki oraz umiejętność odczytywania z niej informacji jest niezbędna dla osób zajmujących się handlem pojazdami używanymi, a także dla instytucji zajmujących się kontrolą stanu technicznego pojazdów. W związku z tym, zaznajomienie się z zasadami identyfikacji pojazdów za pomocą tabliczki znamionowej jest kluczowe dla zapewnienia bezpieczeństwa na drogach oraz ochrony przed oszustwami związanymi z rejestracją pojazdów.

Pytanie 10

Czas wymiany uszczelki podgłowicowej w silniku wynosi 2,3 rbg, a całkowity koszt części zamiennych to 339,00 zł netto. Jaki jest całkowity koszt brutto naprawy (VAT 23%), przy założeniu, że cena za 1 rbg to 70,00 zł netto?

A. 600,00 zł
B. 595,00 zł
C. 615,00 zł
D. 500,00 zł
Aby obliczyć całkowity koszt naprawy, należy uwzględnić zarówno koszt pracy, jak i koszt części zamiennych. Czas wymiany uszczelki podgłowicowej wynosi 2,3 roboczogodziny (rbg), co przy stawce 70,00 zł netto za rbg daje 161,00 zł (2,3 rbg * 70,00 zł/rbg). Następnie dodajemy do tego koszt części zamiennych, który wynosi 339,00 zł netto. Łączny koszt netto naprawy wynosi więc 500,00 zł (161,00 zł + 339,00 zł). Aby uzyskać koszt brutto, musimy doliczyć VAT w wysokości 23%. Obliczamy VAT: 500,00 zł * 0,23 = 115,00 zł. Zatem całkowity koszt brutto wynosi 615,00 zł (500,00 zł + 115,00 zł). Tym samym, poprawna odpowiedź to 615,00 zł, co jest zgodne z praktykami w branży, gdzie zawsze należy uwzględniać VAT w kalkulacjach kosztów naprawy oraz usług. Zrozumienie tego procesu jest kluczowe dla zarządzania finansami w warsztatach samochodowych oraz dla przejrzystości w kosztorysowaniu usług.

Pytanie 11

W jakich sytuacjach stosuje się spawanie jako metodę naprawy?

A. Przy usuwaniu pęknięć w bloku silnika
B. Podczas eliminacji odkształceń na powierzchni uszczelniającej głowicy
C. Przy naprawie uszkodzonych gwintów w kadłubie silnika
D. W trakcie naprawy gładzi cylindra
Usuwanie odkształceń powierzchni uszczelniającej głowicy, naprawa gładzi cylindrowych oraz usuwanie uszkodzonych otworów gwintowanych w kadłubie silnika są operacjami, które nie wymagają spawania jako głównej metody naprawczej. Usuwanie odkształceń w powierzchni uszczelniającej głowicy silnika zazwyczaj polega na szlifowaniu lub frezowaniu tej powierzchni, aby zapewnić szczelność po regeneracji. Metody te są bardziej odpowiednie, gdyż wymagają precyzyjnego dostosowania geometrii, co jest kluczowe dla prawidłowego uszczelnienia. Naprawa gładzi cylindrowych może obejmować honowanie lub wzmocnienie powierzchni cylindra, co również nie wiąże się ze spawaniem, a raczej z użyciem narzędzi skrawających. Z kolei usuwanie uszkodzonych otworów gwintowanych w kadłubie silnika jest zazwyczaj realizowane poprzez wtapianie wkładek gwintowych, co jest metodą mechaniczną, a nie spawalniczą. Kluczowym błędem w rozumowaniu jest założenie, że każda naprawa metalowych komponentów silnika może być wykonana za pomocą spawania, podczas gdy różne uszkodzenia wymagają odmiennego podejścia w zależności od rodzaju materiału, lokalizacji defektu oraz wymagań technologicznych. W praktyce należy zatem zwracać szczególną uwagę na dobór odpowiedniej metody naprawy, co jest zgodne z zasadami inżynierii materiałowej i mechaniki.

Pytanie 12

Jazda testowa przeprowadzona na odcinku drogi kamiennej umożliwi przede wszystkim

A. określenie siły hamowania pojazdu.
B. określenie stanu technicznego systemu zawieszenia pojazdu.
C. ustalenie czasu ogrzewania się płynu chłodzącego silnik.
D. sprawdzenie działania układu rozruchu silnika.
Jazda po drodze brukowanej to naprawdę ważny test dla zawieszenia samochodu. Ta nawierzchnia, z wszystkimi swoimi dołkami i drganiami, zmusza układ zawieszenia do działania w trudnych warunkach, co pomaga ocenić, jak to wszystko działa. Dla aut osobowych zawieszenie jest kluczowe, bo wpływa zarówno na komfort jazdy, jak i bezpieczeństwo. Gdy jedziesz po bruku, możesz zobaczyć, jak zawieszenie reaguje na różne nierówności – czy amortyzatory są ok, czy nie słychać dziwnych dźwięków, czy auto nie zjeżdża z toru. Fajnie jest pomyśleć, że na podstawie takich testów można dobrać lepsze amortyzatory czy sprężyny, co zwiększy bezpieczeństwo i komfort podróżowania. W motoryzacji zdarza się, że takie testy przeprowadza się regularnie, żeby mieć pewność, że wszystko działa tak, jak powinno i nie ma ryzyka dla kierowcy i pasażerów.

Pytanie 13

Urządzenie nazywane "szarpakiem" używane jest do identyfikacji

A. zużycia amortyzatorów
B. zużycia przekładni kierowniczej
C. luzów w węzłach układu zawieszenia
D. uszkodzeń obręczy kół
Wybór uszkodzeń obręczy kół jako odpowiedzi na pytanie o zastosowanie szarpaka jest błędny, ponieważ szarpak nie jest narzędziem zaprojektowanym do oceny stanu obręczy kół, które są elementami struktur nośnych pojazdu. Uszkodzenia obręczy kół mogą prowadzić do problemów z geometrią zawieszenia i stabilnością jazdy, jednak diagnostyka takich uszkodzeń wymaga użycia innych metod, takich jak inspekcja wizualna czy pomiary geometrii kół. Z kolei zużycie przekładni kierowniczej jest problemem związanym z innym układem pojazdu; chociaż może wpływać na zachowanie samochodu, szarpak nie jest narzędziem odpowiednim do pomiaru luzów w tym elemencie. Problemy z przekładnią kierowniczą zazwyczaj diagnozuje się przy pomocy testów statycznych lub dynamicznych, które nie obejmują wykorzystania szarpaka. Również stwierdzenie, że szarpak wykrywa zużycie amortyzatorów, jest mylne. Amortyzatory są elementem, który, choć wpłyną na odpowiedź układu zawieszenia, wymagają osobnych metod diagnostycznych, takich jak testy tłumienia czy pomiary sił tłumiących, które są bardziej bezpośrednie w ocenie ich stanu. Takie nieprawidłowe wybory są często wynikiem braku zrozumienia funkcji konkretnego narzędzia oraz jego zastosowania w kontekście złożoności układów motoryzacyjnych.

Pytanie 14

Omomierz można zastosować do weryfikacji czujnika

A. zegara
B. manometrycznego
C. położenia przepustnicy
D. Halla
Omomierz jest przyrządem pomiarowym, który jest używany do pomiaru oporu elektrycznego. W kontekście kontroli czujnika położenia przepustnicy, omomierz może być użyty do diagnozowania stanu czujnika, który jest kluczowy dla zarządzania pracą silnika. Czujnik położenia przepustnicy monitoruje kąt otwarcia przepustnicy, co jest istotne dla prawidłowego wtrysku paliwa i ogólnego zarządzania silnikiem. Przy użyciu omomierza można sprawdzić, czy czujnik działa poprawnie, mierząc jego opór w różnych położeniach. Przykładowo, przy pełnym otwarciu przepustnicy opór powinien osiągnąć przewidywaną wartość, co można porównać do wartości referencyjnych z dokumentacji technicznej. Analizowanie wyników pomiarów pozwala na wczesne wykrycie usterek, co jest zgodne z najlepszymi praktykami w diagnostyce pojazdów. Użycie omomierza w tego typu testach jest standardem w wielu warsztatach samochodowych, co podkreśla jego znaczenie w serwisowaniu i utrzymaniu pojazdów w dobrym stanie.

Pytanie 15

Jaki jest podstawowy cel regulacji geometrii zawieszenia?

A. Poprawa wyglądu pojazdu
B. Zwiększenie mocy silnika
C. Zapewnienie stabilności prowadzenia pojazdu
D. Zmniejszenie zużycia paliwa
Podstawowym celem regulacji geometrii zawieszenia jest zapewnienie stabilności prowadzenia pojazdu. Geometria zawieszenia odnosi się do ustawienia kątów kół w stosunku do siebie i do nawierzchni drogi. Prawidłowe ustawienie kątów, takich jak zbieżność, kąt pochylenia kół czy wyprzedzenie osi sworznia zwrotnicy, ma kluczowy wpływ na stabilność pojazdu podczas jazdy. Kiedy kąty te są prawidłowo ustawione, pojazd prowadzi się pewniej, zmniejsza się jego podatność na niekontrolowane zmiany toru jazdy oraz poprawia reakcję na ruchy kierownicy. Nieodpowiednia geometria może prowadzić do niestabilnego zachowania pojazdu, co jest szczególnie niebezpieczne przy dużych prędkościach. Z mojego doświadczenia wynika, że regularna kontrola i regulacja geometrii zawieszenia jest jedną z najważniejszych czynności serwisowych, które mają bezpośredni wpływ na bezpieczeństwo na drodze. Zapewnienie stabilności prowadzenia pojazdu to nie tylko kwestia komfortu, ale przede wszystkim bezpieczeństwa kierowcy i pasażerów. Dlatego warto zwracać uwagę na to, by geometria zawieszenia była zawsze odpowiednio wyregulowana.

Pytanie 16

Jak wiele znaków zawiera numer VIN?

A. 17 znaków
B. 13 znaków
C. 11 znaków
D. 15 znaków
Numer identyfikacyjny pojazdu, znany jako VIN (Vehicle Identification Number), składa się z 17 znaków, co czyni go unikalnym dla każdego pojazdu. VIN został wprowadzony, aby zapewnić jednoznaczną identyfikację pojazdów na całym świecie. Składa się z kombinacji liter i cyfr, które zawierają istotne informacje, takie jak producent, rok produkcji, miejsce produkcji oraz unikalny numer seryjny pojazdu. Przykładowo, pierwsze trzy znaki VIN to tzw. WMI (World Manufacturer Identifier), które identyfikują producenta. Wiedza na temat VIN jest kluczowa dla takich procesów jak rejestracja pojazdu, ubezpieczenia, a także przy transakcjach sprzedaży, ponieważ pozwala na szybkie sprawdzenie historii pojazdu oraz jego stanu prawnego. Zgodnie z międzynarodowymi standardami ISO 3779, długość VIN powinna być stała, co ułatwia zarówno producentom, jak i użytkownikom identyfikację i śledzenie pojazdów.

Pytanie 17

Typowe tarcze hamulcowe są produkowane

A. z żeliwa szarego
B. ze stali stopowej
C. ze stali niestopowej
D. z żeliwa białego
Wybór odpowiedzi związanych z żeliwem białym, stalą stopową oraz stalą niestopową nie jest uzasadniony w kontekście klasycznych tarcz hamulcowych. Żeliwo białe, ze względu na swoją twardość, nie jest odpowiednie w zastosowaniach hamulcowych, ponieważ wykazuje niską odporność na uderzenia i małą zdolność do rozpraszania ciepła. Takie materiałowe właściwości mogą prowadzić do szybkiego zużycia tarcz oraz zwiększonego ryzyka pęknięć pod wpływem wysokich temperatur. W przypadku stali stopowej, chociaż może oferować lepsze właściwości mechaniczne w niektórych zastosowaniach, jej produkcja jest droższa, a także może być mniej efektywna w redukcji wagi pojazdów. Stale niestopowe z kolei, mimo że są łatwiejsze w obróbce, nie dysponują odpowiednią odpornością na wysokie temperatury i mają tendencję do deformacji pod dużym obciążeniem. W kontekście dobrych praktyk inżynieryjnych, wybór materiałów do produkcji tarcz hamulcowych powinien opierać się na ich zdolności do pracy w krytycznych warunkach, co jasno wskazuje na preferencje dla żeliwa szarego, spełniającego wszelkie wymagania dotyczące bezpieczeństwa i niezawodności.

Pytanie 18

Zmiana koloru cieczy stosowanej do identyfikacji nieszczelności uszczelki pod głowicą jest spowodowana gazem obecnym w spalinach

A. NOx
B. CO
C. O2
D. CO2
Wybór NOx, CO lub O2 jako odpowiedzi na pytanie o zmianę zabarwienia płynu wykrywającego nieszczelności uszczelki pod głowicą jest niepoprawny i oparty na nieporozumieniach dotyczących chemii spalin. NOx, czyli tlenki azotu, powstają w wyniku wysokotemperaturowego spalania paliw, ale nie mają wpływu na kolor płynu chłodniczego. CO, czyli tlenek węgla, jest gazem o dużym potencjale toksycznym, lecz także nie jest bezpośrednio reakcjonujący z wskaźnikami zabarwienia płynów w wykrywaniu nieszczelności. O2, czyli tlen, jest gazem niezbędnym do procesu spalania, ale jego obecność również nie powoduje zmiany kolorystycznej w płynie używanym w tych testach. Typowym błędem myślowym jest niewłaściwe postrzeganie roli poszczególnych gazów w procesach chemicznych i ich reakcji z innymi substancjami. W praktyce inżynieryjnej, ważne jest zrozumienie, że różne gazy mają różne właściwości chemiczne i fizyczne, co wpływa na ich zastosowanie w diagnostyce silników spalinowych. Dlatego skuteczna diagnostyka silników powinna opierać się na zrozumieniu specyfiki każdego z tych gazów oraz ich reakcji z innymi substancjami, aby optymalizować procesy diagnostyczne i zapewnić długotrwałe działanie układów mechanicznych.

Pytanie 19

Termin DOHC odnosi się do układu

A. górnozaworowego z dwoma wałkami rozrządu zainstalowanymi w głowicy
B. górnozaworowego z jednym wałkiem rozrządu umieszczonym w kadłubie
C. górnozaworowego z pojedynczym wałkiem rozrządu w głowicy
D. dolnozaworowego z jednym wałkiem rozrządu w kadłubie
Odpowiedź, że DOHC oznacza górnozaworowy układ z dwoma wałkami rozrządu w głowicy, jest prawidłowa. Skrót DOHC pochodzi od angielskiego 'Dual Overhead Camshaft', co dosłownie oznacza 'podwójny wałek rozrządu w górze'. Taki układ rozrządu pozwala na bardziej precyzyjne sterowanie procesem otwierania i zamykania zaworów, co wpływa na lepsze osiągi silnika, zarówno w zakresie mocy, jak i efektywności paliwowej. Zastosowanie dwóch wałków rozrządu umożliwia jednoczesne działanie na zawory dolotowe i wydechowe, co zwiększa przepływ powietrza do komory spalania oraz poprawia odprowadzanie spalin. Przykładem zastosowania DOHC są silniki w samochodach sportowych i wyższej klasy, gdzie optymalizacja osiągów silnika jest kluczowa. W branży motoryzacyjnej standardem staje się także wzbogacenie układów rozrządu o systemy zmiennych faz rozrządu, co further enhances the performance of DOHC engines in practical applications, emphasizing their growing importance in modern automotive engineering.

Pytanie 20

Definicja AQUAPLANING odnosi się do

A. zbyt wysokiej temperatury opony
B. niewystarczająco niskiej temperatury opony
C. zwiększonej przyczepności opony
D. utraconej przyczepności opony na mokrej nawierzchni
Pojęcie aquaplaning odnosi się do zjawiska, które występuje, gdy opona nie jest w stanie odprowadzić wody z powierzchni drogi, co prowadzi do utraty przyczepności. W momencie, gdy warstwa wody na drodze jest zbyt gruba, a prędkość pojazdu jest wystarczająco wysoka, opona unosi się na wodzie, co skutkuje brakiem kontaktu z nawierzchnią. W praktyce oznacza to, że kierowca traci kontrolę nad pojazdem, co może prowadzić do niebezpiecznych sytuacji. Aby zminimalizować ryzyko aquaplaningu, ważne jest regularne sprawdzanie stanu opon, w tym głębokości bieżnika, oraz dostosowywanie prędkości do warunków panujących na drodze. Zgodnie z przepisami i zaleceniami producentów, minimalna głębokość bieżnika powinna wynosić co najmniej 1,6 mm, jednak dla zachowania maksymalnego bezpieczeństwa wskazane jest, aby bieżnik miał co najmniej 3 mm. Warto również pamiętać o technikach jazdy, takich jak unikanie nagłych manewrów w trudnych warunkach, co może znacząco poprawić bezpieczeństwo na drodze.

Pytanie 21

Podczas zmiany opony na urządzeniu przeznaczonym do demontażu, mechanikowi mogą zagrażać

A. uszkodzenie ciała energią sprężonego powietrza
B. uszkodzenie słuchu
C. poparzenie dłoni
D. poparzenie oczu
Odpowiedź dotycząca uszkodzenia ciała energią sprężonego powietrza jest prawidłowa, ponieważ podczas wymiany opony, szczególnie w warsztatach mechanicznych, używa się narzędzi pneumatycznych, które mogą generować znaczną siłę. Sprężone powietrze, jeśli nie jest stosowane prawidłowo, może powodować niebezpieczne sytuacje, takie jak wystrzał opony czy niekontrolowane uwolnienie energii. Przykładowo, jeśli mechanik nieprawidłowo obsługuje klucze pneumatyczne lub nie stosuje odpowiednich technik zabezpieczających, może dojść do poważnych obrażeń ciała. Dlatego ważne jest stosowanie się do procedur bezpieczeństwa, takich jak używanie odpowiedniego sprzętu ochronnego oraz regularne szkolenie personelu. W branży motoryzacyjnej, normy BHP oraz wytyczne dotyczące korzystania z narzędzi pneumatycznych powinny być przestrzegane, co pozwala minimalizować ryzyko kontuzji związanych z energią sprężonego powietrza.

Pytanie 22

Jaką liczbę znaków zawiera numer VIN?

A. składa się z 15 znaków
B. składa się z 12 znaków
C. składa się z 17 znaków
D. składa się z 10 znaków
Numer VIN (Vehicle Identification Number) składa się z 17 znaków, co jest wynikiem standaryzacji wprowadzonej przez Międzynarodową Organizację Normalizacyjną (ISO) i przyjętej przez wiele krajów. VIN zawiera informacje o pojeździe, takie jak producent, model, typ nadwozia, rok produkcji, a także unikalny numer seryjny. Przykładowo, pierwsze trzy znaki VIN, znane jako WMI (World Manufacturer Identifier), identyfikują producenta pojazdu. Kolejne znaki dostarczają szczegółowych informacji na temat modelu, silnika oraz miejsca produkcji. Dzięki temu systemowi, każdy pojazd na świecie ma unikalny identyfikator, co jest niezbędne do rejestracji, ubezpieczenia oraz identyfikacji w przypadku kradzieży. Zrozumienie struktury i znaczenia numeru VIN jest kluczowe dla osób pracujących w branży motoryzacyjnej, a także dla właścicieli pojazdów, którzy chcą zadbać o swoje mienie.

Pytanie 23

W jakiej sekwencji powinno się dokręcać śruby trzymające głowicę silnika?

A. Od lewej do prawej
B. W dowolnej sekwencji
C. Zgodnie z instrukcjami producenta silnika
D. Kolejno, zaczynając od strony rozrządu
Dokręcanie śrub mocujących głowicę silnika zgodnie z zaleceniami producenta jest kluczowe dla zapewnienia odpowiedniej szczelności i stabilności jednostki napędowej. Każdy silnik może mieć specyficzne wymagania dotyczące momentu obrotowego oraz kolejności dokręcania, co jest zazwyczaj określone w dokumentacji technicznej. Zastosowanie się do tych zaleceń pozwala na równomierne rozłożenie naprężeń na śrubach, co zminimalizuje ryzyko ich uszkodzenia oraz ewentualnych nieszczelności. Przykładowo, w silnikach z głowicą aluminiową często stosuje się sekwencyjne dokręcanie, aby uniknąć odkształceń materiału. Ignorowanie tych zasad może prowadzić do poważnych awarii, takich jak uszkodzenie uszczelki pod głowicą, co z kolei generuje wysokie koszty naprawy. Dlatego zawsze należy konsultować się z instrukcją serwisową i stosować odpowiednie narzędzia, aby zapewnić, że śruby są dokręcone zgodnie z obowiązującymi normami i standardami branżowymi.

Pytanie 24

Podczas obsługi urządzenia do piaskowania elementów należy bezwzględnie zakładać

A. czapkę z daszkiem
B. obuwie ochronne
C. okulary ochronne
D. rękawice lateksowe
Użycie okularów ochronnych podczas obsługi urządzenia do piaskowania części jest kluczowe dla zapewnienia bezpieczeństwa operatora. Piaskowanie generuje cząsteczki pyłu oraz drobne cząstki materiału, które mogą łatwo trafić do oczu, powodując poważne urazy. Okulary ochronne, zgodne z normami ochrony osobistej, powinny być wykonane z materiałów odpornych na uderzenia, aby skutecznie chronić oczy przed potencjalnymi projektami. Przykładowo, stosowanie okularów z powłoką antyrefleksyjną i odpornych na zarysowania jest zalecane, aby zwiększyć komfort pracy oraz bezpieczeństwo. Ponadto, w kontekście przestrzegania przepisów BHP, wiele organizacji wymaga stosowania okularów ochronnych jako standardowego wyposażenia podczas wszelkich operacji związanych z obróbką materiałów. Prawidłowe zabezpieczenie oczu jest również elementem kultury bezpieczeństwa w miejscu pracy, co przyczynia się do obniżenia ryzyka wypadków.

Pytanie 25

Materiał charakteryzujący się dużym współczynnikiem przewodzenia ciepła

A. szybko się nagrzewa i długo chłodzi.
B. długo się nagrzewa i szybko chłodzi.
C. długo się nagrzewa i długo chłodzi.
D. szybko się nagrzewa i szybko chłodzi.
Materiał o wysokim współczynniku przewodnictwa ciepła charakteryzuje się zdolnością do szybkiego przekazywania energii cieplnej. Odpowiedź "szybko się nagrzewa i szybko stygnie" jest poprawna, ponieważ takie materiały, jak metale (np. miedź, aluminium), mają zdolność do błyskawicznego wchłaniania ciepła i równie szybkie oddawanie go do otoczenia. Przykładem może być wykorzystanie miedzi w produkcji wymienników ciepła w systemach grzewczych i chłodniczych, gdzie efektywność wymiany ciepła jest kluczowa. Wysoka przewodność cieplna materiału jest istotna w zastosowaniach inżynierskich, takich jak budowa elektroniki, gdzie szybkie odprowadzanie ciepła od komponentów elektronicznych zapobiega ich przegrzewaniu i wydłuża żywotność urządzeń. Dobre praktyki w projektowaniu systemów termicznych z wykorzystaniem materiałów o wysokiej przewodności cieplnej obejmują również odpowiedni dobór grubości materiałów oraz ich obróbkę, co pozwala na maksymalne wykorzystanie ich właściwości. Przykłady zastosowań w przemyśle samochodowym to układy chłodzenia silników, gdzie zastosowanie materiałów o wysokim współczynniku przewodnictwa cieplnego znacząco wpływa na efektywność całego systemu.

Pytanie 26

W trakcie jazdy próbnej zaobserwowano drgania w kierownicy samochodu w określonym zakresie prędkości. W takiej sytuacji najpierw należy

A. wyważyć koła
B. wymienić łożyska kół
C. wymienić końcówki drążków kierowniczych
D. wymienić łączniki stabilizatora
Drgania na kierownicy podczas jazdy próbnej są często wynikiem niewłaściwego wyważenia kół. Wyważenie kół polega na równomiernym rozłożeniu masy całego koła, co zapewnia stabilność pojazdu w czasie jazdy. Jeśli koła są niewyważone, mogą występować drgania, które są odczuwalne w kierownicy, szczególnie przy określonych prędkościach. Problemy te mogą prowadzić nie tylko do nieprzyjemnych odczuć podczas prowadzenia, ale również do szybszego zużycia opon oraz podzespołów zawieszenia. W praktyce, wyważenie kół powinno być wykonywane po każdej wymianie opon lub gdy zauważysz oznaki drgań. Używa się do tego specjalistycznego sprzętu, który precyzyjnie mierzy nierównomierność masy i pozwala na dodanie odpowiednich ciężarków. Standardy branżowe, takie jak SAE (Society of Automotive Engineers), zalecają regularne sprawdzanie wyważenia kół jako elementu zapewniającego bezpieczeństwo i komfort jazdy.

Pytanie 27

Rękawice ochronne powinny być używane podczas prac

A. przy elementach wirujących
B. w okolicy elementów obracających się
C. przeładunkowych
D. tokarsko - frezerskich.
Rękawice ochronne powinny być stosowane w pracach przeładunkowych ze względu na ryzyko uszkodzenia rąk spowodowanego kontaktami z ciężkimi przedmiotami. W takich warunkach, rękawice chronią przed otarciami, przecięciami oraz innymi urazami mechanicznymi, które mogą wystąpić podczas podnoszenia, przenoszenia czy układania ładunków. Standardy BHP, takie jak PN-EN 388, określają wymagania dotyczące rękawic ochronnych, w tym ich odporność na różne rodzaje uszkodzeń. Przykładem zastosowania takich rękawic mogą być prace w magazynach, gdzie pracownicy często mają do czynienia z paletami, skrzyniami czy innymi ciężkimi obiektami. Odpowiednie rękawice mogą znacząco zmniejszyć ryzyko kontuzji, a także poprawić chwyt i stabilność uchwytu, co jest kluczowe w tego typu pracach. Dobre praktyki wskazują, że zawsze należy dobierać rękawice do specyficznych warunków pracy oraz rodzaju przewożonych lub przenoszonych materiałów, aby zapewnić maksymalną ochronę.

Pytanie 28

Który z poniższych elementów wymaga regularnej kontroli podczas obsługi technicznej pojazdu?

A. Stan anteny radiowej
B. Mocowanie tablic rejestracyjnych
C. Poziom oleju silnikowego
D. Wycieraczki tylnej szyby
Regularna kontrola poziomu oleju silnikowego jest jednym z kluczowych elementów utrzymania pojazdu w dobrej kondycji. Olej silnikowy pełni kilka ważnych funkcji w silniku: smaruje ruchome części, redukuje tarcie, odprowadza ciepło, a także pomaga w usuwaniu zanieczyszczeń. Z czasem, olej ulega degradacji i traci swoje właściwości, co może prowadzić do zwiększonego zużycia silnika, a w skrajnych przypadkach do jego uszkodzenia. Dlatego, zgodnie z dobrą praktyką serwisową, zaleca się regularne sprawdzanie poziomu oleju, najlepiej przed dłuższą trasą czy po kilku tysiącach przejechanych kilometrów. Mechanicy często podkreślają, że niedobór oleju może prowadzić do przegrzania silnika i poważnych awarii. Warto też pamiętać o tym, że różne silniki mogą wymagać różnych typów oleju, co jest istotne przy jego wymianie. Podsumowując, kontrola poziomu oleju to podstawowy element serwisowy, który pozwala na długotrwałe i bezawaryjne korzystanie z pojazdu.

Pytanie 29

Frekfencja migania świateł kierunkowskazów powinna wynosić

A. 120 do 30 błysków na minutę
B. 60 do 30 błysków na minutę
C. 90 do 30 błysków na minutę
D. 100 do 30 błysków na minutę
Optymalna częstotliwość błysków świateł kierunkowskazów, wynosząca od 90 do 30 błysków na minutę, jest zgodna z obowiązującymi normami i dobrymi praktykami w zakresie bezpieczeństwa ruchu drogowego. Taki zakres częstotliwości zapewnia odpowiednią widoczność sygnałów kierunkowych, co jest kluczowe dla innych uczestników ruchu. W praktyce oznacza to, że kierowcy mają wystarczająco dużo czasu na zauważenie sygnału i na podjęcie odpowiednich działań, co przekłada się na zmniejszenie ryzyka wypadków. Częstość ta jest również zgodna z przepisami prawa w wielu krajach, co sprawia, że jest to standard, którego powinni przestrzegać producenci pojazdów. Warto pamiętać, że zbyt wolne błyski mogą być mylnie interpretowane jako nieczytelne, a zbyt szybkie mogą wprowadzać w błąd. Utrzymanie tej częstotliwości jest zatem niezbędne dla poprawy bezpieczeństwa na drogach oraz dla efektywnej komunikacji między kierowcami.

Pytanie 30

Aby dokonać weryfikacji i pomiarów wału korbowego, na początku należy

A. zdjąć pokrywy czopów i wyjąć wał korbowy z silnika
B. usunąć zanieczyszczenia z wału
C. rozebrać tłoki
D. rozmontować korbowody
Aby przeprowadzić weryfikację i pomiary wału korbowego, kluczowym krokiem jest zdemontowanie pokrywy czopów i wymontowanie wału korbowego z silnika. Tylko w ten sposób można uzyskać dostęp do elementów, które wymagają dokładnych pomiarów, takich jak średnice czopów wału oraz luz między wałem a łożyskami. Właściwe pomiary są niezbędne do oceny stanu technicznego wału korbowego, co ma bezpośredni wpływ na prawidłowe funkcjonowanie silnika. W praktyce, przed rozpoczęciem demontażu, należy zwrócić uwagę na odpowiednie zabezpieczenie i oznaczenie elementów, aby uniknąć pomyłek podczas ponownego montażu. Standardy branżowe, takie jak zalecenia producentów, często wskazują na istotność stosowania właściwych narzędzi i technik demontażu, aby nie uszkodzić delikatnych komponentów silnika. Na przykład, korzystanie z odpowiednich kluczy dynamometrycznych podczas montażu pokryw czopów jest kluczowe dla zachowania właściwego momentu dokręcania, co wpływa na długowieczność wału korbowego.

Pytanie 31

Korzystając z tabeli, określ zakres wymiaru grubości półpanewki dla drugiego wymiaru naprawczego

Oznaczenie wymiaruNr katalogowy półpanewki (górnej lub dolnej)Grubość ścianki półpanewki (mm)Średnica wewnętrzna panewki po zamontowaniu (mm)
N000Produkcyjny0050/50-312/02.000+0.020-0.03060.00+0.079-0.040
N0251 naprawa0050/50-349/02.125+0.020-0.03059.75+0.079-0.040
N0502 naprawa0050/50-393/02.250+0.020-0.03059.50+0.079-0.040
N0753 naprawa0050/50-392/02.375+0.020-0.03059.25+0.079-0.040
N1004 naprawa0050/50-385/02.500+0.020-0.03059.00+0.079-0.040
N1255 naprawa0050/50-386/02.625+0.020-0.03058.75+0.079-0.040

A. 2,020-2,030 mm
B. 2,220-2,230 mm
C. 2,105-2,155 mm
D. 2,355-2,405 mm
Zakres wymiaru grubości półpanewki dla drugiego wymiaru naprawczego, wynoszący od 2,220 mm do 2,230 mm, jest wynikiem precyzyjnych obliczeń opartych na odchyłkach nominalnych. W praktyce oznacza to, że wytwarzane elementy muszą mieścić się w tych granicach, aby zapewnić odpowiednią funkcjonalność i trwałość w układzie mechanicznym. W branży motoryzacyjnej oraz w inżynierii mechanicznej, przestrzeganie precyzyjnych wymiarów jest kluczowe dla zapewnienia niezawodności komponentów. Na przykład, zbyt mała grubość półpanewki może skutkować nieodpowiednim dopasowaniem części, co prowadzi do zwiększonego tarcia i potencjalnego uszkodzenia. Z kolei zbyt duża grubość może generować nadmierne naprężenia, co także wpływa negatywnie na żywotność podzespołów. Dlatego istotne jest korzystanie z aktualnych standardów i norm, takich jak ISO, które definiują tolerancje wymiarowe i jakościowe dla tego typu elementów. Dzięki temu produkowane komponenty są nie tylko zgodne z wymaganiami, ale również optymalizują procesy produkcyjne i redukują koszty eksploatacji.

Pytanie 32

Wydobywające się z rury wydechowej spaliny o niebieskim zabarwieniu najprawdopodobniej wskazują

A. na zużycie pierścieni tłokowych
B. na nieszczelność w układzie wydechowym
C. na zbyt duże wyprzedzenie wtrysku
D. na zamknięty zawór EGR
Zjawisko niebieskiego dymu wydobywającego się z rury wydechowej silnika spalinowego najczęściej jest sygnalizowane przez zużycie pierścieni tłokowych. Pierścienie tłokowe odpowiadają za uszczelnienie komory spalania oraz za kontrolowanie ilości oleju dostającego się do cylindra. Kiedy pierścienie są zużyte, mogą pozwalać na przedostawanie się oleju silnikowego do komory spalania, co prowadzi do jego spalania i produkcji niebieskiego dymu. W praktyce, gdy zauważymy taki objaw, warto skontrolować stan silnika oraz poziom oleju, ponieważ nadmierne zużycie oleju może prowadzić do poważniejszych uszkodzeń silnika. W branży motoryzacyjnej, regularna diagnostyka i konserwacja silnika, w tym sprawdzanie szczelności pierścieni, są kluczowe dla zapewnienia efektywności i trwałości pojazdu. Odpowiednie procedury diagnostyczne, takie jak test kompresji, mogą ujawnić stan pierścieni tłokowych, co pozwala na wczesne wykrycie problemów i uniknięcie kosztownych napraw. Zgodnie z dobrymi praktykami, zaleca się monitorowanie objawów, takich jak niebieski dym, co może być pierwszym krokiem w kierunku prewencyjnego podejścia do utrzymania silnika w dobrej kondycji.

Pytanie 33

Jakie są powody nadmiernego przegrzewania się bębna hamulcowego podczas prowadzenia pojazdu?

A. Nieodpowiednie napięcie linki hamulca ręcznego
B. Nieszczelność pompy hamulcowej
C. Standardowe zużycie okładzin szczęk hamulcowych
D. Zatarły rozpieracz hamulcowy
Zatarcie rozpieracza hamulcowego jest jedną z kluczowych przyczyn nadmiernego nagrzewania się bębna hamulcowego. Kiedy rozpieracz nie działa prawidłowo, nie jest w stanie prawidłowo docisnąć okładzin hamulcowych do bębna. W wyniku tego, podczas hamowania, tarcie jest nieefektywne, co generuje dodatkowe ciepło. To ciepło, jeśli nie zostanie dissipowane, prowadzi do przegrzewania się bębna hamulcowego. Praktyczne testy wykazały, że regularne sprawdzanie stanu układu hamulcowego, w tym elementów takich jak rozpieracz, jest niezbędne dla zachowania bezpieczeństwa na drodze. Standardy branżowe, takie jak te określone przez SAE (Society of Automotive Engineers), wskazują na konieczność regularnej konserwacji układów hamulcowych, aby uniknąć problemów związanych z ich przegrzewaniem. Pamiętaj, że skuteczna diagnostyka i konserwacja mogą zapobiec wielu kosztownym naprawom oraz zwiększyć bezpieczeństwo pojazdu.

Pytanie 34

W trakcie analizy hamulców na stanowisku rolkowym przeprowadza się przede wszystkim pomiar

A. siły hamowania
B. opóźnienia przy hamowaniu
C. siły tarcia
D. dystansu hamowania
Pomiar siły hamowania na stanowisku rolkowym jest kluczowym elementem oceny efektywności systemu hamulcowego pojazdu. Siła hamowania, mierzona w niutonach (N), określa, jaką moc hamulce są w stanie wygenerować w momencie działania, co bezpośrednio wpływa na bezpieczeństwo i skuteczność hamowania. W praktyce, podczas testów na stanowisku rolkowym, pojazd jest umieszczany na rolkach, a następnie przy użyciu pedału hamulca generowana jest siła, która jest następnie rejestrowana. Pomiar ten pozwala na ocenę stanu technicznego hamulców, co jest zgodne z normami, takimi jak UNECE Regulation No. 13, które regulują wymagania dotyczące hamulców pojazdów. Dobre praktyki w zakresie diagnostyki hamulców obejmują regularne kontrole oraz analizę wyników pomiarów, co umożliwia wczesne wykrywanie ewentualnych usterek oraz zapewnia bezpieczeństwo użytkowników dróg. Zrozumienie siły hamowania oraz jej wpływu na drogę hamowania i opóźnienie jest kluczowe dla inżynierów i techników zajmujących się pojazdami.

Pytanie 35

Przy użyciu areometru dokonuje się pomiaru

A. temperatury elektrolitu.
B. napięcia akumulatora.
C. wysokości elektrolitu.
D. gęstości elektrolitu.
Odpowiedź gęstości elektrolitu jest poprawna, ponieważ areometr jest narzędziem służącym do pomiaru gęstości cieczy. W przypadku elektrolitu akumulatorowego, gęstość jest kluczowym wskaźnikiem stanu naładowania akumulatora. Wartość gęstości elektrolitu zależy od jego stanu naładowania: im wyższa gęstość, tym lepsza kondycja akumulatora. Przykładem zastosowania areometru w praktyce jest okresowe sprawdzanie gęstości elektrolitu w akumulatorach kwasowo-ołowiowych, co pozwala na ocenę ich wydajności oraz żywotności. Standardy branżowe, takie jak SAE J537, zalecają monitorowanie gęstości elektrolitu jako kluczowego parametru podczas konserwacji akumulatorów. Wiedza na temat tego, jak interpretować wyniki pomiarów gęstości, jest niezbędna do prawidłowego zarządzania akumulatorami i zapewnienia ich długotrwałej pracy.

Pytanie 36

W trakcie corocznego przeglądu serwisowego pojazdu należy zawsze przeprowadzić

A. wymianę oleju silnikowego i filtra oleju
B. wymianę piór wycieraczek
C. wymianę płynu chłodzącego
D. wymianę płynu hamulcowego
Wymiana oleju silnikowego i filtra oleju jest jednym z kluczowych elementów corocznego przeglądu serwisowego pojazdu, ponieważ zapewnia optymalne działanie silnika oraz przedłuża jego żywotność. Olej silnikowy odgrywa fundamentalną rolę w smarowaniu ruchomych części silnika, co zapobiega nadmiernemu zużyciu i uszkodzeniom mechanicznym. W miarę eksploatacji pojazdu, olej ulega degradacji z powodu wysokich temperatur oraz powstawania zanieczyszczeń, co wpływa na jego właściwości smarne. Dlatego regularna wymiana oleju oraz filtra oleju, który zatrzymuje zanieczyszczenia, jest niezbędna dla prawidłowego funkcjonowania jednostki napędowej. Przykładowo, zalecenia producentów dotyczące wymiany oleju często określają interwały czasowe lub przebieg, po którym należy wykonać tę czynność, co jest zgodne z najlepszymi praktykami w branży motoryzacyjnej. Ignorowanie tej procedury może prowadzić do poważnych awarii i kosztownych napraw silnika, dlatego kluczowe jest przestrzeganie harmonogramu konserwacji pojazdu, aby zapewnić jego długotrwałe i niezawodne działanie.

Pytanie 37

Po zainstalowaniu nowej pompy cieczy chłodzącej trzeba

A. uzupełnić poziom płynu chłodzącego
B. ustawić zbieżność kół
C. wyczyścić układ chłodzenia
D. ustawić luz zaworowy
Uzupełnienie płynu chłodzącego po wymianie pompy to naprawdę ważna sprawa, żeby silnik działał jak należy. Jak już wymienisz pompę, musisz zadbać o to, żeby cały układ był dobrze napełniony. Bez tego może się zdarzyć, że silnik się przegrzeje, a to może być kosztowne. Po wymianie pompy warto też odpowietrzyć układ, żeby pozbyć się powietrza, które może powodować przegrzewanie w niektórych miejscach. Nie zapomnij też regularnie sprawdzać poziomu płynu w zbiorniku, a także zajrzeć, czy nie ma jakiś wycieków. Rada dla Ciebie - lepiej używać płynów chłodzących, które producent zaleca, bo dzięki temu silnik będzie miał lepsze właściwości termiczne i ochroni sobie przed korozją. No i oczywiście, regularne kontrolowanie stanu płynu to klucz do dłuższego życia silnika i jego efektywności.

Pytanie 38

Mimo że wał korbowy jest obracany przez rozrusznik, silnik nie uruchamia się. W tej sytuacji nie należy sprawdzać

A. pompy paliwa
B. zaworu recyrkulacji spalin
C. ustawienia rozrządu silnika
D. ciśnienia sprężania
Zawór recyrkulacji spalin (EGR) ma na celu zmniejszenie emisji tlenków azotu poprzez recyrkulację części spalin z powrotem do komory spalania. Jego nieprawidłowe działanie może wpływać na osiągi silnika, jednak nie jest to kluczowy element przy uruchamianiu silnika. W sytuacji, gdy silnik nie uruchamia się pomimo obrotów wału korbowego, priorytetem powinno być sprawdzenie podzespołów bezpośrednio związanych z zapłonem i zasilaniem paliwem. Przykładowo, problemy z ustawieniem rozrządu mogą prowadzić do niewłaściwego momentu zapłonu, co uniemożliwia uruchomienie silnika. Z kolei awaria pompy paliwa skutkuje brakiem dostarczenia odpowiedniej ilości paliwa, co jest niezbędne do zapłonu. Natomiast niskie ciśnienie sprężania wskazuje na problemy z pierścieniami tłokowymi lub zaworami, co również może uniemożliwić uruchomienie silnika. Dlatego analiza i diagnostyka tych elementów są kluczowe w diagnostyce silnika, a zawór EGR może być sprawdzony później w procesie diagnostycznym.

Pytanie 39

Parametrem opisującym jest liczba oktanowa

A. płynny gaz ropopochodny (LPG)
B. olej napędowy
C. skroplony gaz ziemny (CNG)
D. benzynę bezołowiową
Liczba oktanowa jest kluczowym parametrem charakteryzującym paliwa silnikowe, a w szczególności benzynę bezołowiową. Określa ona odporność paliwa na spalanie detonacyjne, co jest szczególnie istotne w silnikach o wysokim stopniu sprężania. Wyższa liczba oktanowa oznacza większą odporność na przedwczesne zapłon, co przekłada się na lepszą wydajność silnika oraz mniejsze ryzyko uszkodzenia jego elementów. Przykładowo, silniki sportowe często wymagają paliwa o liczbie oktanowej powyżej 95, aby osiągnąć maksymalną moc i efektywność. Standardy branżowe, takie jak ASTM D2699 i ASTM D2700, precyzują metody pomiaru liczby oktanowej i jej znaczenie dla właściwego funkcjonowania pojazdów. W praktyce, stosowanie paliw o odpowiedniej liczbie oktanowej zapewnia nie tylko lepsze osiągi, ale również redukcję emisji szkodliwych substancji, co jest kluczowym elementem nowoczesnej motoryzacji i ochrony środowiska.

Pytanie 40

Samozapłon mieszanki powietrza i paliwa w silniku Diesla jest spowodowany

A. iskrą świecy zapłonowej
B. wysokim ciśnieniem wtryskiwanego paliwa
C. wysoką temperaturą sprężonego powietrza
D. dużą gęstością sprężonego powietrza
Samozapłon mieszanki paliwowo-powietrznej w silniku Diesla jest wynikiem wysokiej temperatury sprężonego powietrza. W silnikach Diesla proces zapłonu odbywa się bez użycia świec zapłonowych, co jest kluczowym elementem różniącym je od silników benzynowych. Podczas sprężania powietrza w cylindrze, jego temperatura znacznie wzrasta, a przy odpowiednim ciśnieniu sprężonego powietrza przekraczającym 500-800°C, paliwo wtryskiwane do komory spalania samoczynnie się zapala. Ta zasada działania opiera się na wysokiej efektywności termodynamicznej silników Diesla, które mogą osiągać wyższe ciśnienia sprężania, co prowadzi do lepszego wykorzystania energii. Przykładami zastosowania tej technologii są nowoczesne silniki diesel w pojazdach ciężarowych, gdzie efektywność paliwowa oraz moment obrotowy są kluczowe. Zrozumienie tego procesu jest niezbędne w kontekście projektowania silników oraz ich optymalizacji według norm emisji spalin, takich jak Euro 6, które wymagają innowacyjnych rozwiązań technologicznych.