Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 31 maja 2025 13:37
  • Data zakończenia: 31 maja 2025 14:21

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie urządzenie jest kluczowe dla połączenia pięciu komputerów w sieci o strukturze gwiazdy?

A. modem
B. ruter
C. most
D. przełącznik
Przełącznik to kluczowe urządzenie w sieciach komputerowych o topologii gwiazdy, które umożliwia efektywne połączenie i komunikację między komputerami. W topologii gwiazdy każdy komputer jest podłączony do centralnego urządzenia, którym w tym przypadku jest przełącznik. Dzięki temu przełącznik może na bieżąco analizować ruch w sieci i przekazywać dane tylko do docelowego urządzenia, co minimalizuje kolizje i zwiększa wydajność. Przełączniki operują na warstwie drugiej modelu OSI (warstwa łącza danych), co pozwala im na inteligentne kierowanie ruchu sieciowego. Na przykład w biurze, gdzie pracuje pięć komputerów, zastosowanie przełącznika pozwala na szybką wymianę informacji między nimi, co jest kluczowe dla efektywnej współpracy. Warto również zwrócić uwagę, że standardy takie jak IEEE 802.3 (Ethernet) definiują zasady działania przełączników w sieciach lokalnych, co czyni je niezbędnym elementem infrastruktury sieciowej.

Pytanie 2

Jaki zapis w systemie binarnym odpowiada liczbie 111 w systemie dziesiętnym?

A. 11111110
B. 1101111
C. 11111111
D. 1110111
Ocena błędnych odpowiedzi często wymaga zrozumienia, że niektóre zapisy binarne mogą wydawać się zasadne, ale w rzeczywistości nie odpowiadają podanej liczbie dziesiętnej. Na przykład, zapisy 1110111, 11111110 i 11111111 są fałszywe, ponieważ nie odpowiadają konwersji liczby 111. Pierwsza z tych odpowiedzi, 1110111, oznacza w rzeczywistości 119 w systemie dziesiętnym, co wynika z konwersji binarnej: 1*2^6 + 1*2^5 + 1*2^4 + 0*2^3 + 1*2^2 + 1*2^1 + 1*2^0 = 64 + 32 + 16 + 0 + 4 + 2 + 1 = 119. Kolejna odpowiedź, 11111110, konwertuje się na 254. Ostatecznie, 11111111 odpowiada liczbie 255. Każde z tych wartości jest znacznie większe od 111, co świadczy o podstawowym błędzie w rozumieniu konwersji liczbowej. Typowe błędy myślowe, które mogą prowadzić do takich pomyłek, obejmują mylenie wartości poszczególnych bitów lub pomijanie kroków w procesie konwersji. Ważne jest, aby dobrze rozumieć, jak działa system binarny i jakie są zasady konwersji między różnymi systemami liczbowymi, co jest istotne w wielu dziedzinach informatyki, w tym programowaniu, tworzeniu algorytmów oraz w analizie danych.

Pytanie 3

Aby skopiować katalog c: est z podkatalogami na dysk przenośny f: w systemie Windows 7, jakie polecenie należy zastosować?

A. copy f: est c: est/E
B. xcopy f: est c: est/E
C. xcopy c: est f: est/E
D. copy c: est f: est/E
Wybór polecenia copy c:\est f:\est /E jest błędny z kilku powodów. Po pierwsze, narzędzie copy jest przeznaczone głównie do kopiowania plików, a nie katalogów, co sprawia, że w kontekście tego zadania nie jest ono odpowiednie. Copy nie jest w stanie obsłużyć podkatalogów, co prowadziłoby do utraty struktury folderów podczas kopiowania. Dodatkowo, jeżeli użytkownik próbuje użyć /E z copy, napotyka na problem, ponieważ ta flaga nie jest obsługiwana przez to polecenie. Taki błąd może wynikać z nieznajomości różnic między podstawowymi a bardziej zaawansowanymi poleceniami systemu Windows. Odpowiedzi oparte na poleceniach, które wykorzystują copy w kontekście kopiowania katalogów, często nie uwzględniają, że dla tego konkretnego zadania wymagane jest zastosowanie bardziej złożonego narzędzia, jak xcopy, które jest specjalnie zaprojektowane do zarządzania zarówno plikami, jak i strukturą folderów. Warto również zauważyć, że pewne nieporozumienia mogą wynikać z przyzwyczajenia do używania prostych poleceń, co może ograniczać zdolność użytkownika do efektywnego zarządzania systemem plików. W praktyce, dla użytkowników zarządzających danymi w bardziej złożony sposób, kluczowe jest zrozumienie, kiedy i jak używać odpowiednich narzędzi oraz technik, aby uniknąć niezamierzonych błędów w trakcie operacji kopiowania. Zachęcam do eksploracji dokumentacji Windows w celu lepszego zrozumienia różnic między tymi poleceniami.

Pytanie 4

Jaką liczbę komórek pamięci można bezpośrednio zaadresować w 64-bitowym procesorze z 32-bitową szyną adresową?

A. 64 do potęgi 2
B. 2 do potęgi 64
C. 2 do potęgi 32
D. 32 do potęgi 2
W odpowiedziach, które nie są poprawne, można zauważyć pewne powszechne nieporozumienia dotyczące zasad działania pamięci i architektury komputerowej. Odpowiedź 64 do potęgi 2 sugeruje, że bierzemy pod uwagę liczbę adresów pamięci jako graficzną reprezentację w postaci binarnej, co jest błędnym podejściem. Każdy adres w pamięci odpowiada konkretnej lokalizacji, a nie wszystkim możliwym kombinacjom. Z kolei odpowiedź 2 do potęgi 64, choć teoretycznie odnosi się do architektury procesora 64-bitowego, nie ma zastosowania w kontekście 32-bitowej szyny adresowej, ponieważ ta ostatnia ogranicza rzeczywistą ilość adresowalnej pamięci. Podobnie, odpowiedź 32 do potęgi 2 wynika z błędnego założenia, że ilość adresów jest określona przez bitowość procesora, a nie przez szynę adresową. W rzeczywistości, procesor 64-bitowy przetwarza dane w większych blokach, ale szyna adresowa decyduje o ilości pamięci, do której ma dostęp. Typowe błędy myślowe związane z tymi odpowiedziami obejmują mylenie pojęć architektury procesora z jej możliwościami adresowania pamięci oraz nieświadomość, że ilość dostępnej pamięci jest ściśle związana z parametrami sprzętowymi. W praktyce, dobrym podejściem jest zrozumienie, jak różne elementy architektury komputerowej współdziałają w zakresie adresowania pamięci.

Pytanie 5

Dezaktywacja automatycznych aktualizacji systemu Windows skutkuje

A. zablokowaniem samodzielnego ściągania uaktualnień przez system
B. automatycznym ściąganiem aktualizacji bez ich instalacji
C. automatycznym sprawdzeniem dostępności aktualizacji i informowaniem o tym użytkownika
D. zablokowaniem wszelkich metod pobierania aktualizacji systemu
Wyłączenie automatycznej aktualizacji systemu Windows rzeczywiście skutkuje zablokowaniem samodzielnego pobierania uaktualnień przez system. W praktyce oznacza to, że użytkownik musi ręcznie sprawdzać dostępność aktualizacji oraz decydować, kiedy i jakie aktualizacje zainstalować. Jest to szczególnie istotne w kontekście zarządzania systemem operacyjnym, gdzie niektóre aktualizacje mogą wprowadzać zmiany w funkcjonalności systemu lub wpływać na jego stabilność. W sytuacjach, gdy organizacje preferują mieć pełną kontrolę nad aktualizacjami, wyłączenie automatycznych aktualizacji może być uzasadnione. Przykładem może być środowisko produkcyjne, gdzie nagłe zmiany mogą prowadzić do nieprzewidzianych problemów. Zgodnie z najlepszymi praktykami w zakresie zarządzania IT, zaleca się regularne wykonywanie ręcznych aktualizacji, aby zapewnić, że system jest zabezpieczony przed najnowszymi zagrożeniami. Ponadto, administratorzy powinni monitorować dostępność aktualizacji, co może być realizowane za pomocą narzędzi zarządzania systemami, takich jak SCCM czy WSUS, co pozwala na efektywniejsze zarządzanie cyklem życia oprogramowania.

Pytanie 6

Jakiego typu macierz RAID nie zapewnia odporności na awarie żadnego z dysków tworzących jej strukturę?

A. RAID 6
B. RAID 4
C. RAID 0
D. RAID 2
RAID 0 to macierz dyskowa, która wykorzystuje technikę striping, co oznacza, że dane są dzielone na fragmenty i rozdzielane pomiędzy dwa lub więcej dysków. Główną zaletą takiego podejścia jest znaczne zwiększenie prędkości odczytu i zapisu danych, ponieważ operacje mogą być prowadzone równolegle na wszystkich dyskach. Jednakże, RAID 0 nie oferuje żadnej redundancji, co oznacza, że w przypadku awarii jednego z dysków, wszystkie dane przechowywane w macierzy zostaną utracone. Dlatego RAID 0 jest najczęściej stosowany w środowiskach, gdzie priorytetem jest wydajność, na przykład w edytorach wideo, grach komputerowych lub serwerach plików, gdzie szybkość dostępu do danych jest kluczowa, a bezpieczeństwo danych nie jest krytyczne. Przy implementacji RAID 0 należy uwzględnić regularne tworzenie kopii zapasowych oraz inne środki ochrony danych, aby zminimalizować ryzyko utraty informacji.

Pytanie 7

Na przedstawionym schemacie blokowym fragmentu systemu mikroprocesorowego, co oznacza symbol X?

Ilustracja do pytania
A. pamięć Cache
B. kontroler DMA
C. kontroler przerwań
D. pamięć stałą ROM
Wybór niewłaściwej odpowiedzi może wynikać z niepełnego zrozumienia funkcji poszczególnych elementów systemu mikroprocesorowego. Pamięć stała ROM jest używana do przechowywania oprogramowania lub danych, które nie mogą być zmieniane podczas normalnej pracy systemu, często zawiera BIOS w komputerach klasy PC. Nie jest jednak związana z obsługą przerwań, które wymagają dynamicznej interakcji i priorytetyzacji sygnałów od różnych urządzeń. Pamięć Cache, z kolei, służy do tymczasowego przechowywania najczęściej używanych danych w celu przyspieszenia dostępu do nich przez procesor. Jest to mechanizm optymalizacyjny mający na celu zwiększenie wydajności przetwarzania danych, a nie zarządzanie sygnałami przerwań. Kontroler DMA odpowiada za bezpośredni dostęp do pamięci przez urządzenia peryferyjne bez udziału procesora, co odciąża procesor przy dużych transferach danych. Choć jest to zaawansowane rozwiązanie do zarządzania przepustowością danych, jego funkcja różni się od zarządzania przerwaniami. Błędne rozumienie tych funkcji może prowadzić do niepoprawnego przypisania komponentów w schematach blokowych. Kluczowe jest zrozumienie specyficznych ról tych urządzeń oraz tego, jak wpływają one na pracę całego systemu mikroprocesorowego. Właściwa klasyfikacja zapewnia poprawne projektowanie i implementację systemów wbudowanych i komputerowych.

Pytanie 8

Jaką konfigurację sieciową może mieć komputer, który należy do tej samej sieci LAN, co komputer z adresem 10.8.1.10/24?

A. 10.8.0.101 i 255.255.0.0
B. 10.8.1.101 i 255.255.0.0
C. 10.8.1.101 i 255.255.255.0
D. 10.8.0.101 i 255.255.255.0
Odpowiedź 10.8.1.101 z maską podsieci 255.255.255.0 jest poprawna, ponieważ zarówno adres IP, jak i maska podsieci są zgodne z wymaganiami dla komputerów znajdujących się w tej samej sieci LAN. Adres 10.8.1.10 z maską 255.255.255.0 oznacza, że wszystkie urządzenia z adresami IP od 10.8.1.1 do 10.8.1.254 mogą się ze sobą komunikować. W praktyce oznacza to, że komputer z adresem 10.8.1.101 będzie w stanie wysłać i odbierać dane z komputera o adresie 10.8.1.10, co jest kluczowe dla zapewnienia efektywnej komunikacji w sieci lokalnej. Konfiguracja ta jest zgodna z zasadami subnettingu, które sugerują, że urządzenia w tej samej podsieci muszą mieć ten sam prefiks adresowy. Użycie standardowej maski 255.255.255.0 dla takiej sieci jest powszechne i zapewnia odpowiednie zasoby adresowe dla małych i średnich sieci. Dodatkowo, zrozumienie koncepcji adresacji IP oraz podziału na podsieci jest niezbędne w administracji sieciami komputerowymi oraz w projektowaniu infrastruktury IT.

Pytanie 9

Do pokazanej na diagramie płyty głównej nie można podłączyć urządzenia, które korzysta z interfejsu

Ilustracja do pytania
A. IDE
B. AGP
C. PCI
D. SATA
Rysunek pokazuje płytę główną, która nie ma złącza AGP, więc dobrze odpowiedziałeś. AGP, czyli Accelerated Graphics Port, był używany głównie w starszych komputerach do podłączania kart graficznych, ale ostatnio zastąpiły go nowsze standardy jak PCI Express. Ten nowy standard jest znacznie szybszy i ma lepszą przepustowość, a do tego pozwala podłączać nie tylko karty graficzne, ale też inne urządzenia. To usunięcie AGP to logiczny krok, bo komputery potrzebują coraz większej wydajności i prostszej struktury. Dzisiaj na płytach często znajdziesz kilka gniazd PCI Express, co umożliwia budowanie naprawdę mocnych systemów. Nawet bez AGP, nowoczesna płyta główna świetnie działa z aktualnymi komponentami, zapewniając odpowiednią wydajność dzięki różnym złączom jak PCI Express, SATA czy USB. Warto to wiedzieć, jeśli planujesz zajmować się komputerami, bo ma to spory wpływ na to, co możemy w nich zamontować i jak długo będą nam służyć.

Pytanie 10

Partycja w systemie Linux, która tymczasowo przechowuje dane w przypadku niedoboru pamięci RAM, to

A. sys
B. var
C. swap
D. tmp
Odpowiedzi var, sys oraz tmp są niepoprawne w kontekście pytania o partycję systemu Linux przechowującą tymczasowo dane w przypadku braku wolnej pamięci RAM. Warto zacząć od partycji var, która typowo przechowuje zmienne pliki danych, takie jak logi, bazy danych lub pliki tymczasowe. Nie jest ona przeznaczona do działania jako rozszerzenie pamięci RAM, co czyni ją nietrafnym wyborem w tym kontekście. Z kolei partycja sys jest używana przez system do interakcji z jądrem oraz do dostępu do informacji o sprzęcie i systemie operacyjnym. Nie ma funkcji przechowywania danych tymczasowych w sytuacji braku pamięci. Odpowiedź tmp odnosi się do katalogu, który może być używany do przechowywania plików tymczasowych, ale nie jest to partycja ani przestrzeń dedykowana do zarządzania pamięcią. W rzeczywistości pliki w tmp mogą być usuwane w trakcie pracy systemu, co nie ma związku z zarządzaniem pamięcią RAM. W kontekście zarządzania pamięcią, swap jest jedyną opcją, która umożliwia przenoszenie danych z pamięci RAM, co czyni go kluczowym elementem infrastruktury systemu operacyjnego. Nieprawidłowe odpowiedzi mogą wynikać z mylenia ról i funkcji różnych partycji oraz niewłaściwego zrozumienia, jak system Linux zarządza pamięcią. Zrozumienie tych różnic jest fundamentalne dla prawidłowego administrowania systemem i wykorzystania jego zasobów.

Pytanie 11

W jaki sposób oznaczona jest skrętka bez zewnętrznego ekranu, mająca każdą parę w osobnym ekranie folii?

A. F/UTP
B. U/FTP
C. S/FTP
D. F/STP
Odpowiedzi F/STP, S/FTP i F/UTP są niepoprawne, ponieważ różnią się one istotnie od właściwej definicji U/FTP. F/STP oznacza skrętkę z zewnętrznym ekranem, co nie jest zgodne z warunkami pytania. W przypadku F/STP, ekran obejmuje cały kabel, co może być korzystne w niektórych aplikacjach, ale w sytuacjach, gdzie każda para wymaga osobnej ochrony, nie sprawdza się to. S/FTP, z kolei, stosuje zarówno ekran na przewody parowe, jak i na cały kabel, co zwiększa ochronę, ale nie odpowiada na pytanie o brak zewnętrznego ekranu, co czyni tę odpowiedź niewłaściwą. F/UTP oznacza brak ekranowania całego kabla, ale z ekranowaniem par przewodów, co również nie spełnia kryteriów opisanych w pytaniu. Często błędnie myśli się, że większa ilość ekranowania zawsze przekłada się na lepszą jakość sygnału, co nie jest prawdą w każdym przypadku. Właściwy dobór typu skrętki powinien być uzależniony od specyficznych warunków zastosowania oraz środowiska, w którym będzie działać sieć. Użycie niewłaściwego standardu może prowadzić do problemów z zakłóceniami oraz zmniejszenia efektywności transmisji danych.

Pytanie 12

Standard IEEE 802.11 określa typy sieci

A. Fast Ethernet
B. światłowodowe LAN
C. Gigabit Ethernet
D. bezprzewodowe LAN
Wybrałeś odpowiedzi związane z Fast Ethernet, Gigabit Ethernet oraz światłowodowymi LAN, co może wskazywać na pewne nieporozumienia jeśli chodzi o technologie sieciowe. Fast Ethernet i Gigabit Ethernet to standardy dla przewodowych sieci lokalnych, które korzystają z kabli, jak skrętka czy światłowody, żeby przesyłać dane. Te technologie sprawdzają się tam, gdzie stabilność, prędkość i bezpieczeństwo połączeń są kluczowe. A w przeciwieństwie do tego, standard IEEE 802.11 dotyczy komunikacji bezprzewodowej i naprawdę chodzi o to, żeby zlikwidować potrzebę kabli. Można przez to dojść do błędnych wniosków, jeśli nie rozumie się podstawowych różnic. Warto też zauważyć, że światłowodowe LAN są świetne w sytuacjach, kiedy potrzebne są bardzo duże prędkości na dłuższych dystansach. Użytkownicy mogą myśleć, że te technologie są porównywalne z bezprzewodowymi, a to błąd. Ważne jest, żeby dobrze zrozumieć, że każda z tych technologii ma swoje zastosowania i ograniczenia, co wpływa na to, jakie rozwiązanie będzie najlepsze w danej sytuacji. Dlatego podczas projektowania sieci dobrze jest zrozumieć te różnice i to, jak się sprawdzają w praktyce.

Pytanie 13

Który z poniższych adresów należy do klasy B?

A. 191.168.0.1
B. 224.0.0.1
C. 10.0.0.1
D. 192.168.0.1
Adres 191.168.0.1 należy do klasy B, która obejmuje zakres adresów od 128.0.0.0 do 191.255.255.255. Klasa B jest przeznaczona do średniej wielkości sieci, które mogą potrzebować od 256 do 65,534 adresów IP. Przykładowo, organizacje średniej wielkości, takie jak uniwersytety czy duże firmy, często korzystają z adresacji klasy B do zarządzania swoimi zasobami sieciowymi. Adresy klasy B można łatwo podzielić na podsieci przy użyciu maski podsieci, co pozwala na efektywne zarządzanie ruchem i zasobami w sieci. Standardy takie jak CIDR (Classless Inter-Domain Routing) umożliwiają bardziej elastyczne podejście do alokacji adresów IP, co zwiększa wydajność wykorzystania dostępnych adresów. Warto również pamiętać, że adresy klasy B są rozpoznawane przez ich pierwsze bity - w tym przypadku 10 bity, co potwierdza, że 191.168.0.1 to adres klasy B, a jego zastosowanie w nowoczesnych sieciach IT jest zgodne z aktualnymi praktykami branżowymi.

Pytanie 14

Fizyczna architektura sieci, inaczej określana jako topologia fizyczna sieci komputerowych, definiuje

A. przesył informacji pomiędzy protokołami w modelu OSI
B. interakcję komputerów między sobą
C. standardy komunikacji w sieciach komputerowych
D. metodę łączenia komputerów
Dobrze wybrałeś odpowiedź 'sposób połączenia ze sobą komputerów'. To jest właściwe, bo architektura fizyczna sieci, czyli topologia fizyczna, odnosi się do tego, jak urządzenia w sieci są poukładane i połączone. Mówiąc prościej, topologia fizyczna pokazuje, jak komputery, routery i inne sprzęty są ze sobą związane, a także, jakie medium transmisyjne się używa, na przykład kable miedziane czy światłowody. Dobre przykłady topologii to topologia gwiazdy, gdzie wszystkie urządzenia są podłączone do jednego centralnego przełącznika, lub topologia magistrali, gdzie wszystko jest połączone do jednego kabla. Z mojego doświadczenia, zrozumienie tych topologii jest kluczowe, bo pomaga w projektowaniu i zarządzaniu siecią. Dzięki temu łatwiej rozwiązuje się problemy, planuje rozszerzenia sieci, a także dba o bezpieczeństwo i wydajność, co jest ważne w branży, zwłaszcza jeśli chodzi o standardy, jak np. IEEE 802.3 czy 802.11.

Pytanie 15

Do pokazanej na ilustracji płyty głównej nie da się podłączyć urządzenia korzystającego z interfejsu

Ilustracja do pytania
A. IDE
B. SATA
C. AGP
D. PCI
Złącze AGP, czyli Accelerated Graphics Port, to standard interfejsu opracowany głównie dla kart graficznych. Było popularne w komputerach osobistych w latach 90. i na początku XXI wieku. AGP oferowało dedykowane pasmo dla grafiki, co poprawiało wydajność w porównaniu do ówczesnych technologii. Wraz z rozwojem nowych standardów, takich jak PCI Express, AGP stało się przestarzałe i zniknęło z nowoczesnych płyt głównych. Współczesne płyty główne, takie jak ta przedstawiona na rysunku, używają PCI Express, który jest bardziej uniwersalny i wydajny. PCI Express potrafi obsługiwać różnorodne urządzenia, zapewniając wysoką przepustowość. W praktyce oznacza to, że współczesne karty graficzne, dyski SSD i inne komponenty są podłączane przez PCI Express. Jeśli planujesz modernizację systemu, złącze PCI Express oferuje lepszą elastyczność i kompatybilność z nowymi technologiami. Podsumowując, brak złącza AGP na nowoczesnej płycie wynika z przestarzałości tego standardu, co jest zgodne z obecnymi trendami w branży komputerowej.

Pytanie 16

Jaką czynność można wykonać podczas konfiguracji przełącznika CISCO w interfejsie CLI, bez przechodzenia do trybu uprzywilejowanego, na poziomie dostępu widocznym w powyższej ramce?

A. Wyświetlenie tablicy ARP
B. Tworzenie sieci VLAN
C. Określanie haseł dostępu
D. Zmiana nazwy systemowej
Wyświetlenie tablicy ARP (Address Resolution Protocol) jest operacją, którą można zrealizować na poziomie dostępu w interfejsie CLI przełącznika Cisco bez potrzeby przechodzenia w tryb uprzywilejowany. Tablica ARP zawiera informacje o mapowaniu adresów IP na adresy MAC, co jest kluczowe w kontekście komunikacji w sieci lokalnej. Przykładowe polecenie do wyświetlenia tablicy ARP to 'show ip arp'. To polecenie pozwala administratorom sieci na monitorowanie aktywności sieciowej oraz rozwiązywanie problemów związanych z komunikacją między urządzeniami. Zrozumienie działania ARP jest fundamentalne w kontekście projektowania i zarządzania siecią, ponieważ pomaga w identyfikacji potencjalnych problemów, takich jak kolizje adresów IP. W praktyce, umiejętność efektywnego korzystania z tablicy ARP przyczynia się do zwiększenia wydajności i niezawodności sieci, co jest zgodne z najlepszymi praktykami branżowymi w zakresie zarządzania sieciami.

Pytanie 17

Jakiego rodzaju rekord jest automatycznie generowany w chwili zakupu strefy wyszukiwania do przodu w ustawieniach serwera DNS w systemach Windows Server?

A. PTR
B. NS
C. A
D. MX
Rekord NS, czyli Name Server, to mega ważny element w systemie DNS. On pokazuje, które serwery DNS są odpowiedzialne za konkretną strefę nazw. Kiedy tworzysz strefę wyszukiwania do przodu na serwerze DNS w Windows Server, to rekord NS jest generowany automatycznie. Bez niego, DNS nie działałby jak należy, bo inne serwery DNS nie wiedziałyby, które z nich zarządzają daną strefą. Na przykład, gdy mamy strefę 'example.com', to rekord NS wskaże na serwer DNS, który ma wszystkie info o tej strefie. W praktyce, mieć poprawnie skonfigurowane rekordy NS to podstawa, żeby usługi DNS działały płynnie. Z własnego doświadczenia powiem, że fajnie mieć przynajmniej dwa rekordy NS dla każdej strefy, bo to daje dodatkową stabilność w razie awarii. Pamiętaj, żeby każdy rekord NS był dobrze ustawiony, bo inaczej mogą być problemy z propagowaniem zmian w strefie.

Pytanie 18

W sieciach komputerowych miarą prędkości przesyłu danych jest

A. ips
B. bps
C. dpi
D. byte
Odpowiedź 'bps' (bits per second) jest poprawna, ponieważ jest to jednostka używana do pomiaru szybkości transmisji danych w sieciach komputerowych. W kontekście sieci komputerowych, szybkość ta odnosi się do liczby bitów, które są przesyłane w ciągu jednej sekundy. Jest to kluczowy parametr, który pozwala ocenić wydajność sieci, a także porównywać różne technologie transmisji, takie jak Ethernet, Wi-Fi czy łączność mobilna. Na przykład, szybkie połączenia optyczne mogą osiągać prędkości rzędu kilku gigabitów na sekundę (Gbps), co jest istotne w zastosowaniach wymagających dużej przepustowości, jak strumieniowanie wideo w wysokiej rozdzielczości czy przesyłanie dużych plików. Warto także zaznaczyć, że standardy sieciowe, takie jak IEEE 802.3 dla Ethernetu, definiują minimalne i maksymalne wartości dla bps, co pozwala na standaryzację i zapewnienie interoperacyjności między urządzeniami.

Pytanie 19

Jak wielu hostów można maksymalnie zaadresować w sieci lokalnej, mając do dyspozycji jeden blok adresów klasy C protokołu IPv4?

A. 255
B. 254
C. 512
D. 510
Odpowiedź 254 jest prawidłowa, ponieważ w klasie C adresów IPv4 mamy 256 możliwych adresów (od 0 do 255). Jednak dwa z tych adresów są zarezerwowane: jeden dla adresu sieci (adres, w którym wszystkie bity hosta są ustawione na 0) oraz jeden dla adresu rozgłoszeniowego (adres, w którym wszystkie bity hosta są ustawione na 1). Dlatego maksymalna liczba hostów, które można zaadresować w sieci lokalnej z wykorzystaniem tej klasy, wynosi 254. W praktyce oznacza to, że w typowej sieci lokalnej, takiej jak w biurze czy w domu, administratorzy mogą przydzielić adresy IP do 254 różnych urządzeń, takich jak komputery, drukarki, smartfony czy inne urządzenia IoT. Zgodnie z najlepszymi praktykami sieciowymi, zarządzanie adresacją IP w klasie C jest powszechnie stosowane w małych i średnich sieciach, co pozwala na efektywne wykorzystanie dostępnych zasobów adresowych. Dodatkowo, przy planowaniu sieci, warto uwzględnić rezerwacje adresów dla urządzeń serwisowych, co jeszcze bardziej podkreśla znaczenie dokładnego obliczania dostępnych adresów.

Pytanie 20

Jaki jest adres IP urządzenia, które pozwala innym komputerom w lokalnej sieci łączyć się z Internetem?

A. proxy
B. DNS
C. bramy (routera)
D. WINS
Adres IP bramy, czyli routera, to coś, co naprawdę ma znaczenie w sieci lokalnej. Dzięki niemu możemy łączyć się z różnymi urządzeniami na zewnątrz, w tym z Internetem. Router działa jak taki pośrednik, który przekazuje dane między naszą lokalną siecią a zewnętrznymi adresami IP. Na przykład, gdy komputer w naszej sieci chce otworzyć stronę internetową, to wysyła pakiety do routera, który dalej przesyła je do odpowiedniego serwera w Internecie, a potem odsyła odpowiedź. Fajnie jest, gdy brama jest ustawiona w taki sposób, by łatwo zarządzać ruchem danych i jednocześnie dbać o bezpieczeństwo, na przykład przez różne zapory sieciowe. W branży często wykorzystuje się standardowe protokoły, takie jak TCP/IP, co sprawia, że komunikacja jest spójna i działa jak należy.

Pytanie 21

Odmianą pamięci, która jest tylko do odczytu i można ją usunąć za pomocą promieniowania ultrafioletowego, jest pamięć

A. PROM
B. ROM
C. EEPROM
D. EPROM
EPROM (Erasable Programmable Read-Only Memory) to rodzaj pamięci, która jest odmienna od standardowego ROM, ponieważ można ją programować i kasować. Kluczową cechą EPROM jest możliwość kasowania danych przy użyciu światła ultrafioletowego, co umożliwia wielokrotne programowanie tej samej kości. Dzięki temu EPROM znajduje zastosowanie w obszarach, gdzie wymagane jest częste aktualizowanie oprogramowania, jak na przykład w systemach wbudowanych czy elektronice użytkowej. W praktyce, EPROM jest wykorzystywana do przechowywania stałych danych, które mogą wymagać aktualizacji, co czyni ją bardziej elastyczną niż standardowy ROM. Dobre praktyki w branży zakładają, że EPROM powinna być wykorzystywana w projektach, gdzie istotne są zarówno koszty produkcji, jak i elastyczność aktualizacji oprogramowania. Zastosowania EPROM obejmują również prototypowanie, gdzie inżynierowie mogą testować różne wersje oprogramowania przed wprowadzeniem ich na rynek.

Pytanie 22

Rodzaj połączenia VPN obsługiwany przez system Windows Server, w którym użytkownicy są uwierzytelniani za pomocą niezabezpieczonych połączeń, a szyfrowanie zaczyna się dopiero po wymianie uwierzytelnień, to

A. L2TP
B. IPSEC
C. SSTP
D. PPTP
PPTP, czyli Point-to-Point Tunneling Protocol, jest protokołem tunelowania, który umożliwia tworzenie bezpiecznych połączeń VPN, a jego działanie opiera się na niezabezpieczonym połączeniu, które następnie przechodzi w szyfrowane połączenie. Główna cecha PPTP polega na tym, że najpierw następuje uwierzytelnienie użytkowników, co oznacza, że dane logowania nie są szyfrowane w momencie ich przesyłania. Dopiero po pomyślnym uwierzytelnieniu, rozpoczyna się szyfrowanie w ramach tunelu, co sprawia, że jest to rozwiązanie stosunkowo łatwe w implementacji i szeroko dostępne w systemach Windows. PPTP korzysta z protokołu GRE (Generic Routing Encapsulation) do enkapsulacji danych, co pozwala na przesyłanie danych w różnych sieciach. Przykładowe zastosowanie to zdalny dostęp do sieci firmowej z wykorzystaniem standardowego klienta VPN w systemie Windows, co jest wygodne dla użytkowników, którzy potrzebują szybkiego i prostego rozwiązania VPN. Choć PPTP nie jest najbezpieczniejszym protokołem dostępnych obecnie opcji, jego łatwość użycia czyni go popularnym w mniej wymagających środowiskach.

Pytanie 23

Jakie czynniki nie powodują utraty danych z dysku twardego HDD?

A. Uszkodzenie talerzy dysku
B. Wyzerowanie partycji dysku
C. Utworzona macierz RAID 5
D. Mechaniczne zniszczenie dysku
Utworzona macierz dyskowa RAID 5 jest rozwiązaniem, które zwiększa bezpieczeństwo danych oraz zapewnia ich dostępność poprzez zastosowanie technologii stripingu i parzystości. W przypadku RAID 5, dane są rozdzielane na kilka dysków, a dodatkowo tworzona jest informacja o parzystości, co pozwala na odbudowę danych w przypadku awarii jednego z dysków. Dzięki temu, nawet jeśli jeden z talerzy dysku HDD ulegnie uszkodzeniu, dane nadal pozostają dostępne na pozostałych dyskach macierzy. Zastosowanie RAID 5 w środowiskach serwerowych jest powszechne, ponieważ zapewnia równocześnie szybszy dostęp do danych oraz ich redundancję. W praktyce pozwala to na ciągłe działanie systemów bez ryzyka utraty danych, co jest kluczowe w przypadku krytycznych aplikacji. Standardy takie jak TIA-942 dla infrastruktury centrów danych i inne rekomendacje branżowe podkreślają znaczenie implementacji macierzy RAID dla zapewnienia niezawodności przechowywania danych. Z tego powodu, dobrze zaplanowana konfiguracja RAID 5 stanowi istotny element strategii ochrony danych w nowoczesnych systemach informatycznych.

Pytanie 24

Ilustracja pokazuje panel ustawień bezprzewodowego urządzenia dostępowego, który umożliwia

Ilustracja do pytania
A. przypisanie adresów MAC do kart sieciowych
B. ustawienie nazwy hosta
C. określenie maski podsieci
D. konfigurację serwera DHCP
Konfiguracja serwera DHCP na panelu konfiguracyjnym bezprzewodowego urządzenia dostępowego jest kluczowym krokiem w zarządzaniu siecią. DHCP, czyli Dynamic Host Configuration Protocol, automatycznie przydziela adresy IP urządzeniom w sieci, co upraszcza procesy administracyjne i zmniejsza ryzyko konfliktów adresów IP. W panelu konfiguracyjnym można ustawić początkowy adres IP, co pozwala na zdefiniowanie zakresu adresów, które będą przydzielane klientom. Można też określić maksymalną liczbę użytkowników DHCP, co zapewnia kontrolę nad zasobami sieciowymi. Ustawienia te są kluczowe w sieciach zarówno domowych, jak i korporacyjnych, gdzie automatyzacja przydzielania adresów IP oszczędza czas administratorów. Dobre praktyki zalecają również ustawienie czasu dzierżawy, co wpływa na to, jak długo dany adres IP pozostaje przypisany do urządzenia. Praktyczne zastosowanie tego polega na unikaniu ręcznego przydzielania adresów IP, co w przypadku dużych sieci jest czasochłonne i podatne na błędy. Serwery DHCP są integralnym elementem nowoczesnych sieci, a ich konfiguracja według najlepszych praktyk zwiększa efektywność i niezawodność połączeń sieciowych

Pytanie 25

Jaką liczbę bitów posiada adres logiczny IPv6?

A. 64
B. 128
C. 32
D. 16
Adres logiczny IPv6 składa się z 128 bitów, co jest istotnym usprawnieniem w porównaniu do wcześniejszej wersji protokołu IP, IPv4, gdzie długość adresu wynosiła tylko 32 bity. Większa długość adresu w IPv6 umożliwia znacznie większą liczbę unikalnych adresów, co jest kluczowe w kontekście rosnącej liczby urządzeń podłączanych do Internetu. Dzięki zastosowaniu 128-bitowych adresów, IPv6 pozwala na adresowanie 340 undecylionów (10^36) unikalnych adresów, co jest wystarczające, aby zaspokoić potrzebę globalną w kontekście Internetu rzeczy (IoT) oraz globalnej sieci. W praktyce, organizacje i dostawcy usług internetowych już wykorzystują IPv6, aby zapewnić przyszłość swoich sieci. Standardy te są również zgodne z zaleceniami IETF (Internet Engineering Task Force), które promują przejście z IPv4 na IPv6, aby sprostać rosnącym wymaganiom adresowania w sieciach komputerowych. Użycie IPv6 staje się niezbędne w wielu nowoczesnych aplikacjach, takich jak chmurowe usługi, rozproszone systemy oraz różnorodne IoT, co czyni tę wiedzę niezwykle istotną dla każdego specjalisty IT.

Pytanie 26

W topologii fizycznej w kształcie gwiazdy, wszystkie urządzenia działające w sieci są

A. podłączone do węzła sieci
B. połączone z dwoma sąsiadującymi komputerami
C. połączone ze sobą segmentami kabla tworząc zamknięty pierścień
D. podłączone do jednej magistrali
W topologii fizycznej gwiazdy, wszystkie urządzenia w sieci są podłączone do centralnego węzła, który pełni rolę koncentratora. Węzeł ten może być przełącznikiem, routerem lub innym urządzeniem sieciowym, które zarządza komunikacją między wszystkimi podłączonymi do niego urządzeniami. Taki model architektoniczny zapewnia dużą elastyczność i łatwość w dodawaniu nowych urządzeń do sieci. W przypadku awarii jednego z podłączonych urządzeń, inne nie są nią dotknięte, co znacząco zwiększa niezawodność sieci. Przykładem zastosowania topologii gwiazdy może być biuro, w którym komputery pracowników są podłączone do centralnego przełącznika, co umożliwia ich komunikację z serwerami, drukarkami czy Internetem. W kontekście dobrych praktyk, stosowanie topologii gwiazdy jest zgodne ze standardami sieciowymi, ponieważ pozwala na łatwe monitorowanie i zarządzanie ruchem sieciowym. Dzięki centralizacji zarządzania, administratorzy sieci mogą szybko identyfikować i rozwiązywać problemy, co jest kluczowe w środowisku o dużym natężeniu ruchu.

Pytanie 27

Aby określić długość prefiksu w adresie IPv4, należy ustalić

A. liczbę bitów o wartości 0 w trzech pierwszych oktetach adresu IPv4
B. liczbę bitów o wartości 1 w części hosta adresu IPv4
C. liczbę początkowych bitów o wartości 1 w masce adresu IPv4
D. liczbę bitów o wartości 0 w pierwszych dwóch oktetach adresu IPv4
Poprawna odpowiedź opiera się na zasadach klasyfikacji adresów IPv4 oraz maski podsieci. Długość prefiksu adresu sieci w IPv4 określa się poprzez liczenie liczby początkowych bitów mających wartość 1 w masce adresu. Maska podsieci dzieli adres IP na dwie części: część sieciową i część hosta. Przykładowo, dla adresu IP 192.168.1.1 z maską 255.255.255.0, maska w postaci binarnej to 11111111.11111111.11111111.00000000. W tym przypadku liczba początkowych bitów 1 wynosi 24, co oznacza, że długość prefiksu wynosi /24. Te informacje są kluczowe dla routingu oraz segmentacji sieci, ponieważ dobrze skonfigurowane maski wpływają na efektywność komunikacji w sieci. W praktyce, gdy administratorzy sieci definiują podsieci, muszą precyzyjnie określić zakresy adresowe, co jest realizowane właśnie poprzez maski i ich prefiksy. Ponadto, zgodnie z zaleceniami IETF, prawidłowe przypisanie adresów IP i masek jest istotne dla zapewnienia optymalnej wydajności oraz bezpieczeństwa w sieciach komputerowych.

Pytanie 28

Który protokół jest używany do zdalnego zarządzania komputerem przez terminal w systemach Linux?

A. POP3
B. SMTP
C. FTP
D. SSH
Protokół SSH, czyli Secure Shell, jest standardem, jeśli chodzi o zdalne zarządzanie systemami Linux z poziomu terminala. Dzięki SSH można bezpiecznie łączyć się z innym komputerem i wykonywać na nim polecenia zdalnie. Jest to możliwe dzięki szyfrowaniu transmisji danych, co zapewnia ochronę przed podsłuchiwaniem przez osoby trzecie. SSH działa na zasadzie architektury klient-serwer, gdzie użytkownik (klient) inicjuje połączenie do serwera SSH uruchomionego na zdalnej maszynie. W praktyce, SSH jest używany przez administratorów systemów do zarządzania serwerami, automatyzacji procesów czy przesyłania plików przy użyciu SFTP, który jest częścią SSH. Warto wspomnieć, że SSH obsługuje uwierzytelnianie kluczami publicznymi, co zwiększa poziom bezpieczeństwa, a także pozwala na pracę bez podawania hasła przy każdym logowaniu. Z mojego doświadczenia, SSH jest niezastąpionym narzędziem w pracy administratora i warto nauczyć się go używać w codziennych operacjach.

Pytanie 29

Jakie polecenie w systemie Windows należy użyć, aby ustalić liczbę ruterów pośrednich znajdujących się pomiędzy hostem źródłowym a celem?

A. tracert
B. ipconfig
C. routeprint
D. arp
Polecenie 'tracert' to naprawdę fajne narzędzie w systemie Windows. Dzięki niemu możesz sprawdzić, jak pakiety danych wędrują od jednego komputera do drugiego w sieci. Używając tego polecenia, dostajesz wgląd w wszystkie ruterów, przez które przechodzą twoje dane. To bardzo pomocne, gdy masz problemy z łącznością. Na przykład, jeśli zauważasz opóźnienia, 'tracert' pomoże ci zobaczyć, na którym etapie coś się psuje. Możesz więc szybko ustalić, czy problem leży w twojej lokalnej sieci, w jakimś ruterze, czy może na serwerze, z którym się łączysz. Działa to na zasadzie ICMP, czyli Internet Control Message Protocol. Wysyła pakiety echo request i potem czeka na odpowiedzi, co pozwala sprawdzić, jak długo pakiety lecą do każdego ruteru. Warto regularnie korzystać z 'tracert', bo pomaga to w optymalizacji sieci i wykrywaniu ewentualnych zagrożeń. Dla administratorów i osób zajmujących się IT to naprawdę kluczowe narzędzie.

Pytanie 30

Jakim materiałem eksploatacyjnym dysponuje ploter solwentowy?

A. zestaw metalowych narzędzi tnących
B. atrament w żelu
C. element tnący
D. farba na bazie rozpuszczalników
Farba na bazie rozpuszczalników jest kluczowym materiałem eksploatacyjnym w ploterach solwentowych, które są powszechnie stosowane w reklamie, grafice i produkcji druku wielkoformatowego. Ta technologia druku wykorzystuje farby, które zawierają rozpuszczalniki organiczne, co umożliwia uzyskiwanie intensywnych kolorów oraz wysokiej odporności na czynniki zewnętrzne, takie jak promieniowanie UV czy wilgoć. W praktyce oznacza to, że wydruki wykonane za pomocą ploterów solwentowych są idealne do użycia na zewnątrz. Dobrze dobrane materiały eksploatacyjne, takie jak farby solwentowe, są zgodne z normami branżowymi i pozwalają na uzyskanie zarówno estetycznych, jak i trwałych efektów wizualnych. Ważne jest również, aby użytkownicy ploterów solwentowych przestrzegali zaleceń producentów dotyczących stosowania odpowiednich farb oraz technik druku, co wpływa na jakość końcowego produktu oraz wydajność maszyn.

Pytanie 31

Jakie korzyści płyną z zastosowania systemu plików NTFS?

A. przechowywanie jedynie jednej kopii tabeli plików
B. opcja formatowania nośnika o niewielkiej pojemności (od 1,44 MB)
C. możliwość zapisywania plików z nazwami dłuższymi niż 255 znaków
D. funkcja szyfrowania folderów oraz plików
Zgłoszona odpowiedź na temat szyfrowania folderów i plików w NTFS jest całkiem trafna. NTFS, czyli New Technology File System, naprawdę ma kilka super fajnych funkcji zabezpieczeń, w tym szyfrowanie danych przez EFS (Encrypting File System). Dzięki temu można szyfrować pojedyncze pliki albo nawet całe foldery, co znacznie podnosi bezpieczeństwo danych, zwłaszcza w sytuacjach, gdzie informacje są narażone na nieautoryzowany dostęp. Na przykład w firmach, które przetwarzają wrażliwe dane, szyfrowanie staje się wręcz koniecznością, aby spełniać regulacje, jak RODO. Poza tym NTFS ma też inne ciekawe funkcje, jak zarządzanie uprawnieniami, więc można precyzyjnie kontrolować kto ma dostęp do różnych zasobów. W praktyce szyfrowanie w NTFS to coś, co może bardzo pomóc w ochronie danych, a to jest zgodne z najlepszymi praktykami bezpieczeństwa informacji.

Pytanie 32

Na ilustracji zaprezentowano sieć komputerową w układzie

Ilustracja do pytania
A. pierścienia
B. mieszanej
C. magistrali
D. gwiazdy
Topologia pierścienia to rodzaj sieci komputerowej, w której każdy węzeł jest podłączony do dwóch innych węzłów, tworząc jedną nieprzerwaną ścieżkę komunikacyjną przypominającą pierścień. W tej topologii dane przesyłane są w jednym kierunku od jednego węzła do następnego, co minimalizuje ryzyko kolizji. Jednym z praktycznych zastosowań tej topologii jest sieć Token Ring, gdzie stosuje się protokół token passing umożliwiający kontrolowany dostęp do medium transmisyjnego. Główne zalety topologii pierścienia to jej deterministyczny charakter oraz łatwość w przewidywaniu opóźnień w przesyłaniu danych. W kontekście standardów sieciowych, sieci opartych na tej topologii można znaleźć w lokalnych sieciach LAN wykorzystujących standard IEEE 802.5. Dobrymi praktykami w implementacji topologii pierścienia są regularna kontrola stanu połączeń oraz odpowiednia konfiguracja urządzeń sieciowych, aby zapewnić niezawodność i optymalną wydajność sieci. Choć nieco mniej popularna w nowoczesnych zastosowaniach niż topologia gwiazdy, topologia pierścienia znalazła swoje zastosowanie w specyficznych środowiskach przemysłowych, gdzie deterministyczny dostęp do medium jest kluczowy.

Pytanie 33

Jaki pasywny komponent sieciowy powinno się wykorzystać do podłączenia przewodów z wszystkich gniazd abonenckich do panelu krosowniczego umieszczonego w szafie rack?

A. Organizer kabli
B. Adapter LAN
C. Przepust szczotkowy
D. Kabel połączeniowy
Organizer kabli to kluczowy element pasywny w sieciach teleinformatycznych, który służy do porządkowania oraz utrzymywania w należytym stanie okablowania w szafach rackowych. Jego główną funkcją jest neutralizowanie bałaganu kablowego, co z kolei ułatwia zarówno instalację, jak i późniejsze prace serwisowe. Użycie organizera kabli pozwala na zminimalizowanie ryzyka przypadkowego odłączenia kabli, a także na poprawę wentylacji w szafie rackowej, co jest niezbędne dla wydajnego chłodzenia urządzeń. W praktyce, organizery kabli są stosowane do prowadzenia kabli w pionie i poziomie, co pozwala na lepsze zarządzanie przestrzenią oraz ułatwia identyfikację poszczególnych kabli. W branży stosowane są różne standardy, takie jak ANSI/TIA-568, które podkreślają znaczenie uporządkowanego okablowania dla zapewnienia wysokiej jakości transmisji danych. Dobre praktyki wskazują również, że właściwe zarządzanie kablami wpływa na estetykę oraz efektywność operacyjną całej instalacji.

Pytanie 34

Jaką cechę posiada przełącznik w sieci?

A. Z odebranych ramek wydobywa adresy MAC
B. Z przesyłanych pakietów pobiera docelowe adresy IP
C. Korzysta z protokołu EIGRP
D. Działa na fragmentach danych określanych jako segmenty
Przełącznik sieciowy to urządzenie, które odgrywa kluczową rolę w zarządzaniu komunikacją w sieciach lokalnych. Jego podstawową funkcją jest odczytywanie adresów MAC z ramek sieciowych, co umożliwia efektywne przekazywanie danych pomiędzy urządzeniami w tej samej sieci. Dzięki mechanizmowi przechowywania adresów MAC w tablicy, przełącznik jest w stanie podejmować decyzje dotyczące przesyłania danych tylko do tych portów, które są rzeczywiście połączone z docelowymi urządzeniami. Taka operacja zwiększa wydajność sieci oraz minimalizuje niepotrzebny ruch, co jest zgodne z najlepszymi praktykami w projektowaniu sieci lokalnych. Na przykład, w dużych biurach, gdzie wiele komputerów jest podłączonych do jednego przełącznika, jego zdolność do prawidłowego kierowania ruchu bazując na adresach MAC jest kluczowa dla zapewnienia płynnej komunikacji. Przełączniki są niezbędnymi elementami w nowoczesnych sieciach Ethernet, a ich odpowiednia konfiguracja zgodna z protokołami IEEE 802.1D (Spanning Tree Protocol) i IEEE 802.1Q (VLAN) może znacząco poprawić zarządzanie ruchem sieciowym oraz zwiększyć bezpieczeństwo.

Pytanie 35

Chusteczki nasączone substancją o właściwościach antystatycznych służą do czyszczenia

A. wyświetlaczy monitorów CRT
B. wałków olejowych w drukarkach laserowych
C. wyświetlaczy monitorów LCD
D. rolek prowadzących papier w drukarkach atramentowych
Wybór niewłaściwych odpowiedzi do pytania związane jest z błędnymi przekonaniami na temat zastosowania chusteczek antystatycznych w kontekście czyszczenia różnych komponentów sprzętu komputerowego. Ekrany monitorów LCD, w przeciwieństwie do CRT, charakteryzują się inną konstrukcją i materiałami, które nie wymagają stosowania środków antystatycznych w takim samym stopniu. LCD jest mniej podatny na gromadzenie ładunków elektrostatycznych, przez co lepiej sprawdzają się w ich przypadku neutralne środki czyszczące, które nie zawierają substancji mogących uszkodzić ich delikatną powierzchnię. Ponadto, rolki prowadzące papier w drukarkach atramentowych oraz wałki olejowe w drukarkach laserowych wymagają stosowania specjalistycznych środków czyszczących, które są zaprojektowane w celu utrzymania ich funkcjonalności. Zastosowanie chusteczek antystatycznych w tych obszarach może nie tylko być nieskuteczne, ale także prowadzić do zatykania lub uszkodzenia tych elementów. Ważne jest, aby użytkownicy sprzętu technicznego rozumieli różnice między różnymi typami urządzeń i stosowali odpowiednie metody czyszczenia oraz środki zgodne z zaleceniami producentów, aby uniknąć niepożądanych skutków. Ignorowanie tych zasad może prowadzić do kosztownych napraw lub przedwczesnej wymiany sprzętu.

Pytanie 36

Na schemacie płyty głównej port PCI oznaczony jest numerem

Ilustracja do pytania
A. 4
B. 1
C. 3
D. 2
Złącze PCI, oznaczone jako numer 3 na schemacie, jest elementem płyty głównej wykorzystywanym do podłączania kart rozszerzeń takich jak karty graficzne dźwiękowe czy sieciowe. Standard PCI (Peripheral Component Interconnect) został wprowadzony w latach 90. i stał się popularnym rozwiązaniem w komputerach osobistych. Dzięki swojej uniwersalności i szerokiemu wsparciu dla różnych typów urządzeń, PCI umożliwia łatwe rozszerzenie możliwości komputera. W praktyce, złącze PCI znajduje zastosowanie w wielu konfiguracjach sprzętowych, pozwalając na integrację dodatkowych funkcji i zwiększanie wydajności systemu. Jest zgodne z szeregiem standardów przemysłowych, co zapewnia jego kompatybilność z różnorodnym sprzętem. Ponadto, PCI wspiera techniki takie jak Plug and Play, co upraszcza proces instalacji nowych urządzeń. W kontekście serwisowania i rozbudowy komputera znajomość lokalizacji i zastosowania złącz PCI jest kluczowa dla techników IT. Warto również zwrócić uwagę na to, że choć PCI zostało częściowo zastąpione przez nowsze technologie jak PCI Express nadal jest używane w wielu starszych systemach. Dzięki temu rozumienie jego funkcjonowania jest istotne dla osób zajmujących się utrzymaniem i modernizacją sprzętu komputerowego.

Pytanie 37

Standard IEEE 802.11b dotyczy typu sieci

A. przewodowych
B. telefonicznych
C. bezprzewodowych
D. światłowodowych
Wybór niepoprawnych odpowiedzi, takich jak sieci telefoniczne, przewodowe czy światłowodowe, wynika z nieporozumienia dotyczącego kluczowych różnic między typami sieci. Sieci telefoniczne są tradycyjnie związane z przesyłaniem głosu za pomocą technologii analogowej lub cyfrowej, co nie ma nic wspólnego z bezprzewodową transmisją danych. Z kolei sieci przewodowe opierają się na fizycznych połączeniach kablowych, takich jak Ethernet, który zapewnia stabilne, ale ograniczone w mobilności połączenia. W kontekście standardu IEEE 802.11b, podejście to jest błędne, ponieważ ten standard bazuje na technologii radiowej, co oznacza, że użytkownicy mogą łączyć się z siecią bez przewodów. Podobnie sieci światłowodowe, które wykorzystują światłowody do przesyłania danych na dużych odległościach, również nie mają zastosowania w kontekście bezprzewodowych standardów, takich jak IEEE 802.11b. Często mylenie tych koncepcji wynika z braku zrozumienia fundamentalnych różnic w architekturze sieci. Rozróżnienie pomiędzy różnymi typami sieci jest kluczowe dla projektowania i wdrażania nowoczesnych rozwiązań komunikacyjnych. Niewłaściwe postrzeganie normy IEEE 802.11b może prowadzić do błędnych decyzji w zakresie wyboru odpowiedniej technologii do zastosowań w różnych środowiskach, co w dłuższym czasie może wpływać na efektywność i wydajność organizacji.

Pytanie 38

Jaki rodzaj licencji pozwala na swobodne modyfikacje, kopiowanie oraz rozpowszechnianie po dokonaniu dowolnej płatności na rzecz twórcy?

A. adware
B. postcardware
C. shareware
D. donationware
Donationware to typ licencji, który umożliwia użytkownikom modyfikowanie, kopiowanie i rozpowszechnianie oprogramowania po uiszczeniu dobrowolnej opłaty na rzecz autora. Tego typu licencja łączy elementy freeware z możliwością wsparcia finansowego twórcy, co jest korzystne dla rozwoju oprogramowania. Przykładem może być oprogramowanie, które oferuje pełny dostęp do wszystkich funkcji bezpłatnie, ale z zachętą do przekazania dobrowolnej darowizny. Dzięki temu, użytkownicy mają możliwość wspierania autorów, a jednocześnie korzystania z ich pracy bez ograniczeń. W praktyce, takie podejście sprzyja budowaniu społeczności wokół projektu, gdzie użytkownicy czują się zmotywowani do wspierania dalszego rozwoju. Warto zauważyć, że donationware jest zgodne z zasadami otwartego oprogramowania, które zachęca do dzielenia się wiedzą i zasobami. Licencja ta jest szczególnie popularna wśród twórców oprogramowania niezależnego i projektów non-profit, gdzie wsparcie finansowe może znacząco wpłynąć na kontynuację pracy twórczej.

Pytanie 39

Mysz komputerowa z interfejsem bluetooth pracującym w klasie 2 ma teoretyczny zasięg do

A. 1 m
B. 2 m
C. 10 m
D. 100 m
Mysz komputerowa z interfejsem Bluetooth działającym w klasie 2 ma teoretyczny zasięg działania do 10 metrów. Klasa 2 Bluetooth jest jednym z najczęściej stosowanych standardów w urządzeniach przenośnych, co czyni je idealnym rozwiązaniem dla myszek oraz innych akcesoriów. W praktyce oznacza to, że użytkownik może korzystać z myszki w promieniu do 10 metrów od nadajnika, co daje dużą swobodę ruchu. Tego rodzaju zasięg jest wystarczający w typowych warunkach biurowych czy domowych, gdzie urządzenia Bluetooth mogą być używane w odległości od laptopa czy komputera stacjonarnego. Ponadto, Bluetooth jako technologia jest zaprojektowana z myślą o niskim zużyciu energii, co przekłada się na długotrwałe działanie akumulatorów w urządzeniach bezprzewodowych. Warto również zauważyć, że zasięg może być ograniczany przez przeszkody, takie jak ściany czy meble, co jest typowe dla środowisk z wieloma elementami blokującymi sygnał. Dobrą praktyką jest regularne sprawdzanie, czy urządzenie działa w optymalnym zakresie, aby uniknąć problemów z łącznością.

Pytanie 40

Na pliku z uprawnieniami zapisanymi w systemie liczbowym: 740 przeprowadzono polecenie chmod g-r. Jakie będą nowe uprawnienia pliku?

A. 710
B. 700
C. 750
D. 720
Odpowiedź 700 jest prawidłowa, ponieważ po zastosowaniu polecenia chmod g-r z pliku o pierwotnych uprawnieniach 740, usunięto uprawnienie do odczytu dla grupy. Liczby reprezentujące uprawnienia są podzielone na trzy części: pierwsza cyfra dotyczy właściciela, druga grupy, a trzecia innych użytkowników. Uprawnienia 740 oznaczają, że właściciel ma pełne uprawnienia (czyli odczyt, zapis i wykonanie), grupa ma pełny dostęp (odczyt i wykonanie), a inni użytkownicy nie mają żadnych uprawnień. Po użyciu komendy g-r, grupa traci uprawnienie do odczytu, co zmienia drugą cyfrę na 0. W rezultacie plik ma teraz uprawnienia 700, co oznacza, że tylko właściciel ma pełne uprawnienia (czytanie, zapisywanie i wykonywanie), a grupa oraz inni użytkownicy nie mają żadnych uprawnień. Dobrą praktyką zarządzania uprawnieniami plików jest dokładne rozumienie i kontrolowanie dostępów dla różnych użytkowników, co zwiększa bezpieczeństwo danych i minimalizuje ryzyko nieautoryzowanego dostępu.
Strona wykorzystuje pliki cookies do poprawy doświadczenia użytkownika oraz analizy ruchu. Szczegóły