Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 4 czerwca 2025 08:02
  • Data zakończenia: 4 czerwca 2025 08:11

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z wymienionych dokumentów nie należy do operatu technicznego przekazywanego do Państwowego Zasobu Geodezyjnego i Kartograficznego?

A. Dziennik pomiarowy
B. Certyfikat rektyfikacji sprzętu geodezyjnego
C. Sprawozdanie techniczne
D. Opis topograficzny punktu osnowy pomiarowej
Certyfikat rektyfikacji sprzętu geodezyjnego nie jest dokumentem, który należy przekazać do Państwowego Zasobu Geodezyjnego i Kartograficznego (PZGiK) w ramach operatu technicznego. Operat techniczny jest zbiorem dokumentów, które potwierdzają wykonanie prac geodezyjnych i składają się z elementów takich jak dziennik pomiarowy, sprawozdanie techniczne oraz opis topograficzny punktu osnowy pomiarowej. Certyfikat rektyfikacji dotyczy jedynie stanu oraz kalibracji sprzętu geodezyjnego i jest istotny w kontekście zapewnienia jakości pomiarów, jednak nie stanowi elementu operatu. W praktyce, operat techniczny jest kluczowy dla weryfikacji i archiwizacji danych geodezyjnych, co jest niezbędne dla utrzymania standardów w branży. Zgodnie z przepisami prawa, dokumentacja ta musi być starannie przygotowana, aby zapewnić jej zgodność z obowiązującymi normami. Dobrą praktyką jest regularne przeglądanie i aktualizowanie procedur dotyczących dokumentacji operatów technicznych, co przyczynia się do lepszej organizacji pracy geodetów i podnosi jakość świadczonych usług.

Pytanie 2

W jakim dokumencie, będącym częścią każdego operatu geodezyjnego, określone są: cel i zakres rzeczowy oraz terytorialny przeprowadzonych prac, czas realizacji prac geodezyjnych oraz identyfikator zgłoszenia dotyczącego pracy geodezyjnej?

A. W sprawozdaniu technicznym
B. Na szkicu polowym
C. W dzienniku pomiarów
D. W wykazie robót geodezyjnych
Sprawozdanie techniczne stanowi kluczowy dokument w operacie geodezyjnym, w którym szczegółowo opisane są cel oraz zakres rzeczowy i terytorialny wykonanych prac geodezyjnych. Jego istotą jest nie tylko dokumentacja wykonanych czynności, ale również pełna identyfikacja projektu, co jest zgodne z wymogami standardów geodezyjnych. Sprawozdanie zawiera również informacje o okresie realizacji prac oraz identyfikatorze zgłoszenia, co umożliwia efektywne zarządzanie danymi i ich późniejszą weryfikację przez organy nadzoru. Przykładowo, w przypadku kontroli jakości wykonanych usług geodezyjnych, sprawozdanie techniczne stanowi nieocenione źródło informacji, pozwalające na ocenę zgodności z założeniami projektowymi i regulacjami prawnymi. Zastosowanie sprawozdania technicznego jako podstawy w dokumentacji geodezyjnej jest zgodne z dobrymi praktykami w branży, które kładą nacisk na transparentność i rzetelność w dokumentacji geodezyjnej.

Pytanie 3

Jeśli długość boku kwadratu zmierzonego w terenie wynosi 10 m, to jego pole na mapie w skali 1:1000 będzie wynosić

A. 100,0 cm2
B. 0,1 cm2
C. 1,0 cm2
D. 10,0 cm2
Aby obliczyć pole powierzchni kwadratu na mapie w skali 1:1000, należy najpierw przeliczyć długość boku kwadratu z metra na centymetry. Dla boku o długości 10 m, mamy 10 m x 100 cm/m = 1000 cm. Pole powierzchni kwadratu obliczamy ze wzoru P = a², gdzie a to długość boku. Zatem, pole wynosi 1000 cm x 1000 cm = 1 000 000 cm² w rzeczywistości. Na mapie w skali 1:1000, pole to będzie reprezentowane przez 1 000 000 cm² / 1 000 000 = 1 cm². Przykład zastosowania tej wiedzy można znaleźć w geodezji, gdzie skale map używane są do przedstawiania dużych obszarów na małych powierzchniach, a dokładne obliczenia są kluczowe dla prawidłowego odwzorowania terenu. Dobra praktyka wymaga, aby geodeci i kartografowie dokładnie przeliczywali wymiary obiektów, aby zapewnić dokładność mapy oraz informacji, które ona przekazuje.

Pytanie 4

Która z podanych wartości powinna zostać uwzględniona na wykresie pionowości krawędzi obiektu budowlanego?

A. Przemieszczenie w kierunku pionowym
B. Deformacja
C. Odchylenie od pionu
D. Różnica wysokości
Odchylenie od pionu to kluczowa wielkość, która mierzy, jak dalece krawędź budynku odbiega od idealnej linii pionowej. Jako wskaźnik stabilności konstrukcji, odchylenie od pionu jest istotnym parametrem w budownictwie, szczególnie podczas inspekcji dużych obiektów, takich jak wieżowce czy mosty. W praktyce, pomiar odchylenia od pionu przeprowadza się za pomocą teodolitów lub niwelatorów, które pozwalają na precyzyjne określenie kąta odchylenia w stosunku do pionu. Wartości te są krytyczne w kontekście zachowania się budynku pod wpływem obciążeń statycznych i dynamicznych. Zgodnie z normami budowlanymi, maksymalne dopuszczalne odchylenie dla budynków mieszkalnych wynosi zazwyczaj 1/200 wysokości budynku, co zapewnia bezpieczeństwo użytkowników oraz trwałość konstrukcji. Regularne monitorowanie odchylenia od pionu może zapobiegać poważnym problemom, takim jak pękanie ścian czy osiadanie fundamentów, a tym samym znacząco wpływa na bezpieczeństwo użytkowania obiektów.

Pytanie 5

Która z poniższych aktywności nie wchodzi w zakres działań Powiatowego Ośrodka Dokumentacji Geodezyjnej i Kartograficznej?

A. Rejestrowanie dokumentów przyjętych do zasobu geodezyjnego
B. Przyjmowanie oraz rejestrowanie zgłoszeń prac geodezyjnych i kartograficznych
C. Realizacja pomiarów w celu ustalenia współrzędnych oraz wysokości punktów osnowy
D. Wydawanie instrukcji do przeprowadzenia zgłoszonych prac
Nieprawidłowa odpowiedź może wynikać z niepełnego zrozumienia zakresu działań Powiatowego Ośrodka Dokumentacji Geodezyjnej i Kartograficznej. Wydawanie wytycznych do wykonania zgłoszonych robót oraz przyjmowanie i ewidencjonowanie zgłoszeń robót geodezyjnych i kartograficznych są fundamentalnymi obowiązkami PODGiK. Te działania obejmują nadzór nad pracami geodezyjnymi i zapewnienie ich zgodności z obowiązującymi przepisami oraz standardami jakości. Ponadto ewidencjonowanie dokumentów przyjętych do zasobu geodezyjnego jest kluczowe dla przechowywania oraz udostępniania danych, co jest niezbędne dla wszelkich działań związanych z zarządzaniem przestrzenią. W złożonym procesie zarządzania danymi geodezyjnymi istotne jest nie tylko ich zbieranie, ale także weryfikacja, archiwizacja i udostępnianie interesariuszom. Brak zrozumienia podziału ról pomiędzy różnymi jednostkami geodezyjnymi może prowadzić do błędnych wniosków co do zakresu odpowiedzialności poszczególnych instytucji. Zrozumienie tego podziału jest kluczowe w kontekście współpracy z innymi jednostkami oraz w realizacji zadań związanych z planowaniem przestrzennym i inwestycjami budowlanymi. To także pokazuje, jak ważne jest przestrzeganie procedur administracyjnych oraz inwestowanie w szkolenia, aby uniknąć takich nieporozumień w przyszłości.

Pytanie 6

Podczas jakiej procedury geodezyjnej stosuje się niwelację geometryczną?

A. Podczas pomiaru różnic wysokości między punktami.
B. Podczas wyznaczania kierunków magnetycznych w terenie.
C. Podczas tworzenia map tematycznych związanych z ukształtowaniem terenu.
D. Podczas pomiaru odległości w terenie za pomocą metod geodezyjnych.
Niwelacja geometryczna to jedna z podstawowych metod pomiarowych w geodezji, używana do określania różnic wysokości pomiędzy punktami terenu. Jej główną cechą jest wykorzystanie poziomej linii celowania, co pozwala na bezpośrednie odczytywanie różnic wysokości. W praktyce geodezyjnej niwelacja geometryczna jest stosowana w wielu sytuacjach, takich jak projektowanie dróg, mostów, czy budowli, gdzie precyzyjne dane wysokościowe są kluczowe. Proces ten polega na ustawieniu niwelatora na statywie i wykonywaniu odczytów na łatach niwelacyjnych umieszczonych na określonych punktach. Dzięki niemu można uzyskać bardzo dokładne pomiary, co jest niezbędne w wielu projektach inżynieryjnych. Niwelacja geometryczna jest preferowaną metodą w przypadku konieczności uzyskania wysokiej precyzji w krótkim dystansie. Metoda ta jest zgodna z międzynarodowymi standardami geodezyjnymi i uznawana za jedną z najdokładniejszych dostępnych metod pomiarowych. Dlatego jej zastosowanie w pomiarach różnic wysokości jest nie tylko praktyczne, ale i zgodne z najlepszymi praktykami branżowymi.

Pytanie 7

Który z wymienionych wzorów umożliwi obliczenie azymutu następnego boku Az2-3, jeżeli znany jest azymut poprzedniego boku Az1-2 oraz zmierzony kąt lewy α w punkcie 2?

A. Az2-3 = Az2-1 – α + 200g
B. Az2-3 = Az1-2 – α + 200g
C. Az2-3 = Az2-1 + α - 200g
D. Az2-3 = Az1-2 + α - 200g
Odpowiedź Az2-3 = Az1-2 + α - 200g jest prawidłowa, ponieważ przy obliczaniu azymutu kolejnego boku w geodezji stosujemy wzór, który uwzględnia azymut boku poprzedniego oraz pomierzony kąt lewy. W praktyce, azymut boku Az2-3 można obliczyć, dodając kąt lewy α do azymutu boku Az1-2, a następnie odejmując 200g, co wynika z konwencji stosowanej w geodezji. Zgodnie z zasadami, w przypadku pomiarów z użyciem teodolitu, kąt lewy jest mierzony w przeciwnym kierunku do ruchu wskazówek zegara, co wymaga uwzględnienia odpowiednich poprawek przy wyznaczaniu azymutu. Praktyczne zastosowanie tego wzoru widoczne jest w terenie, gdzie precyzyjne pomiary są kluczowe dla uzyskania dokładnych wyników w mapowaniu i inżynierii. Warto również zauważyć, że standardy geodezyjne, takie jak PN-EN ISO 17123-1, zalecają staranne podejście do pomiarów kątów oraz azymutów, aby zapewnić wysoką jakość danych geodezyjnych.

Pytanie 8

Jaką maksymalną liczbę boków może mieć jednostronnie nawiązany wielokąt?

A. 3 boki
B. 2 boki
C. 4 boki
D. 5 boków
Odpowiedź 2 boki jest prawidłowa, ponieważ w kontekście poligonów jednostronnie nawiązanych rozumiemy, że taki poligon to figura geometryczna, która jest zbudowana z segmentów prostych, gdzie każdy z wierzchołków łączy się tylko z dwoma innymi wierzchołkami. W praktyce oznacza to, że maksymalna liczba boków, jaką może mieć taki poligon, wynosi dwa. Dwa boki tworzą jedną linię prostą, a w przypadku poligonów wielokątnych, jak trójkąty czy czworokąty, liczba boków jest większa niż dwa, co nie ma zastosowania w kontekście jednostronnie nawiązanego poligonu. W geometrii klasycznej, zrozumienie założeń dotyczących jednostronnych poligonów jest kluczowe przy projektowaniu różnorodnych struktur, takich jak mosty czy budynki, gdzie optymalizacja kształtów i ich właściwości statycznych odgrywa istotną rolę. Takie znajomości są niezbędne dla inżynierów i architektów, aby zapewnić stabilność i efektywność konstrukcji.

Pytanie 9

Który z podanych rodzajów pomiarów powinien być użyty do określenia lokalizacji punktów kolejowej osnowy poziomej podstawowej, korzystając z globalnych systemów nawigacji satelitarnej (GNSS)?

A. "Stop-and-go"
B. RTK GPS
C. Pomiary w czasie rzeczywistym DGPS
D. Statyczny pomiar GPS
Statyczny pomiar GPS jest uważany za najlepszą metodę wyznaczania położenia punktów kolejowej osnowy poziomej podstawowej przy użyciu globalnych systemów nawigacji satelitarnej (GNSS). W tym podejściu odbiorniki GPS są pozostawione w jednym miejscu przez dłuższy czas, co pozwala na zebranie danych z satelitów przez wiele epok pomiarowych. Dzięki temu można uzyskać bardzo wysoką precyzję pomiaru, rzędu kilku centymetrów lub nawet milimetrów. Taki styl pomiaru jest szczególnie stosowany w geodezji i inżynierii lądowej, gdzie wymagana jest dokładność danych na potrzeby projektowania, budowy i utrzymania infrastruktury. Przykładem zastosowania statycznych pomiarów GPS jest wyznaczanie punktów osnowy geodezyjnej, co jest kluczowe dla prawidłowego lokalizowania obiektów budowlanych oraz dla prowadzenia dalszych pomiarów i analiz. Ponadto, metody statyczne są zgodne z międzynarodowymi standardami, takimi jak te ustanowione przez Międzynarodową Unię Geodezyjną (FIG), co podkreśla ich uznanie w branży.

Pytanie 10

Wykonano pomiar kąta: w pierwszym położeniu lunety KP = 299,8850g oraz w drugim położeniu lunety KL = 100,1130g. Oblicz wartość mo

A. +0,0010g
B. -0,0020g
C. +0,0020g
D. -0,0010g
Odpowiedź -0,0010g jest poprawna, ponieważ aby obliczyć wartość mo, należy skorzystać z różnicy kątów odczytanych w dwóch położeniach lunety. W pierwszym położeniu lunety KP wynosi 299,8850g, a w drugim KL wynosi 100,1130g. Obliczamy różnicę: mo = KL - KP = 100,1130g - 299,8850g = -199,7720g. Aby uzyskać wartość mo w kontekście pomiarów, należy dostosować wynik do standardowych wartości przyjętych w geodezji. W praktyce, w przypadku pomiarów kątów, wartości te są często przekształcane z uwagi na różnorodne czynniki, takie jak korekcje na atmosferę, ukształtowanie terenu, czy użycie różnorodnych instrumentów. Dlatego ważne jest posługiwanie się poprawnymi obliczeniami i standardami, które pozwalają na uzyskanie precyzyjnych wyników. Warto również zwrócić uwagę na różnicę w jednostkach miary, co może wpływać na interpretację wyników w różnych kontekstach geodezyjnych.

Pytanie 11

Jakie grupy błędów, mających wpływ na wyniki pomiarów, są wyróżniane w geodezji?

A. Błędy osobowe, błędy systematyczne, błędy losowe
B. Błędy grube, omyłki, błędy stałe
C. Błędy stałe, omyłki, błędy systematyczne
D. Błędy grube, błędy systematyczne, błędy przypadkowe
W geodezji mamy trzy główne grupy błędów, które mogą wpłynąć na to, co zmierzymy. Po pierwsze, są błędy grube, które mocno psują wyniki. Często wynikają z tego, że coś źle odczytaliśmy albo popełniliśmy błąd przy obsłudze sprzętu. Na przykład, zawsze trzeba uważać, żeby dobrze wpisać wartości do systemu, bo jeden zły krok i wszystko się sypie. Potem są błędy systematyczne. To takie błędy, które sobie powtarzają przez to, że narzędzie pomiarowe może być źle kalibrowane. Jak coś jest źle ustawione, to za każdym razem będziemy dostawać ten sam zły wynik. A na końcu mamy błędy przypadkowe. To te, które się zdarzają bez żadnego ostrzeżenia, jak zmiany pogody czy losowe wahania w wynikach. W geodezji ważne jest, żeby te błędy identyfikować i minimalizować, bo w projektach budowlanych czy geodezyjnych precyzyjne pomiary to klucz do sukcesu.

Pytanie 12

Jakiej z poniższych czynności nie przeprowadza się podczas wywiadu terenowego?

A. Zestawienia treści materiałów PZG i K ze stanem rzeczywistym
B. Rozpoznania w terenie punktów osnowy geodezyjnej
C. Stabilizacji znaków punktów osnowy geodezyjnej
D. Uzyskania informacji o terenie, który ma być poddany pomiarom
Zgłoszone odpowiedzi dotyczące działań podejmowanych w czasie wywiadu terenowego, takie jak identyfikacja punktów osnowy geodezyjnej, porównanie treści materiałów PZG i K ze stanem faktycznym oraz pozyskiwanie informacji o terenie, są poprawne i zgodne z zakresem prac, które wykonuje się podczas takiego wywiadu. Identyfikacja punktów osnowy geodezyjnej jest niezbędna, aby upewnić się, że pomiary będą odnosiły się do precyzyjnych i aktualnych danych, które są kluczowe w geodezji. Porównanie treści materiałów PZG i K z rzeczywistością terenową pozwala na weryfikację poprawności wcześniejszych pomiarów i dokumentacji, co jest zwłaszcza istotne przy planowaniu nowych inwestycji budowlanych. Pozyskiwanie informacji o terenie, który ma być objęty pomiarem, jest kluczowym krokiem, aby zrozumieć kontekst geograficzny i prawny obszaru badań. Wszelkie te czynności są zgodne z najlepszymi praktykami branżowymi, które nakładają na geodetów obowiązek dokładnej analizy terenu przed przystąpieniem do bardziej technicznych działań, takich jak stabilizacja znaków. Ignorowanie tych procesów prowadzi do nieprawidłowego wykonywania prac geodezyjnych, co może skutkować błędami w pomiarach i w konsekwencji niewłaściwą dokumentacją, co z kolei stanowi naruszenie standardów jakości w geodezji.

Pytanie 13

Znaki geodezyjne, które nie są objęte ochroną, to

A. budowle triangulacyjne
B. repety robocze
C. punkty osnowy geodezyjnej
D. kamienie graniczne
Kamienie graniczne są stałymi elementami, które pełnią kluczową rolę w geodezji, szczególnie w kontekście wyznaczania granic działek i nieruchomości. Ich ochrona ma na celu zapobieganie przypadkowemu usunięciu lub zniszczeniu, co mogłoby prowadzić do niejasności prawnych dotyczących własności. Punkty osnowy geodezyjnej stanowią fundament dla wszystkich działań geodezyjnych. Są to precyzyjnie zlokalizowane punkty, które są używane jako odniesienia do pomiarów, co czyni je niezbędnymi dla zachowania integralności danych geodezyjnych. Budowle triangulacyjne, takie jak wieże triangulacyjne, również podlegają szczególnej ochronie, ponieważ ich obecność jest kluczowa dla realizacji pomiarów geodezyjnych na szeroką skalę. Ochrona tych elementów jest zgodna z obowiązującymi normami geodezyjnymi i standardami pracy w tej dziedzinie. Typowe błędy myślowe, które prowadzą do niepoprawnych wniosków, obejmują mylenie repety roboczych z punktami osnowy oraz niezrozumienie znaczenia ochrony znaków geodezyjnych dla prawidłowego funkcjonowania systemu geodezyjnego. Ochrona znaków geodezyjnych jest niezbędna do zapewnienia spójności i dokładności pomiarów, co jest kluczowe dla rozwoju infrastruktury i zarządzania przestrzenią. Dlatego ważne jest, aby mieć świadomość, które elementy podlegają ochronie, a które są tymczasowe i zasługują na inny status w kontekście prac geodezyjnych.

Pytanie 14

Który z poniższych dokumentów jest wymagany przy wykonywaniu inwentaryzacji powykonawczej budowli?

A. Projekt budowlany
B. Mapa zasadnicza
C. Instrukcja obsługi tachimetru
D. Mapa topograficzna
Podczas wykonywania inwentaryzacji powykonawczej budowli, kluczowym dokumentem jest projekt budowlany. To właśnie on zawiera wszystkie niezbędne informacje dotyczące struktury, wymiarów oraz specyfikacji technicznej budowli, które są niezbędne do prawidłowej oceny zgodności wykonanego obiektu z założeniami projektowymi. Projekt budowlany stanowi podstawowy punkt odniesienia, umożliwiający ocenę, czy budowla została zrealizowana zgodnie z założeniami, a także identyfikację ewentualnych odchyleń. Praktyka branżowa wymaga, aby pomiary powykonawcze były precyzyjnie porównywane z danymi zawartymi w projekcie, co umożliwia uzyskanie dokładnych wyników. Projekt budowlany jest też często wymagany przez różne instytucje kontrolne i jest podstawowym dokumentem w procesie odbioru technicznego budowli. Warto również zaznaczyć, że posiadanie aktualnego projektu budowlanego jest kluczowe nie tylko dla samej inwentaryzacji, ale także dla przyszłych prac konserwacyjnych czy modernizacyjnych, które mogą być planowane w przyszłości. Dlatego w kontekście inwentaryzacji powykonawczej, projekt budowlany jest niezbędnym dokumentem, który umożliwia precyzyjną i wiarygodną ocenę wykonanej pracy.

Pytanie 15

Jaki opis, używany na mapie zasadniczej, odnosi się do przewodu kanalizacyjnego sanitarnego o średnicy
20 cm, zmierzonego na osnowę?

A. ksP200
B. ks20
C. ks200
D. ksB20
Odpowiedź ks200 jest poprawna, ponieważ zgodnie z obowiązującymi normami w inżynierii lądowej i wodnej, oznaczenia dla przewodów kanalizacyjnych sanitarno-ściekowych o średnicy 20 cm wskazują na ich średnicę w milimetrach. W przypadku przewodów sanitarnych, standardowe oznaczenie składa się z prefiksu 'ks' (kanalizacja sanitarna), a następnie z liczby wskazującej średnicę w mm. Oznaczenie ks200 odnosi się więc bezpośrednio do przewodu o średnicy 200 mm, co jest zgodne z powszechnie uznawanymi praktykami w branży. W praktyce, takie oznaczenie ułatwia zarówno projektowanie, jak i realizację inwestycji budowlanych, ponieważ inżynierowie i projektanci mogą łatwo identyfikować konkretne elementy systemu kanalizacyjnego. Warto również przypomnieć, że stosowanie jednolitych oznaczeń zgodnych z normami europejskimi poprawia komunikację między różnymi uczestnikami procesu budowlanego.

Pytanie 16

Oblicz kątową korekcję dla jednego kąta w zamkniętym ciągu poligonowym, jeśli ciąg składa się z 5 kątów, a odchyłka kątowa wynosi fα = +30cc

A. Vkt = -5cc
B. Vkt = +5cc
C. Vkt = +6cc
D. Vkt = -6cc
Poprawka kątowa do kąta w ciągu poligonowym zamkniętym jest obliczana na podstawie ogólnej zasady, że suma wszystkich kątów wewnętrznych powinna wynosić (n-2) * 180°, gdzie n to liczba wierzchołków. W przypadku poligonu zamkniętego z pięcioma kątami, teoretyczna suma kątów wynosi 3 * 180° = 540°. W zadaniu podano odchyłkę kątową fα = +30cc, co wskazuje na konieczność skorygowania kątów o wartość, która zbilansuje nadmiar odchyłki. W praktyce, obliczenia te przyjmuje się w kontekście metody obliczania poprawek kątowych, gdzie poprawka kątowa Vkt dla jednego kąta w poligonie zamkniętym oblicza się jako Vkt = -(fα / n), co w tym przypadku daje Vkt = -(30cc / 5) = -6cc. Tego rodzaju obliczenia są kluczowe w geodezji i inżynierii, gdzie precyzyjne pomiary kątów mają istotne znaczenie dla dokładności projektów budowlanych oraz w nawigacji. Stosowanie poprawnych metod obliczeniowych jest zgodne z zasadami ISO 17123 oraz innymi normami branżowymi, które zapewniają rzetelność pomiarów.

Pytanie 17

Która z podanych prac geodezyjnych nie wymaga zgłoszenia do Ośrodka Dokumentacji Geodezyjnej i Kartograficznej?

A. Zaktualizowanie mapy zasadniczej
B. Pomiar ilości mas ziemnych
C. Inwentaryzacja po zakończeniu budowy
D. Podział działki
Pomiar objętości mas ziemnych to proces, który nie wymaga zgłoszenia do Ośrodka Dokumentacji Geodezyjnej i Kartograficznej (ODGiK), ponieważ nie jest to praca geodezyjna, która zmienia stan nieruchomości w sposób wymagający aktualizacji dokumentacji publicznej. W praktyce, taki pomiar ma zastosowanie głównie w budownictwie i inżynierii lądowej, gdzie wykonuje się go w celu określenia ilości ziemi do wykopania lub nasypania podczas budowy. Przykładem może być budowa drogi, gdzie dokładne oszacowanie mas ziemnych jest kluczowe dla kosztorysowania oraz planowania dalszych prac. Warto podkreślić, że takie pomiary często są wykonywane zgodnie z normami PN-EN 1991-1-1 i są integralną częścią procesu projektowego, ale nie wymagają formalnego zgłoszenia do organów administracyjnych, co upraszcza procedury dla wykonawców.

Pytanie 18

Długość odcinka zmierzonego na mapie o skali 1:2000 wynosi 11,1 cm. Jaką długość ma ten odcinek w rzeczywistości?

A. 55,50 m
B. 5,55 m
C. 22,20 m
D. 2,22 m
Odpowiedź 22,20 m jest prawidłowa, ponieważ w przypadku skali 1:2000 oznacza, że 1 cm na mapie odpowiada 2000 cm w terenie. Aby obliczyć długość odcinka w rzeczywistości, należy pomnożyć długość odcinka zmierzoną na mapie (11,1 cm) przez skalę. Zatem obliczenia wyglądają następująco: 11,1 cm * 2000 cm/cm = 22 200 cm. Przekształcając jednostki, otrzymujemy 22 200 cm = 222 m. Ostatecznie, aby uzyskać wynik w metrach, dzielimy przez 100, co daje nam 22,20 m. Ta umiejętność konwersji między długościami pomierzonymi na mapie a rzeczywistymi odległościami jest kluczowa w dziedzinach takich jak geodezja, urbanistyka czy kartografia. Przykładem zastosowania tej wiedzy może być zaplanowanie infrastruktury w terenie, gdzie precyzyjne pomiary są niezbędne do określenia lokalizacji budynków, dróg czy innych obiektów. W codziennym życiu również możemy wykorzystać tę wiedzę, na przykład, przy planowaniu podróży lub ocenie odległości podczas spaceru.

Pytanie 19

Jaki błąd jest wskaźnikiem precyzji tyczenia?

A. Błąd przypadkowy tyczenia
B. Błąd względny tyczenia
C. Błąd średni tyczenia
D. Błąd graniczny tyczenia
Błąd średni tyczenia to naprawdę ważna sprawa, jeśli chodzi o dokładność w pomiarach. Mówiąc prościej, to średnia różnica między tym, co zmierzyliśmy, a tym, co jest rzeczywiste. Dzięki temu wiemy, jak dobrze nam idzie w terenie. W praktyce, na przykład przy ustalaniu granic działki, precyzyjność pomiaru jest kluczowa. Jeśli coś pójdzie nie tak, mogą pojawić się konflikty z sąsiadami. No i w dokumentach geodezyjnych też musimy być dokładni. W branży są różne normy, jak te z ISO/TS, które pokazują, jakie błędy są akceptowalne. To naprawdę dowodzi, jak istotny jest błąd średni w geodezji. Analizując go, geodeci mogą zdecydować, czy trzeba coś poprawić czy powtórzyć pomiary, co zdecydowanie wpływa na jakość danych geodezyjnych.

Pytanie 20

Korzystając z danych zamieszczonych w tabeli, oblicz kąt skręcenia pomiędzy układami współrzędnych wtórnym i pierwotnym.

Numer punktuUkład pierwotnyUkład wtórny
XpYpXwYw
1100,00100,00400,00400,00
2123,00134,00377,00366,00
3145,00162,00355,00338,00
4200,00200,00300,00300,00

A. 200g
B. 250g
C. 300g
D. 50g
Prawidłowa odpowiedź to 200g, co oznacza kąt skręcenia między układami współrzędnych wtórnym i pierwotnym. Aby obliczyć kąt skręcenia, ważne jest zrozumienie, jak układy współrzędnych są ze sobą powiązane. Kąt ten można określić poprzez analizę różnic między danymi w układzie pierwotnym a tymi w układzie wtórnym. W praktyce, poprawne obliczenie kąta skręcenia jest kluczowe w dziedzinach takich jak inżynieria, architektura oraz robotyka, gdzie precyzyjne określenie orientacji obiektów jest niezbędne do prawidłowego działania mechanizmów i systemów. Kiedy zmieniamy orientację układów współrzędnych, musimy uwzględnić nie tylko kąt, ale także zmiany w lokalizacji oraz ewentualne przekształcenia, które mogą wpłynąć na dalsze obliczenia. Znajomość prawidłowego obliczania kąta skręcenia jest zgodna z najlepszymi praktykami w zakresie projektowania systemów, w których precyzja ma kluczowe znaczenie dla ich funkcjonowania.

Pytanie 21

Który z błędów instrumentalnych teodolitu nie jest usuwany podczas pomiaru kąta w dwóch różnych położeniach lunety?

A. Kolimacja
B. Inklinacja
C. Miejsca zera
D. Libelli rurkowej
Libella rurkowa jest elementem teodolitu służącym do poziomowania instrumentu. W przypadku pomiaru kąta w dwóch położeniach lunety, jakiekolwiek błędy związane z kolimacją, inklinacją czy miejscem zera są eliminowane poprzez odpowiednie średnie arytmetyczne pomiarów. Jednak błąd libelli rurkowej, który może wystąpić na skutek jej niewłaściwego ustawienia lub uszkodzenia, nie jest eliminowany w ten sposób. W praktyce, przed przystąpieniem do pomiarów, niezbędne jest skontrolowanie poziomu teodolitu przy użyciu libelli. Jeśli libella nie jest prawidłowo ustawiona, wszystkie późniejsze pomiary kątów będą obarczone błędem, co może prowadzić do poważnych nieścisłości w opracowywanych projektach geodezyjnych. Dlatego standardowe procedury dotyczące kalibracji teodolitu nakładają obowiązek regularnego sprawdzania libelli, co pozwala na zapewnienie dokładności pomiarów oraz minimalizację błędów instrumentalnych.

Pytanie 22

Jaki rodzaj mapy stosuje się do przedstawienia ukształtowania terenu miasta?

A. Mapa klimatyczna
B. Mapa katastralna
C. Mapa hydrogeologiczna
D. Mapa topograficzna
Mapa topograficzna jest nieocenionym narzędziem w geodezji i urbanistyce, ponieważ szczegółowo przedstawia ukształtowanie terenu. Dzięki niej można zobaczyć, jak kształtują się różnice wysokości w terenie, co jest kluczowe przy planowaniu infrastruktury miejskiej, budowy dróg czy projektowaniu nowych osiedli. Takie mapy wykorzystują poziomice do pokazania wysokości nad poziomem morza, co pozwala na wizualne zrozumienie krajobrazu. Poziomice są izoliniami, które łączą punkty o tej samej wysokości, co pozwala na łatwe zinterpretowanie nachyleń i różnic wysokości. W praktyce, podczas projektowania systemów odwadniających czy planowania zieleni miejskiej, zrozumienie topografii terenu jest kluczowe. Mapa topograficzna dostarcza także informacji o naturalnych i sztucznych obiektach, co jest nieocenione podczas planowania przestrzennego. Z mojego doświadczenia, korzystanie z map topograficznych pozwala uniknąć wielu problemów, które mogą pojawić się w trakcie realizacji projektów budowlanych.

Pytanie 23

Wysokość osi celowej to 213,100 m. Na jakim pomiarze powinna być umieszczona łatę, aby osiągnięta wysokość punktu wyniosła 212,800?

A. 0030 mm
B. 3000 mm
C. 0300 mm
D. 1300 mm
Wybór niewłaściwego odczytu wynika z niezrozumienia koncepcji różnicy wysokości oraz błędnego podejścia do interpretacji pomiaru. Odpowiedzi takie jak 0030 mm, 1300 mm czy 3000 mm nie uwzględniają kluczowego faktu, że wysokość osi celowej musi być podzielona na odpowiednią jednostkę miary. Odczyt 0030 mm sugeruje, że pomiar wysokości został zaniżony o 30 mm, co jest całkowicie niezgodne z wymaganym poziomem 212,800 m. Z kolei odczyt 1300 mm oraz 3000 mm przekracza rzeczywistą różnicę wysokości, co prowadzi do błędnych interpretacji wyników. Powszechnym błędem jest również nieumiejętność przeliczenia jednostek miar, co jest niezbędne w geodezji. W praktyce, dokładność pomiarów ma kluczowe znaczenie, a każdy błąd w obliczeniach może prowadzić do poważnych konsekwencji w realizacji projektów budowlanych. Dlatego tak istotne jest, aby stosować metody obliczeniowe zgodne z normami branżowymi i standardami, co pozwala na uzyskanie precyzyjnych wyników pomiarowych.

Pytanie 24

Dokumentacja dotycząca pracy geodezyjnej, którą należy wypełnić w ośrodku dokumentacji geodezyjnej i kartograficznej, powinna zawierać

A. opis przedmiotu oraz lokalizacji i obszaru realizowanej pracy
B. datę zakończenia pracy
C. informację o innych pracach prowadzonych w rejonie zgłaszanej pracy
D. dane dotyczące wykonawcy
Zgłoszenie pracy geodezyjnej w części dotyczącej ośrodka dokumentacji geodezyjnej i kartograficznej powinno zawierać informację o innych pracach realizowanych na obszarze zgłaszanej pracy, ponieważ jest to kluczowe dla zrozumienia kontekstu oraz wpływu, jaki nowa praca może mieć na istniejące projekty. Wiedza o równoległych pracach geodezyjnych jest niezbędna do uniknięcia kolizji w zakresie pomiarów i przetwarzania danych. Na przykład, jeżeli na tym samym obszarze prowadzone są prace związane z budową infrastruktury czy innymi projektami geodezyjnymi, może to wpłynąć na metodykę oraz terminologię stosowane w dokumentacji. Uwzględnienie tej informacji pozwala na koordynację działań, minimalizację ryzyk oraz zapewnienie spójności danych w dokumentacji geodezyjnej. Zgodnie z dobrą praktyką, takie informacje są również wymagane w projektach realizowanych z udziałem administracji publicznej, co podkreśla znaczenie tej odpowiedzi w kontekście przepisów prawa geodezyjnego.

Pytanie 25

Punkty pomiarowe osnowy sytuacyjnej powinny być stabilizowane w sposób gwarantujący ich jednoznaczne oznakowanie w terenie, podczas

A. inwentaryzacji po zakończeniu budowy sieci uzbrojenia terenu
B. aktualizacji danych w bazie obiektów topograficznych
C. inwentaryzacji po zakończeniu budowy obiektu
D. pracy w trakcie już rozpoczętego lub planowanego procesu inwestycyjnego
Niektóre z wymienionych opcji mogą wydawać się logiczne, jednak nie odzwierciedlają one rzeczywistych potrzeb związanych ze stabilizacją punktów pomiarowych osnowy sytuacyjnej. Inwentaryzacja powykonawcza sieci uzbrojenia terenu, choć istotna, nie dotyczy bezpośrednio stabilizacji punktów, lecz raczej dokumentacji już wykonanych prac. Z kolei aktualizacja bazy danych obiektów topograficznych, mimo że jest ważnym procesem, nie koncentruje się na stabilizacji punktów pomiarowych w kontekście inwestycji, co jest kluczowe dla zapewnienia ich jednoznacznego oznaczenia. Ponadto inwentaryzacja powykonawcza budynku, podobnie jak inwentaryzacja sieci uzbrojenia, ma na celu dokumentację, a nie stabilizację punktów. Błędem myślowym w tych odpowiedziach jest pomylenie kompensacji i aktualizacji danych z procesem, który wymaga systematycznego i precyzyjnego podejścia do stabilizacji punktów, które są kluczowe w kontekście działań budowlanych i geodezyjnych. W praktyce, aby zapewnić precyzję i niezawodność pomiarów, należy stosować odpowiednie metody stabilizacji z uwzględnieniem specyfiki danego procesu inwestycyjnego.

Pytanie 26

Gdy różnice współrzędnych między początkiem a końcem boku AB wynoszą ΔxAB = 0, ΔyAB > 0, to jaki jest azymut AzAB boku AB?

A. 200g
B. 300g
C. 400g
D. 100g
Poprawna odpowiedź to 100g, ponieważ azymut boku AB można określić na podstawie różnic współrzędnych ΔxAB i ΔyAB. W tym przypadku mamy do czynienia z sytuacją, gdy ΔxAB = 0 oraz ΔyAB > 0. Oznacza to, że punkt końcowy boku AB znajduje się bezpośrednio nad punktem początkowym w układzie współrzędnych. W takim kontekście azymut, definiowany jako kąt pomiędzy kierunkiem północnym a wektorem prowadzącym od punktu początkowego do końcowego, wynosi 0° (lub 400g w systemie g) w kierunku północnym. Biorąc pod uwagę, że kierunek północny odpowiada 0g, możemy stwierdzić, że azymut boku AB wynosi 100g, co odpowiada kierunkowi wschodniemu. Tego rodzaju obliczenia są kluczowe w geodezji oraz inżynierii lądowej, gdzie precyzyjne określenie azymutu jest niezbędne do właściwego pomiaru i nawigacji. W praktyce, znajomość azymutów jest szczególnie istotna w projektach budowlanych oraz w nawigacji geodezyjnej, gdzie błędy w pomiarach mogą prowadzić do poważnych konsekwencji.

Pytanie 27

Jak geodeta oznaczy na szkicu przyłącze energetyczne niskiego napięcia do budynku mieszkalnego, jeśli wykonał inwentaryzację powykonawczą za pomocą lokalizatora?

A. e
B. eNA
C. eA
D. eN
Oznaczenie eNA dla przyłącza energetycznego niskiego napięcia do budynku mieszkalnego jest zgodne z aktualnymi standardami oraz praktykami branżowymi. Skrót ten oznacza, że przyłącze jest zasilane napięciem niższym niż 1 kV i jest przeznaczone do budynków mieszkalnych. W praktyce, geodeci oraz inżynierowie zajmujący się projektowaniem sieci elektroenergetycznych korzystają z tej konwencji, aby jasno komunikować typ i przeznaczenie przyłącza. W dokumentacji powykonawczej, szczególnie w przypadkach związanych z inwentaryzacją, jasne oznaczenie przyłącza jest kluczowe dla późniejszej analizy oraz oceny stanu technicznego instalacji. Przykładem zastosowania może być sytuacja, w której różne typy przyłączy są oznaczane w sposób ujednolicony na mapach oraz szkicach, co umożliwia sprawniejszą identyfikację i zarządzanie siecią elektroenergetyczną. Oznaczenie eNA jest również zgodne z wytycznymi Komisji Europejskiej oraz krajowymi normami, co pomaga w zapewnieniu bezpieczeństwa oraz efektywności energetycznej w budynkach mieszkalnych.

Pytanie 28

Jaką odległość mają punkty hektometrowe na osi trasy?

A. 50 m
B. 100 m
C. 150 m
D. 200 m
Punkty hektometrowe to standardowe punkty pomiarowe na trasie, które są oddalone od siebie o 100 m. Jest to istotne w kontekście nawigacji, planowania tras oraz w zarządzaniu ruchem drogowym. Umożliwia to precyzyjne określenie lokalizacji pojazdu lub obiektu na danej trasie. W praktyce, punkty te są wykorzystywane w różnych systemach transportowych, w tym w kolejnictwie, gdzie oznaczają konkretne odległości między stacjami. Przy ustalaniu rozkładów jazdy oraz w przypadku monitorowania postępu transportu, dokładne określenie odległości jest kluczowe. Standardy takie jak normy ISO w zakresie transportu i logistyki oraz dobre praktyki związane z oznaczaniem tras uwzględniają właśnie odległości określane w hektometrach, co ułatwia komunikację i zarządzanie procesami logistycznymi.

Pytanie 29

Która z metod niwelacji opiera się na określaniu różnic w wysokości pomiędzy punktami terenu za pomocą zmierzonych kątów pionowych oraz odległości poziomych między tymi punktami?

A. Trygonometryczna
B. Reperów
C. Geometryczna
D. Punktów rozproszonych
Niwelacja geometryczna jest metodą, która polega na bezpośrednim pomiarze różnic wysokości pomiędzy punktami za pomocą poziomicy i łaty. W przeciwieństwie do niwelacji trygonometrycznej, która wykorzystuje kąt i dystans do obliczeń, niwelacja geometryczna nie opiera się na zasadach trygonometrii, co może ograniczać jej zastosowanie w terenie o złożonej topografii. W przypadku niwelacji punktów rozproszonych, chodzi o pomiar różnic wysokości z wykorzystaniem pomiarów wykonanych w różnych punktach, ale bez wyraźnego odniesienia do kątów lub odległości, co nie jest zgodne z definicją metody trygonometrycznej. Repery to stałe punkty odniesienia, które są wykorzystywane w różnych metodach niwelacji jako bazowe poziomy, ale same w sobie nie definiują metody pomiaru. Typowe błędy w myśleniu o tych metodach mogą obejmować mylenie ich celów i zastosowań. Warto zauważyć, że skuteczność każdej z tych metod zależy od kontekstu i wymagań pomiarowych, dlatego zrozumienie różnic między nimi jest kluczowe dla właściwego doboru techniki pomiarowej. W praktyce, zastosowanie nieodpowiedniej metody może prowadzić do błędnych wyników, co ma poważne konsekwencje w procesie projektowym i budowlanym. Dlatego, przy wyborze metody niwelacji, należy zawsze brać pod uwagę specyfikę danego projektu oraz wymagania dotyczące precyzji i dokładności pomiarów.

Pytanie 30

Do trwałych metod stabilizacji punktów osnowy poziomej nie zaliczają się

A. paliki drewniane
B. słupy betonowe
C. rurki stalowe
D. trzpienie metalowe
Paliki drewniane nie są odpowiednie do trwałego sposobu stabilizacji punktów osnowy poziomej z kilku powodów. Przede wszystkim, drewno jako materiał jest podatne na degradację, zwłaszcza w warunkach atmosferycznych, co prowadzi do utraty stabilności i dokładności pomiarów geodezyjnych. Z czasem paliki mogą gnić, ulegać deformacji lub przesuwać się w wyniku zmian wilgotności i temperatury. W praktyce geodezyjnej preferuje się materiały o wysokiej trwałości i odporności na czynniki zewnętrzne, takie jak metale i beton, które zapewniają długoterminową stabilność punktów osnowy. Na przykład, trzpienie metalowe i rurki stalowe, wykorzystywane w stabilizacji punktów, są odporne na korozję i mechaniczne uszkodzenia, co czyni je bardziej niezawodnymi w długim okresie. Zgodnie z normami geodezyjnymi, zastosowanie stałych punktów o wysokiej trwałości jest niezbędne do zapewnienia dokładności pomiarów i ich powtarzalności w czasie, co jest kluczowe w projektowaniu i realizacji inwestycji budowlanych oraz infrastrukturalnych.

Pytanie 31

Jaką wartość ma poprawka kątowa do jednego kąta w zamkniętym ciągu poligonowym, jeśli ciąg zawiera 5 kątów, a odchylenie kątowe wynosi fα = +30cc?

A. Vkt = -6cc
B. Vkt = +6cc
C. Vkt = +5cc
D. Vkt = -5cc
Odpowiedź Vkt = -6cc jest poprawna, ponieważ poprawka kątowa do jednego kąta w ciągu poligonowym zamkniętym oblicza się, biorąc pod uwagę całkowitą odchyłkę kątową oraz liczbę kątów. W przypadku ciągu zamkniętego, suma wszystkich kątów powinna wynosić 360 stopni. W tym przypadku mamy 5 kątów i odchyłkę kątową fα równą +30cc. Wartość poprawki kątowej Vkt obliczamy według wzoru Vkt = fα / n, gdzie n to liczba kątów. Stąd Vkt = +30cc / 5 = +6cc. Jednakże, aby zamknąć poligon, musimy uwzględnić, że na skutek pomyłek i niewłaściwych pomiarów dochodzi do ujemnych poprawek kątowych w przypadku odchyłek dodatnich, co w końcowym rozrachunku prowadzi do ujemnej wartości poprawki. Tak więc, w tej sytuacji poprawka kątowa wynosi Vkt = -6cc. Zastosowanie tej koncepcji jest kluczowe w geodezji oraz inżynierii lądowej, gdzie precyzyjne zamykanie ciągów poligonowych ma istotne znaczenie dla dokładności pomiarów i skuteczności planowania.

Pytanie 32

Podstawowym krokiem w procesie tworzenia pierwotnej mapy tradycyjną metodą jest umieszczenie na arkuszu ramki sekcyjnej oraz siatki kwadratów. Jakim narzędziem nie można przenieść siatki kwadratów na zdefiniowany arkusz?

A. Podziałki transwersalnej i kroczka
B. Nanosnika biegunowego
C. Koordynatografu
D. Kwadratnicy z nakłuwaczem
Koordynatograf, kwadratnica z nakłuwaczem oraz podziałka transwersalna i kroczek to narzędzia, które w różny sposób mogą być wykorzystane do nanoszenia siatki kwadratów na arkusz mapy. Koordynatograf to kluczowy instrument w kartografii, który pozwala na precyzyjne przenoszenie współrzędnych i naznaczanie punktów w siatce, co jest niezbędne przy tworzeniu dokładnych map. Jego konstrukcja umożliwia łatwe i szybkie ustawienie punktów w odpowiednich miejscach. Kwadratnica z nakłuwaczem to narzędzie, które umożliwia tworzenie siatki poprzez nakłuwanie otworów w odpowiednich odstępach, co jest przydatne, gdy chcemy uzyskać wysoce precyzyjne podziały. Z kolei podziałka transwersalna i kroczek służą do pomiarów i nanoszenia podziałów, co również wspiera proces tworzenia siatki. Warto zauważyć, że każdy z tych instrumentów ma swoje specyficzne zastosowanie i w odpowiednich warunkach może znacznie ułatwić pracę. Błędy w wyborze narzędzi do nanoszenia siatki mogą prowadzić do nieprecyzyjnych odwzorowań i w efekcie do poważnych pomyłek w późniejszych analizach geodezyjnych czy kartograficznych.

Pytanie 33

Który z wymienionych programów nie nadaje się do tworzenia mapy zasadniczej?

A. Mikro-Map
B. C-Geo
C. Microstation
D. Winkalk
Winkalk to program, który nie jest przeznaczony do wykreślania mapy zasadniczej, ponieważ jego funkcjonalność jest ukierunkowana głównie na obliczenia inżynieryjne i kosztorysowanie, a nie na tworzenie map. Mapy zasadnicze są opracowywane na podstawie danych geodezyjnych, a ich tworzenie wymaga specjalistycznych narzędzi do analizy i wizualizacji tych danych. Programy takie jak C-Geo, Mikro-Map i Microstation są odpowiednie do takich zadań, ponieważ oferują zaawansowane funkcje geodezyjne, w tym integrację z systemami GPS, obsługę plików CAD oraz możliwość generowania map w standardach obowiązujących w geodezji. Przykładowo, C-Geo jest często stosowany przez geodetów do przygotowywania map do celów prawnych i budowlanych, co czyni go odpowiednim wyborem do wykreślania mapy zasadniczej.

Pytanie 34

Jakiej z wymienionych zasad nie wolno zastosować podczas sporządzania szkicu terenu przy pomiarze sytuacyjnym metodą ortogonalną?

A. Wpisania miar bieżących zdejmowanych punktów prostopadle do linii pomiarowej
B. Wpisania rzędnych punktów zdejmowanych równolegle do prostokątnej linii domiaru
C. Podania domiarów biegunowych (α, d) punktów, które są zdejmowane
D. Podania miary bieżącej (0,00) przy początkowym punkcie linii pomiarowej
Podanie domiarów biegunowych (α, d) zdejmowanych punktów nie jest zasadą stosowaną w metodzie ortogonalnej, ponieważ ta metoda opiera się na pomiarze prostopadłym do linii podstawowej oraz na określeniu odległości w kierunkach prostopadłych do tej linii. Przy pomiarach ortogonalnych kluczowe jest zachowanie prostokątności, co umożliwia precyzyjne wyznaczenie położenia punktów w przestrzeni. W praktyce, jeśli chcemy zmierzyć odległości i kąty, stosuje się metody, które umożliwiają dokładne określenie pozycji w oparciu o rzędne i odległości w kierunkach prostokątnych. Znajomość zasad stosowanych w różnych metodach pomiarowych jest istotna dla uzyskania dokładnych i wiarygodnych wyników, co jest kluczowe w geodezji i kartografii. Na przykład, w terenie, gdzie niemożliwe jest stosowanie domiarów biegunowych, możemy skupić się na pomiarach ortogonalnych przy pomocy teodolitu lub tachimetru, co zapewnia wysoką precyzję.

Pytanie 35

Na kopii mapy powinny być zaznaczone wyniki wywiadu terenowego przeprowadzonego podczas geodezyjnych prac związanych z pomiarami sytuacyjnymi oraz wysokościowymi?

A. zasadniczej
B. topograficznej
C. klasyfikacyjnej
D. sozologicznej
Wyniki wywiadu terenowego, które są kluczowe w procesie pomiarów geodezyjnych, powinny być zaznaczone na mapie zasadniczej. Mapa zasadnicza to dokument, który przedstawia szczegółowe dane dotyczące ukształtowania terenu, istniejącej infrastruktury oraz innych elementów przestrzennych. Wykonywanie pomiarów sytuacyjnych i wysokościowych w terenie jest niezbędne do zapewnienia aktualności tych informacji. Zgodnie z obowiązującymi standardami geodezyjnymi, wyniki pomiarów powinny być wprowadzane do mapy zasadniczej w sposób, który umożliwia ich późniejsze wykorzystanie w różnych dziedzinach, takich jak planowanie przestrzenne, ochrona środowiska czy inwestycje budowlane. Przykładem zastosowania może być proces aktualizacji danych w przypadku budowy nowego obiektu, gdzie dokładne odwzorowanie w terenie ma kluczowe znaczenie dla dalszych prac. W praktyce, geodeci często korzystają z technologii GPS oraz skaningu laserowego, aby dokładnie zarejestrować zmiany, które następnie odzwierciedlane są na mapach zasadniczych, co zgodne jest z dobrą praktyką branżową.

Pytanie 36

Miary określające lokalizację mierzonej pikiety nazywają się

A. domiarami prostokątnymi
B. przecięciami
C. domiarami biegunowymi
D. kątami wierzchołkowymi
Wybierając inne odpowiedzi, można napotkać na pewne nieporozumienia dotyczące terminologii geodezyjnej. Kąty wierzchołkowe są terminem używanym w geometrii, ale w kontekście pomiarów geodezyjnych nie odnoszą się one bezpośrednio do określania położenia pikiet. W rzeczywistości, kąt wierzchołkowy to kąt utworzony przez dwa boki figury geometrycznej, a nie narzędzie do pomiaru lokalizacji punktów w przestrzeni. Przecięcia odnoszą się do miejsc, w których dwie linie się krzyżują, co w kontekście geodezji nie jest adekwatnym opisem miar położenia. Może to prowadzić do błędnych założeń, ponieważ nie uwzględnia istoty pomiarów opartych na kierunkach i odległościach. Domiary prostokątne, z kolei, polegają na określaniu punktów na podstawie układów prostokątnych, co również nie jest zgodne z podstawowymi zasadami pomiarów biegunowych. Użycie tych terminów zamiast domiarów biegunowych może prowadzić do zamieszania w analizach geodezyjnych oraz ograniczać trafność pomiarów. Dlatego ważne jest, aby podczas nauki geodezji skoncentrować się na poprawnym użyciu terminologii, aby uniknąć błędów w praktyce pomiarowej.

Pytanie 37

W związku z wymaganiami precyzyjności pomiaru, szczegóły terenowe klasyfikowane są w trzy

A. rodzaje
B. kategorie
C. klasy
D. grupy
Podział szczegółów terenowych na grupy jest podstawowym elementem w organizacji i analizie danych terenowych, co jest kluczowe w geodezji oraz naukach przyrodniczych. Grupy te są definiowane na podstawie cech takich jak dokładność, typ terenu czy zastosowanie. W praktyce, klasyfikacja szczegółów terenowych na grupy umożliwia inżynierom i geodetom skuteczne planowanie pomiarów i analizę wyników. Na przykład, w geodezji inżynieryjnej, szczegóły mogą być podzielone na grupy w zależności od ich wpływu na projekt budowlany, co pozwala na optymalizację kosztów i czasu realizacji. W standardach geodezyjnych, takich jak normy ISO, podkreślana jest konieczność precyzyjnego określenia grup w celu zapewnienia jednolitości w zbieraniu i interpretacji danych, co jest niezbędne dla uzyskania wiarygodnych wyników.

Pytanie 38

W jakim zakresie znajduje się azymut boku AB, jeżeli różnice współrzędnych między punktem początkowym a końcowym boku AB są następujące: ΔXAB < 0, ΔYAB > 0?

A. 100÷200g
B. 0÷100g
C. 300÷400g
D. 200÷300g
Azymut boku AB można określić na podstawie różnic współrzędnych ΔXAB i ΔYAB. W tym przypadku ΔXAB jest ujemne, co oznacza, że punkt końcowy boku AB znajduje się na zachód od punktu początkowego. Z kolei ΔYAB jest dodatnie, co wskazuje, że punkt końcowy leży na północ od punktu początkowego. Taka kombinacja różnic współrzędnych sugeruje, że azymut boku AB mieści się w przedziale od 100° do 200°. To dlatego, że azymut 180° odpowiada kierunkowi południowemu, a wartości od 100° do 180° wskazują na kierunki północno-zachodnie. Praktyczne zastosowanie tej wiedzy znajduje zastosowanie w geodezji oraz inżynierii lądowej, gdzie precyzyjne określenie kierunków jest kluczowe w procesach pomiarowych i mapowania terenu. Zgodnie z normami geodezyjnymi, stosowanie azymutów w określonym zakresie pozwala na poprawne planowanie i realizację projektów budowlanych.

Pytanie 39

Wyznacz przyrost Ayi_2 w osi Y, jeśli zmierzona odległość między punktami 1 i 2 d1-2 = 100,00 m, sinAz1-2 = 0,760400, cosAz1-2 = 0,649455.

A. 7,60 m
B. 64,94 m
C. 76,04 m
D. 6,49 m
Aby obliczyć przyrost Ayi_2 współrzędnych Y, należy skorzystać z długości pomierzonej między punktami 1 i 2 oraz wartości sinus i cosinus kąta azymutalnego. Obliczenia sprowadzają się do zastosowania wzoru: Ayi_2 = d_1-2 * sin(Az_1-2). Wstawiając wartości: Ayi_2 = 100,00 m * 0,760400 = 76,04 m. Otrzymany wynik jest zgodny z praktycznymi standardami pomiarowymi, które nakazują stosowanie funkcji trygonometrycznych do określenia przyrostów współrzędnych w geodezji. Tego typu obliczenia są kluczowe w pracach inżynieryjnych oraz w geodezyjnych, gdzie precyzyjne określenie pozycji jest niezbędne. Wiedza ta jest również istotna w kontekście wykonywania map, które wymagają dokładnych danych o lokalizacji obiektów. Użycie sinusa kąta azymutalnego wskazuje na orientację w przestrzeni, co pozwala na odpowiednie planowanie i wykonywanie działań terenowych.

Pytanie 40

Jakich instrumentów oraz narzędzi geodezyjnych należy użyć do pomiaru terenu metodą niwelacji w przypadku punktów rozproszonych?

A. Tachimetr, statyw, żabki geodezyjne, ruletka geodezyjna
B. Niwelator, statyw, węgielnica, szpilki geodezyjne
C. Niwelator, statyw, łaty niwelacyjne, pion sznurkowy
D. Tachimetr, statyw, pion sznurkowy, taśma geodezyjna
Niwelator, statyw, łaty niwelacyjne oraz pion sznurkowy to kluczowe narzędzia wykorzystywane w geodezyjnych pomiarach terenu, szczególnie w metodzie niwelacji punktów rozproszonych. Niwelator jest urządzeniem optycznym, które pozwala na precyzyjne określenie różnic wysokości między punktami. Ustawiony na statywie, stabilizuje się w odpowiedniej pozycji, co jest niezbędne dla dokładności pomiarów. Łaty niwelacyjne, które są używane w połączeniu z niwelatorem, pozwalają na odczyt wysokości na danym punkcie terenu. Pion sznurkowy pomaga w wyznaczaniu pionu, co jest kluczowe podczas ustawiania łaty oraz niwelatora. Przykładowo, podczas pomiaru terenu w budownictwie, użycie tych narzędzi pozwala na precyzyjne wyznaczenie poziomu fundamentów czy innych elementów konstrukcyjnych. W praktyce, zastosowanie niwelatora i łaty niwelacyjnej jest zgodne z europejskimi standardami pomiarowymi, co zapewnia wysoką jakość i niezawodność wyników, zgodnie z najlepszymi praktykami w geodezji.