Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 24 maja 2025 22:12
  • Data zakończenia: 24 maja 2025 22:25

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie jest zastosowanie maty antystatycznej oraz opaski podczas instalacji komponentu?

A. neutralizacji ładunków elektrostatycznych
B. zwiększenia komfortu naprawy
C. usunięcia zanieczyszczeń
D. polepszenia warunków higienicznych serwisanta
Mata antystatyczna oraz opaska antystatyczna są kluczowymi elementami ochrony podczas pracy z wrażliwymi podzespołami elektronicznymi. Głównym celem ich stosowania jest neutralizacja ładunków elektrostatycznych, które mogą powstać podczas manipulacji komponentami. Ładunki te mogą prowadzić do uszkodzenia delikatnych układów elektronicznych, co jest szczególnie istotne w przypadku sprzętu komputerowego, telefonów czy innych urządzeń wysokiej technologii. Przykładem praktycznym jest użycie maty antystatycznej w warsztacie podczas składania lub naprawy sprzętu. Dzięki jej zastosowaniu, serwisant ma pewność, że potencjalne ładunki elektrostatyczne są skutecznie uziemione, co minimalizuje ryzyko uszkodzenia podzespołów. W branży elektroniki stosuje się normy, takie jak IEC 61340-5-1, które podkreślają konieczność ochrony przed elektrycznością statyczną w obszarach pracy z komponentami wrażliwymi. Takie procedury są standardem w profesjonalnych serwisach i laboratoriach, co podkreśla ich znaczenie w zapewnieniu jakości i bezpieczeństwa pracy.

Pytanie 2

W systemie Linux komenda cd ~ pozwala na

A. stworzenie folderu /~
B. odnalezienie znaku ~ w zarejestrowanych danych
C. przejście do katalogu root
D. przejście do katalogu głównego użytkownika
Wszystkie odpowiedzi, które nie wskazują na przejście do katalogu domowego użytkownika, opierają się na błędnych zrozumieniach funkcji polecenia cd ~ w systemie Linux. Pierwsza koncepcja, sugerująca, że polecenie to służy do wyszukiwania znaku ~ w zapisanych danych, jest całkowicie mylona. W rzeczywistości, ~ nie jest traktowane jako ciąg znaków, lecz jako specjalny skrót odnoszący się do katalogu domowego, co jest kluczowe w kontekście działania powłoki. Druga odpowiedź, sugerująca utworzenie katalogu /~, również nie ma zastosowania w praktyce, ponieważ polecenie cd nie tworzy katalogów, a zamiast tego zmienia bieżący katalog roboczy. Tworzenie katalogów odbywa się za pomocą polecenia mkdir. Ostatnia odpowiedź, dotycząca przejścia do katalogu głównego, myli pojęcia. Katalog główny ('/') to najwyższy poziom w hierarchii systemu plików, natomiast '~' zawsze odnosi się do katalogu domowego konkretnego użytkownika. Takie błędne interpretacje mogą prowadzić do dezorientacji, szczególnie dla osób nowicjuszy w pracy z systemem Linux, dlatego tak ważne jest zrozumienie podstawowych koncepcji związanych z nawigacją w systemie plików oraz znaczenia specyficznych symboli w użyciu z poleceniami powłoki.

Pytanie 3

Ile kolizji domenowych występuje w sieci przedstawionej na ilustracji?

Ilustracja do pytania
A. 1
B. 4
C. 6
D. 5
Analizując odpowiedzi błędne warto zauważyć że jedna z powszechnych pomyłek polega na nieprawidłowym rozumieniu jak działają urządzenia sieciowe takie jak huby i switche. Hub traktuje wszystkie podłączone do niego urządzenia jako jedną domenę kolizyjną co oznacza że każde urządzenie do niego podłączone musi dzielić pasmo z innymi co prowadzi do potencjalnych kolizji. Dlatego w przypadku huba wszystkie urządzenia w jego zasięgu działają w jednej wspólnej domenie kolizyjnej. Z kolei switch ma zdolność tworzenia oddzielnych domen kolizyjnych dla każdego podłączonego urządzenia dzięki czemu każde z tych urządzeń może przesyłać dane niezależnie od innych. Stąd switch zapewnia trzy osobne domeny kolizyjne dla trzech komputerów do niego podłączonych. Częstym błędem jest także przypuszczenie że hub działa podobnie jak switch co jest niezgodne z rzeczywistością. W nowoczesnych sieciach stosowanie huba jest nieefektywne dlatego że jego architektura nie wspiera separacji domen kolizyjnych co jest standardem w przypadku switchy. Zrozumienie tych różnic jest kluczowe dla projektowania wydajnych sieci spełniających współczesne standardy i praktyki branżowe. Tylko właściwe zrozumienie funkcji tych urządzeń pozwala na prawidłowe oszacowanie liczby domen kolizyjnych w sieci co jest fundamentem optymalizacji jej działania i unikania kolizji oraz strat danych w infrastrukturze sieciowej.

Pytanie 4

Ustawienia przedstawione na diagramie dotyczą

Ilustracja do pytania
A. drukarki
B. skanera
C. karty sieciowej
D. modemu
Karty sieciowe, drukarki i skanery nie wykorzystują portów COM do komunikacji, co jest kluczowym elementem w rozpoznaniu poprawnej odpowiedzi dotyczącej modemów. Karty sieciowe operują zazwyczaj w warstwie sieciowej modelu OSI, korzystając z protokołów takich jak Ethernet, które nie wymagają portów szeregowych COM, lecz raczej interfejsów typu RJ-45 dla połączeń kablowych. Drukarki, szczególnie nowoczesne, łączą się głównie przez USB, Ethernet lub bezprzewodowo, a starsze modele mogą korzystać z portów równoległych, co różni się od portów szeregowych. Skanery także w większości przypadków używają interfejsów USB lub bezprzewodowych. Typowym błędem może być mylenie interfejsów komunikacyjnych, co prowadzi do błędnych wniosków o sposobie połączenia urządzenia. Porty COM są historycznie związane z starszymi technologiami komunikacji, takimi jak modemy, które wykorzystują transmisję szeregową zgodną z protokołami UART. Współczesne urządzenia peryferyjne zazwyczaj nie wymagają takich interfejsów, co czyni ich użycie w kontekście networkingu lub druku nieadekwatnym. Zrozumienie specyfiki każdego typu urządzenia i jego standardowych metod komunikacji jest kluczowe dla poprawnego rozpoznawania i konfiguracji sprzętu w środowiskach IT. Praktyczna wiedza na temat właściwego przypisywania urządzeń do odpowiednich portów i protokołów pozwala uniknąć podstawowych błędów konfiguracyjnych oraz zapewnia optymalną wydajność i zgodność systemów komunikacyjnych i peryferyjnych w sieciach komputerowych. Właściwa identyfikacja i konfiguracja takich ustawień jest istotna dla efektywnego zarządzania infrastrukturą IT, gdzie wiedza o zastosowaniach portów szeregowych jest nieocenionym narzędziem w arsenale specjalisty IT.

Pytanie 5

W dokumentacji technicznej głośnika komputerowego oznaczenie "10 W" dotyczy jego

A. częstotliwości
B. zakresu pracy
C. napięcia
D. mocy
Zapis "10 W" w dokumentacji technicznej głośnika komputerowego odnosi się do jego mocy, co jest kluczowym parametrem wpływającym na wydajność urządzenia. Moc głośnika, mierzona w watach (W), określa zdolność głośnika do przetwarzania energii elektrycznej na dźwięk. W przypadku głośników komputerowych, moc nominalna jest istotna, ponieważ wpływa na głośność dźwięku, jakość oraz zdolność do reprodukcji dźwięków o różnych częstotliwościach. Przykładowo, głośnik o mocy 10 W jest zdolny do generowania wyraźnego dźwięku w większości zastosowań domowych, takich jak granie w gry czy słuchanie muzyki. W praktyce, dobór głośnika o odpowiedniej mocy do systemu audio jest kluczowy dla zapewnienia optymalnego doświadczenia dźwiękowego, a także dla zachowania jakości dźwięku przy większych poziomach głośności. W branży audio, standardy dotyczące mocy głośników są regulowane przez organizacje takie jak Consumer Electronics Association (CEA), co zapewnia jednolitość i przejrzystość w specyfikacjach.

Pytanie 6

Regulacje dotyczące konstrukcji systemu okablowania strukturalnego, parametry kabli oraz procedury testowania obowiązujące w Polsce są opisane w normach

A. PN-EN 50310
B. EN 50169
C. PN-EN 50173
D. EN 50167
Wybór odpowiedzi związanych z normami EN 50167 i EN 50169 może wynikać z nieporozumienia dotyczącego zakresu obowiązków poszczególnych norm. EN 50167 dotyczy systemów zarządzania kablami i nie zawiera szczegółowych informacji dotyczących okablowania strukturalnego, a EN 50169 to norma zajmująca się infrastrukturą przyłączeniową dla systemów telekomunikacyjnych, ale nie obejmuje całościowego podejścia do projektowania i testowania okablowania, co jest kluczowe w kontekście normy PN-EN 50173. Wybór PN-EN 50310 również nie jest poprawny, gdyż ta norma koncentruje się na złączach i połączeniach w systemach okablowania, a nie na kompleksowej specyfikacji okablowania strukturalnego. Zrozumienie różnicy między tymi normami jest kluczowe dla właściwego projektowania infrastruktury telekomunikacyjnej. Typowym błędem myślowym jest sądzenie, że wszystkie normy związane z kablami są wymienne, podczas gdy każda z nich ma swój specyficzny zakres zastosowania. Dobrą praktyką jest zawsze odniesienie się do najnowszych i najbardziej odpowiednich norm w kontekście projektowania i testowania sieci, aby uniknąć nieefektywności i potencjalnych problemów w przyszłości. Dlatego kluczowe jest dokładne zrozumienie, które normy są właściwe w kontekście danego przedsięwzięcia.

Pytanie 7

Źródłem problemu z wydrukiem z przedstawionej na rysunku drukarki laserowej jest

Ilustracja do pytania
A. uszkodzony bęben światłoczuły
B. zaschnięty tusz
C. uszkodzony podajnik papieru
D. brak tonera w kasecie kartridż
Uszkodzony bęben światłoczuły to naprawdę częsta przyczyna problemów z drukowaniem w drukarkach laserowych. Ten bęben jest kluczowym elementem, bo to on przenosi obraz na papier. Jak się uszkodzi, to mogą się na nim pojawić różne defekty, które prowadzą do ciemnych pasów czy plam. W praktyce to moze być spowodowane zarysowaniami, zużyciem czy nawet zbyt długim narażeniem na światło. Warto dbać o takie rzeczy i regularnie wymieniać bębny zgodnie z tym, co zaleca producent. Dzięki temu zmniejszamy ryzyko uszkodzeń. Pamiętaj, że bęben światłoczuły to element eksploatacyjny, więc jego żywotność jest ograniczona. Częsta wymiana oraz korzystanie z dobrego jakościowo tonera to podstawowe zasady, które pomogą w uzyskaniu lepszej jakości wydruku. No i nie zapomnij o przeszkoleniu zespołu z obsługi drukarek i wymiany części – to naprawdę wpływa na efektywność pracy w biurze.

Pytanie 8

Aby chronić systemy sieciowe przed atakami z zewnątrz, należy zastosować

A. protokołu SSH
B. serwera DHCP
C. zapory sieciowej
D. menedżera połączeń
Zapora sieciowa, znana również jako firewall, jest kluczowym elementem zabezpieczającym systemy sieciowe przed nieautoryzowanym dostępem i atakami z zewnątrz. Działa ona na granicy pomiędzy zaufaną siecią a siecią zewnętrzną, kontrolując ruch przychodzący i wychodzący na podstawie ustalonych reguł bezpieczeństwa. Przykładowo, organizacje mogą skonfigurować zapory sieciowe tak, aby zezwalały na określone rodzaje ruchu (np. protokoły HTTP/HTTPS) oraz blokowały inne (np. porty wykorzystywane przez złośliwe oprogramowanie). Ponadto, zapory mogą być używane do segmentacji sieci, co zwiększa bezpieczeństwo poprzez ograniczenie dostępu do krytycznych zasobów. Dobre praktyki wskazują również na regularne aktualizowanie reguł oraz monitorowanie logów zapory, aby szybko reagować na potencjalne zagrożenia. Korzystanie z zapór, zarówno sprzętowych, jak i programowych, jest zalecane w standardach takich jak ISO/IEC 27001 czy NIST Cybersecurity Framework, co podkreśla ich znaczenie w ochronie danych i zasobów informacyjnych.

Pytanie 9

W którym katalogu w systemie Linux można znaleźć pliki zawierające dane o urządzeniach zainstalowanych w komputerze, na przykład pamięci RAM?

A. /sbin
B. /dev
C. /var
D. /proc
Katalog /proc w systemie Linux jest wirtualnym systemem plików, który dostarcza informacji o bieżących procesach działających w systemie, a także o parametrach jądra i systemu. Znajdują się tam pliki, które reprezentują różnorodne informacje o zainstalowanych urządzeniach, takich jak pamięć operacyjna, procesory, czy urządzenia wejścia/wyjścia. Na przykład, plik /proc/meminfo zawiera szczegółowe informacje o pamięci operacyjnej, takie jak całkowita pamięć, używana pamięć, dostępna pamięć i pamięć buforów. Dzięki tym informacjom administratorzy mogą monitorować stan zasobów systemowych i optymalizować ich wykorzystanie. W praktyce, narzędzia systemowe, takie jak top, htop czy free, korzystają z danych dostępnych w katalogu /proc do prezentowania użytkownikowi aktualnych informacji o zasobach systemowych. Wartością dodaną korzystania z /proc jest również to, że zmiany w parametrach systemowych można wprowadzać dynamicznie, co jest kluczowe dla administrowania systemami w czasie rzeczywistym.

Pytanie 10

Układy sekwencyjne stworzone z grupy przerzutników, najczęściej synchronicznych typu D, które mają na celu przechowywanie danych, to

A. kodery
B. bramki
C. dekodery
D. rejestry
Rejestry są układami sekwencyjnymi składającymi się z przerzutników, najczęściej typu D, które służą do przechowywania danych. Każdy przerzutnik w rejestrze przechowuje jeden bit informacji, a w przypadku rejestrów o wielu bitach możliwe jest równoczesne przechowywanie i przetwarzanie kilku bitów. Przykładem zastosowania rejestrów jest zapis i odczyt danych w mikroprocesorach, gdzie rejestry pełnią rolę pamięci tymczasowej dla operacji arytmetycznych oraz logicznych. Stosowanie rejestrów w projektowaniu systemów cyfrowych odpowiada za zwiększenie wydajności oraz efektywności procesów obliczeniowych. Zgodnie z dobrymi praktykami inżynieryjnymi, rejestry są również kluczowym elementem w architekturze pamięci, umożliwiając synchronizację z zegarem systemowym oraz zapewniając prawidłowe działanie układów w czasie rzeczywistym. Ponadto, rejestry są często wykorzystywane w różnych układach FPGA oraz ASIC, co podkreśla ich znaczenie w nowoczesnym projektowaniu systemów cyfrowych.

Pytanie 11

Jak wiele domen kolizyjnych oraz rozgłoszeniowych można dostrzec na schemacie?

Ilustracja do pytania
A. 9 domen kolizyjnych oraz 4 domeny rozgłoszeniowe
B. 1 domena kolizyjna i 9 domen rozgłoszeniowych
C. 4 domeny kolizyjne oraz 9 domen rozgłoszeniowych
D. 9 domen kolizyjnych oraz 1 domena rozgłoszeniowa
W schemacie sieciowym mamy różne urządzenia, jak przełączniki, routery i koncentratory, które razem tworzą naszą strukturę. Każdy przełącznik działa jak taki mały strażnik, który tworzy swoją własną domenę kolizyjną. Dzięki temu, kolizje są ograniczone tylko do jego segmentu. Widzimy, że mamy dziewięć przełączników, więc można powiedzieć, że mamy dziewięć różnych obszarów, gdzie te kolizje mogą się wydarzyć. Co do routerów, to one oddzielają domeny rozgłoszeniowe, ponieważ nie przepuszczają pakietów rozgłoszeniowych. W naszym schemacie mamy cztery routery, więc i cztery domeny rozgłoszeniowe. Myślę, że zrozumienie różnicy między tymi domenami jest mega ważne, szczególnie gdy projektujemy sieci, które mają być wydajne i łatwe do rozbudowy. Oddzielanie kolizji przez przełączniki i zarządzanie rozgłoszeniami przez routery to dobre praktyki. Pozwala to na lepsze wykorzystanie sieci i zmniejsza ryzyko kolizji oraz nadmiernego rozgłaszania pakietów.

Pytanie 12

Aby poprawić wydajność procesora serii Intel za pomocą 'podkręcania' (ang. overclocking), należy użyć procesora oznaczonego

A. literą B
B. literą K
C. literą Y
D. literą U
Odpowiedź literą K wskazuje na procesory Intel, które są fabrycznie odblokowane, co umożliwia ich podkręcanie, czyli overclocking. Procesory te są często wykorzystywane przez entuzjastów komputerowych oraz profesjonalnych graczy, którzy pragną maksymalizować wydajność swoich systemów. W praktyce, podkręcanie polega na zwiększeniu częstotliwości pracy rdzeni procesora ponad nominalne wartości, co skutkuje lepszą wydajnością w wymagających aplikacjach oraz grach. Standardowe narzędzia, takie jak Intel Extreme Tuning Utility (XTU), pozwalają na monitorowanie i dostosowanie parametrów pracy procesora w bezpieczny sposób. Warto również zauważyć, że niektóre procesory, oznaczone literami U lub Y, są zoptymalizowane pod kątem oszczędności energii i mobilności, co czyni je mniej odpowiednimi do podkręcania. Dlatego litera K w oznaczeniach procesorów Intel jest kluczowym wskaźnikiem dla tych, którzy pragną osiągnąć wyższą wydajność poprzez overclocking.

Pytanie 13

Wskaż komponent, który reguluje wartość napięcia pochodzącego z sieci elektrycznej, wykorzystując transformator do przeniesienia energii między dwoma obwodami elektrycznymi z zastosowaniem zjawiska indukcji magnetycznej?

A. Przerzutnik synchroniczny
B. Zasilacz transformatorowy
C. Rezonator kwarcowy
D. Rejestr szeregowy
Zasilacz transformatorowy jest kluczowym elementem w systemach elektrycznych, którego zadaniem jest dostosowanie poziomu napięcia z sieci energetycznej do wymagań urządzeń elektrycznych. Działa on na zasadzie indukcji magnetycznej w transformatorze, który przenosi energię elektryczną między dwoma obwodami przy użyciu zmiennego pola magnetycznego. Transformator składa się z dwóch cewek: pierwotnej i wtórnej, które są nawinięte na wspólnym rdzeniu. W praktyce, zasilacze transformatorowe są szeroko stosowane w różnych aplikacjach, od zasilania małych urządzeń elektronicznych po duże systemy przemysłowe. Na przykład, w zasilaczach sieciowych do komputerów, transformator obniża napięcie z sieci 230V do bezpieczniejszego poziomu, co jest nie tylko zgodne z normami bezpieczeństwa, ale także zapewnia stabilność pracy urządzeń. W branży stosuje się standardy takie jak IEC 61558, które regulują wymagania dotyczące bezpieczeństwa transformatorów. Dlatego zasilacze transformatorowe są nie tylko istotne, ale również niezbędne dla efektywnego i bezpiecznego przepływu energii elektrycznej.

Pytanie 14

Jakie jest oznaczenie sieci, w której funkcjonuje host o IP 10.10.10.6 klasy A?

A. 10.0.0.0
B. 10.10.10.255
C. 10.10.0.0
D. 10.255.255.255
Adres 10.10.0.0 jest nieprawidłowym adresem sieci dla hosta o adresie IP 10.10.10.6, ponieważ sugeruje, że sieć ma maskę podsieci, która uwzględnia tylko pierwsze dwa oktety, co jest niezgodne z zasadami klasyfikacji adresów IP. W klasie A, adres IP 10.10.10.6 wskazuje, że cały pierwszy oktet (10) powinien być użyty do określenia adresu sieci, a nie dwóch. Adres 10.10.10.255 jest w ogóle adresem rozgłoszeniowym (broadcast), co oznacza, że nie może być traktowany jako adres sieci. Adresy rozgłoszeniowe są używane do jednoczesnego wysyłania danych do wszystkich urządzeń w danej sieci, co czyni je w pełni niewłaściwymi w kontekście adresów sieciowych. Ponadto, 10.255.255.255 jest adresem rozgłoszeniowym dla całej sieci klasy A, co również wyklucza go z możliwości bycia adresem sieci. Kluczowe błędy w myśleniu, które prowadzą do tych nieprawidłowych wniosków, obejmują pomylenie adresów sieciowych z adresami hostów oraz nieprawidłowe stosowanie maski podsieci. W rzeczywistości, aby dokładnie określić adres sieci, należy zawsze odnosić się do zasad klasyfikacji adresów oraz do standardów takich jak RFC 1918, które określają zasady używania adresów prywatnych. Zrozumienie tych zasad jest kluczowe dla prawidłowego projektowania i zarządzania sieciami.

Pytanie 15

Serwis serwerowy, który pozwala na udostępnianie usług drukowania w systemie Linux oraz plików dla stacji roboczych Windows, to

A. Vsftpd
B. Samba
C. CUPS
D. Postfix
Samba to otwarte oprogramowanie, które implementuje protokoły SMB/CIFS, umożliwiając stacjom roboczym z systemem Windows dostęp do plików i drukarek z serwerów działających na systemach Unix i Linux. Dzięki Samba użytkownicy Windows mogą korzystać z zasobów udostępnionych na serwerach Linux, co czyni ją niezbędnym narzędziem w mieszanych środowiskach sieciowych. W praktyce, Samba pozwala na tworzenie wspólnych folderów, które mogą być łatwo przeglądane i edytowane przez użytkowników Windows, co znacząco ułatwia współpracę w zespołach. Dodatkowo, Samba obsługuje autoryzację użytkowników i umożliwia zarządzanie dostępem do zasobów, co jest kluczowe w kontekście bezpieczeństwa danych. Wykorzystywanie Samby w środowisku produkcyjnym jest zgodne z najlepszymi praktykami branżowymi, ponieważ wspiera interoperacyjność pomiędzy różnymi systemami operacyjnymi oraz zwiększa elastyczność infrastruktury IT. Warto również zauważyć, że Samba jest często używana w większych organizacjach, gdzie integracja systemów jest kluczowa dla efektywnego zarządzania danymi i zasobami.

Pytanie 16

Jak nazywa się identyfikator, który musi być jednakowy, aby urządzenia sieciowe mogły współpracować w danej sieci bezprzewodowej?

A. IP
B. MAC
C. URL
D. SSID
Wybór innych odpowiedzi prowadzi do nieporozumień związanych z funkcjami identyfikacji i komunikacji w sieciach komputerowych. IP, czyli Internet Protocol, jest używany do identyfikacji urządzeń w sieci komputerowej, ale nie służy do identyfikacji sieci bezprzewodowej. Zastosowanie IP polega na routingu danych między różnymi sieciami, a nie na łączeniu się z konkretną siecią WLAN. Ponadto, URL (Uniform Resource Locator) to adres zasobów w Internecie, który nie ma zastosowania w kontekście identyfikacji sieci bezprzewodowej. URL wskazuje, gdzie znajdują się pliki lub usługi w sieci, a nie jak połączyć się z siecią bezprzewodową. Z kolei MAC (Media Access Control) odnosi się do unikalnych adresów przypisanych do interfejsów sieciowych, które również nie są związane z identyfikacją sieci bezprzewodowej, lecz z urządzeniami w sieci. Adresy MAC są używane na poziomie warstwy łącza danych, aby zapewnić unikalność komunikacji między urządzeniami, ale nie są wykorzystywane do rozróżniania samych sieci. Typowym błędem jest mylenie roli tych elementów w architekturze sieci, co może prowadzić do nieefektywnej konfiguracji sieci oraz problemów z jej zabezpieczeniem.

Pytanie 17

Na schemacie przedstawiono konfigurację protokołu TCP/IP pomiędzy serwerem a stacją roboczą. Na serwerze zainstalowano rolę DNS. Wykonanie polecenia ping www.cke.edu.pl na serwerze zwraca pozytywny wynik, natomiast na stacji roboczej jest on negatywny. Jakie zmiany należy wprowadzić w konfiguracji, aby usługa DNS na stacji funkcjonowała poprawnie?

Ilustracja do pytania
A. adres serwera DNS na stacji roboczej na 192.168.1.10
B. adres bramy na serwerze na 192.168.1.11
C. adres bramy na stacji roboczej na 192.168.1.10
D. adres serwera DNS na stacji roboczej na 192.168.1.11
Odpowiedź jest prawidłowa, ponieważ konfiguracja DNS na stacji roboczej powinna wskazywać na serwer DNS w sieci lokalnej, który jest poprawnie skonfigurowany na adresie 192.168.1.10. W sieci komputerowej serwer DNS odpowiada za tłumaczenie nazw domenowych na adresy IP, co umożliwia komunikację z odpowiednimi serwerami w sieci. Jeśli serwer DNS jest błędnie skonfigurowany na stacji roboczej lub wskazuje na adres, który nie jest serwerem DNS, użytkownik nie będzie w stanie rozwiązać nazw domenowych, co skutkuje niepowodzeniem polecenia ping. W tym przypadku serwer ma przypisany adres IP 192.168.1.10 i pełni rolę serwera DNS, dlatego stacja robocza powinna być skonfigurowana, aby korzystać z tego adresu jako swojego DNS. Dobrą praktyką jest zawsze zapewnienie, że konfiguracja DNS wskazuje na dostępne i poprawnie skonfigurowane serwery DNS w ramach tej samej sieci, co minimalizuje opóźnienia i problemy z rozwiązywaniem nazw w sieci lokalnej. Serwery DNS często działają na statycznych adresach IP, aby zapewnić stabilność i przewidywalność w sieci, co jest szczególnie ważne w środowiskach produkcyjnych, gdzie dostępność usług jest kluczowa.

Pytanie 18

Na schemacie blokowym funkcjonalny blok RAMDAC ilustruje

Ilustracja do pytania
A. przetwornik cyfrowo-analogowy z pamięcią RAM
B. pamięć ROM karty graficznej
C. pamięć RAM karty graficznej
D. przetwornik analogowo-cyfrowy z pamięcią RAM
RAMDAC nie jest pamięcią RAM karty graficznej, ponieważ jego rola nie polega na przechowywaniu danych obrazu, lecz na ich przekształcaniu. Pamięć RAM w kartach graficznych, znana jako VRAM, służy do magazynowania danych potrzebnych do renderowania grafiki. Mylenie RAMDAC z VRAM wynika często z samego podobieństwa nazw oraz historycznego kontekstu, kiedy to RAMDAC i VRAM były fizycznie blisko siebie na płytce PCB kart graficznych. Przetwornik analogowo-cyfrowy z pamięcią RAM nie opisuje poprawnie funkcji RAMDAC, gdyż RAMDAC zajmuje się konwersją danych cyfrowych na sygnały analogowe, nie odwrotnie. Takie błędne założenie może wynikać z nieporozumienia, czym są konwersje AD i DA w kontekście systemów wideo. Pamięć ROM karty graficznej, używana do przechowywania firmware, nie ma żadnej bezpośredniej roli w przetwarzaniu sygnałów wyjściowych wideo. Nieporozumienia te często wynikają z braku precyzyjnego zrozumienia architektury kart graficznych i funkcji poszczególnych komponentów. Zrozumienie roli RAMDAC jest kluczowe dla osób projektujących sprzęt wideo oraz tych zajmujących się jego diagnostyką, gdyż umożliwia optymalizację jakości sygnału i zapewnienie kompatybilności z różnymi urządzeniami wyjściowymi.

Pytanie 19

Na ilustracji ukazano narzędzie systemu Windows 7 służące do

Ilustracja do pytania
A. konfiguracji ustawień użytkownika
B. rozwiązywania problemów z systemem
C. przeprowadzania migracji systemu
D. tworzenia kopii systemu
Narzędzie systemu Windows 7 pokazane na obrazku to sekcja Wygląd i personalizacja z Panelu sterowania. Jest to miejsce, gdzie użytkownik może konfigurować różnorodne ustawienia związane z interfejsem graficznym systemu. W ramach konfiguracji ustawień użytkownika można zmieniać kompozycje systemowe, co pozwala na dostosowanie wyglądu okien, kolorów, dźwięków, a nawet kursorów. Zmiana tła pulpitu, która jest częścią tego narzędzia, pozwala na personalizację ekranu głównego, co ma znaczenie szczególnie w środowiskach biurowych, gdzie estetyka i ergonomia pracy są kluczowe. Dopasowanie rozdzielczości ekranu wpływa na jakość wyświetlanego obrazu i może być istotne dla wydajności pracy, szczególnie w aplikacjach wymagających precyzyjnego odwzorowania grafiki. Korzystanie z tych funkcji zgodne jest z dobrymi praktykami administracyjnymi, które zakładają stworzenie użytkownikowi komfortowego środowiska pracy. Zrozumienie i umiejętność obsługi tych ustawień są kluczowe dla osób zajmujących się wsparciem technicznym oraz administracją systemów.

Pytanie 20

Jakie są wartości zakresu częstotliwości oraz maksymalnej prędkości przesyłu danych w standardzie 802.11g WiFi?

A. 2,4 GHz 54 Mbps
B. 2,4 GHz 300 Mbps
C. 5 GHz 300 Mbps
D. 5 GHz 54 Mbps
Wybór odpowiedzi, która wskazuje pasmo 5 GHz, jest błędny, ponieważ standard 802.11g nigdy nie działa w tym zakresie częstotliwości. Pasmo 5 GHz jest wykorzystywane przez inne standardy, takie jak 802.11a oraz 802.11n, które oferują wyższe prędkości transmisji, ale nie są zgodne z 802.11g. Dodatkowo, odpowiedzi sugerujące maksymalne prędkości 300 Mbps są mylące, ponieważ takich szybkości nie osiąga się w kontekście 802.11g. W rzeczywistości, maksymalna prędkość transmisji dla tego standardu to 54 Mbps, co jest w znacznym stopniu ograniczone przez warunki środowiskowe, takie jak zakłócenia radiowe oraz przeszkody w postaci ścian czy mebli. Często zdarza się, że użytkownicy mylą różne standardy Wi-Fi, co prowadzi do nieporozumień dotyczących ich wydajności oraz zastosowań. Warto również zauważyć, że standard 802.11g jest zgodny z 802.11b, co oznacza, że urządzenia obsługujące starszy standard mogą działać w tej samej sieci, ale z ograniczoną prędkością. Zrozumienie różnic między tymi standardami jest kluczowe dla efektywnego zarządzania sieciami bezprzewodowymi oraz optymalizacji ich wydajności w codziennym użytkowaniu.

Pytanie 21

System S.M.A.R.T. służy do śledzenia funkcjonowania oraz identyfikacji usterek

A. dysków twardych
B. napędów płyt CD/DVD
C. kart rozszerzeń
D. płyty głównej
S.M.A.R.T. to taki system, który pomaga w monitorowaniu twardych dysków i SSD-ów. Co on robi? Zbiera różne dane, jak temperatura, czas pracy czy liczba uruchomień. To super ważne, bo dzięki temu możemy przewidzieć, kiedy dysk może się zepsuć. W serwerach często sprawdzają te informacje, bo jak coś zaczyna szwankować, to lepiej zawczasu podjąć jakieś kroki, jak na przykład przenieść dane na nowy dysk. Jak dla mnie, korzystanie z S.M.A.R.T. jest naprawdę mądrym rozwiązaniem w IT, bo pomaga uniknąć utraty danych i sprawia, że sprzęt działa niezawodniej.

Pytanie 22

Jaką postać ma liczba szesnastkowa: FFFF w systemie binarnym?

A. 0010 0000 0000 0111
B. 1111 0000 0000 0111
C. 1111 1111 1111 1111
D. 0000 0000 0000 0000
Liczba szesnastkowa FFFF w systemie binarnym jest równoznaczna z 1111 1111 1111 1111, co wynika z bezpośredniego przekształcenia wartości szesnastkowej na binarną. W systemie szesnastkowym każda cyfra reprezentuje cztery bity binarne, ponieważ 2^4 = 16. Tak więc, każda z maksymalnych cyfr F (15 w systemie dziesiętnym) przekłada się na 1111 w systemie binarnym. Zatem FFFF, składające się z czterech cyfr F, będzie miało postać: 1111 1111 1111 1111. Przykładowo, w kontekście programowania, podczas pracy z systemami operacyjnymi, takie reprezentacje są stosowane do określenia adresów w pamięci lub wartości w rejestrach procesora. Zrozumienie konwersji między systemami liczbowymi jest kluczowe nie tylko w programowaniu, ale również w inżynierii komputerowej oraz przy projektowaniu systemów cyfrowych, gdzie precyzyjne przetwarzanie danych jest niezbędne.

Pytanie 23

Gniazdo na tablicy interaktywnej jest oznaczone tym symbolem. Które złącze powinno być wykorzystane do połączenia tablicy z komputerem?

Ilustracja do pytania
A. D-SUB VGA
B. USB A-A
C. HDMI
D. FireWire
HDMI choć powszechnie używane do przesyłania sygnałów audio i wideo w jednym kablu jest standardem cyfrowym. Nowoczesne tablice interaktywne mogą wykorzystywać HDMI jednak wiele starszych modeli używa VGA ze względu na szeroką kompatybilność z istniejącym sprzętem. USB A-A nie jest standardowym połączeniem dla transmisji wideo. USB jest zwykle używane do przesyłania danych lub zasilania urządzeń peryferyjnych ale nie do bezpośredniego przesyłania wideo do tablicy interaktywnej. USB A-A jest zresztą nietypowym kablem często stosowanym w specyficznych przypadkach a nie jako standardowe rozwiązanie do podłączeń multimedialnych. FireWire znany również jako IEEE 1394 był popularny w przeszłości dla połączeń urządzeń takich jak kamery cyfrowe ale nie jest standardowo używany do podłączeń tablic interaktywnych. Technologia ta oferowała szybki transfer danych jednakże ze względu na ograniczone wsparcie w nowych urządzeniach została w dużej mierze zastąpiona przez USB i Thunderbolt. Podczas pracy z tablicami interaktywnymi szczególnie w kontekście edukacyjnym kluczowe jest zrozumienie jakie złącza są odpowiednie do konkretnych zastosowań co pozwala na skuteczne i bezproblemowe wykorzystanie dostępnych technologii. Wybór nieodpowiednich złączy może prowadzić do problemów z kompatybilnością ograniczając efektywność i funkcjonalność wykorzystywanych narzędzi edukacyjnych

Pytanie 24

Topologia fizyczna sieci komputerowej przedstawiona na ilustracji to topologia

Ilustracja do pytania
A. gwiazdy rozszerzonej
B. magistrali
C. hierarchiczna
D. gwiazdy
Topologia magistrali to jeden z najprostszych rodzajów topologii sieciowych, w którym wszystkie urządzenia łączą się do jednego wspólnego medium transmisyjnego. W tego typu topologii, dane przesyłane są wzdłuż jednej magistrali, a każde z urządzeń nasłuchuje transmisji, aby zidentyfikować wiadomość skierowaną do niego. Jest to rozwiązanie, które było popularne w początkowych fazach rozwoju sieci komputerowych, ale ze względu na ograniczenia związane z wydajnością i bezpieczeństwem, zostało zastąpione przez bardziej zaawansowane topologie. W topologii gwiazdy każda stacja robocza jest bezpośrednio połączona z centralnym punktem, co eliminuje problem z jednopunktowym awarią charakterystycznym dla magistrali. Gwiazda rozszerzona z kolei pozwala na dodawanie kolejnych segmentów sieci, co umożliwia większą elastyczność i łatwiejsze zarządzanie, ale wciąż nie oferuje strukturyzacji i hierarchii typowej dla topologii hierarchicznej. Warto zauważyć, że błędy myślowe prowadzące do wyboru tych odpowiedzi często wynikają z niedoceniania potrzeby centralizacji i skalowalności, które są kluczowe w dużych sieciach. Hierarchiczna struktura sieci pozwala na efektywne zarządzanie przepustowością, zgodność z politykami bezpieczeństwa oraz łatwe diagnozowanie i rozwiązywanie problemów, co czyni ją preferowanym rozwiązaniem w wielu profesjonalnych środowiskach IT.

Pytanie 25

Na przedstawionej fotografii karta graficzna ma widoczne złącza

Ilustracja do pytania
A. DVI, D-SUB, SLI
B. DVI, D-SUB, DisplayPort
C. DVI, S-Video, D-SUB
D. DVI, S-Video, HDMI
Karta graficzna posiada złącza DVI S-Video i D-SUB co jest prawidłową odpowiedzią. Złącze DVI jest używane do przesyłania cyfrowego sygnału wideo co zapewnia lepszą jakość obrazu w porównaniu z analogowym sygnałem D-SUB. DVI jest standardem w wielu monitorach i kartach graficznych pozwalając na przesyłanie wysokiej jakości treści multimedialnych. S-Video to złącze analogowe które rozdziela sygnały jasności i koloru co poprawia jakość obrazu w porównaniu do standardowego kompozytowego sygnału wideo. Jest ono często wykorzystywane w starszych urządzeniach telewizyjnych i projektorach. Złącze D-SUB znane również jako VGA jest powszechnie stosowane do przesyłania analogowego sygnału wideo do monitorów. Pomimo wycofywania go z nowoczesnych urządzeń wciąż jest szeroko używane w starszych systemach. Dobre praktyki branżowe sugerują korzystanie z cyfrowych złączy takich jak DVI lub HDMI gdzie to możliwe ze względu na lepszą jakość obrazu i dźwięku. Warto znać te standardy ponieważ umożliwiają one elastyczność w konfiguracji sprzętu szczególnie w środowiskach z różnorodnym wyposażeniem.

Pytanie 26

Użytkownik napotyka trudności z uruchomieniem systemu Windows. W celu rozwiązania tego problemu skorzystał z narzędzia System Image Recovery, które

A. odtwarza system na podstawie kopii zapasowej
B. odzyskuje ustawienia systemowe, korzystając z kopii rejestru systemowego backup.reg
C. naprawia pliki startowe, używając płyty Recovery
D. przywraca system, wykorzystując punkty przywracania
Nieprawidłowe odpowiedzi opierają się na mylnych założeniach dotyczących funkcji narzędzi dostępnych w systemie Windows. Naprawa plików startowych przy użyciu płyty Recovery dotyczy procesu, który ma na celu przywrócenie zdolności systemu do uruchamiania, ale nie odnosi się do pełnego przywracania systemu na podstawie obrazu. Takie podejście ma swoje zastosowanie w przypadku uszkodzenia plików systemowych, jednak nie przywraca wszystkich ustawień i danych, co czyni je mniej kompleksowym rozwiązaniem. Kolejną kwestią jest przywracanie systemu za pomocą punktów przywracania. Punkty te są tworzone automatycznie w momencie instalacji oprogramowania lub aktualizacji systemu, co oznacza, że działają na zasadzie zapisu stanu systemu, lecz nie obejmują pełnego obrazu, co ogranicza ich skuteczność w poważniejszych przypadkach. Ostatnia odpowiedź dotycząca odzyskiwania ustawień systemu z kopii rejestru wydaje się nieadekwatna, ponieważ rejestr systemowy nie jest samodzielnym elementem, który można po prostu przywrócić jako całość – jego złożoność i zależności z innymi komponentami sprawiają, że taki proces jest problematyczny i potencjalnie niebezpieczny, mogący prowadzić do dalszych uszkodzeń systemu. Właściwe podejście do rozwiązywania problemów z uruchamianiem systemu Windows obejmuje zrozumienie, które narzędzia są odpowiednie dla danych sytuacji oraz umiejętność ich odpowiedniego zastosowania. Dlatego ważne jest posiadanie wiedzy na temat różnych metod odzyskiwania i ich ograniczeń, co pozwoli na skuteczniejsze zarządzanie problemami związanymi z systemem operacyjnym.

Pytanie 27

Który komponent mikroprocesora odpowiada m.in. za odczytywanie instrukcji z pamięci oraz generowanie sygnałów kontrolnych?

A. FPU
B. ALU
C. IU
D. EU
Wybór odpowiedzi związanych z FPU (Floating Point Unit), ALU (Arithmetic Logic Unit) oraz EU (Execution Unit) często wynika z niepełnego zrozumienia funkcji poszczególnych układów w architekturze mikroprocesora. FPU jest odpowiedzialny za wykonywanie operacji arytmetycznych na liczbach zmiennoprzecinkowych, co czyni go istotnym w obliczeniach wymagających dużej precyzji, ale nie jest odpowiedzialny za pobieranie rozkazów. ALU natomiast zajmuje się wykonywaniem podstawowych operacji arytmetycznych oraz logicznych na danych, ale jego rola nie obejmuje generowania sygnałów sterujących, co czyni go niewłaściwym wyborem w kontekście pytania. EU pełni funkcję wykonawczą, odpowiedzialną za realizację rozkazów, co również nie obejmuje zarządzania przepływem instrukcji ani ich pobierania. Powszechnym błędem jest mylenie tych układów, co wynika z ich współpracy w procesie przetwarzania danych. Każdy z tych układów ma jasno określone zadania w architekturze procesora, a ich pomylenie prowadzi do dezorientacji i nieprawidłowego pojmowania, jak mikroprocesory realizują skomplikowane operacje obliczeniowe. Zrozumienie, że IU pełni kluczową rolę w zarządzaniu instrukcjami, jest fundamentalne dla pełnego zrozumienia architektury mikroprocesorów.

Pytanie 28

Osoba korzystająca z komputera, która testuje łączność sieciową używając polecenia ping, uzyskała wynik przedstawiony na rysunku. Jakie może być źródło braku reakcji serwera przy pierwszej próbie, zakładając, że adres domeny wp.pl to 212.77.100.101?

C:\Users\Komputer 2>ping wp.pl
Żądanie polecenia ping nie może znaleźć hosta wp.pl. Sprawdź nazwę i ponów próbę.
C:\Users\Komputer 2>ping 212.77.100.101

Badanie 212.77.100.101 z 32 bajtami danych:
Odpowiedź z 212.77.100.101: bajtów=32 czas=28ms TTL=248
Odpowiedź z 212.77.100.101: bajtów=32 czas=28ms TTL=248
Odpowiedź z 212.77.100.101: bajtów=32 czas=28ms TTL=248
Odpowiedź z 212.77.100.101: bajtów=32 czas=28ms TTL=248

Statystyka badania ping dla 212.77.100.101:
    Pakiety: Wysłane = 4, Odebrane = 4, Utracone = 0 (0% straty).
Szacunkowy czas błądzenia pakietów w milisekundach:
    Minimum = 28 ms, Maksimum = 28 ms, Czas średni = 28 ms

A. Nieobecność adresów serwera DNS w ustawieniach karty sieciowej
B. Brak przypisanego serwerowi DHCP adresu karty sieciowej.
C. Nieustawiony adres domyślnej bramy w konfiguracji karty sieciowej.
D. Nieprawidłowy adres IP przypisany do karty sieciowej.
Jak widać, brak serwera DNS w ustawieniach karty sieciowej sprawił, że komputer nie mógł pingować domeny. DNS, czyli Domain Name System, to coś w stylu tłumacza dla internetu - zamienia nazwy domen na adresy IP. Jak go nie skonfigurujesz, to komputer nie wie, gdzie ma szukać, co kończy się błędem. W drugim przypadku, gdy podałeś adres IP bezpośrednio, komunikacja poszła gładko, bo ominąłeś ten cały proces rozpoznawania. Prawidłowe ustawienie DNS to klucz do sprawnego korzystania z internetu. Lepiej korzystać z zaufanych serwerów DNS od operatorów albo publicznych, jak Google DNS (8.8.8.8), bo zapewniają one lepszą szybkość i stabilność. Pamiętaj, że dobra konfiguracja DNS to nie tylko kwestia wydajności, ale też bezpieczeństwa sieci, żeby uniknąć opóźnień i problemów z dostępem do stron, co jest całkiem ważne, szczególnie w biznesie.

Pytanie 29

Aby zabezpieczyć system przed oprogramowaniem mającym możliwość reprodukcji, konieczne jest zainstalowanie

A. programu antywirusowego
B. programu szpiegowskiego
C. programu diagnostycznego
D. programu narzędziowego
Program antywirusowy to naprawdę ważna rzecz, jeśli chodzi o ochronę komputerów przed różnymi zagrożeniami, jak wirusy czy robaki. Jego główną rolą jest znajdowanie i usuwanie tych problemów. Żeby to działało dobrze, programy antywirusowe muszą być regularnie aktualizowane, bo tylko wtedy mogą rozpoznać nowe zagrożenia. W praktyce, programy te nie tylko skanują pliki na dysku, ale też analizują ruch w sieci. Dzięki temu można szybko wykryć i zablokować coś podejrzanego. Dobrze jest też pamiętać o aktualizowaniu systemu operacyjnego i programów, bo to zmniejsza ryzyko ataków. Ważne jest, żeby mieć kilka różnych warstw zabezpieczeń oraz nauczyć się, jak rozpoznawać potencjalne zagrożenia. W dzisiejszych czasach, kiedy zagrożeń jest coraz więcej, posiadanie sprawnego programu antywirusowego to podstawa, jeśli chodzi o bezpieczeństwo w sieci.

Pytanie 30

Termin gorącego podłączenia (hot-plug) wskazuje, że podłączane urządzenie działa

A. sprawne po zainstalowaniu odpowiednich sterowników
B. kontrolowane przez temperaturę
C. zgodne z komputerem
D. poprawnie od razu po podłączeniu, bez potrzeby wyłączania czy restartowania systemu
Wprowadzenie do zagadnienia gorącego podłączania urządzeń często wiąże się z nieporozumieniami, które mogą prowadzić do błędnych wniosków. Odpowiedź sugerująca, że urządzenie staje się sprawne po zainstalowaniu właściwych sterowników, myli istotę gorącego podłączania z procesem instalacji oprogramowania. Chociaż niektóre urządzenia rzeczywiście wymagają zainstalowania sterowników, gorące podłączanie koncentruje się na natychmiastowej dostępności sprzętu po podłączeniu, nie wpływając na wymagania dotyczące oprogramowania. Kolejny błąd dotyczy myślenia, że kompatybilność sprzętu z komputerem odnosi się do gorącego podłączania. Choć urządzenie musi być zgodne z systemem operacyjnym oraz interfejsem, gorące podłączanie nie zapewnia automatycznej kompatybilności, a podłączenie niekompatybilnego urządzenia może prowadzić do awarii systemu. Ponadto twierdzenie, że gorące podłączenie jest sterowane temperaturą, jest zupełnie mylne; technika ta nie ma związku z temperaturą pracy urządzenia. W rzeczywistości gorące podłączanie odnosi się do możliwości interakcji sprzętu z systemem bez przerywania jego działania. Zrozumienie tych różnic jest kluczowe dla efektywnego zarządzania sprzętem komputerowym w praktyce.

Pytanie 31

Zachowanie kopii często odwiedzanych witryn oraz zwiększenie ochrony przez filtrowanie pewnych treści witryn internetowych można osiągnąć dzięki

A. używaniu systemu z uprawnieniami administratora
B. konfiguracji serwera pośredniczącego proxy
C. automatycznemu wyłączaniu plików cookies
D. zainstalowaniu oprogramowania antywirusowego i aktualizacji bazy wirusów
Instalacja programu antywirusowego i najnowszej bazy wirusów nie wpływa bezpośrednio na przechowywanie kopii często odwiedzanych stron ani na filtrowanie określonych zawartości. Chociaż programy antywirusowe są niezbędne w kontekście ochrony przed złośliwym oprogramowaniem i wirusami, nie oferują funkcji pośrednictwa w dostępie do stron internetowych. W rzeczywistości są one narzędziami bezpieczeństwa, które działają na poziomie systemu operacyjnego, a nie na poziomie sieci. Korzystanie z systemu z uprawnieniami administratora również nie rozwiązuje problemu przechowywania treści ani filtrowania zawartości. W rzeczywistości, uprawnienia administratora mogą zwiększać ryzyko, ponieważ dają użytkownikowi pełny dostęp do systemu, co może prowadzić do niezamierzonych zmian w konfiguracji czy instalacji złośliwego oprogramowania. Automatyczne wyłączenie plików cookies ma swoje miejsce w kontekście ochrony prywatności, jednak nie wspiera ani nie przyspiesza procesu przechowywania danych ani nie filtruje treści. Cookies są używane do przechowywania informacji o sesjach i preferencjach użytkowników, co może pomóc w personalizacji doświadczenia, ale ich wyłączenie może spowodować frustrację użytkowników oraz utrudnić działanie niektórych funkcji stron internetowych. Zrozumienie, jak te elementy funkcjonują i jakie mają ograniczenia, jest kluczowe w kontekście bezpieczeństwa i efektywności korzystania z sieci.

Pytanie 32

Liczba 205(10) w zapisie szesnastkowym wynosi

A. DC
B. CD
C. CC
D. DD
Odpowiedzi, które wybrałeś, są sporym błędem, bo pewnie nie do końca zrozumiałeś, jak działają systemy liczbowe. DD, DC i CC są złe z paru powodów. DD to w dziesiętnym 221, czyli znacznie więcej niż 205. Podobnie CC to 204, co też nie pasuje. Odpowiedź DC, co daje 220, też się nie zgadza, bo to znowu przekracza 205. Często takie błędne odpowiedzi są wynikiem podstawowego nieporozumienia przy konwersji między systemami liczbowymi. Ważne, żeby pamiętać, że przy przeliczaniu z dziesiętnego na szesnastkowy używamy dzielenia i musimy dobrze rozpoznać reszty, które zamieniamy na odpowiednie cyfry i litery. Te same symbole w różnych systemach mogą wprowadzać zamieszanie, więc dobrze jest znać kontekst. Myślę, że jak poćwiczysz więcej konkretne przeliczenia, to zaczniesz lepiej ogarniać te różnice i unikniesz podobnych pomyłek w przyszłości.

Pytanie 33

Zgodnie z normą PN-EN 50174, maksymalna długość kabla poziomego kategorii 6 pomiędzy punktem abonenckim a punktem dystrybucji w panelu krosowym wynosi

A. 90 m
B. 150 m
C. 100 m
D. 110 m
Odpowiedzi 100 m, 110 m oraz 150 m są niepoprawne z kilku kluczowych powodów. Wybór długości 100 m może wydawać się logiczny, ponieważ często jest to długość używana w aplikacjach sieciowych, jednak nie uwzględnia ona specyficznych wymagań dla kabli kategorii 6, które do przesyłania danych wymagają ściśle określonego limitu długości dla optymalnej wydajności. Przesymulowanie długości kabla w warunkach rzeczywistych pokazuje, że przekroczenie 90 m skutkuje wzrostem opóźnień i spadkiem wydajności, co jest nie do zaakceptowania w środowiskach o wysokich wymaganiach dotyczących przepustowości. Wybór długości 110 m oraz 150 m jeszcze bardziej narusza zasady określone w normie. Tego rodzaju długości mogą być stosowane w specyficznych aplikacjach, ale nie w kontekście standardowej instalacji kabelowej dla systemów LAN. Dodatkowo, w praktyce inżynieryjnej błędne podejście do długości kabli poziomych może prowadzić do poważnych problemów z niezawodnością sieci, w tym zwiększonej liczby błędów przesyłania danych oraz problemami z obsługą klienta. Zrozumienie i przestrzeganie norm takich jak PN-EN 50174 jest kluczowe dla projektantów i instalatorów systemów telekomunikacyjnych, aby zapewnić ich wydajność oraz zgodność z najlepszymi praktykami branżowymi.

Pytanie 34

Dane z twardego dysku HDD, którego sterownik silnika SM jest uszkodzony, można odzyskać

A. za pomocą polecenia fixmbr
B. dzięki wymianie płytki z elektroniką dysku na inną z tego samego modelu
C. przy użyciu programu do odzyskiwania danych, na przykład TestDisk
D. poprzez wymianę silnika SM
Odzyskiwanie danych z dysku twardego HDD z uszkodzonym sterownikiem silnika SM wymaga zastosowania metod, które uwzględniają specyfikę uszkodzeń. Wymiana silnika SM, mimo że wydaje się logiczna, w praktyce jest bardzo trudna i często niemożliwa bez specjalistycznego sprzętu. Silnik SM jest zsynchronizowany z firmwarem dysku i wymiana go na inny, nawet tego samego modelu, może prowadzić do dalszych uszkodzeń lub całkowitej utraty danych. Podobnie, użycie polecenia fixmbr jest nieodpowiednie w tym kontekście, gdyż to narzędzie jest przeznaczone do naprawy struktur partycji w systemie Windows, a nie do odzyskiwania danych na poziomie fizycznym dysku. Posiadając uszkodzenie na poziomie elektroniki, nawet przy użyciu tego polecenia użytkownik nie jest w stanie odczytać danych, które są niedostępne z powodu problemów sprzętowych. Z kolei zewnętrzne programy do odzyskiwania danych, takie jak TestDisk, są skuteczne jedynie wtedy, gdy struktura plików lub partycji jest uszkodzona, a nie w przypadku uszkodzeń hardware'owych. Często prowadzi to do mylnego przekonania, że oprogramowanie może zdziałać cuda w przypadkach, gdzie wymagana jest interwencja serwisowa. Właściwe zrozumienie, kiedy należy stosować konkretne metody odzyskiwania danych, jest kluczowe w pracy z uszkodzonymi dyskami twardymi.

Pytanie 35

Jakie urządzenie pełni rolę wskaźnika?

A. drukarka
B. pamięć USB
C. skaner
D. ekran dotykowy
Wybór skanera, drukarki lub pamięci USB jako urządzenia wskazującego opiera się na nieporozumieniach dotyczących definicji tych terminów. Skaner, chociaż może być wykorzystywany do przekształcania dokumentów papierowych na format cyfrowy, nie umożliwia bezpośredniej interakcji użytkownika ze systemem komputerowym. Działa on raczej jako urządzenie wejściowe, które przetwarza dane, a nie jako interfejs do ich bezpośredniej manipulacji. Drukarka, z drugiej strony, jest urządzeniem wyjściowym, które służy do przekształcania informacji cyfrowych na formę papierową, co także nie ma związku z interakcją użytkownika. Pamięć USB to urządzenie do przechowywania danych, które umożliwia transfer plików między systemami, lecz nie wspiera interakcji w czasie rzeczywistym. Te nieporozumienia często wynikają z mylenia kategorii urządzeń wejściowych i wyjściowych. Kluczowym błędem jest zrozumienie, że urządzenia wskazujące powinny umożliwiać bezpośrednią i intuicyjną interakcję z systemem, tak jak ekran dotykowy, który jest zaprojektowany z myślą o użytkownikach, zapewniając im szybką i wygodną możliwość wprowadzania danych.

Pytanie 36

Jakie pole znajduje się w nagłówku protokołu UDP?

A. Numer sekwencyjny
B. Suma kontrolna
C. Numer potwierdzenia
D. Wskaźnik pilności
W kontekście protokołu UDP istnieje wiele błędnych przekonań dotyczących jego pola nagłówka. Wskaźnik pilności, numer potwierdzenia oraz numer sekwencyjny nie są częścią nagłówka UDP. Wskaźnik pilności jest stosowany w TCP, aby sygnalizować priorytet przesyłanych segmentów; jest to funkcja charakterystyczna dla protokołów, które zapewniają kontrolę przepływu i retransmisję. Numer potwierdzenia jest również używany w TCP, umożliwiając potwierdzenie odebrania danych. Numer sekwencyjny, z kolei, jest kluczowy dla synchronizacji i kontrolowania kolejności pakietów w TCP, ale UDP, jako protokół bezpołączeniowy, nie zapewnia tych mechanizmów. Pominięcie zrozumienia różnic między tymi protokołami może prowadzić do nieprawidłowego stosowania ich w aplikacjach, co z kolei może skutkować problemami z wydajnością i niezawodnością przesyłu danych. Protokół UDP jest wykorzystywany w scenariuszach, gdzie szybkość jest kluczowa, a opóźnienia związane z potwierdzeniami czy retransmisjami są nieakceptowalne. Dlatego ważne jest zrozumienie, że jedynie suma kontrolna jest istotna dla zapewnienia integralności danych w UDP, podczas gdy inne pola związane są z architekturą TCP, co jest fundamentalną różnicą w ich projektowaniu i zastosowaniu.

Pytanie 37

Informacje, które zostały pokazane na wydruku, uzyskano w wyniku wykonania

Ilustracja do pytania
A. route change
B. netstat -r
C. ipconfig /all
D. traceroute -src
Route change to polecenie używane do modyfikacji istniejących tras w tabeli routingu. Jest to narzędzie administracyjne, które pozwala na ręczne dodawanie, usuwanie lub zmienianie tras, ale nie służy do ich wyświetlania. W kontekście tego pytania, polecenie route change nie generuje wyjścia pokazującego pełną tabelę routingu, która została przedstawiona na wydruku. Użycie tego polecenia wymaga głębokiego zrozumienia struktury sieci oraz może prowadzić do błędów w konfiguracji, jeśli nie jest stosowane z należytą uwagą. Z kolei ipconfig /all to polecenie, które dostarcza szczegółowych informacji o konfiguracji interfejsów sieciowych w systemie, w tym adresów IP, masek podsieci, bram domyślnych i serwerów DNS. Choć ipconfig /all jest niezwykle użyteczne w diagnozowaniu problemów sieciowych poprzez dostarczanie rozbudowanego zestawu danych, nie wyświetla tabeli routingu, co jest wymagane w tym przypadku. Traceroute -src, podobnie jak klasyczne traceroute, służy do śledzenia ścieżki, jaką przechodzą pakiety do określonego adresu docelowego. Umożliwia analizę opóźnień i diagnostykę problemów z trasowaniem pakietów w sieci. Jednak traceroute -src nie służy do bezpośredniego wyświetlania tabeli routingu, dlatego jego zastosowanie w kontekście tego pytania jest nieodpowiednie. Każde z tych poleceń ma specyficzne zastosowanie i znajomość ich działania oraz kontekstu użycia jest kluczowa dla efektywnego zarządzania i diagnozowania sieci komputerowych.

Pytanie 38

Jakie znaczenie ma skrót MBR w kontekście technologii komputerowej?

A. Fizyczny identyfikator karty sieciowej
B. Bloki pamięci w górnej części komputera IBM/PC
C. Główny rekord rozruchowy SO
D. Usługę związaną z interpretacją nazw domen
Skrót MBR oznacza 'Master Boot Record', co jest kluczowym elementem architektury systemów operacyjnych, zwłaszcza w kontekście rozruchu komputerów. Główny rekord rozruchowy znajduje się na początku dysku twardego i zawiera informacje niezbędne do zainicjowania systemu operacyjnego. MBR jest odpowiedzialny za lokalizację i uruchomienie systemu operacyjnego poprzez przekazywanie kontroli do odpowiedniego sektora rozruchowego. W praktyce, MBR zawiera również tablicę partycji, która definiuje, jak przestrzeń dyskowa jest podzielona pomiędzy różne systemy plików. W przypadku systemów BIOS, MBR jest standardem od lat 80-tych XX wieku, jednak coraz częściej zastępowany jest przez nowocześniejszy system UEFI, który oferuje lepsze wsparcie dla dużych dysków i więcej funkcji zabezpieczeń. Wiedza o MBR jest niezbędna dla specjalistów IT zajmujących się administracją systemów, gdyż pozwala na zrozumienie podstawowych zasad zarządzania danymi oraz procesów rozruchowych w komputerach.

Pytanie 39

Które z poniższych zdań charakteryzuje protokół SSH (Secure Shell)?

A. Bezpieczny protokół terminalu sieciowego oferujący usługi szyfrowania połączenia
B. Sesje SSH nie umożliwiają weryfikacji autentyczności punktów końcowych
C. Sesje SSH prowadzą do przesyłania danych w formie zwykłego tekstu, bez szyfrowania
D. Protokół do pracy zdalnej na odległym komputerze nie zapewnia szyfrowania transmisji
Protokół SSH (Secure Shell) jest bezpiecznym protokołem terminalu sieciowego, który umożliwia zdalne logowanie się i zarządzanie systemami w sposób zaszyfrowany. W przeciwieństwie do wielu innych protokołów, które przesyłają dane w formie niezaszyfrowanej, SSH zapewnia integralność danych oraz poufność poprzez zastosowanie silnego szyfrowania. Przykładowo, SSH wykorzystuje algorytmy szyfrujące takie jak AES (Advanced Encryption Standard) do ochrony przesyłanych informacji, co czyni go kluczowym narzędziem w administracji systemami. Organizacje korzystają z SSH do zdalnego zarządzania serwerami, co minimalizuje ryzyko przechwycenia danych przez osoby trzecie. Dodatkowo, SSH obsługuje uwierzytelnianie kluczem publicznym, co zwiększa bezpieczeństwo połączenia eliminując ryzyko ataków typu „man-in-the-middle”. Dobrą praktyką jest również korzystanie z SSH w konfiguracji, która wymusza użycie kluczy zamiast haseł, co znacząco zwiększa poziom bezpieczeństwa. Doświadczeni administratorzy systemów powinni być zaznajomieni z konfiguracją SSH, aby maksymalnie wykorzystać jego możliwości i zabezpieczyć swoje środowisko.

Pytanie 40

Jakiego parametru w poleceniu ping należy użyć, aby uzyskać rezultat pokazany na zrzucie ekranu?

Badanie onet.pl [213.180.141.140] z 1000 bajtami danych:
Odpowiedź z 213.180.141.140: bajtów=1000 czas=14ms TTL=59
Odpowiedź z 213.180.141.140: bajtów=1000 czas=14ms TTL=59
Odpowiedź z 213.180.141.140: bajtów=1000 czas=14ms TTL=59

A. –i 1000
B. –n 1000
C. –l 1000
D. –f 1000
Parametr -l w poleceniu ping służy do ustawienia rozmiaru pakietu w bajtach wysyłanego do hosta docelowego. W przykładzie pokazanym na zrzucie ekranu, rozmiar wynosi 1000 bajtów, co jest ustawione właśnie za pomocą -l 1000. W praktyce rozsądne użycie tego parametru pozwala na testowanie wydajności sieci w zależności od rozmiaru pakietów, co jest szczególnie istotne w diagnostyce problemów z siecią takich jak fragmentacja pakietów czy opóźnienia związane z przepustowością. Standardowo pakiety ICMP mają rozmiar 32 bajtów, więc zmiana tego parametru może wpływać na sposób, w jaki sieć radzi sobie z różnymi obciążeniami. Wiedza na temat tego jak różne rozmiary pakietów wpływają na transmisję danych jest kluczowa dla specjalistów ds. sieci, zwłaszcza w kontekście optymalizacji sieci i zapewnienia jej stabilności oraz wydajności. Dobrze jest także pamiętać, że niektóre urządzenia sieciowe mogą mieć ograniczenia co do maksymalnego rozmiaru pakietów, co może wpływać na wyniki testów przeprowadzanych z dużymi pakietami.