Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 25 kwietnia 2025 00:10
  • Data zakończenia: 25 kwietnia 2025 00:31

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Którą substancję można bezpośrednio wyrzucić do odpadów komunalnych?

A. Azbest
B. Glukozę
C. Azotan(V) srebra
D. Tlenek rtęci(II)
Glukoza to taki prosty cukier, który znajdziesz w wielu jedzeniu. Jest zupełnie naturalna i nasze ciała potrafią ją rozłożyć. Dlatego można ją bez obaw wrzucać do odpadów komunalnych, co oznacza, że trafia do oczyszczalni i tam można ją przerobić. Z tego, co wiem, glukoza nie szkodzi ani naturze, ani zdrowiu ludzi. Jeśli chodzi o odpady, to takie organiczne rzeczy jak glukoza są ok i można je spokojnie kompostować. W przemyśle używa się jej do produkcji żywności i jako źródło energii w fermentacji, co pokazuje, że można ją bezpiecznie utylizować. W dodatku normy takie jak ISO 14001 pomagają zarządzać środowiskiem, więc glukoza jest w tym kontekście super bezpieczna.

Pytanie 2

Aby przyspieszyć reakcję, należy zwiększyć stężenie substratów

A. zwiększyć, a temperaturę zmniejszyć
B. zwiększyć, a temperaturę podnieść
C. zmniejszyć, a temperaturę podnieść
D. zmniejszyć, a temperaturę obniżyć
W odpowiedziach, gdzie sugerujesz zmniejszenie stężenia substratów lub obniżenie temperatury, nie bierzesz pod uwagę podstawowych zasad chemii. Zmniejszając stężenie, zmniejszasz liczbę cząsteczek do reakcji, co mocno obniża szanse na zderzenie. W zasadzie, im wyższe stężenie reagentów, tym lepsza szybkość reakcji, według prawa zachowania masy. Obniżenie temperatury też działa na niekorzyść, bo zmniejsza energię kinetyczną cząsteczek, co spowalnia reakcje. To szczególnie widać w reakcjach enzymatycznych, gdzie enzymy najlepiej działają w określonych temperaturach. Nieodpowiednie zarządzanie temperaturą i stężeniem może wyjść nam bokiem w przemyśle, bo zwiększa koszty produkcji i wpływa na jakość końcowego produktu. W sumie, rozumienie optymalizacji warunków reakcji to kluczowa sprawa w projektowaniu tych reakcji chemicznych.

Pytanie 3

Butle gazowe (czasy butli) napełnione wodorem są oznaczone kolorem

A. czerwonym
B. jasnozielonym
C. niebieskim
D. żółtym
Zrozumienie systemu oznaczania butli gazowych jest kluczowe dla bezpieczeństwa pracy z substancjami chemicznymi. Kolorystyka oznaczeń butli gazowych jest ściśle określona przez normy. Odpowiedzi sugerujące żółty, jasnozielony lub niebieski kolor są błędne, ponieważ nie odzwierciedlają one aktualnych praktyk w branży. Żółty kolor często kojarzony jest z gazami toksycznymi, a jasnozielony z gazami szlachetnymi, natomiast niebieski stosuje się zazwyczaj do azotu lub innych gazów obojętnych. Wybierając niepoprawne kolory, można narazić się na poważne konsekwencje, takie jak błędna identyfikacja gazu, co prowadzi do niebezpiecznych sytuacji. W przemyśle, gdzie obsługiwane są różne rodzaje gazów, znajomość i przestrzeganie norm dotyczących oznaczania butli gazowych jest niezbędne. Typowe błędy myślowe prowadzące do takich wniosków to ignorowanie standardów branżowych oraz brak świadomości na temat zagrożeń związanych z niewłaściwym oznaczeniem gazów. Warto pamiętać, że bezpieczeństwo w pracy z niebezpiecznymi substancjami chemicznymi opiera się na dokładnym przestrzeganiu procedur oraz systemów oznaczania, co bezpośrednio wpływa na zdrowie i życie pracowników oraz osób postronnych.

Pytanie 4

Sód powinien być przechowywany

A. w szczelnie zamkniętym pojemniku pod warstwą chloroformu
B. w pojemniku z dowolnym zamknięciem pod warstwą chloroformu
C. w szczelnie zamkniętym pojemniku pod warstwą nafty
D. w pojemniku z dowolnym zamknięciem pod warstwą nafty
Sód jest metalem alkalicznym, który jest bardzo reaktywny, szczególnie w obecności wilgoci i powietrza. Dlatego kluczowe jest jego przechowywanie w odpowiednich warunkach. Odpowiedź, że sód powinien być przechowywany w szczelnie zamkniętym pojemniku pod warstwą nafty, jest poprawna, ponieważ nafta działa jako skuteczna bariera ochronna. Ogranicza dostęp powietrza i wilgoci, co zapobiega niepożądanym reakcjom chemicznym. W praktyce, wiele laboratoriów oraz zakładów przemysłowych stosuje naftę lub inne oleje mineralne w celu bezpiecznego magazynowania sodu, co jest zgodne z zaleceniami standardów bezpieczeństwa chemicznego. Przechowywanie w szczelnym pojemniku również minimalizuje ryzyko przypadkowego kontaktu z innymi substancjami chemicznymi, co jest istotne z punktu widzenia BHP. Zastosowanie odpowiednich praktyk w zakresie przechowywania substancji chemicznych, takich jak sód, jest nie tylko kwestią ochrony zdrowia, ale także przestrzegania norm i regulacji w zakresie ochrony środowiska.

Pytanie 5

Czy próbkę laboratoryjną przechowuje się w lodówce, gdy występuje w niej

A. rozpad promieniotwórczy
B. degradacja termiczna
C. utrata lotnych składników
D. chłonięcie wody
Przechowywanie pobranych próbek laboratoryjnych w lodówce jest kluczowym procesem, gdyż zapobiega degradacji termicznej, która może prowadzić do nieodwracalnych zmian w składzie chemicznym analitów. Degradacja termiczna zachodzi, gdy próbki są narażone na podwyższone temperatury, co może powodować denaturację białek, rozkład enzymów, a także zmiany w składzie chemicznym substancji czynnych. Przechowywanie w lodówce (zwykle w temperaturze 2-8°C) zapewnia stabilność wielu związków, co jest niezbędne w badaniach analitycznych. Przykładowo, próbki krwi, moczu czy tkanek biologicznych często wymagają przechowywania w chłodnych warunkach, aby zminimalizować ryzyko degradacji. Standardy takie jak ISO 15189 dla laboratoriów medycznych podkreślają istotność odpowiednich warunków przechowywania próbek, co jest niezbędne dla uzyskania wiarygodnych wyników analiz. Właściwe przechowywanie nie tylko chroni próbki, ale również zwiększa dokładność wyników badań, co jest kluczowe dla diagnostyki i dalszego leczenia pacjentów.

Pytanie 6

Próbki wody, które mają być badane pod kątem zawartości krzemu, powinny być przechowywane w pojemnikach

A. z tworzywa sztucznego
B. ze szkła sodowego
C. ze szkła borowo-krzemowego
D. z kwarcu
Najlepszym wyborem do przechowywania próbek wody do badania krzemu są naczynia z tworzyw sztucznych. Oprócz tego, że są neutralne chemicznie, to nie wprowadzają zanieczyszczeń, które mogłyby zepsuć nasze analizy. Materiały jak PET czy polipropylen są nisko reaktywne, więc świetnie nadają się do tego rodzaju badań. W praktyce, używając takich pojemników, możemy trzymać próbki dłużej, bo nie ma ryzyka, że coś się w nich zmieni przez reakcje chemiczne. W dodatku, wiele norm, w tym te od ISO, sugeruje, aby korzystać z tworzyw sztucznych, zwłaszcza jeśli próbki mają być transportowane lub przechowywane przez dłuższy czas. Takie podejście wpisuje się w najlepsze praktyki laboratoryjne, co znaczy, że nasze wyniki będą bardziej wiarygodne.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Część partii pobrana w sposób jednorazowy z jednego źródła towaru zapakowanego lub z jednego opakowania jednostkowego określana jest mianem próbki

A. średniej laboratoryjnej
B. pierwotnej
C. analitycznej
D. ogólnej
Odpowiedź 'pierwotnej' jest poprawna, ponieważ próbka pierwotna to część partii, która jest pobrana jednorazowo z jednego miejsca towaru opakowanego lub z jednego opakowania jednostkowego. Termin ten jest kluczowy w kontekście badań laboratoryjnych i jakości produktów. Próbki pierwotne są często stosowane w analizach chemicznych, mikrobiologicznych i fizykochemicznych, gdzie dokładność i reprezentatywność próbki mają kluczowe znaczenie dla wyników. Na przykład, w akredytowanych laboratoriach, zgodnie z normami ISO 17025, zaleca się pobieranie próbek pierwotnych w sposób zapewniający ich reprezentatywność dla całej partii. Przykłady zastosowania obejmują kontrolę jakości surowców w przemyśle spożywczym czy farmaceutycznym, gdzie kluczowe jest, aby wyniki badań były wiarygodne i mogły być zastosowane do oceny całej partii produktu. Dobrą praktyką jest również dokumentowanie procesu pobierania próbek, co zwiększa transparentność i wiarygodność analiz.

Pytanie 13

Preparaty zawierające KOH (tzw. żrący potaż), oznaczone są symbolem S 1/2. Na podstawie informacji zawartych w tabeli, określ zasady przechowywania tych preparatów.

Numer zwrotu SWarunki bezpiecznego stosowaniaNumer zwrotu SWarunki bezpiecznego stosowania
S1Przechowywać pod zamknięciemS12Nie przechowywać pojemnika szczelnie zamkniętego
S2Chronić przed dziećmiS13Nie przechowywać razem z żywnością, napojami i karmą dla zwierząt
S3Przechowywać w chłodnym miejscuS15Przechowywać z dala od źródeł ciepła
S4Nie przechowywać w pomieszczeniach mieszkalnychS16Nie przechowywać w pobliżu źródeł zapłonu – nie palić tytoniu

A. Nie przechowywać w szczelnie zamkniętym pojemniku.
B. Przechowywać z dala od źródeł ciepła i ognia.
C. Przechowywać w zamknięciu, z daleka od dzieci.
D. Przechowywać w zamkniętym, chłodnym miejscu.
Odpowiedź 'Przechowywać w zamknięciu, z daleka od dzieci.' jest zgodna z obowiązującymi normami bezpieczeństwa oraz zasadami przechowywania substancji chemicznych. Preparaty zawierające KOH, klasyfikowane jako substancje niebezpieczne, wymagają szczególnych środków ostrożności. Symbol S1 wskazuje, że powinny być one przechowywane w zamknięciu, co ma na celu minimalizację ryzyka przypadkowego dostępu do nich. Z kolei symbol S2 podkreśla konieczność ochrony przed dziećmi, co jest kluczowe, aby zapobiec nieszczęśliwym wypadkom. W praktyce oznacza to, że substancje te powinny być składowane w miejscach niedostępnych dla osób postronnych, zwłaszcza dzieci, oraz w odpowiednich pojemnikach, które zapobiegają ich przypadkowemu otwarciu. Dobre praktyki w laboratoriach i gospodarstwach domowych sugerują, aby takie preparaty były trzymane w zamkniętych szafkach z dodatkowymi zabezpieczeniami, co dodatkowo zwiększa bezpieczeństwo. Właściwe przechowywanie nie tylko chroni zdrowie, ale również minimalizuje ryzyko zanieczyszczenia środowiska.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Próbka pobrana z próbki ogólnej, która odzwierciedla cechy partii produktu, określa się jako próbka

A. pierwotna laboratoryjna
B. średnia laboratoryjna
C. jednostkowa
D. wtórna
Odpowiedzi, które wskazują wtórną, jednostkową lub pierwotną laboratoryjną próbkę, opierają się na nieprecyzyjnych definicjach i nie są odpowiednie w kontekście analizy reprezentatywności prób. Wtórna próbka odnosi się często do próbki pobranej z próbki, co nie odzwierciedla pojęcia reprezentatywności całej partii produktu. Ponadto, jednostkowa próbka odnosi się do pojedynczego elementu i nie może dostarczyć informacji na temat całej grupy, co czyni ją niewłaściwą w kontekście analizy statystycznej. Z kolei pierwotna laboratoryjna próbka wskazuje na próbkę pobraną bezpośrednio z miejsca produkcji, ale również nie oddaje koncepcji reprezentatywności. W praktyce, stosowanie tych pojęć może prowadzić do błędnych wniosków dotyczących jakości produktów, co jest niezgodne z najlepszymi praktykami w zakresie kontroli jakości i analizy laboratoryjnej. Używanie niewłaściwych terminów może skutkować poważnymi konsekwencjami, w tym błędami w ocenie ryzyka, co jest kluczowe w wielu branżach, zwłaszcza w farmaceutycznej czy spożywczej. Zrozumienie różnic pomiędzy tymi pojęciami jest istotne dla zapewnienia skutecznych i wiarygodnych analiz oraz zgodności z międzynarodowymi standardami.

Pytanie 16

Czego brakuje w zestawie pokazanym na ilustracji?

A. bagietka, termometr oraz siatka
B. stojak, łącznik i łapa
C. stojak, łącznik oraz termometr
D. stojak, termometr oraz siatka
Wybór innych odpowiedzi często wiąże się z niepełnym zrozumieniem roli, jaką poszczególne elementy odgrywają w laboratoriach. Bagietka, będąca elementem używanym w kuchni, nie ma zastosowania w kontekście laboratoryjnym. Jej obecność w zestawie nie tylko nie pasuje do środowiska laboratorium, ale także wskazuje na brak wiedzy o standardowych narzędziach wykorzystywanych w procesach eksperymentalnych. Termometr, choć ważny w wielu pomiarach, nie jest elementem strukturalnym, który wspierałby stabilność zestawów montażowych. Odpowiedzi zawierające termometr pomijają kluczowe komponenty, takie jak statyw i łącznik, które są nieodzowne w każdym eksperymencie wymagającym precyzyjnego pomiaru. Z kolei łącznik i łapa, będące istotnymi elementami w laboratoriach, są fundamentalne dla łączenia i stabilizacji, co jest kluczowe dla uniknięcia wypadków w trakcie doświadczeń. Często popełnianym błędem jest skupianie się na pojedynczych narzędziach, zamiast na całościowej konfiguracji sprzętu, co prowadzi do nieporozumień. Właściwe zrozumienie komplementarności elementów sprzętu laboratoryjnego jest kluczowe dla ich efektywnego wykorzystania w praktyce.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Podczas analizowania zmienności składu wód płynących w skali rocznej, próbki wody powinny być zbierane i badane przynajmniej raz na

A. tydzień
B. miesiąc
C. rok
D. pół roku
Prawidłowa odpowiedź to pobieranie próbek wody co najmniej raz w miesiącu, co jest zgodne z najlepszymi praktykami w monitorowaniu jakości wód. Badania takie pozwalają na uchwycenie sezonowych zmian w składzie chemicznym i biologicznym wody, które mogą być wynikiem zmieniających się warunków pogodowych, działalności rolniczej lub przemysłowej oraz naturalnych cykli ekosystemu. Stosowanie miesięcznych interwałów pobierania próbek jest standardem w wielu programach monitorowania ekologicznego, ponieważ umożliwia dokładne śledzenie dynamiki zmian oraz identyfikację potencjalnych zagrożeń dla ekosystemu wodnego. Przykładowo, w przypadku rzek czy jezior, różne pory roku mogą wpływać na stężenia składników odżywczych, co ma kluczowe znaczenie dla zdrowia biocenozy. Regularne badania w odstępach miesięcznych wspierają nie tylko prawidłową ocenę jakości wody, ale także umożliwiają szybką reakcję na zmiany, które mogą być wynikiem zanieczyszczeń lub innych niekorzystnych zjawisk.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Etykiety chemikaliów zawierają zwroty H, które informują o rodzaju zagrożenia. Cyfra "3" pojawiająca się po literze "H" w oznaczeniu, definiuje rodzaj zagrożenia?

A. dla człowieka
B. dla środowiska
C. chemiczne
D. fizyczne
Odpowiedź "dla człowieka" jest prawidłowa, ponieważ etykiety substancji chemicznych zawierają zwroty H (H-phrases), które odnoszą się do zagrożeń, jakie dany związek chemiczny może stanowić dla zdrowia ludzi. Na przykład, oznaczenie H3 mówi o tym, że substancja może być szkodliwa w przypadku wdychania, połknięcia lub kontaktu ze skórą. W praktyce, znajomość tych oznaczeń jest kluczowa dla pracowników w laboratorach, przemysłach chemicznych oraz w obszarach zajmujących się transportem substancji chemicznych. Dlatego w ramach BHP oraz oceny ryzyka, pracownicy powinni być odpowiednio przeszkoleni w zakresie interpretacji tych etykiet oraz stosowania odpowiednich środków ochrony osobistej. Standardy takie jak GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) wyznaczają wytyczne dotyczące klasyfikacji zagrożeń, co pozwala na skuteczniejsze zarządzanie bezpieczeństwem w miejscu pracy.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Połączono równe ilości cynku i bromu, a następnie poddano je reakcji Zn + Br2 → ZnBr2. W tych warunkach stopień reakcji cynku wynosi (masy atomowe: Zn – 65u, Br – 80u)?

A. 0,8
B. 1,0
C. 0,4
D. 0,6
Odpowiedź 0,4 jest poprawna, ponieważ obliczenia wskazują, że stosunek molowy cynku do bromu w reakcji wynosi 1:1. W przypadku reakcji, gdzie mamy do czynienia z równowagą stechiometryczną, kluczowe jest zrozumienie, że dla 1 mola Zn potrzeba 1 mola Br2. Zastosowane masy atomowe (Zn – 65u, Br – 80u) pozwalają na określenie, ile moli każdej substancji mamy w danej reakcji. Wymieszenie równych mas cynku i bromu, na przykład 65 g cynku i 80 g bromu, prowadzi do sytuacji, w której cynk jest reagentem ograniczającym, ponieważ mamy mniej moli cynku (1 mol) niż bromu (1,0 mol). W wyniku tego, tylko część bromu będzie reagować z cynkiem. Obliczając stopień przereagowania cynku, stwierdzamy, że 0,4 wynika z faktu, iż 0,4 mola cynku zareaguje całkowicie, a pozostałe 0,6 mola bromu nie znajdzie reagentu do reakcji. Takie analizy są kluczowe w praktyce chemicznej i inżynieryjnej, gdzie precyzyjne obliczenia dają podstawy do skutecznego projektowania procesów chemicznych.

Pytanie 25

Nie należy używać gorącej wody do mycia

A. zlewki
B. kolby stożkowej
C. kolby miarowej
D. szkiełka zegarkowego
Kolba miarowa jest szklanym naczyniem laboratoryjnym, które służy do dokładnego pomiaru objętości cieczy. Z uwagi na jej konstrukcję, nagłe zmiany temperatury mogą prowadzić do uszkodzeń, takich jak pęknięcia czy odkształcenia. Gorąca woda może powodować, że szkło stanie się bardziej podatne na stres termiczny, co jest niebezpieczne, zwłaszcza w przypadku kolb miarowych, które są projektowane z myślą o precyzyjnych pomiarach. W standardach laboratoryjnych, takich jak normy ISO, zaleca się, aby naczynia wykonane ze szkła boro-krzemowego, wykorzystywane w laboratoriach, nie były narażane na nagłe zmiany temperatury. Dobrą praktyką jest mycie ich w letniej wodzie z detergentem, a następnie dokładne płukanie w wodzie destylowanej, aby zminimalizować ryzyko uszkodzenia i zapewnić dokładność pomiarów. Przy odpowiedniej konserwacji, kolby miarowe mogą służyć przez wiele lat, jednak ich właściwe użytkowanie jest kluczowe dla utrzymania ich funkcjonalności.

Pytanie 26

Podczas przewozu próbek wody, które mają być badane pod kątem właściwości fizykochemicznych, zaleca się, aby te próbki były

A. ogrzane do temperatury 15°C
B. schłodzone do temperatury 2-5°C
C. ogrzane do temperatury 25°C
D. schłodzone do temperatury 6-10°C
Właściwe schłodzenie próbek wody do temperatury 2-5°C podczas transportu jest kluczowe dla zachowania ich jakości i integralności chemicznej. Niska temperatura spowalnia procesy biologiczne oraz chemiczne, które mogą prowadzić do zmiany składu chemicznego próbek, co z kolei może skutkować błędnymi wynikami analizy. Przykładem jest analiza zawartości substancji odżywczych, w których degradacja może nastąpić w wyniku działania mikroorganizmów. Zgodnie z zaleceniami takich organizacji jak EPA (Environmental Protection Agency) oraz ISO (Międzynarodowa Organizacja Normalizacyjna), transport próbek wody powinien odbywać się z zastosowaniem odpowiednich środków chłodzących. Praktyczne zastosowanie tych standardów można zauważyć w laboratoriach zajmujących się monitoringiem jakości wody, gdzie stosuje się lodowe akumulatory lub specjalne torby chłodzące. Zachowanie odpowiedniej temperatury transportu jest więc nie tylko kwestią zgodności z przepisami, ale również kluczowym elementem zapewniającym rzetelność wyników badań.

Pytanie 27

Mianowanie roztworu KMnO4 następuje według poniższej procedury:
Około 0,2 g szczawianu sodu, ważonego z dokładnością ±0,1 mg, przenosi się do kolby stożkowej, rozpuszcza w około 100 cm3 wody destylowanej, następnie dodaje się 10 cm3 roztworu kwasu siarkowego(VI) i podgrzewa do temperatury około 70 °C. Miareczkowanie przeprowadza się roztworem KMnO4 do momentu uzyskania trwałego, jasnoróżowego koloru.
Powyższa procedura odnosi się do miareczkowania

A. potencjometrycznego
B. alkacymetrycznego
C. kompleksometrycznego
D. redoksymetrycznego
Mianowanie roztworu manganianu(VII) potasu (KMnO4) w opisywanej procedurze odbywa się w ramach miareczkowania redoksymetrycznego, które jest techniką analizy chemicznej opartą na reakcji utleniania i redukcji. Manganian(VII) potasu jest silnym utleniaczem, a w reakcjach z substancjami redukującymi, takimi jak szczawian sodu, przeprowadza reakcję redoks, gdzie dochodzi do wymiany elektronów. Szczawian sodu w obecności kwasu siarkowego(VI) (H2SO4) ulega utlenieniu, a KMnO4 redukuje się do manganu(II). Ostatecznym punktem końcowym miareczkowania jest zauważenie trwałego lekkoróżowego zabarwienia roztworu, co wskazuje na niewielką nadmiarowość manganianu i zakończenie reakcji. Miareczkowanie redoksymetryczne znajduje zastosowanie w analizie różnych substancji, takich jak kwasy, alkohol czy węglowodany, stanowiąc istotny element w laboratoriach analitycznych. W praktyce, ważne jest zachowanie odpowiednich warunków, takich jak temperatura, pH i stężenie reagentów, aby zapewnić precyzyjność i powtarzalność wyników.

Pytanie 28

W przypadku rozlania żrącego odczynnika chemicznego na skórę pierwszym poprawnym działaniem jest:

A. Zaklejenie miejsca plastrem
B. Pocieranie miejsca kontaktu papierowym ręcznikiem
C. Posypanie miejsca solą kuchenną
D. Natychmiastowe spłukanie miejsca kontaktu dużą ilością wody
Postępowanie w przypadku kontaktu skóry z substancją żrącą jest jednym z podstawowych elementów bezpieczeństwa w laboratorium chemicznym. Najważniejsze jest, żeby działać szybko i skutecznie. Od razu po rozlaniu żrącego odczynnika trzeba spłukać miejsce kontaktu dużą ilością wody – najlepiej bieżącej. To nie tylko rozcieńcza szkodliwy związek, ale przede wszystkim usuwa go z powierzchni skóry, zmniejszając ryzyko głębszych uszkodzeń tkanek. Praktyka ta wynika z ogólnych zasad BHP obowiązujących w laboratoriach oraz wytycznych instytutów takich jak CIOP czy OSHA. Efektywność tej metody potwierdzają liczne badania. Szybka reakcja pozwala ograniczyć wchłanianie substancji i minimalizuje skutki poparzeń chemicznych. Nawet jeśli żrący środek wydaje się mało agresywny, nie wolno tego bagatelizować. Dobrze mieć też pod ręką prysznic bezpieczeństwa lub zestaw do płukania oczu, zwłaszcza w laboratoriach chemicznych. Warto pamiętać, że niektóre substancje wymagają dłuższego płukania – nawet do 15 minut. Dodatkowo po takim incydencie zawsze należy zgłosić zdarzenie przełożonemu i skonsultować się z lekarzem. Z mojego doświadczenia, szybkie działanie i wiedza o pierwszej pomocy to rzeczy, które naprawdę robią różnicę w laboratoriach. Ostatecznie – lepiej spłukać odczynnik za długo, niż za krótko. To jedna z tych zasad, które zawsze warto mieć z tyłu głowy podczas pracy z chemikaliami.

Pytanie 29

Metoda oczyszczania substancji oparta na różnicach w rozpuszczalności poszczególnych składników w określonym rozpuszczalniku to

A. adsorpcja
B. krystalizacja
C. destylacja
D. chromatografia
Wybór innych metod oczyszczania substancji, takich jak chromatografia, destylacja czy adsorpcja, wskazuje na niewłaściwe zrozumienie różnic między tymi technikami a krystalizacją. Chromatografia polega na separacji składników mieszaniny w oparciu o różne stopnie ich adsorpcji na materiale stacjonarnym, a nie na różnicach w rozpuszczalności. Jest to technika szeroko stosowana w analityce chemicznej, jednak nie jest dedykowana do oddzielania substancji na podstawie ich rozpuszczalności. Destylacja, z kolei, opiera się na różnicach w temperaturach wrzenia składników, co czyni ją odpowiednią do separacji cieczy, a nie stałych substancji. W procesie destylacji, ciecz o niższej temperaturze wrzenia odparowuje jako pierwsza, a następnie kondensuje, co nie jest związane z rozpuszczalnością substancji. Adsorpcja odnosi się do przyciągania cząsteczek na powierzchnię ciała stałego lub cieczy i również nie dotyczy rozpuszczalności. Wybierając te metody, można popełnić błąd polegający na myleniu podstawowych zasad chemii, co prowadzi do nieefektywnego oczyszczania substancji. Aby skutecznie oczyszczać substancje, kluczowe jest zrozumienie właściwości fizykochemicznych substancji oraz dopasowanie procesu oczyszczania do ich specyfiki.

Pytanie 30

Aby oddzielić połączenia szlifów, należy w miejscu ich styku wprowadzić

A. kwas fluorowodorowy
B. glicerynę
C. wodorotlenek sodu
D. wodorotlenek potasu
Gliceryna jest substancją, która doskonale sprawdza się w procesie rozdzielania zapieczonych połączeń szlifów. Jej zastosowanie wynika z właściwości chemicznych, które pozwalają na skuteczne działanie w trudnych warunkach. Gliceryna jest środkiem niejonowym, co oznacza, że nie wywołuje reakcji z materiałami, z którymi współdziała. W praktyce, podczas zastosowania gliceryny na strefie połączenia szlifów, zwiększa się elastyczność otaczających materiałów, co ułatwia ich oddzielenie bez ryzyka uszkodzenia. Gliceryna ma również właściwości nawilżające, co dodatkowo sprzyja procesowi rozdzielania, zapewniając lepszą penetrację w obszary o dużym skurczeniu. W branżach zajmujących się szlifowaniem i obróbką materiałów, takich jak przemysł motoryzacyjny czy lotniczy, stosowanie gliceryny jako środka pomocniczego w rozdzielaniu połączeń jest zgodne z najlepszymi praktykami, co potwierdzają liczne standardy jakości. Dodatkowo, gliceryna jest substancją nietoksyczną, co czyni ją bezpiecznym wyborem w porównaniu do innych chemikaliów.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Do przechowywania zamrożonych próbek wody stosuje się naczynia wykonane

A. ze szkła borokrzemowego
B. ze szkła sodowego
C. ze szkła krzemowego
D. z polietylenu
Wybór polietylenu do przechowywania próbek wody w postaci zamrożonej wynika z jego korzystnych właściwości fizykochemicznych oraz technicznych. Polietylen jest materiałem, który charakteryzuje się wysoką odpornością na niskie temperatury, co czyni go idealnym do zastosowań wymagających długotrwałego przechowywania w warunkach chłodniczych. W przeciwieństwie do szkła, polietylen jest elastyczny, co zmniejsza ryzyko pęknięć, które mogą wystąpić podczas zamrażania, gdy woda zmienia objętość. Dodatkowo, polietylen nie wchodzi w reakcje z wodą i nie wydziela substancji toksycznych, co jest kluczowe w kontekście analizy jakości wody. W laboratoriach i badaniach środowiskowych, stosowanie pojemników z polietylenu do przechowywania próbek wody jest zgodne z wytycznymi organizacji takich jak EPA i ISO, które zalecają materiały nieinterferujące z właściwościami próbek. Przykładem zastosowania polietylenu są pojemniki HDPE (polietylen o wysokiej gęstości), które są powszechnie stosowane w badaniach wód gruntowych oraz innych próbek środowiskowych.

Pytanie 33

Czego się używa w produkcji z porcelany?

A. moździerze i parowniczki
B. naczynia wagowe oraz krystalizatory
C. zlewki oraz bagietki
D. szkiełka zegarkowe oraz szalki Petriego
Moździerze i parowniczki są przykładami przedmiotów laboratoryjnych wykonanych z porcelany, co wynika z ich właściwości chemicznych oraz strukturalnych. Porcelana jest materiałem odpornym na wysokie temperatury i agresywne chemikalia, co czyni ją idealnym materiałem do produkcji sprzętu laboratoryjnego, który ma kontakt z substancjami chemicznymi. Moździerze służą do rozdrabniania substancji stałych oraz do ich mieszania, a ich gładka powierzchnia pozwala na efektywne przeprowadzanie reakcji chemicznych. Parowniczki, z kolei, są wykorzystywane do odparowywania cieczy, co również wymaga materiału odpornego na działanie wysokiej temperatury oraz na chemikalia. Używanie porcelanowych naczyń w laboratoriach jest zgodne z najlepszymi praktykami, ponieważ minimalizuje ryzyko zanieczyszczenia prób i zapewnia ich wysoką jakość. Dodatkowo, porcelana ma estetyczny wygląd, co może być istotne w laboratoriach, gdzie organizowane są prezentacje lub spotkania naukowe.

Pytanie 34

Etykieta roztworu kwasu azotowego(V) o koncentracji 6 mol/dm3 powinna zawierać nazwę substancji oraz

A. masę, koncentrację i numer katalogowy
B. koncentrację, ostrzeżenia H oraz datę przygotowania
C. masę, datę przygotowania i numer katalogowy
D. koncentrację, producenta i wykaz zanieczyszczeń
Poprawna odpowiedź wskazuje, że etykieta roztworu kwasu azotowego(V) o stężeniu 6 mol/dm3 powinna zawierać stężenie, zwroty zagrożeń H oraz datę sporządzenia. Umożliwia to nie tylko identyfikację substancji, ale także informuje użytkownika o potencjalnych zagrożeniach związanych z jej stosowaniem. Zwroty zagrożeń H (Hazard statements) są kluczowym elementem, który świadczy o ryzyku związanym z kontaktami, na przykład: H290 - może być żrący dla metali, H314 - powoduje poważne oparzenia skóry oraz uszkodzenia oczu. Podawanie stężenia kwasu jest istotne dla oceny jego reaktywności oraz właściwego postępowania ze substancją. Data sporządzenia pozwala na śledzenie ważności roztworu oraz jego stabilności. Przykładem zastosowania jest laboratorium chemiczne, gdzie precyzyjne etykiety pomagają utrzymać bezpieczeństwo i zgodność z przepisami BHP. W branży laboratoryjnej standardy takie jak GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) dostarczają wytycznych dotyczących etykietowania substancji chemicznych, co znacząco zwiększa bezpieczeństwo pracy.

Pytanie 35

W jakim celu używa się kamyczków wrzenne w trakcie długotrwałego podgrzewania cieczy?

A. Zwiększenia powierzchni kontaktu faz w celu przyspieszenia reakcji
B. Uniknięcia miejscowego przegrzewania się cieczy
C. Zwiększenia temperatury wrzenia cieczy
D. Obniżenia temperatury wrzenia cieczy
Kamyczki wrzenne, znane też jako rdzenie wrzenia, są naprawdę ważne, gdy chodzi o zapobieganie przegrzewaniu się cieczy. Działają na zasadzie zwiększania powierzchni, na której zachodzi wrzenie, co w efekcie pozwala na równomierne rozprowadzenie temperatury. Gdyby nie one, mogłyby powstawać pęcherzyki pary, które czasem wybuchają i mogą prowadzić do niebezpiecznych sytuacji, takich jak gwałtowny wzrost ciśnienia. Dlatego użycie kamyczków wrzennych jest w laboratoriach czy w chemii naprawdę istotne, ponieważ pozwala na lepszą kontrolę temperatury i uzyskanie wiarygodnych wyników. Na przykład w destylacji, stabilne wrzenie jest kluczem do efektywnego oddzielania różnych składników. Można powiedzieć, że to standardy jak ISO 17025 to potwierdzają – mówią, jak ważne jest to dla jakości i bezpieczeństwa badań.

Pytanie 36

Maksymalna średnica ziaren w partii substancji stałej wynosi 0,5 cm. Zgodnie z danymi zawartymi w tabeli próbka pierwotna tej substancji powinna mieć masę minimum

Tabela. Masa próbki pierwotnej w zależności od wielkości ziaren lub kawałków
Średnica ziaren lub kawałków [mm]do 11 - 1011 - 50ponad 50
Pierwotna próbka (minimum) [g]10020010002500

A. 1000 g
B. 2500 g
C. 200 g
D. 100 g
Odpowiedź 200 g jest poprawna, ponieważ zgodnie z danymi zawartymi w tabeli, średnica ziaren wynosząca 0,5 cm (5 mm) mieści się w przedziale od 1 do 10 mm. Dla takiej średnicy, minimalna masa próbki pierwotnej powinna wynosić 200 g. W kontekście badań materiałowych, odpowiednia masa próbki jest kluczowa, aby uzyskać reprezentatywne wyniki analiz. Przykładem zastosowania tej wiedzy może być przemysł farmaceutyczny, gdzie precyzyjne określenie masy substancji czynnej ma fundamentalne znaczenie dla skuteczności leku. Przemysł ten opiera się na standardach takich jak ISO 17025, które wymagają stosowania odpowiednich procedur i metodologii w celu zapewnienia wiarygodności wyników. W praktyce, zrozumienie, jak masa próbki wpływa na jej dalsze właściwości fizykochemiczne, jest niezbędne dla uzyskania dokładnych wyników badawczych.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Pobieranie próbek wody z zbiornika wodnego, który zasila system wodociągowy, powinno odbywać się

A. w najgłębszym punkcie, z którego czerpana jest woda
B. na powierzchni wody, w pobliżu brzegu zbiornika
C. w miejscu oraz na głębokości, gdzie następuje czerpanie wody
D. na powierzchni wody, w centralnej części zbiornika
Zbieranie próbek wody na powierzchni zbiornika, zarówno przy brzegu, jak i na środku, jest nieodpowiednie, ponieważ nie odzwierciedla rzeczywistych warunków wody, która jest później używana w systemie wodociągowym. Pobieranie próbek wyłącznie z powierzchni może prowadzić do fałszywego obrazu jakości wody, ponieważ może ignorować zanieczyszczenia znajdujące się w niższych warstwach, które mogą być znacznie gorszej jakości. Na przykład, substancje chemiczne mogą osiadać na dnie zbiornika lub występować w niższych warstwach wody, a ich obecność nie będzie wykryta podczas pobierania próbek z powierzchni. Dodatkowo, zasysanie wody z najgłębszego miejsca zbiornika może wydawać się logiczne, jednak nie zawsze odpowiada to rzeczywistemu miejscu poboru, które może znajdować się w innym punkcie zbiornika na określonej głębokości. Warto również zauważyć, że zanieczyszczenia mogą różnić się w różnych częściach zbiornika, a ich analiza wymaga dokładnego określenia warunków, w których woda jest pobierana. Dlatego kluczowe jest, aby próbki były pobierane w miejscu i na głębokości, w której odbywa się rzeczywisty pobór wody, co zapewnia reprezentatywność wyników i zgodność z obowiązującymi standardami jakości wody.

Pytanie 39

Jaką masę wodorotlenku potasu trzeba odważyć, żeby przygotować 500 cm3 roztworu o stężeniu 0,02 mola? Masy molowe poszczególnych pierwiastków wynoszą: potas K - 39 g/mol, tlen O - 16 g/mol, wodór H - 1 g/mol?

A. 56,00 g
B. 0,28 g
C. 5,60 g
D. 0,56 g
Aby obliczyć, ile gramów wodorotlenku potasu (KOH) należy odważyć do przygotowania 500 cm³ 0,02-molowego roztworu, należy zastosować wzór na obliczenie masy substancji w roztworze: m = C × V × M, gdzie m to masa w gramach, C to stężenie molowe, V to objętość roztworu w litrach, a M to masa molowa substancji. Masa molowa KOH wynosi: 39 g/mol (K) + 16 g/mol (O) + 1 g/mol (H) = 56 g/mol. Podstawiając dane do wzoru, otrzymujemy: m = 0,02 mol/L × 0,5 L × 56 g/mol = 0,56 g. W praktyce, precyzyjne odważenie substancji chemicznych jest kluczowe w laboratoriach, aby uzyskać odpowiednie stężenie roztworu, co jest istotne w wielu procesach chemicznych, takich jak syntezy, analizach chemicznych czy w badaniach naukowych.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.