Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 13 maja 2025 14:07
  • Data zakończenia: 13 maja 2025 14:43

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podłączenie kondensatora (w układzie równoległym do obciążenia) do wyjścia jednofazowego prostownika działającego w konfiguracji mostka Graetza wpłynie na napięcie wyjściowe w sposób

A. zmiany przebiegu jednopulsowego na dwupulsowy
B. zmiany przebiegu dwupulsowego na jednopulsowy
C. redukcji tętnień
D. zmniejszenia składowej stałej
Dołączenie kondensatora równolegle do obciążenia w wyjściu jednofazowego prostownika pracującego w układzie mostka Graetza ma na celu zmniejszenie tętnień napięcia wyjściowego. Kondensator działa jak filtr, magazynując energię elektryczną podczas szczytów napięcia i oddając ją w czasie, gdy napięcie spada, co prowadzi do bardziej stabilnego poziomu napięcia. W praktyce, zmniejszenie tętnień jest kluczowe w aplikacjach, gdzie wymagane są stałe wartości napięcia, takich jak zasilanie urządzeń elektronicznych, w których wahania napięcia mogą powodować uszkodzenia komponentów. Użycie kondensatora jest zgodne z najlepszymi praktykami inżynieryjnymi, które wskazują na znaczenie filtracji w układach zasilających. Dodatkowo, zastosowanie kondensatorów o odpowiednich parametrach pojemnościowych i napięciowych, zgodnych z normami IEC 61000, przyczynia się do poprawy jakości energii elektrycznej i stabilności systemów zasilających.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Aby zmierzyć naprężenia normalne (ściśnięcia, rozciągnięcia), należy użyć

A. pirometru
B. tachometru
C. termometru
D. tensometru
Tensometr jest urządzeniem służącym do pomiaru naprężeń normalnych, takich jak ściskanie i rozciąganie. Działa na zasadzie pomiaru odkształceń, które następnie przelicza na wartości naprężeń zgodnie z zasadą Hooke'a. Dzięki temu, tensometry są niezwykle ważne w inżynierii mechanicznej i materiałowej, gdzie precyzyjne pomiary naprężeń są kluczowe dla oceny wytrzymałości materiałów oraz konstrukcji. Przykłady zastosowania tensometrów obejmują badania wytrzymałościowe elementów konstrukcyjnych, takich jak belki, stropy czy mosty. W standardach takich jak ISO 9513 określono metody kalibracji tensometrów, co pozwala na uzyskanie wiarygodnych wyników. Dobre praktyki w stosowaniu tensometrów obejmują również ich odpowiedni dobór do rodzaju materiału oraz warunków pomiarowych, co zapewnia rzetelność i dokładność uzyskanych wyników. Dodatkowo, stosowane są różne typy tensometrów, w tym tensometry foliowe, które umożliwiają pomiary na różnorodnych powierzchniach, co zwiększa ich wszechstronność w zastosowaniach inżynieryjnych.

Pytanie 4

Aby zatrzymać tłoczysko siłownika pneumatycznego o działaniu dwustronnym w dowolnym miejscu, wykorzystuje się zawór

A. pięciodrogowy trójpołożeniowy (5/3)
B. pięciodrogowy dwupołożeniowy (5/2)
C. trójdrogowy trójpołożeniowy (3/3)
D. trójdrogowy dwupołożeniowy (3/2)
Wybór zaworu trójdrogowego trójpołożeniowego (3/3) czy dwupołożeniowego (3/2) raczej nie jest dobrym pomysłem. To znaczy, te zawory mają swoje ograniczenia. Zawór trójdrogowy ma tylko trzy porty i nie może jednocześnie zasilać siłownika i go zatrzymać, co nie jest wystarczające w bardziej skomplikowanych układach. A jakbyś wybrał pięciodrogowy dwupołożeniowy (5/2), to też nie będzie ok, bo ma tylko dwa położenia robocze, czyli nie zatrzymasz siłownika w konkretnych punktach. Moim zdaniem, takie wybory mogą prowadzić do problemów w procesach, gdzie ważna jest precyzja. Ważne jest, żeby dobrze rozumieć różnice między różnymi typami zaworów i ich zastosowaniem, żeby nie wprowadzać nieefektywnych rozwiązań i trzymać się norm branżowych.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Filtr o charakterystyce pasmowo-zaporowej

A. przepuszcza sygnały w zakresie określonego pasma częstotliwości.
B. tłumi sygnały o częstotliwościach w obrębie określonego pasma częstotliwości.
C. przepuszcza sygnały o niskich częstotliwościach.
D. tłumi sygnały o niskich częstotliwościach.
W przypadku filtrów pasmowo-zaporowych istnieje wiele nieporozumień dotyczących ich funkcji i zastosowań. Odpowiedzi, które sugerują, że filtr ten przepuszcza sygnały o częstotliwościach wewnątrz wyznaczonego pasma częstotliwości, są zasadniczo mylne. Takie określenie odnosiłoby się raczej do filtrów pasmowych, które mają za zadanie przepuszczać sygnały w określonym zakresie częstotliwości, a nie ich tłumienie. Również te odpowiedzi, które wskazują na tłumienie sygnałów o małej częstotliwości, są błędne, ponieważ filtry pasmowo-zaporowe nie koncentrują się jedynie na niskich częstotliwościach, ale na eliminowaniu określonego zakresu częstotliwości, niezależnie od tego, czy są one niskie, średnie, czy wysokie. Typowe błędy myślowe prowadzące do tych błędnych wniosków często wynikają z nieporozumienia dotyczącego terminologii związanej z filtracją sygnałów. Zrozumienie, że filtry pasmowo-zaporowe aktywnie eliminują sygnały w określonym paśmie, a nie je przepuszczają, jest kluczowe dla poprawnego zastosowania tej teorii w praktyce inżynieryjnej. Dlatego ważne jest, aby przed przystąpieniem do projektowania lub analizy systemów wykorzystujących filtrację sygnałów, dokładnie zrozumieć działanie i właściwości różnych typów filtrów oraz ich zastosowanie w praktyce.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jakiego klucza należy użyć, aby odkręcić śrubę z walcowym łbem i sześciokątnym gniazdem?

A. Dynamometrycznego
B. Nasadowego
C. Imbusowego
D. Płaskiego
Odpowiedzi płaskiego, nasadowego i dynamometrycznego są nieprawidłowe z różnych powodów. Klucz płaski, choć jest popularnym narzędziem, nie sprawdzi się w przypadku śrub z gniazdem sześciokątnym, ponieważ jego konstrukcja nie pasuje do kształtu gniazda. W takich sytuacjach zastosowanie klucza płaskiego może prowadzić do poślizgu i uszkodzenia zarówno narzędzia, jak i śruby. Klucz nasadowy, mimo iż jest użyteczny w wielu zastosowaniach, również nie jest odpowiedni, ponieważ jego gniazdo nie jest zoptymalizowane do pracy ze śrubami imbusowymi. Klucze nasadowe są przeznaczone głównie do śrub z łbem sześciokątnym zewnętrznym. Klucz dynamometryczny, z kolei, jest narzędziem służącym do przykręcania śrub z określonym momentem obrotowym, co oznacza, że jest stosowany w sytuacjach, gdzie ważne jest precyzyjne dokręcenie. Jednakże, bez odpowiedniego klucza do wstępnego luzowania takich śrub, dynamometryczny nie będzie miał zastosowania. Dlatego klucz imbusowy jest jedynym narzędziem, które zapewnia efektywne i bezpieczne wykręcanie śrub z łbem walcowym i gniazdem sześciokątnym, dzięki czemu unikamy błędów i potencjalnych uszkodzeń.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Co należy zrobić w przypadku urazu kolana u pracownika po upadku z wysokości?

A. wyregulować nogę, lekko ciągnąc ją w dół.
B. umieścić poszkodowanego w ustalonej pozycji bocznej.
C. unieruchomić staw kolanowy na jakimkolwiek podparciu, nie zmieniając jego pozycji.
D. nałożyć bandaż na kolano po delikatnym wyprostowaniu nogi.
W przypadku urazu kolana, szczególnie po upadku z wysokości, kluczowe jest unieruchomienie stawu w jego naturalnym ustawieniu. Ta technika ma na celu ograniczenie dalszego uszkodzenia tkanek oraz zmniejszenie bólu. Gdy kości stawu kolanowego są unieruchomione w ich fizjologicznym położeniu, minimalizujemy ryzyko przemieszczenia uszkodzonych struktur oraz ewentualnych powikłań związanych z nieprawidłowym ułożeniem. Praktyczne zastosowanie tej metody obejmuje użycie szyn, bandaży czy innych dostępnych materiałów, które stabilizują staw. Warto podkreślić, że według wytycznych organizacji zajmujących się pierwszą pomocą, tak jak np. Czerwony Krzyż, unieruchomienie powinno być wykonane jak najszybciej i z zachowaniem ostrożności. Istotne jest także, aby nie próbować prostować lub manipulować urazem, co może prowadzić do dalszych urazów i komplikacji. Po unieruchomieniu należy jak najszybciej wezwać pomoc medyczną, aby zapewnić dalszą opiekę nad poszkodowanym.

Pytanie 13

Podczas wymiany przewodu wysokociśnieniowego w systemie hydraulicznym, jakie aspekty powinny być brane pod uwagę przy wyborze nowego przewodu?

A. Grubość materiału oraz przepuszczalność
B. Odporność na ściskanie oraz masa
C. Ciśnienie robocze i minimalny promień gięcia
D. Przepustowość i odporność na rozciąganie
Wybór nowego przewodu wysokociśnieniowego w układzie hydraulicznym powinien uwzględniać ciśnienie robocze oraz minimalny promień gięcia. Ciśnienie robocze jest kluczowym parametrem, ponieważ przewody muszą być w stanie utrzymać określone wartości ciśnienia bez ryzyka pęknięcia lub uszkodzenia. Ważne jest, aby przewód był zaprojektowany zgodnie z normami, takimi jak ISO 18752, które definiują różne klasy przewodów w zależności od ich zastosowania. Minimalny promień gięcia odnosi się do zdolności przewodu do elastycznego odkształcania się bez uszkodzenia, co jest istotne w przypadku instalacji w trudno dostępnych miejscach. Przykładem może być zastosowanie odpowiednich przewodów w maszynach budowlanych, gdzie przewody muszą być gięte w małych przestrzeniach, a jednocześnie muszą wytrzymać wysokie ciśnienia pracy. Należy również brać pod uwagę temperaturę pracy oraz kompatybilność chemiczną materiałów, z których wykonany jest przewód, aby zapewnić długotrwałe i bezpieczne działanie systemu hydraulicznego.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Podczas rozbierania łożysk kulkowych powinno się wykorzystać

A. klucz dynamometryczny
B. ściągacz
C. młotek
D. palnik gazowy
Ściągacz to narzędzie specjalnie zaprojektowane do usuwania łożysk, kołków i innych elementów, które mogą być trudne do wyjęcia z powodu ich pasowania lub osadzenia na wrzecionie. W przypadku łożysk kulkowych, ściągacz umożliwia równomierne i bezpieczne usunięcie łożyska z wału lub obudowy bez ryzyka uszkodzenia elementów. Użycie ściągacza minimalizuje ryzyko uszkodzeń powierzchni oraz zmniejsza potrzebę stosowania siły, co wpływa na przedłużenie żywotności zarówno łożyska, jak i wału. W praktyce, podczas serwisowania maszyn lub pojazdów, ściągacz jest często standardowym wyposażeniem warsztatu, zgodnym z branżowymi standardami bezpieczeństwa i efektywności. Zaleca się stosowanie ściągaczy o odpowiednim rozmiarze, co zapewnia precyzyjne dopasowanie do usuwanego elementu. Dodatkowo, warto zapoznać się z procedurami demontażu opisanymi w dokumentacji technicznej producentów, aby zapewnić prawidłowe wykonanie operacji.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Jaką metodę spawania wykorzystuje się z gazem o właściwościach chemicznych aktywnych?

A. MIG
B. TIG
C. MAG
D. SAW
Wybór odpowiedzi dotyczących metod TIG, MIG czy SAW wskazuje na pewne nieporozumienia dotyczące zastosowania gazów w procesach spawania. Metoda TIG (Tungsten Inert Gas) opiera się na użyciu tungstenowego elektrody oraz gazu obojętnego, takiego jak argon, co oznacza brak zastosowania gazu chemicznie aktywnego. To sprawia, że metoda TIG nie jest odpowiednia do spawania materiałów podatnych na utlenianie, co czyni ją bardziej skomplikowaną w kontekście spawania stali konstrukcyjnych. Metoda MIG, podobnie jak TIG, także posługuje się gazami obojętnymi, co eliminuje możliwość wpływania aktywnych gazów na proces spawania. Na dodatek, w metodzie SAW (Submerged Arc Welding) stosuje się spawanie pod topnikiem, gdzie gaz nie jest kluczowym elementem procesu, co czyni tę metodę mniej elastyczną w kontekście zastosowań wymagających aktywnych gazów. Zrozumienie różnic między tymi technikami oraz ich odpowiednim zastosowaniem jest kluczowe dla uzyskania wysokiej jakości spoin. W praktyce, wybór odpowiedniej metody spawania powinien być podyktowany specyfiką materiałów oraz wymaganiami technologicznymi danego projektu, co jest zgodne z normami i dobrymi praktykami branżowymi.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jaką rezystancję ma świecąca żarówka, której napięcie nominalne wynosi 230 V, a moc to 100 W?

A. 529 ?
B. 23 k?
C. 460 ?
D. 2,3 ?
Odpowiedź 529 Ω jest całkiem trafna. Użyliśmy wzoru Ohma, by połączyć moc (P), napięcie (U) i rezystancję (R). Jak to się zapisuje? Łatwo, P = U²/R i stąd mamy R = U²/P. Dla napięcia 230 V i mocy 100 W, jak to obliczyłeś, wychodzi nam 529 Ω. To mówi nam, że żarówka przy takim napięciu ma opór 529 Ω, co jest istotne przy układaniu obwodów elektrycznych. Z mojego doświadczenia, wiedza o rezystancji żarówek pozwala lepiej zaplanować cały obwód, zwłaszcza kiedy chodzi o dobór przewodów i zabezpieczeń. W oświetleniu ważne, żeby przewody były odpowiednio dostosowane do obciążenia, a te obliczenia są kluczowe dla bezpieczeństwa i efektywności energetycznej w instalacjach elektrycznych. W sumie, te standardy, jak IEC 60598, przypominają, jak ważne są te rzeczy w praktyce.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Rysunek przedstawia symbol graficzny bramki

Ilustracja do pytania
A. NAND
B. Ex-OR
C. NOR
D. Ex-NOR
Symbol graficzny przedstawia bramkę Ex-OR (Exclusive OR), która jest kluczowym elementem w projektowaniu układów cyfrowych. Działa na zasadzie, że na wyjściu generuje stan wysoki (1) tylko wtedy, gdy na wejściach są różne stany – jednocześnie 1 i 0. To odróżnia ją od standardowej bramki OR, która daje wynik wysoki, gdy przynajmniej jedno z wejść ma stan wysoki. W praktyce, bramki Ex-OR są wykorzystywane w takich zastosowaniach jak sumatory w obliczeniach arytmetycznych, a także w układach logicznych, które wymagają porównywania stanów. Przykładem może być kontrola błędów w transmisji danych, gdzie bramka Ex-OR jest używana do generowania bitów parzystości. W kontekście standardów, stosowanie bramek Ex-OR jest zgodne z praktykami projektowania układów cyfrowych, które kładą nacisk na efektywność i minimalizację błędów. Zrozumienie działania tej bramki jest fundamentem dla dalszych zagadnień związanych z układami cyfrowymi i logiką.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jakie urządzenie jest używane do mierzenia prędkości obrotowej wału silnika?

A. czujnik termoelektryczny
B. mostek tensometryczny
C. prądnica tachometryczna
D. potencjometr obrotowy
Prądnica tachometryczna jest urządzeniem wykorzystywanym do pomiaru prędkości obrotowej wału silnika, które działa na zasadzie indukcji elektromagnetycznej. Jej działanie opiera się na generacji napięcia proporcjonalnego do prędkości obrotowej, co czyni ją niezwykle przydatną w monitorowaniu pracy maszyn. Prądnice tachometryczne znajdują zastosowanie w różnych dziedzinach, takich jak automatyka przemysłowa, kontrola procesów technologicznych oraz systemy napędowe. Dzięki nim można dokładnie kontrolować prędkość obrotową silników, co jest kluczowe dla utrzymania stabilności pracy urządzeń oraz minimalizacji zużycia energii. Współczesne prądnice tachometryczne są często zintegrowane z systemami sterowania, co pozwala na automatyzację procesów i zwiększenie efektywności produkcji. Używane są także w aplikacjach wymagających precyzyjnego pomiaru, takich jak robotyka czy systemy CNC, gdzie dokładność i niezawodność pomiarów są krytyczne.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

W procesie TIG stosuje się technikę spawania

A. strumieniem elektronów
B. elektrodą wolframową w osłonie argonowej
C. łukiem plazmowym
D. elektrodą topliwą w osłonie dwutlenku węgla
W metodzie TIG kluczowym elementem jest użycie elektrod wolframowych, co odróżnia ją od innych technik spawalniczych. Odpowiedź wskazująca na strumień elektronów odnosi się do spawania elektronowego, które działa na zupełnie innej zasadzie, gdzie wiązka elektronów jest kierowana na spawany materiał w próżni, co nie ma zastosowania w metodzie TIG. Ponadto, spawanie elektrodą topliwą w osłonie dwutlenku węgla odnosi się do metody MAG (Metal Active Gas), która również różni się zasadniczo od TIG, gdyż wykorzystuje elektrodę, która topnieje podczas procesu spawania. Łuk plazmowy to inna forma spawania, która stosuje plazmę do generowania wysokiej temperatury, ale również nie jest tożsama z metodą TIG. Wiele osób myli te metody ze względu na ich podobieństwa w użyciu gazu ochronnego, jednak różnice w zastosowaniu elektrod i mechanizmach spawania są kluczowe dla zrozumienia, która technika jest odpowiednia w danym kontekście. Niezrozumienie tych różnic prowadzi do błędnych wniosków i wyborów technologicznych, co może skutkować problemami z jakością spoin oraz efektywnością produkcji.

Pytanie 31

Jakie narzędzia powinno się zastosować do montażu przewlekanego komponentów elektronicznych na płytce PCB?

A. Lutownica na gorące powietrze z dyszą w kształcie 7x7
B. Stacja lutownicza
C. Lutownica z końcówką 'minifala'
D. Rozlutownica
Stacja lutownicza to narzędzie, które zapewnia precyzyjne i stabilne warunki pracy, co jest kluczowe podczas lutowania przewlekanego elementów elektronicznych na płytkach drukowanych. Dzięki regulowanej temperaturze i możliwości dostosowania przepływu powietrza, stacja lutownicza umożliwia skuteczne lutowanie, minimalizując ryzyko przegrzewania komponentów. Na przykład, w przypadku lutowania małych elementów, takich jak kondensatory czy oporniki, stacja lutownicza pozwala na dokładne ustawienie temperatury, co jest niezbędne do uzyskania mocnych połączeń bez uszkodzenia wrażliwych elementów. Dobre praktyki branżowe sugerują użycie stacji z technologią podgrzewania, co umożliwia równomierne rozgrzanie obszaru lutowanego, co jest szczególnie przydatne w przypadku złożonych układów. Stacje lutownicze są także wyposażone w różnorodne końcówki, co zwiększa ich wszechstronność i umożliwia pracę z różnymi rodzajami elementów elektronicznych. W kontekście standardów IPC (Institute of Printed Circuits), stosowanie stacji lutowniczych w procesie montażu jest zalecane, ponieważ pozwala na osiągnięcie wyższej jakości połączeń lutowanych oraz dłuższej żywotności urządzeń elektronicznych.

Pytanie 32

Które z poniższych urządzeń nie należy do kategorii mechatronicznych?

A. chłodziarko-zamrażarka z cyfrowym sterowaniem
B. silnik indukcyjny klatkowy
C. odtwarzacz płyt CD oraz DVD
D. drukarka laserowa
Wybór odpowiedzi, które wskazują na urządzenia mechatroniczne, raczej wynika z tego, że nie do końca rozumiesz, co to takiego. Przykłady jak drukarka laserowa, odtwarzacz płyt CD i DVD czy sterowana cyfrowo chłodziarko-zamrażarka to rzeczywiście łączą w sobie mechanikę, elektronikę i informatykę, przez co mogą być uznane za mechatroniczne. Przykładowo, drukarka laserowa to zaawansowane urządzenie, które łączy różne technologie – optykę, elektronikę i mechanikę – żeby drukować z dużą precyzją. Odtwarzacze płyt również wykorzystują mechanizmy do ładowania płyt i mają systemy laserowe do odczytu danych oraz elektroniki do przetwarzania dźwięku i obrazu. A te chłodziarko-zamrażarki, które są sterowane cyfrowo, to złożone systemy z czujnikami temperatury i mechaniką, które pomagają zarządzać temperaturą i oszczędzać energię. Warto, żebyś przy wyborze odpowiedzi pamiętał, że mechatronika to głównie systemy, gdzie mechanika spotyka elektronikę. Często popełniane błędy to takie, że zawężasz definicję mechatroniki tylko do mechaniki, przez co pomijasz ważne elektroniczne i cyfrowe elementy, które są kluczowe dla działania tych systemów.

Pytanie 33

Podczas inspekcji systemu podnośnika hydraulicznego zauważono, że olej się spienia i jest wydobywany przez odpowietrznik zbiornika. Co może być przyczyną tej usterki?

A. Wytarte pierścienie uszczelniające rozdzielaczy
B. Nieszczelność zaworu bezpieczeństwa
C. Nieszczelność w przewodzie ssawnym pompy
D. Wytarte pierścienie uszczelniające tłokowe
Nieszczelność w przewodzie ssawnym pompy jest kluczową przyczyną spieniania się oleju w układzie hydraulicznym. Gdy przewód ssawny jest nieszczelny, powietrze dostaje się do układu, co powoduje, że olej nie jest prawidłowo zasysany przez pompę. W efekcie powietrze miesza się z olejem, co prowadzi do jego spienienia i wytworzenia bąbelków powietrza. To zjawisko obniża wydajność hydrauliczną systemu oraz może prowadzić do uszkodzenia pompy i innych komponentów. W praktyce, aby zapobiec takim problemom, należy regularnie kontrolować stan przewodów ssawnych oraz ich połączeń, zgodnie z zaleceniami producentów maszyn i norm branżowych. Dobrą praktyką jest również stosowanie systemów monitorujących, które informują o ewentualnych nieszczelnościach lub spadkach ciśnienia. Właściwe uszczelnienie przewodów jest kluczowe dla zapewnienia długotrwałej i efektywnej pracy układu hydraulicznego, co jest istotne w zastosowaniach przemysłowych oraz budowlanych, gdzie niezawodność sprzętu jest priorytetem.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Jakie narzędzia są potrzebne do dokręcania przewodów hydraulicznych?

A. Kluczy płaskich
B. Szczypiec płaskich
C. Szczypiec uniwersalnych
D. Kluczy oczkowych
Wybór niewłaściwych narzędzi do przykręcania przewodów hydraulicznych może prowadzić do poważnych problemów związanych z bezpieczeństwem i funkcjonalnością systemu. Szczypce uniwersalne, choć mogą wydawać się wszechstronnym narzędziem, nie są przeznaczone do precyzyjnego dokręcania nakrętek hydraulicznych. Ich konstrukcja sprawia, że siła aplikowana na nakrętki jest rozproszona, co może prowadzić do ich uszkodzenia. Użycie szczypiec płaskich również nie jest optymalne, ponieważ nie zapewniają one stabilności i precyzji, które są kluczowe podczas pracy z połączeniami hydraulicznymi. Z kolei klucze oczkowe, mimo że mogą być używane w niektórych zastosowaniach, często nie są wystarczająco uniwersalne do pracy z różnymi rozmiarami nakrętek w systemach hydraulicznych. Typowe błędy myślowe prowadzące do takich wniosków to brak zrozumienia, że przykręcanie połączeń hydraulicznych wymaga narzędzi zaprojektowanych do tego celu. Wybór odpowiedniego narzędzia, jakim są klucze płaskie, zapewnia nie tylko efektywność, ale również bezpieczeństwo pracy, co jest niezbędne w każdej instalacji hydraulicznej. Niezrozumienie znaczenia metodologii pracy z narzędziami może prowadzić do awarii systemu, co podkreśla znaczenie edukacji i praktyki w zakresie doboru właściwych narzędzi.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Jakie przyrządy pomiarowe powinno się wykorzystać do określenia mocy konsumowanej przez elektryczną nagrzewnicę z wentylatorem?

A. Termometr i oscyloskop
B. Amperomierz oraz woltomierz
C. Omomierz i amperomierz
D. Mostek RLC oraz termometr
Wybór amperomierza i woltomierza do pomiaru mocy pobieranej przez nagrzewnicę elektryczną z nadmuchem powietrza jest jak najbardziej właściwy. Amperomierz służy do pomiaru prądu płynącego przez urządzenie, natomiast woltomierz do pomiaru napięcia. Moc elektryczna oblicza się według wzoru P = U * I, gdzie P to moc w watach, U to napięcie w woltach, a I to prąd w amperach. Przykładowo, jeśli nagrzewnica pobiera prąd 10 A przy napięciu 230 V, to moc wynosi 2300 W. Takie podejście jest standardem w branży elektrotechnicznej, ponieważ pozwala na dokładne i bezpieczne określenie mocy urządzeń elektrycznych. Dobre praktyki zalecają również korzystanie z przyrządów pomiarowych o odpowiedniej klasie dokładności, aby zminimalizować błędy pomiarowe, zwłaszcza w zastosowaniach przemysłowych i domowych.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.