Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 15 kwietnia 2025 12:36
  • Data zakończenia: 15 kwietnia 2025 13:34

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Skrót SNR odnosi się do

A. współczynnika błędów modulacji
B. bitowej stopy błędów
C. stosunku sygnału do szumu
D. współczynnika zniekształceń nieliniowych
Skrót SNR (Signal-to-Noise Ratio) oznacza stosunek sygnału do szumu, co jest kluczowym parametrem w wielu dziedzinach inżynierii, w tym telekomunikacji, przetwarzaniu sygnałów oraz audio. SNR mierzy, jak silny jest sygnał w porównaniu do poziomu szumu, który zawsze jest obecny w systemach komunikacyjnych. Wysoki SNR wskazuje na czystszy sygnał, co przekłada się na lepszą jakość transmisji danych. Przykładem zastosowania SNR jest analiza jakości połączeń w systemach bezprzewodowych, gdzie poprawny odbiór sygnału jest kluczowy dla zminimalizowania błędów transmisji. Zgodnie z najlepszymi praktykami, SNR powinien wynosić co najmniej 20 dB, aby zapewnić akceptowalny poziom jakości sygnału w aplikacjach audio. Wartości SNR można również obliczać w systemach wideo, gdzie wpływa to na jakość obrazu. Dobre praktyki obejmują monitoring SNR w czasie rzeczywistym, aby móc szybko reagować na problemy w transmisji.

Pytanie 2

Podstawowym celem hermetycznej obudowy urządzenia elektronicznego z tworzywa sztucznego jest zapewnienie właściwej odporności tego urządzenia na wpływ

A. przepięć
B. pól elektromagnetycznych
C. wysokiej temperatury
D. wilgoci
Obudowa hermetyczna w urządzeniach elektronicznych, zrobiona z tworzywa sztucznego, jest bardzo ważna, bo chroni je przed różnymi warunkami atmosferycznymi. Jej podstawowym zadaniem jest ochrona przed wilgocią, co jest kluczowe, kiedy urządzenia mogą mieć kontakt z wodą lub w wysokiej wilgotności. Jeśli obudowa jest dobrze zaprojektowana, to spełnia normy, takie jak te od IP67, które pokazują, jak dobrze urządzenie jest zabezpieczone przed wodą oraz innymi zanieczyszczeniami. Można to zobaczyć na przykład w smartfonach czy zegarkach sportowych, które narażone są na deszcz czy pot. W przemyśle morskim i budowlanym hermetyzacja to standard, bo to zapewnia, że urządzenia działają prawidłowo w trudnych warunkach. Ważne jest, żeby używać odpowiednich materiałów i technologii uszczelniania, jak silikonowe uszczelki, bo to naprawdę pomaga w ochronie przed wilgocią. Moim zdaniem, producenci powinni też regularnie testować szczelność obudów, bo to wydłuży ich żywotność.

Pytanie 3

Którego koloru nie powinien mieć przewód fazowy w instalacji zasilającej sprzęt elektroniczny?

A. Niebieskiego
B. Czarnego
C. Szarego
D. Brązowego
Czarny, brązowy i szary to kolory, które są odpowiednie dla przewodów fazowych. Wiele osób myli kolor niebieski z innym, zapominając, że w kontekście instalacji elektrycznych nie jest to kolor, który powinien być używany dla przewodów fazowych. Niebieski przewód jest zarezerwowany dla przewodów neutralnych, co jest zgodne z międzynarodowymi standardami, w tym normą PN-IEC 60446. Zastosowanie niebieskiego koloru dla przewodu fazowego może prowadzić do poważnych konsekwencji, takich jak zwarcia czy uszkodzenia urządzeń, a także stanowić zagrożenie dla bezpieczeństwa ludzi. Jest to częsty błąd popełniany przez osoby, które są nowe w tematyce elektryki lub nie mają dostatecznej wiedzy na temat oznaczeń przewodów. Niewłaściwe oznaczenie przewodów może prowadzić do niebezpiecznych sytuacji w sytuacji awaryjnej, gdzie osoba próbująca naprawić instalację może nie być w stanie prawidłowo zidentyfikować, który przewód jest fazowy, a który neutralny. Dlatego tak ważne jest, aby przestrzegać ustalonych norm i standardów dotyczących kolorów przewodów, co znacznie zwiększa bezpieczeństwo pracy z elektrycznością oraz umożliwia poprawne wykonywanie prac instalacyjnych. Zrozumienie zasadności tych kolorów i ich stosowania w praktyce jest kluczem do prawidłowego działania systemów elektrycznych.

Pytanie 4

Zwiększenie histerezy w regulatorze dwustawnym w systemie regulacji

A. spowoduje przesunięcie wykresu w górę o wartość pętli histerezy
B. nie wpłynie na kształt sygnału
C. spowoduje zmniejszenie amplitudy zmian sygnału kontrolowanego
D. spowoduje powiększenie amplitudy zmian sygnału kontrolowanego
Zwiększenie pętli histerezy w regulatorze dwustawowym powoduje zwiększenie amplitudy zmian sygnału sterowanego, co ma istotne znaczenie w kontekście stabilności i reakcji systemu regulacji. Histereza to różnica pomiędzy progami włączania i wyłączania, co w praktyce oznacza, że zwiększenie wartości histerezy prowadzi do szerszego zakresu zmian sygnału wyjściowego. Przykładem może być termostat w systemie ogrzewania, gdzie zwiększenie histerezy skutkuje większymi różnicami temperatury przed włączeniem i wyłączeniem grzejnika, co pozwala na uniknięcie częstego włączania i wyłączania urządzenia, zmniejszając zużycie energii oraz wydłużając żywotność sprzętu. Zgodnie z zasadami inżynierii systemów, odpowiednio dobrana histereza umożliwia lepszą kontrolę nad dynamiką układu, co jest kluczowe w zastosowaniach przemysłowych oraz automatyzacji. Dobrze zdefiniowana pętla histerezy jest również istotna w kontekście minimalizacji drgań i oscylacji, co przekłada się na stabilność całego procesu.

Pytanie 5

Podłączenie telewizyjnej anteny lub odbiornika TV o wejściu symetrycznym przy użyciu przewodu współosiowego wymaga stosowania

A. symetryzatorów
B. falowodów
C. linii rezonansowych równoległych
D. linii nierezonansowych typu delta
Odpowiedź 'symetryzatorów' jest poprawna, ponieważ symetryzator jest urządzeniem stosowanym do przekształcania sygnałów z linii asymetrycznych, takich jak przewody współosiowe, na sygnały symetryczne. W kontekście połączeń antenowych, symetryzatory są kluczowe do efektywnego przesyłania sygnału do odbiornika telewizyjnego, który często ma wejście symetryczne. Użycie symetryzatora pozwala na eliminację problemów związanych z niedopasowaniem impedancji, co może prowadzić do strat sygnału lub odbić. Przykładem zastosowania symetryzatorów są instalacje antenowe, gdzie stosuje się je do podłączenia anteny o wyjściu symetrycznym do odbiornika telewizyjnego. Standardy branżowe, takie jak te dotyczące instalacji antenowych, podkreślają znaczenie stosowania symetryzatorów w celu uzyskania optymalnej jakości odbioru, co jest szczególnie istotne w przypadku sygnałów telewizyjnych wymagających wysokiej integralności i niskiego poziomu zakłóceń. Warto również wspomnieć, że symetryzatory mogą występować w różnych formach, w tym jako transformatorów, i są projektowane tak, aby spełniały konkretne wymagania dotyczące pasma przenoszenia i tłumienia sygnału.

Pytanie 6

Kolejność czynności przy montażu anteny satelitarnej powinna być następująca:

A. złożenie anteny, przymocowanie anteny w wyznaczonym miejscu, wykonanie instalacji kablowej, ustawienie kąta elewacji oraz azymutu
B. złożenie anteny, ustawienie kąta elewacji oraz azymutu, przymocowanie anteny w wyznaczonym miejscu, wykonanie instalacji kablowej
C. złożenie anteny, wykonanie instalacji kablowej, ustawienie kąta elewacji oraz azymutu, przymocowanie anteny w wyznaczonym miejscu
D. ustawienie kąta elewacji oraz azymutu, złożenie anteny, przymocowanie anteny w wyznaczonym miejscu, wykonanie instalacji kablowej
Poprawna odpowiedź wskazuje, że montaż anteny satelitarnej powinien zaczynać się od jej zmontowania, co jest kluczowe dla zapewnienia stabilności i funkcjonalności całego systemu. Następnie, zamocowanie anteny w odpowiednim miejscu jest niezbędne, ponieważ musi być ona umiejscowiona w taki sposób, aby miała bezproblemowy dostęp do sygnału satelitarnego. Wykonanie instalacji kablowej to kolejny istotny krok, ponieważ prawidłowe połączenie kabli zapewni efektywne przesyłanie sygnału do odbiornika. Ostatnim etapem jest ustawienie kąta elewacji i azymutu, które są niezbędne do precyzyjnego skierowania anteny na satelitę. Należy pamiętać, że każdy z tych kroków jest ze sobą powiązany i pominięcie jednego z nich może prowadzić do znacznych problemów z jakością sygnału. W praktyce, stosowanie się do tej kolejności zapewnia, że proces montażu będzie przebiegał sprawnie i efektywnie, co jest zgodne z najlepszymi praktykami w branży telekomunikacyjnej, a także z instrukcjami producentów anten.

Pytanie 7

Co należy zrobić, gdy pracownik, który został odizolowany od źródła prądu, jest nieprzytomny, ale zachowuje prawidłowy oddech oraz funkcje serca?

A. przystępuje się do natychmiastowego zewnętrznego masażu serca
B. należy udrożnić jego górne drogi oddechowe
C. układa się go w ustalonej pozycji bocznej i obserwuje
D. układa się go na plecach i unosi nogi
Udrażnianie górnych dróg oddechowych, mimo że jest kluczowym elementem w ratowaniu osób nieprzytomnych, nie jest pierwszym krokiem w przypadku pacjenta z zachowanym oddechem i pracą serca. W takich sytuacjach, gdy pacjent jest nieprzytomny, ale oddycha samodzielnie, kluczowe jest zapewnienie mu odpowiedniej pozycji, aby zapobiec ewentualnym komplikacjom. Wykonywanie zewnętrznego masażu serca jest wskazane tylko w przypadku zatrzymania krążenia, co w tym przypadku nie ma miejsca. Z kolei układanie pacjenta w pozycji na wznak z uniesionymi nogami może prowadzić do ryzyka aspiracji i zatykania dróg oddechowych, co jest szczególnie niebezpieczne. Takie podejście może być wynikiem błędnego myślenia o tym, że w każdej sytuacji nieprzytomności należy od razu interweniować agresywniej, co nie zawsze jest zasadne. Właściwe zrozumienie, kiedy i jak podjąć działania w przypadku osób nieprzytomnych, jest kluczowe dla skutecznej resuscytacji oraz uniknięcia dodatkowych urazów czy zagrożeń zdrowotnych. Praktyka oraz znajomość procedur są niezbędne, aby prawidłowo reagować w sytuacjach nagłych.

Pytanie 8

Reflektometr optyczny to urządzenie wykorzystywane do identyfikacji uszkodzeń w

A. matrycach LED RGB
B. ogniwach fotowoltaicznych
C. światłowodach
D. matrycach LCD
Nieprawidłowe odpowiedzi wskazują na nieporozumienia związane z zastosowaniem reflektometrów optycznych. W przypadku ogniw fotowoltaicznych, technologia ta nie jest stosowana w diagnostyce, ponieważ ogniwa te opierają się na zjawisku fotoelektrycznym, a ich sprawność ocenia się przy użyciu mierników prądu i napięcia. Matryce LCD i LED RGB to technologie wyświetlania, które nie korzystają z systemu światłowodowego, a ich naprawa i diagnostyka wymagają zupełnie innych narzędzi, takich jak multimetry, testery luminancji czy analizy obrazu. Ponadto, błędne podejście do reflektometrii optycznej może wynikać z mylnego przekonania, że technologia ta jest uniwersalna dla wszelkich typów urządzeń elektronicznych. Reflektometria optyczna jest ściśle związana z systemami światłowodowymi, a jej zastosowanie w innych dziedzinach jest ograniczone. Dlatego istotne jest zrozumienie, że różne technologie wymagają odpowiednich narzędzi diagnostycznych, a zamienianie ich miejscami prowadzi do nieefektywności i wydłużenia czasu napraw.

Pytanie 9

Jeśli złącze BE tranzystora bipolarnego jest spolaryzowane w kierunku przewodzenia, a złącze CB w kierunku zaporowym, to w jakim stanie pracuje tranzystor?

A. nasycenia
B. zatkania (odcięcia)
C. aktywnym inwersyjnym
D. aktywnym
Odpowiedzi, które wskazują na zatkanie, nasycenie lub aktywny inwersyjny, opierają się na błędnych zrozumieniach działania tranzystora bipolarnego. W stanie zatkania, zarówno złącze BE, jak i CB są spolaryzowane zaporowo, co oznacza, że nie ma przepływu prądu, a tranzystor nie przewodzi. To podejście jest sprzeczne z rzeczywistością przedstawioną w pytaniu, gdzie złącze BE jest w stanie przewodzenia. Z kolei stan nasycenia występuje, gdy obydwa złącza są spolaryzowane w kierunku przewodzenia, co prowadzi do maksymalnego przepływu prądu kolektora. To również nie odpowiada sytuacji opisanej w pytaniu. Aktywny inwersyjny tryb pracy odnosi się do sytuacji, w której tranzystor jest używany w konfiguracji inwersyjnej, co nie ma miejsca w przypadku podanych warunków. Typowe błędy myślowe w tym kontekście to mylenie polaryzacji złączy oraz niezrozumienie, że zależność między prądem bazy a prądem kolektora jest kluczowym aspektem pracy tranzystora w trybie aktywnym. Aby poprawnie zrozumieć działanie tranzystora, kluczowe jest przyswojenie zasad jego polaryzacji oraz roli złącza BE w procesie wzmacniania sygnału.

Pytanie 10

W zasilaczu buforowym, który zasila system alarmowy, konieczne jest pomiar napięć w trzech lokalizacjach:
1) na wejściu sieciowym transformatora,
2) na wyjściu transformatora 18 V,
3) na terminalach akumulatora 12 V.

Jakie zakresy pomiarowe w multimetrze powinny być ustawione?

A. 1) 750 V DC, 2) 200 V AC, 3) 20 V DC
B. 1) 200 V AC, 2) 200 V AC, 3) 20 V DC
C. 1) 750 V AC, 2) 20 V AC, 3) 20 V DC
D. 1) 750 V AC, 2) 20 V AC, 3) 20 V AC
Wybór odpowiednich zakresów pomiarowych w mierniku uniwersalnym jest kluczowy dla uzyskania dokładnych pomiarów oraz zapewnienia bezpieczeństwa podczas pracy z instalacjami elektrycznymi. W przypadku zasilacza buforowego zasilającego instalację alarmową, istotne jest, aby na wejściu sieciowym transformatora ustawić zakres 750 V AC, co odpowiada typowemu napięciu sieci energetycznej. Pomiar na wyjściu transformatora, gdzie napięcie wynosi nominalnie 18 V, powinien być przeprowadzony w zakresie 20 V AC, co jest zgodne z parametrami transformatora niskonapięciowego. W przypadku pomiaru napięcia na zaciskach akumulatora, które pracuje w systemie 12 V, należy ustawić zakres 20 V DC, co jest standardowym sposobem pomiaru napięć stałych w akumulatorach. Użycie właściwych zakresów zapewnia nie tylko dokładność pomiarów, ale także bezpieczeństwo użytkownika oraz sprzętu, zgodnie z zasadami BHP oraz dobrą praktyką inżynierską.

Pytanie 11

Na stanowiskach zajmujących się naprawą i konserwacją sprzętu elektronicznego nie jest wymagane

A. wyłączników różnicowoprądowych
B. uziemienia ochronnego
C. klimatyzacji
D. zerowania ochronnego
Klimatyzacja, choć może być korzystna w pewnych warunkach pracy, nie jest wymagana na stanowiskach do naprawy i konserwacji urządzeń elektronicznych. Kluczowe jest, aby urządzenia te były odpowiednio wentylowane, co można osiągnąć poprzez naturalną cyrkulację powietrza lub odpowiednie systemy wentylacyjne. Dobrą praktyką w tym zakresie jest zapewnienie, że temperatura w pomieszczeniu nie przekracza zalecanych norm, aby nie wpływać negatywnie na wrażliwe komponenty elektroniczne. Zastosowanie klimatyzacji może być korzystne w kontekście stabilizacji temperatury, ale nie jest to wymóg normatywny. Przykładem może być warsztat serwisowy, gdzie mechanicy stosują wentylację, aby utrzymać optymalne warunki pracy, ale niekoniecznie korzystają z klimatyzacji. Warto zaznaczyć, że odpowiednie warunki pracy, w tym temperatura, mają kluczowe znaczenie dla wydajności i trwałości sprzętu elektronicznego.

Pytanie 12

Jakie urządzenie jest wykorzystywane do łączenia włókien w komunikacyjnym kablu światłowodowym?

A. który służy do lutowania
B. spawarka
C. zgrzewarka
D. zaciśniacz
Spawarka światłowodowa jest kluczowym narzędziem w procesie łączenia włókien optycznych, które są niezbędne w nowoczesnych systemach komunikacyjnych. Dzięki zastosowaniu technologii spawania, można precyzyjnie łączyć włókna, minimalizując straty sygnału i zapewniając wysoką jakość połączenia. Proces spawania polega na sklejaniu końcówek włókien w wysokotemperaturowym łuku elektrycznym, co umożliwia uzyskanie niemal idealnego połączenia, które jest odporne na wpływy zewnętrzne. W praktyce, spawarki umożliwiają szybkie i efektywne łączenie włókien, co jest szczególnie istotne w kontekście budowy sieci telekomunikacyjnych czy instalacji światłowodowych w budynkach. Warto również zwrócić uwagę na normy, jak np. IEC 61300-3-34, które definiują wymagania dotyczące metod łączenia włókien, potwierdzając znaczenie spawania jako najczęściej rekomendowanej metody w branży. Dodatkowo, umiejętność obsługi spawarki światłowodowej jest niezbędna w zawodach związanych z instalacją i konserwacją sieci optycznych.

Pytanie 13

Który z protokołów przesyłania danych umożliwia transmisję różnicową sygnałów?

A. RS-232
B. I2C
C. GPIB
D. RS-485
RS-485 to standard komunikacji szeregowej, który umożliwia różnicową transmisję sygnałów, co oznacza, że dane są przesyłane za pomocą dwóch przewodów, co pozwala na eliminację zakłóceń elektrycznych. W przeciwieństwie do RS-232, który przesyła sygnały jako pojedynczy sygnał względem masy, RS-485 wykorzystuje różnicę napięć pomiędzy dwoma przewodami, co zapewnia lepszą odporność na zakłócenia i możliwość dłuższych połączeń. Przykłady zastosowań RS-485 obejmują systemy automatyki przemysłowej, sieci czujników oraz kontrolę dostępu, gdzie wymagana jest komunikacja na dużych odległościach, nawet do 1200 metrów, oraz obsługa wielu urządzeń w jednej sieci. Standard RS-485 jest szczególnie ceniony w aplikacjach, gdzie istotne jest zachowanie integralności danych w trudnych warunkach elektromagnetycznych. Dobrą praktyką w projektowaniu systemów opartych na RS-485 jest stosowanie odpowiednich terminacji na końcach linii transmisyjnej, co minimalizuje odbicia sygnału i poprawia jakość komunikacji.

Pytanie 14

Jak można ustalić miejsce, w którym doszło do uszkodzenia kabla przesyłającego sygnał telewizji kablowej do odbiorcy?

A. zbadać parametry kabla za pomocą reflektometru
B. zmierzyć impedancję falową kabla
C. analizować parametry sygnału przy użyciu analizatora widma
D. zmierzyć poziom sygnału w kanale zwrotnym
Reflektometria jest kluczowym narzędziem do lokalizacji przerwań w kablach sygnałowych, w tym kabli telewizji kablowej. Reflektometr mierzy czas, w jakim sygnał wraca do urządzenia po odbiciu od przeszkód lub przerw w kablu. Dzięki temu technik może zidentyfikować miejsce przerwania, analizując charakterystykę odbicia sygnału w funkcji odległości. W praktyce, stosując reflektometr, technik może szybko zlokalizować problem, co pozwala na szybszą interwencję i minimalizację przestojów w dostępie do usług telewizyjnych. Jest to standard w branży, ponieważ umożliwia dokładną diagnozę i zmniejsza koszty związane z nieefektywną naprawą. Ponadto, reflektometria pozwala na ocenę innych parametrów kabla, takich jak straty sygnału czy impedancja, co daje pełny obraz stanu infrastruktury. Właściwe stosowanie tej metody jest zgodne ze standardami branżowymi, które podkreślają znaczenie precyzyjnych pomiarów w utrzymaniu jakości usług telewizyjnych.

Pytanie 15

Jak monitoruje się jakość sygnału telewizyjnego u poszczególnych abonentów telewizji kablowej?

A. poziom sygnału przesyłanego przez stację czołową do abonentów
B. współczynnik szumów w sygnale dostarczanym przez stację czołową do abonentów
C. poziom sygnału wizyjnego w gniazdach abonenckich różnych użytkowników
D. współczynnik szumów w kanale zwrotnym poszczególnych abonentów
Wszystkie pozostałe odpowiedzi opierają się na niepoprawnych założeniach dotyczących monitorowania jakości sygnału. Poziom sygnału wysyłanego przez stację czołową do abonentów, mimo że istotny, nie odzwierciedla rzeczywistej jakości sygnału odbieranego przez użytkowników. Sygnał może być właściwie nadawany, ale różne czynniki, takie jak tłumienie sygnału w kablu czy zakłócenia, mogą wpływać na jego jakość w gniazdach abonenckich. Z kolei poziom sygnału wizyjnego w gniazdach abonenckich jest również ważny, ale nie dostarcza pełnego obrazu jakości sygnału, ponieważ nie uwzględnia szumów, które mogą występować w kanale zwrotnym. Współczynnik szumów w sygnale wysyłanym przez stację czołową do abonentów jest również niewłaściwym podejściem, ponieważ nie odzwierciedla lokalnych warunków odbioru sygnału, a jedynie jakość nadawanego sygnału. Istotne jest, aby operatorzy telewizyjni zwracali uwagę na konkretne warunki pracy kanałów, wiedząc, że kanał zwrotny dostarcza informacji o ewentualnych problemach, takich jak zakłócenia w sygnale czy problemy z urządzeniami końcowymi. W związku z tym, zrozumienie i monitorowanie współczynnika szumów w kanale zwrotnym jest kluczowe dla zapewnienia wysokiej jakości usług telewizyjnych.

Pytanie 16

Podaj właściwą sekwencję działań podczas instalacji tranzystora z radiatorem na płytce PCB?

A. Przykręcić radiator do tranzystora, zamocować radiator na PCB, przylutować tranzystor
B. Przylutować tranzystor, przykręcić radiator do tranzystora, zamocować radiator na PCB
C. Zamocować radiator na PCB, przylutować tranzystor, przykręcić radiator do tranzystora
D. Przykręcić radiator do tranzystora, przylutować tranzystor, zamocować radiator na PCB
Błędne odpowiedzi często wynikają z nieporozumienia dotyczącego kolejności montażu, co może prowadzić do problemów z funkcjonowaniem urządzenia. Na przykład, przylutowanie tranzystora przed przymocowaniem radiatora może przyczynić się do nieodpowiedniego przylegania radiatora do tranzystora, co z kolei może skutkować niewystarczającym odprowadzeniem ciepła. Takie podejście może doprowadzić do przegrzania tranzystora, co w dłuższej perspektywie prowadzi do jego uszkodzenia. Przykręcenie radiatora do PCB przed lutowaniem tranzystora również nie jest wskazane, ponieważ stabilność komponentu podczas lutowania jest kluczowa. W przypadku, gdy tranzystor nie jest należycie przymocowany, może on ulec przesunięciu, co zwiększa ryzyko zwarcia na płytce. Dobrym przykładem jest montaż w zasilaczach, gdzie niewłaściwe odprowadzenie ciepła do radiatora może prowadzić do awarii całego modułu. Najlepiej jest stosować się do ustalonych norm i praktyk inżynieryjnych, które zalecają najpierw zapewnić odpowiednie połączenie elementów chłodzących, a następnie przejść do lutowania. Zrozumienie kolejności działań oraz ich wpływu na jakość konstrukcji jest kluczowe dla sukcesu w inżynierii elektronicznej.

Pytanie 17

Napięcie spadające pomiędzy zasilaczem a urządzeniem zasilanym nieznacznie przekracza maksymalnie dozwoloną wartość. Jakie działania może podjąć instalator w takiej sytuacji?

A. Wykorzystać przewód aluminiowy o identycznym przekroju
B. Połączyć dwie żyły (lub więcej) równolegle
C. Zrezygnować z realizacji połączenia
D. Użyć przewodu o mniejszym przekroju
Odpowiedź, którą zaznaczyłeś, jest jak najbardziej trafna! Połączenie dwóch żył równolegle to dobry sposób na zmniejszenie oporu elektrycznego. W praktyce, jak masz przewody o tym samym przekroju, to równoległe połączenie zwiększa zdolność przewodzenia prądu, co jest mega przydatne, zwłaszcza gdy potrzebujesz więcej energii. To wszystko jest zgodne z normami instalacyjnymi, które sugerują, że takie połączenie pozwala lepiej zarządzać spadkiem napięcia. To ważne, zwłaszcza przy urządzeniach, które wymagają sporo energii. Warto pamiętać, że projektując instalacje elektryczne, trzeba mieć na uwadze te rzeczy, co poprawia efektywność energetyczną i bezpieczeństwo. A tak na marginesie, dobrze jest też regularnie sprawdzać instalacje, żeby upewnić się, że wszystko działa jak należy w zgodzie z normami, takimi jak PN-IEC 60364.

Pytanie 18

Jakie urządzenie pomiarowe powinno być użyte do analizy sygnału o wysokiej częstotliwości?

A. Oscyloskop
B. Mostek RLC
C. Waromierz
D. Multimetr
Oscyloskop jest idealnym przyrządem do pomiaru sygnałów o wysokich częstotliwościach, ponieważ umożliwia wizualizację przebiegów elektrycznych w czasie rzeczywistym. Wysoka częstotliwość sygnałów, zwykle powyżej kilku megaherców, wymaga urządzenia, które jest w stanie zarejestrować zmiany napięcia w krótkich odstępach czasu i precyzyjnie odwzorować je na ekranie. Oscyloskopy cyfrowe, dzięki dużej przepustowości i możliwości zapisu danych, pozwalają na analizę sygnałów, identyfikację ich kształtu oraz określenie istotnych parametrów, takich jak amplituda, częstość oraz czas trwania sygnału. Przykładowo, w inżynierii elektronicznej oscyloskopy są powszechnie stosowane do testowania i analizy układów komunikacyjnych, gdzie sygnały o wysokiej częstotliwości są kluczowe dla funkcjonowania systemów. Użycie oscyloskopu w praktyce pozwala inżynierom na diagnozowanie problemów z sygnałem, takich jak zniekształcenia, które mogą wpływać na jakość transmisji danych.

Pytanie 19

Podczas montażu komponentów elektronicznych metodą lutu miękkiego nie powinno się

A. dostosowywać temperatury lutowania do konkretnej lokalizacji na płytce
B. zajmować się czystością grota
C. ustalać czasu lutowania do poszczególnych miejsc na płytce
D. przenosić lutowia na końcówce grota
Przenoszenie lutowia na grocie lutownicy jest praktyką, której należy unikać, ponieważ może prowadzić do wielu problemów związanych z jakością lutowania. Grota lutownicy powinna być czysta i odpowiednio nagrzana, aby zapewnić skuteczne i trwałe połączenie. Przenoszenie lutowia na grocie zwiększa ryzyko powstawania zanieczyszczeń, co może negatywnie wpłynąć na jakość lutowia i prowadzić do wadliwych połączeń. Zgodnie z najlepszymi praktykami, lutowie powinno być aplikowane bezpośrednio na złącze, a nie na grot. Przykładem dobrego zachowania w tym zakresie jest technika tzw. 'wstępnego podgrzewania' elementów, co zwiększa efektywność procesu lutowania oraz redukuje ryzyko przegrzania. Kolejnym aspektem jest używanie lutowia o odpowiednim składzie, które dobrze wtopi się w materiały bez tworzenia nadmiernych osadów, co z kolei pomoże w uzyskaniu czystego i mocnego połączenia.

Pytanie 20

W trakcie udzielania pierwszej pomocy, zgodnie z zasadą ABC (ang. Airways, breath, circulation), co należy wykonać w pierwszej kolejności?

A. sztuczne oddychanie
B. udrożnienie dróg oddechowych
C. układanie w pozycji bocznej
D. masaż serca
Udrożnienie dróg oddechowych jest kluczowym krokiem w udzielaniu pierwszej pomocy, zgodnym z regułą ABC, która podkreśla kolejność podejmowanych działań w sytuacjach zagrożenia życia. Drugi i trzeci element, czyli wentylacja i krążenie, są nieefektywne, jeśli drogi oddechowe są zablokowane. W praktyce, aby udrożnić drogi oddechowe, można zastosować technikę przechylania głowy do tyłu i unoszenia bródki, co ułatwia przepływ powietrza. W przypadku pacjentów nieprzytomnych, istotne jest również zastosowanie manewru żuchwy, aby usunąć wszelkie przeszkody, takie jak ciała obce. Standardy resuscytacji, takie jak wytyczne American Heart Association, jednoznacznie wskazują na to, iż przed rozpoczęciem wentylacji lub masażu serca, należy zawsze upewnić się, że drogi oddechowe są udrożnione. Takie podejście zwiększa szansę na skuteczną pomoc i minimalizuje ryzyko powikłań, takich jak niedotlenienie mózgu. W sytuacjach kryzysowych, gdzie każda sekunda ma znaczenie, umiejętność szybkiego i skutecznego udrożnienia dróg oddechowych jest nieoceniona.

Pytanie 21

Aby zestroić impedancję anteny z impedancją kabla, należy zastosować

A. głowicę UKF
B. detektor
C. symetryzator
D. zwrotnicę
Detektor, zwrotnica i głowica UKF to różne urządzenia, które mają swoje zadania w systemach komunikacyjnych, ale żaden z nich nie zajmuje się dopasowaniem impedancji anteny. Detektor przekształca sygnał radiowy w sygnał audio czy inny, ale impedancją się nie przejmuje. Zwrotnica służy do rozdzielania lub łączenia sygnałów z różnych źródeł, co też nie ma związku z tym dopasowaniem. Głowica UKF z kolei to część odbiornika, która zajmuje się selekcją i demodulacją sygnałów w paśmie UKF, ale też nie dopasowuje impedancji. Wiesz, często ludzie mylą te różne funkcje i przez to wyciągają błędne wnioski. A niewłaściwe dopasowanie impedancji może naprawdę prowadzić do problemów, jak straty sygnału czy nawet uszkodzenia sprzętu. Dlatego warto wiedzieć, jak ważna jest rola symetryzatora w tym wszystkim, zwłaszcza dla inżynierów zajmujących się telekomunikacją czy systemami radiowymi.

Pytanie 22

Złącza BNC umieszcza się na końcach kabli

A. skrętka STP
B. symetrycznych
C. koncentrycznych
D. skrętka UTP
Wybór pozostałych odpowiedzi wskazuje na niepełne zrozumienie zastosowań i konstrukcji różnych typów kabli. Skrętka STP (Shielded Twisted Pair) oraz UTP (Unshielded Twisted Pair) to rodzaje kabli stosowanych głównie w sieciach komputerowych do przesyłania danych, w szczególności w standardach Ethernet. Złącza BNC nie są projektowane do pracy z tymi typami kabli, ponieważ skrętka nie ma rdzenia koncentrycznego, a jej budowa nie zapewnia odpowiedniej ochrony sygnału przesyłanego na dużą odległość. Zastosowanie skrętki do połączeń, które wymagałyby złącz BNC, może prowadzić do dużych strat sygnału oraz zakłóceń, ponieważ złącza BNC nie mogą efektywnie łączyć przewodów, które nie mają konstrukcji koncentrycznej. Z kolei złącza symetryczne, choć mogą być stosowane w różnych aplikacjach audio i wideo, również nie są odpowiednie dla przewodów koncentrycznych, ponieważ różnią się pod względem mechanizmu łączenia oraz charakterystyki przesyłu sygnałów. Zrozumienie różnic między tymi rodzajami kabli i ich zastosowaniem jest kluczowe w projektowaniu i wdrażaniu systemów komunikacji, aby uniknąć błędów w doborze komponentów, które mogą prowadzić do problemów z jakością sygnału.

Pytanie 23

Skrót ADSL odnosi się do technologii, która pozwala na

A. szerokopasmowy asymetryczny dostęp do sieci teleinformatycznych
B. kompresję materiałów audio i wideo
C. transmisję informacji cyfrowych za pośrednictwem fal radiowych
D. odbieranie cyfrowej telewizji naziemnej
Skrót ADSL jednoznacznie odnosi się do technologii szerokopasmowego dostępu do internetu, co czyni niektóre odpowiedzi nieprawidłowymi. Przesyłanie informacji cyfrowej poprzez fale radiowe odnosi się do technologii takich jak Wi-Fi czy LTE, które nie wymagają fizycznego połączenia kablowego, co jest przeciwstawne do sposobu działania ADSL, który bazuje na istniejących liniach telefonicznych. Odbiór naziemnej telewizji cyfrowej również jest procesem niezwiązanym z ADSL, ponieważ polega na odbieraniu sygnałów telewizyjnych za pomocą anteny, a nie transmisji danych przez linię telefoniczną. Kompresja audio i wideo to proces technologiczny służący do zmniejszenia rozmiaru plików multimedialnych, który nie ma bezpośredniego związku z ADSL i jego funkcjonalnością. Typowym błędem myślowym w tym przypadku jest mylenie różnych technologii transmisji danych i ich zastosowań. ADSL jest specyficzną technologią, która została zaprojektowana do efektywnego dostarczania usług szerokopasmowych, a nie do transmisji radiowej, telewizyjnej czy kompresji danych. Właściwe zrozumienie ADSL i jego charakterystyki jest kluczowe dla efektywnego korzystania z zasobów internetowych, zwłaszcza w kontekście wzrastających potrzeb użytkowników.

Pytanie 24

Jakie urządzenie pozwala na podłączenie anteny o impedancji falowej 300 Ω do odbiornika, który ma gniazdo antenowe o impedancji 75 Ω?

A. rozdzielacz
B. zwrotnica
C. symetryzator
D. konwerter
Rozgałęźnik, przemiennik oraz zwrotnica to urządzenia, które mają inne funkcje i nie są odpowiednie do konwersji impedancji w tej konkretnej sytuacji. Rozgałęźnik służy do dzielenia sygnału na wiele wyjść, co może prowadzić do osłabienia sygnału, jednak nie jest w stanie dostosować impedancji sygnału, co jest kluczowe w przypadku podłączania anteny o różnych impedancjach. Przemiennik z kolei zmienia częstotliwość sygnału, ale nie wpływa na jego impedancję, co sprawia, że nie nadaje się do zastosowań związanych z dopasowaniem impedancji anten. Znalezienie odpowiedniego dopasowania impedancji jest istotne dla osiągnięcia wysokiej efektywności energetycznej i uniknięcia strat sygnałowych. Zwrotnica, chociaż jest użytecznym urządzeniem w systemach audio i radiowych, ma za zadanie kierowanie sygnałów do właściwych torów, ale nie ma funkcji przystosowania impedancji. Typowym błędem myślowym jest mylenie tych urządzeń z symetryzatorem, co prowadzi do niewłaściwego doboru sprzętu i w efekcie do pogorszenia jakości sygnału lub całkowitych problemów z odbiorem. W kontekście standardów branżowych, każda z tych funkcji wymaga odrębnych podejść i rozwiązań, dlatego kluczowe jest zrozumienie właściwego zastosowania danego urządzenia w systemie transmisji sygnałów.

Pytanie 25

Obudowa wzmacniacza dystrybucyjnego z oznaczeniem IP64 gwarantuje

A. ochronę przed wnikaniem pyłu w ilościach, które mogą zakłócać funkcjonowanie urządzenia oraz ochronę przed kroplami opadającymi pod dowolnym kątem, ze wszystkich stron
B. ochronę przed wnikaniem pyłu w ilościach wpływających na pracę urządzenia oraz ochronę przed strumieniem wody z każdego kierunku
C. całkowitą ochronę przed wnikaniem pyłu oraz ochronę przed kroplami padającymi pod dowolnym kątem, ze wszystkich stron
D. pełną ochronę przed wnikaniem pyłu oraz zabezpieczenie przed strumieniem wody z każdego kierunku
Obudowa wzmacniacza dystrybucyjnego oznaczona kodem IP64 zapewnia całkowitą ochronę przed wnikaniem pyłu oraz ochronę przed kroplami padającymi pod dowolnym kątem, ze wszystkich stron. Kod IP (Ingress Protection) jest standardem określającym stopień ochrony urządzeń elektronicznych przed wnikaniem ciał stałych oraz cieczy. W przypadku IP64, pierwsza cyfra '6' oznacza całkowitą ochronę przed pyłem, co oznacza, że żadne cząstki pyłu nie mogą przeniknąć do wnętrza obudowy, co chroni sprzęt przed uszkodzeniem oraz zapewnia jego prawidłowe działanie. Druga cyfra '4' wskazuje, że obudowa jest odporna na krople wody padające pod różnymi kątami, co oznacza, że nie ma ryzyka uszkodzenia, gdy woda pada na nią z góry. Takie właściwości są szczególnie ważne w aplikacjach, gdzie urządzenia są narażone na trudne warunki atmosferyczne, na przykład w przemysłowych instalacjach, które mogą być narażone na pył, wilgoć oraz różne zanieczyszczenia. Przykładowe zastosowania to obudowy wzmacniaczy w systemach audio, które mogą być używane zarówno na zewnątrz, jak i wewnątrz, a ich niezawodność jest kluczowa dla jakości dźwięku.

Pytanie 26

Termin "licznik mikrorozkazów" odnosi się do

A. systemu mikroprocesorowego
B. manipulatora
C. oscyloskopu cyfrowego
D. pętli PLL
Wybór odpowiedzi wskazujących na pętle PLL, manipulatora czy oscyloskop cyfrowy może wynikać z nieporozumienia dotyczącego funkcji tych urządzeń w kontekście systemów mikroprocesorowych. Pętle PLL (Phase Locked Loop) są stosowane do synchronizacji częstotliwości, co jest kluczowe w systemach komunikacyjnych i radiowych, ale nie mają bezpośredniego związku z licznikiem mikrorozkazów, który operuje na poziomie mikroarchitektury procesora. Manipulatory, choć są istotnymi komponentami w systemach automatyki i robotyki, skupiają się na interakcji z otoczeniem, a nie na zliczaniu mikrooperacji wewnątrz mikroprocesora. Oscyloskopy cyfrowe, z kolei, są narzędziami pomiarowymi używanymi do analizy sygnałów elektronicznych, a ich funkcjonalność koncentruje się na wizualizacji i analizie sygnałów, co również nie jest związane z operacjami mikrorozkazów. Typowe błędy myślowe, które mogą prowadzić do wyboru tych odpowiedzi, obejmują mylenie funkcji różnych komponentów w systemach elektronicznych oraz brak zrozumienia roli, jaką licznik mikrorozkazów pełni w architekturze mikroprocesorowej. Kluczowe w nauce o systemach mikroprocesorowych jest zrozumienie hierarchii funkcjonalnej oraz interakcji między poszczególnymi blokami, co pozwala na prawidłową interpretację ich ról w całym systemie.

Pytanie 27

Który z wymienionych komponentów wykorzystuje się w systemach automatyki przemysłowej do pomiaru temperatury?

A. Warystor
B. Triak
C. Tyrystor
D. Termistor
Termistor jest elementem czujnikowym, który zmienia opór elektryczny w zależności od temperatury. Jest to stosunkowo powszechny komponent w automatyce przemysłowej, wykorzystywany w różnych systemach pomiarowych i kontrolnych. Jego budowa opiera się na materiałach półprzewodnikowych, które charakteryzują się dużą czułością na zmiany temperatury, co pozwala na precyzyjne pomiary w szerokim zakresie temperatur. Przykładowe zastosowania termistorów obejmują kontrolę temperatury w piecach przemysłowych, klimatyzacji, a także w systemach monitorowania procesów chemicznych. Zgodnie ze standardami, termistory są często wykorzystywane w systemach automatyki do zapewnienia efektywnej regulacji i optymalizacji procesów, co przekłada się na zwiększenie efektywności energetycznej oraz bezpieczeństwa operacji. Zastosowanie termistorów w połączeniu z odpowiednim oprogramowaniem pozwala na tworzenie zaawansowanych algorytmów kontroli, co jest zgodne z najlepszymi praktykami w branży automatyki."

Pytanie 28

Podwyższenie dobroci Q filtru RLC w selektywnym wzmacniaczu doprowadzi do

A. wzrostu częstotliwości środkowej fo
B. spadku współczynnika prostokątności
C. wzrostu współczynnika prostokątności
D. spadku częstotliwości środkowej fo
Zrozumienie wpływu dobroci Q na filtry RLC jest kluczowe, aby odpowiednio interpretować konsekwencje projektowe. Pierwsza z niepoprawnych odpowiedzi sugeruje, że zwiększenie dobroci Q mogłoby prowadzić do zwiększenia częstotliwości środkowej f0, co jest nieprawidłowe. W rzeczywistości wartość f0 jest określona przez komponenty RLC i nie zmienia się w wyniku zmiany dobroci Q. Zwiększenie Q nie wpływa na częstotliwość centralną, lecz na charakterystykę pasma przenoszenia. Kolejna odpowiedź sugerująca zmniejszenie częstotliwości środkowej f0 również jest mylna, jako że zmiana dobroci Q nie ma wpływu na jej wartość. W rzeczywistości, zwiększenie dobroci Q prowadzi do większej wyrazistości filtru, ale nie zmienia jego centralnej częstotliwości. Dlatego też, koncepcja współczynnika prostokątności jest nieodłącznie związana z dobrocią Q, a jego zmiana wpływa na szerokość pasma przenoszenia. Należy również zwrócić uwagę na to, że w praktyce stosuje się różne metody obliczania i regulacji Q, aby osiągnąć pożądane efekty w różnych zastosowaniach, takich jak filtry w radiotechnice czy systemy audio. Typowym błędem w analizie charakterystyki filtrów RLC jest mylenie dobroci Q z innymi parametrami, co może prowadzić do niepoprawnych wniosków dotyczących działania układów elektronicznych.

Pytanie 29

Czym jest funkcja AF w radiu?

A. Automatyczne dostrajanie
B. Odbieranie informacji drogowych
C. Automatyczna regulacja głośności
D. Odbieranie lokalnych audycji
Funkcja AF, czyli Automatyczne Dostosowanie, odnosi się do zdolności odbiornika radiowego do automatycznego przestrojenia się na najlepszą dostępną jakość sygnału w danym momencie. W praktyce oznacza to, że gdy sygnał stacji radiowej ulega osłabieniu, system AF może automatycznie przełączyć odbiornik na inną, ale powiązaną częstotliwość, na której ta sama stacja nadaje silniejszy sygnał. To rozwiązanie jest szczególnie przydatne w przypadku stacji, które nadają na kilku częstotliwościach, co jest typowe dla stacji FM. W rezultacie użytkownik nie musi ręcznie zmieniać częstotliwości, co zwiększa komfort i wygodę korzystania z odbiornika. Dobre praktyki w projektowaniu odbiorników radiowych zalecają implementację funkcji AF, aby zapewnić lepszą jakość odbioru oraz minimalizować zakłócenia w trakcie słuchania. To podejście jest zgodne z zasadami ergonomii, które kładą duży nacisk na potrzebę uproszczenia interakcji użytkownika z urządzeniami elektronicznymi.

Pytanie 30

Aby uzyskać najlepszą precyzję pomiaru napięcia wynoszącego około 110 mV, należy ustawić woltomierz na zakres

A. 100 mV
B. 300 mV
C. 150 mV
D. 1000 mV
Ustawienie zakresu woltomierza na 150 mV dla pomiaru napięcia o wartości około 110 mV zapewnia optymalne warunki do uzyskania najwyższej dokładności pomiaru. Woltomierze mają różne zakresy, które determinują ich czułość oraz dokładność. Ustawiając zakres na 150 mV, jesteśmy w stanie skorzystać z pełnej rezolucji instrumentu, co oznacza, że pomiar 110 mV będzie dokładnie reprezentowany w skali woltomierza. W praktyce, jeśli napięcie jest bliskie granicy zakresu, na przykład 100 mV, instrument może nie być w stanie dokładnie zarejestrować drobnych zmian w napięciu. Kolejnym aspektem jest minimalizacja błędów pomiarowych, które mogą występować przy pomiarze na wyższych zakresach, np. 1000 mV, gdzie rozdzielczość jest niższa, a pomiar może być obarczony większymi błędami. Takie podejście jest zgodne z dobrą praktyką pomiarową, która zaleca, aby zakres pomiarowy był jak najbliższy rzeczywistemu wartościowanemu napięciu, co pozwala na uzyskanie lepszej jakości pomiaru oraz precyzji.

Pytanie 31

W trakcie pomiaru rezystancji po zamontowaniu komponentów wykryto bardzo wysoką rezystancję, która była efektem pojawienia się zimnego lutu na połączeniu jednego z komponentów z polem lutowniczym. Jak można usunąć tę wadę?

A. Przylutować obok komponentu odcinek przewodu
B. Wylutować komponent i po sprawdzeniu jego funkcjonalności ponownie przylutować ten element
C. Przylutować obok komponentu drugi element tego samego typu
D. Wylutować komponent i przylutować koniecznie nowy o identycznych parametrach
Wylutowanie elementu i późniejsze przylutowanie go po sprawdzeniu, czy działa, to naprawdę najlepszy sposób na pozbycie się zimnego lutowania. Zimny lut, który ma wysoką rezystancję, pojawia się najczęściej, gdy podgrzanie elementów lutowniczych jest niewystarczające albo lutowia nie są zbyt dobrej jakości. Kiedy wylutujesz element, możesz dokładnie sprawdzić, czy działa poprawnie, co jest mega ważne, jak chcesz, żeby cały układ funkcjonował. Dobrze jest też przetestować lut pod kątem przewodności i pewności, żeby nie było innych problemów. Gdy przylutujesz go znowu, pamiętaj o odpowiednich technikach lutowania i temperaturze. Użycie lutownicy, która ma regulowaną temperaturę, może bardzo poprawić jakość tych połączeń. Ta metoda jest zgodna z najlepszymi standardami, takimi jak IPC-A-610, gdzie mówią, co jest akceptowalne w lutach i połączeniach elektronicznych. Jak połączenie lutownicze jest dobrze zrobione, to nie tylko ma niską rezystancję, ale też zwiększa stabilność i niezawodność całego układu.

Pytanie 32

Jakie urządzenia pomiarowe powinny być użyte do określenia charakterystyki przenoszenia wzmacniacza selektywnego LC zasilanego napięciem ±12 V?

A. Generator funkcyjny oraz cyfrowy multimetr
B. Zasilacz symetryczny, generator funkcyjny oraz oscyloskop
C. Zasilacz napięcia stałego, generator funkcyjny oraz oscyloskop
D. Zasilacz symetryczny oraz cyfrowy multimetr
Wybór przyrządów pomiarowych jest kluczowy dla uzyskania prawidłowych wyników w testach wzmacniaczy. Odpowiedzi, które nie uwzględniają zasilacza symetrycznego, generatora funkcyjnego oraz oscyloskopu, pomijają istotne elementy wymagane do przeprowadzenia analizy charakterystyki przenoszenia. Zasilacz symetryczny jest niezbędny, aby zapewnić wzmacniaczowi stabilne napięcie zasilające, co jest kluczowe w kontekście pomiaru jego wydajności. Generator funkcyjny jest także istotny, ponieważ pozwala na wytwarzanie sygnałów o różnych kształtach i częstotliwościach, co umożliwia ocenę, jak wzmacniacz odpowiada na zmiany parametrów sygnału. Pominięcie oscyloskopu, który jest narzędziem do wizualizacji sygnałów, prowadzi do utraty możliwości obserwacji i analizy dynamiki wzmacniacza. Dodatkowo, wybór multimetru cyfrowego czy zasilacza napięcia stałego nie dostarcza wymaganych możliwości do kompleksowej analizy. Multimetr cyfrowy, choć przydatny w pomiarach napięcia i prądu, nie jest wystarczający do oceny charakterystyki przenoszenia, gdyż nie pozwala na analizę sygnałów w funkcji czasu, co jest istotne w przypadku wzmacniaczy operacyjnych, które reagują na zmiany sygnałów w czasie. Dlatego kluczowe jest zastosowanie pełnego zestawu odpowiednich narzędzi do przeprowadzenia rzetelnych badań.

Pytanie 33

Wskaźniki natężenia pola służą do określania dla anten

A. współczynnika odbicia
B. charakterystyki promieniowania
C. rezystancji promieniowania
D. zysku energetycznego
Wskaźniki natężenia pola elektrycznego i magnetycznego są kluczowymi parametrami używanymi do określenia charakterystyki promieniowania anten. Charakteryzują one sposób, w jaki antena emituje lub odbiera fale elektromagnetyczne. Charakterystyka promieniowania anteny obejmuje takie aspekty, jak kierunkowość, zysk energetyczny oraz efektywność. Dla inżynierów zajmujących się projektowaniem anten, znajomość tych wskaźników pozwala na optymalizację konstrukcji anten w celu uzyskania maksymalnej wydajności w danym zastosowaniu. Na przykład, w przypadku anten kierunkowych, analiza charakterystyki promieniowania umożliwia określenie, w którym kierunku energia jest emitowana najsilniej, co jest istotne w systemach komunikacyjnych i telekomunikacyjnych. Standardy takie jak IEEE 149-1979 określają metody pomiarowe dla charakterystyk promieniowania, co jest niezbędne w praktyce inżynieryjnej.

Pytanie 34

Zastosowanie uszkodzonych bezpieczników, zastępując je bezpiecznikami o większej wartości prądu znamionowego, może prowadzić do

A. wzrostu napięcia źródła zasilania
B. przeciążenia oraz zniszczenia instalacji
C. większego zużycia mocy
D. większego zużycia energii
Wiesz, wymiana uszkodzonych bezpieczników na te o wyższej wartości prądu może przynieść sporo problemów w instalacji elektrycznej. Bezpieczniki mają swoją rolę, chronią obwody przed przeciążeniem i zwarciami. Ich wartość znamionowa mówi, ile maksymalnie prądu można puścić przez obwód bez ryzyka uszkodzenia. Jak włożysz bezpiecznik o wyższej wartości, to obwód zacznie tolerować większy prąd, co może spalić przewody lub zepsuć urządzenia, które nie są na to gotowe. Przykład? Wyobraź sobie, że masz sprzęt, który jest stworzony do pracy z określonym prądem, a potem zmieniasz bezpiecznik. Dajesz mu więcej prądu i nagle urządzenie się przegrzewa, a w rezultacie kończy w śmietniku. W branży są normy, jak PN-IEC 60364, które podkreślają, jak ważne jest dobranie odpowiednich zabezpieczeń, żeby wszystko działało sprawnie i bezpiecznie.

Pytanie 35

Jaką rolę w systemie antenowym TV-SAT odgrywa konwerter?

A. Dostarcza antenie napięcie przemienne.
B. Zwiększa i przekształca częstotliwość sygnału z anteny.
C. Tłumi i zmienia częstotliwość sygnału antenowego.
D. Dostarcza antenie napięcie stałe.
Konwerter w instalacji antenowej TV-SAT pełni kluczową rolę, polegającą na wzmacnianiu i przetwarzaniu sygnału. Odbiera sygnały mikrofalowe z satelity, które są na bardzo wysokich częstotliwościach, a następnie przekształca je na niższe częstotliwości, które mogą być przesyłane przez kable do odbiornika. Zmiana ta jest niezbędna, ponieważ kable stosowane w instalacjach satelitarnych, takie jak kabel koncentryczny, mają ograniczenia dotyczące długości i pasma, co sprawia, że wyższe częstotliwości nie mogą być przesyłane efektywnie. W praktyce konwerter działa na zasadzie wzmocnienia sygnału, co zapewnia lepszą jakość odbioru. Dobre praktyki w instalacji konwertera obejmują jego właściwe umiejscowienie na antenie, co minimalizuje straty sygnału oraz użycie wysokiej jakości kabli, aby zredukować tłumienie. Warto również zwrócić uwagę na dobór konwertera, który odpowiada standardom DVB-S lub DVB-S2, aby zapewnić zgodność z nowoczesnymi systemami odbioru telewizyjnego.

Pytanie 36

Jednokanałowy oscyloskop analogowy pozwala na pomiar

A. współczynnika zniekształceń nieliniowych
B. czasów narastania i opadania impulsów
C. bitowej stopy błędów
D. przesunięcia fazy między dwoma sygnałami sinusoidalnymi
Analogowy oscyloskop jednokanałowy to naprawdę fajne narzędzie do zrozumienia, jak zachowują się sygnały elektryczne w czasie. Jednym z jego głównych zastosowań jest pomiar czasów narastania i opadania impulsów, co jest mega ważne, gdy analizujemy sygnały cyfrowe i analogowe. Te czasy mają duży wpływ na to, jak dobrze przesyłamy informacje i jakie są właściwości całych systemów elektronicznych. Moim zdaniem, ocenianie tych czasów pomaga zobaczyć, jak układy reagują na zmiany w sygnale, co jest szczególnie istotne, kiedy projektujemy systemy cyfrowe. W telekomunikacji na przykład, czas narastania jest kluczowy, bo jeśli jest za długi, to sygnał może się zniekształcić, a to może prowadzić do błędów w transmisji. Dodatkowo, normy jak IEC 61000-4-2 pokazują, jak ważne jest mierzenie tych czasów, gdy testujemy urządzenia na odporność na zakłócenia elektromagnetyczne. Dlatego warto znać i umieć te umiejętności w praktyce inżynierskiej.

Pytanie 37

Układy PLD to cyfrowe urządzenia logiczne, które tworzą kategorię układów

A. czasowych
B. pamięci dynamicznych
C. pamięci statycznych
D. programowalnych
Układy PLD, czyli programowalne układy logiczne, to coś, co daje nam spore możliwości. Można je konfigurować do różnych zadań, co jest super, bo dzięki temu mamy większą elastyczność w projektowaniu obwodów cyfrowych. Inżynierowie mogą dostosować te układy do konkretnych potrzeb, co w elektronice i automatyce ma duże znaczenie. PLD znajdują zastosowanie w różnych miejscach, jak na przykład w układach sterujących w systemach wbudowanych, w projektowaniu procesorów sygnałowych czy w interfejsach. To naprawdę przyspiesza cały proces prototypowania i testowania nowych rozwiązań. Programowanie takich układów w językach jak VHDL czy Verilog staje się coraz bardziej dostępne, co sprawia, że są popularniejsze w przemyśle elektronicznym. Dzięki PLD możemy szybciej wprowadzać nowe produkty na rynek i lepiej zarządzać ich efektywnością energetyczną, a co najważniejsze, możemy je łatwo modyfikować w trakcie użytkowania.

Pytanie 38

Dwie czujki radiowe zainstalowane w tym samym pomieszczeniu zakłócają nawzajem swoje działanie. Przyczyną tego jest

A. ich umiejscowienie na suficie
B. to, że instalacja ma tylko jeden sygnalizator
C. ich natychmiastowe działanie
D. to, że działają na tej samej częstotliwości
Czujki radiowe, które pracują na tej samej częstotliwości, mogą się nawzajem zakłócać, bo sygnały się mieszają. Z mojego doświadczenia wynika, że jak dwie czujki nadają na tej samej częstotliwości, to ich sygnały mogą się nałożyć, co prowadzi do błędnych wyników. Weźmy na przykład systemy alarmowe – zazwyczaj mamy tam kilka czujek w jednym miejscu. Żeby uniknąć problemów z zakłóceniami, projektanci systemów często używają różnych częstotliwości dla czujek albo stosują różne techniki kodowania sygnałów, dzięki czemu urządzenia mogą działać równolegle. To wszystko jest zgodne z normami, jak EN 50131, które mówią o wymaganiach dla systemów alarmowych, w tym o zakłóceniach radiowych.

Pytanie 39

Podczas wykonywania prac istnieje ryzyko niedotlenienia organizmu z powodu spadku zawartości tlenu w atmosferze. Jakie środki ochrony dróg oddechowych należy zastosować?

A. półmaskę
B. filtr krótkoczasowy
C. aparat oddechowy zasilany powietrzem
D. maskę pełną
Aparaty oddechowe zasilane powietrzem to najskuteczniejszy sposób ochrony dróg oddechowych w sytuacjach, gdy dostępność tlenu w otoczeniu jest ograniczona. Tego rodzaju urządzenia zasysają powietrze z zewnątrz, filtrując je, aby zapewnić użytkownikowi odpowiednią jakość powietrza do oddychania. W przeciwieństwie do innych urządzeń, takich jak maski pełne czy półmaski, które mogą nie zapewnić wystarczającej ilości tlenu w przypadku znacznego obniżenia jego stężenia w powietrzu, aparaty te są przystosowane do pracy w trudnych warunkach, np. w zamkniętych przestrzeniach lub w pobliżu substancji chemicznych, gdzie ryzyko wystąpienia niskiego poziomu tlenu jest wyższe. Użycie aparatu oddechowego zasilanego powietrzem jest zgodne z obowiązującymi normami BHP oraz standardami ochrony zdrowia, takimi jak normy EN 137 i EN 12942. Przykładem zastosowania tego typu urządzeń jest praca w przemyśle, gdzie narażenie na gazy toksyczne i niedotlenienie może być realnym zagrożeniem. Regularne szkolenia z ich obsługi oraz przeszkolenie użytkowników w zakresie postępowania w sytuacjach awaryjnych są kluczowe dla zapewnienia bezpieczeństwa.

Pytanie 40

Jakość sygnału z anten satelitarnych w dużym stopniu zależy od warunków pogodowych. Zjawisko pikselizacji lub zanik obrazu jest szczególnie zauważalne w antenach o średnicy

A. 110 cm
B. 100 cm
C. 60 cm
D. 85 cm
Wybór odpowiedzi 100 cm, 85 cm lub 110 cm na pytanie o wpływ średnicy anteny satelitarnej na jakość odbioru w trudnych warunkach atmosferycznych jest błędny, ponieważ koncepcje te ignorują kluczowy aspekt, jakim jest wrażliwość anteny na sygnał. Anteny o większej średnicy, mimo że mogą poprawić odbiór sygnału w stabilnych warunkach, nie zawsze są odpowiednie w trudnych warunkach atmosferycznych. Efekt pikselizacji, który jest istotnym zagadnieniem w telekomunikacji satelitarnej, występuje wtedy, gdy sygnał jest zakłócany przez warunki atmosferyczne, co jest szczególnie widoczne w mniejszych antenach, jak te o średnicy 60 cm. Wybór większej anteny niekoniecznie rozwiązuje problem odbioru w trudnych warunkach, ponieważ nie uwzględnia się, że mniejsza średnica anteny lepiej obrazuje skutki zakłóceń. Użytkownicy często mylą pojęcia związane z wielkością anteny i jakością odbioru, co prowadzi do błędnych wniosków. Istotne jest, aby zrozumieć, że w praktyce, w zależności od lokalizacji i warunków atmosferycznych, mała antena może lepiej określać zmiany w jakości sygnału, co jest kluczowe dla zapewnienia satysfakcjonującego odbioru. Dlatego ważne jest, aby przy planowaniu instalacji anteny sugerować jej średnicę w kontekście lokalnych warunków atmosferycznych oraz przewidywanych czynników zakłócających.