Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 31 maja 2025 16:02
  • Data zakończenia: 31 maja 2025 16:21

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Podaj kolejność działań prowadzących do demontażu siłownika dwustronnego działania z układu pneumatycznego, który jest sterowany elektrozaworem 5/2 oraz posiada dwa czujniki kontaktronowe zamontowane na cylindrze.

A. Wyłączenie zasilania oraz odłączenie sprężonego powietrza, odłączenie przewodów pneumatycznych od siłownika, odłączenie przewodów czujników od układu sterującego, odkręcenie siłownika od podstawy
B. Wyłączenie zasilania sprężonym powietrzem, zdjęcie czujników, odłączenie przewodów pneumatycznych od siłownika, wyłączenie zasilania
C. Wyłączenie zasilania, zdjęcie czujników z cylindra, odkręcenie siłownika od podstawy, odłączenie przewodów pneumatycznych, wyłączenie zasilania sprężonym powietrzem
D. Wyłączenie zasilania, odkręcenie siłownika od podstawy, odłączenie zasilania sprężonym powietrzem, odłączenie przewodów pneumatycznych od siłownika
Poprawna odpowiedź zakłada, że przed przystąpieniem do demontażu jakiegokolwiek elementu układu pneumatycznego należy przede wszystkim zapewnić bezpieczeństwo operacji. Wyłączenie napięcia oraz zasilania sprężonym powietrzem jest niezbędnym krokiem, który zapobiega przypadkowemu uruchomieniu systemu w trakcie pracy. Następnie, odłączenie przewodów pneumatycznych od siłownika pozwala na bezpieczne zdemontowanie elementu, eliminując ryzyko wycieków powietrza, które mogłyby prowadzić do niebezpiecznych sytuacji. Odłączenie przewodów czujników od układu sterowania jest również kluczowe, gdyż pozwala na uniknięcie uszkodzenia czujników oraz zapewnia, że nie będą one przeszkadzały w procesie demontażu. Na końcu, odkręcenie siłownika od podstawy może być przeprowadzone bez obaw o bezpieczeństwo, ponieważ wszystkie niebezpieczne źródła energii zostały wcześniej wyeliminowane. Takie podejście jest zgodne z zaleceniami dotyczącymi bezpieczeństwa pracy z systemami pneumatycznymi i elektrycznymi, co jest kluczowe w utrzymaniu dobrych praktyk branżowych.

Pytanie 4

Silniki, które mają największy moment rozruchowy to

A. szeregowe prądu stałego
B. bocznikowe prądu stałego
C. asynchroniczne prądu przemiennego
D. synchroniczne prądu przemiennego
Silniki szeregowe prądu stałego charakteryzują się największym momentem rozruchowym spośród różnych typów silników elektrycznych. Dzieje się tak, ponieważ w silniku szeregowym wirnik i uzwojenie wzbudzenia są połączone szeregowo, co prowadzi do zmaksymalizowania prądu, który płynie przez uzwojenie wzbudzenia podczas rozruchu. W rezultacie moment obrotowy generowany w chwilach niskich prędkości jest znacznie większy niż w innych typach silników. Praktycznie rzecz biorąc, silniki te są często stosowane w aplikacjach, gdzie wymagany jest wysoki moment obrotowy przy niskich prędkościach, takich jak wózki widłowe, dźwigi czy pojazdy elektryczne. Dzięki ich konstrukcji, silniki te mogą przekazywać dużą moc przy niewielkich prędkościach, co czyni je idealnym wyborem w sytuacjach, gdzie siła jest kluczowa. W branży inżynieryjnej standardy dotyczące doboru silników pod kątem momentu rozruchowego są ściśle przestrzegane, co pozwala na optymalne dobieranie urządzeń do konkretnych zadań.

Pytanie 5

Siłownik, zasilany sprężonym powietrzem o ciśnieniu roboczym 8 bar, ma maksymalną liczbę cykli nmax = 50/min oraz zużywa 1,4 litra powietrza w trakcie jednego cyklu. Jakie parametry powinna mieć sprężarka tłokowa do zasilania tego siłownika?

A. wydajność 3,6 m3/h, ciśnienie maksymalne 1,0 MPa
B. wydajność 5,3 m3/h, ciśnienie maksymalne 1,0 MPa
C. wydajność 3,6 m3/h, ciśnienie maksymalne 0,7 MPa
D. wydajność 5,3 m3/h, ciśnienie maksymalne 0,7 MPa
Wybrane odpowiedzi nie spełniają wymagań dotyczących wydajności lub ciśnienia roboczego sprężarki, co może prowadzić do niedostatecznej efektywności zasilania siłownika. Na przykład, odpowiedzi z wydajnością 3,6 m3/h są niewystarczające, ponieważ całkowite zapotrzebowanie siłownika wynosi 4,2 m3/h. Użycie sprężarki o niższej wydajności skutkuje ryzykiem obniżenia ciśnienia w systemie, co może prowadzić do nieprawidłowego działania siłownika. Kolejnym błędem jest wybór sprężarki z maksymalnym ciśnieniem 0,7 MPa (7 bar), które jest niższe niż wymagane ciśnienie robocze 8 bar. Użycie sprężarki, która nie osiąga wymaganego ciśnienia, skutkuje brakiem możliwości wydajnego zasilania siłownika, co może prowadzić do jego uszkodzenia. W kontekście inżynierii mechanicznej i pneumatyki, kluczowe jest, aby sprzęt był dobrany do specyficznych wymagań aplikacji, w tym ciśnienia i wydajności, aby zapewnić optymalne działanie systemu. Wybierając sprężarkę, zawsze warto uwzględniać margines bezpieczeństwa, by uniknąć sytuacji, w których urządzenia mogą pracować na granicy swoich możliwości, co znacznie wpływa na ich żywotność oraz efektywność operacyjną. Zgodnie z normami i praktykami branżowymi, odpowiednia specyfikacja sprzętu jest kluczowa dla zapewnienia niezawodności systemu pneumatycznego.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jakie zadanie w obwodach elektronicznych realizuje transoptor?

A. Dodaje napięcia
B. Izoluje galwanicznie sygnały
C. Zwiększa prąd
D. Wytwarza sygnały sinusoidalne
Transoptor, czyli optoizolator, jest naprawdę ważnym elementem w elektronice. Jego główną rolą jest zapewnienie izolacji galwanicznej pomiędzy różnymi częściami układu. Działa to w ten sposób, że dzięki zjawisku fotonowemu możemy przesyłać sygnały elektryczne bez potrzeby bezpośredniego połączenia. To znaczy, że wrażliwe części obwodu są chronione przed wysokimi napięciami i zakłóceniami, co jest mega przydatne. Widzę, że transoptory są powszechnie stosowane w automatyce – świetnie izolują sygnały sterujące od obwodów zasilających. Dodatkowo w interfejsach komunikacyjnych zapewniają bezpieczeństwo przesyłanym danym. Korzystanie z transoptorów to naprawdę dobra praktyka w inżynierii, bo zmniejsza ryzyko uszkodzeń przez różnice potencjałów, zwiększając tym samym niezawodność systemu. Warto także dodać, że potrafią pracować w różnych częstotliwościach, co sprawia, że są dosyć uniwersalne w nowoczesnych układach elektronicznych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

W siłowniku działającym w obie strony o średnicy tłoka D = 20 mm oraz efektywności 0,8, zasilanym ciśnieniem p = 0,6 MPa, teoretyczna siła przy wysunięciu siłownika wynosi około

A. 130 N
B. 150 N
C. 160 N
D. 140 N
Wybór błędnych odpowiedzi często wynika z nieprawidłowego zrozumienia podstawowych zasad działania siłowników oraz z braku znajomości obliczeń związanych z ich parametrami. W przypadku siłownika dwustronnego, kluczowe jest zrozumienie, że siła generowana przez siłownik jest bezpośrednio związana z polem powierzchni tłoka oraz ciśnieniem zasilającym. Nieprawidłowe odpowiedzi mogą wynikać z nieuwzględnienia sprawności siłownika. Wiele osób może przyjąć ciśnienie jako jedyny czynnik wpływający na siłę, zaniedbując istotny element, jakim jest pole powierzchni tłoka. Ponadto, niektórzy mogą błędnie zakładać, że siła obliczona w oparciu o ciśnienie będzie równa siły roboczej, co jest mylące. W praktyce inżynieryjnej, zarówno w pneumatyce, jak i hydraulice, uwzględnienie sprawności jest kluczowe, ponieważ każdy siłownik ma swoje ograniczenia związane z efektywnością działania. Dlatego ważne jest, aby przy obliczeniach brać pod uwagę wszystkie istotne parametry i zrozumieć, jak one współdziałają, co w konsekwencji pozwoli na podejmowanie właściwych decyzji projektowych i operacyjnych.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

W jaki sposób można aktywować samowzbudną, bocznikową prądnicę prądu stałego, która nie uruchamia się z powodu braku magnetyzmu szczątkowego?

A. Zwiększyć opór w obwodzie wzbudzenia
B. Odwrócić kierunek prędkości obrotowej na przeciwny
C. Podłączyć prądnicę na krótko do pracy silnikowej
D. Zmienić sposób podłączenia w obwodzie wzbudzenia
Aby uruchomić samowzbudną, bocznikową prądnicę prądu stałego, która nie wzbudza się z powodu utraty magnetyzmu szczątkowego, właściwym rozwiązaniem jest podłączenie prądnicy na chwilę do pracy silnikowej. Ta metoda pozwala na przywrócenie magnetyzmu szczątkowego dzięki zastosowaniu zewnętrznego źródła energii, które na krótko napędza prądnicę, generując prąd wzbudzenia. W praktyce, gdy prądnica jest zasilana z zewnętrznego źródła mocy, wirnik zaczyna się obracać, co prowadzi do wzbudzenia pola magnetycznego poprzez wzajemne oddziaływanie między wirnikiem a stojanem. Warto zauważyć, że takie podejście jest często stosowane w praktyce, zwłaszcza w sytuacjach, gdy prądnice są dłużej nieużywane. Dobrą praktyką jest również regularne wykonywanie testów sprawnościowych prądnic, aby upewnić się, że nie utraciły magnetyzmu. Zrozumienie tego procesu jest kluczowe dla operatorów oraz inżynierów, którzy zajmują się eksploatacją i konserwacją maszyn elektrycznych.

Pytanie 25

Po wyczyszczeniu filtra używanego do wstępnego oczyszczania powietrza, kondensat należy

A. przefiltrować przy użyciu węgla aktywnego
B. odprowadzić bezpośrednio do ścieków
C. osuszyć z nadmiaru wody
D. oczyścić z resztek oleju
Odpowiedzi sugerujące odprowadzenie kondensatu bezpośrednio do kanalizacji, osuszenie z wody lub przefiltrowanie za pomocą węgla aktywnego są niewłaściwe z kilku powodów. Przede wszystkim, bezpośrednie wprowadzenie kondensatu do kanalizacji jest ryzykowne, ponieważ może on zawierać substancje ropopochodne, które są zabronione w wielu systemach kanalizacyjnych. Takie działania mogą prowadzić do zanieczyszczenia wód gruntowych i naruszenia przepisów dotyczących ochrony środowiska. Osuszanie kondensatu z wody nie ma sensu, ponieważ najważniejszym problemem są zanieczyszczenia olejowe, a nie stała obecność wody. Węgiel aktywny jest skuteczny w usuwaniu niektórych zanieczyszczeń chemicznych, jednak nie jest optymalnym rozwiązaniem w przypadku kondensatu, który zawiera cząstki olejowe. Proces filtracji węgla aktywnego wymaga odpowiedniej konfiguracji i często jest kosztowny w zastosowaniu. Typowe błędy myślowe, prowadzące do takich niepoprawnych wniosków, polegają na nieuwzględnieniu specyfiki zanieczyszczeń oraz nieznajomości regulacji prawnych związanych z gospodarowaniem odpadami. Właściwe podejście do zarządzania kondensatami wymaga dokładnej analizy składników zanieczyszczenia oraz zastosowania odpowiednich technologii oczyszczania zgodnych z normami branżowymi.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jak należy przeprowadzić połączenie wciskowe skurczowe piasty z wałkiem?

A. Zastosować siłę, aby nasunąć jeden element na drugi w temperaturze otoczenia
B. Obniżyć temperaturę wałka, a następnie wyrównać temperaturę obu elementów po połączeniu
C. Obniżyć temperaturę obu elementów i połączyć je, stosując siłę
D. Podnieść temperaturę obu elementów, a następnie połączyć je z użyciem siły
Wykonanie połączenia wciskowego skurczowego polega na manipulacji temperaturą elementów, co jest kluczowe dla uzyskania odpowiednich właściwości mechanicznych. W metodzie obniżania temperatury wałka, jego średnica zmniejsza się, co umożliwia łatwe nasunięcie piasty na wałek. Po połączeniu, oba elementy powinny być podgrzane do temperatury roboczej, co prowadzi do ich rozszerzenia i zapewnia solidne, trwałe połączenie. Tego rodzaju połączenia są często stosowane w przemyśle motoryzacyjnym, maszynowym, a także w aplikacjach, gdzie wymagane są wysokie obciążenia i trwałość. Najlepsze praktyki w tym zakresie podkreślają znaczenie zachowania odpowiednich tolerancji oraz monitorowania procesów termicznych, co zapobiega odkształceniom i uszkodzeniom materiałów. Zastosowanie tej metody gwarantuje nie tylko solidność połączenia, ale również jego wysoką odporność na wibracje i zmiany temperatury, co jest niezbędne w dynamicznych warunkach pracy.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Jaki typ licencji pozwala na używanie oprogramowania przez określony czas, po którym konieczna jest rejestracja lub usunięcie go z komputera?

A. Adware
B. Freeware
C. GNU GPL
D. Trial
Odpowiedź 'Trial' jest poprawna, ponieważ odnosi się do rodzaju licencji oprogramowania, która pozwala użytkownikom na korzystanie z programu przez określony czas, zazwyczaj od kilku dni do kilku miesięcy. Po upływie tego czasu użytkownik jest zobowiązany do zakupu licencji lub usunięcia oprogramowania z urządzenia. Licencje trial są powszechnie stosowane w branży oprogramowania, aby umożliwić użytkownikom przetestowanie produktu przed podjęciem decyzji o zakupie. Przykłady takich programów to popularne aplikacje biurowe, programy graficzne czy oprogramowanie antywirusowe. Dzięki modelowi trial, dostawcy mogą zwiększyć zainteresowanie ich produktami oraz umożliwić użytkownikom dokonanie świadomego wyboru, co jest zgodne z zasadami transparentności i uczciwości w marketingu oprogramowania. Warto zauważyć, że niektóre wersje trial mogą mieć ograniczone funkcje lub mogą wymuszać dodatkowe rejestracje, co również jest stosowane jako element strategii sprzedażowej.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Aby ustalić wznios silnika indukcyjnego, należy wykonać pomiar

A. średnicy stojana
B. wysokości silnika
C. odległości między osią wału a podstawą uchwytów silnika
D. szerokości silnika oraz średnicy wirnika
Wysokość silnika, średnica stojana i szerokość silnika z wirnikiem to takie parametry, które są związane z konstrukcją silnika, ale nie mają nic wspólnego z pomiarem wzniosu. Jasne, że wysokość silnika jest ważna, kiedy chodzi o to, gdzie ten silnik jest wbudowany, ale nie pokazuje, jaka jest właściwa odległość między osią wału a podstawą łap. Średnica stojana dotyczy wymiarów wewnętrznych silnika i ma znaczenie dla jego działania, ale nie ma wpływu na wznios. Szerokość silnika oraz średnica wirnika to też ważne wymiary, ale nie mówią nam, jak silnik jest zamontowany, a to jest kluczowe dla jego prawidłowego działania. Często zdarza się, że ludzie mylą wznios z parametrami konstrukcyjnymi silnika, zamiast skupić się na tej rzeczywistej odległości, która może mieć duży wpływ na wydajność i współpracę z innymi elementami. Zrozumienie, jak te różne parametry się powiązane, może pomóc uniknąć problemów w eksploatacji i dobrze dobrać silnik do konkretnego zastosowania.

Pytanie 36

Co należy zrobić w pierwszej kolejności, gdy poszkodowany w wypadku jest nieprzytomny i nie wykazuje oznak oddychania?

A. wezwać pomoc i zapewnić drożność dróg oddechowych poszkodowanego
B. pozostawić poszkodowanego w aktualnej pozycji i zatelefonować po pomoc
C. wezwać pomoc i przeprowadzić sztuczne oddychanie
D. przeprowadzić reanimację poszkodowanego i wezwać pomoc
Dobrze, że wybrałeś odpowiedź, która mówi o wezwaniu pomocy i udrożnieniu dróg oddechowych. Wiesz, że w sytuacji, gdy ktoś jest nieprzytomny i nie oddycha, to właśnie drożność dróg oddechowych jest kluczowa? Zgodnie z wytycznymi ERC, najpierw powinniśmy upewnić się, że drogi oddechowe są drożne, co można zrobić na przykład metodą 'tilt-chin' albo 'jaw-thrust'. Jak już upewnimy się, że wszystko jest ok, wtedy dzwonimy po pomoc i kontynuujemy resuscytację. Przykład? Wyobraź sobie wypadek samochodowy – pierwsze co, to musimy zadbać, by poszkodowany mógł oddychać, inaczej może dojść do niedotlenienia mózgu. I pamiętaj, według aktualnych wytycznych, nie należy robić sztucznego oddychania, zanim nie udrożnimy dróg, bo inaczej powietrze nie dotrze do płuc i tylko pogorszy sytuację.

Pytanie 37

Filtr o charakterystyce pasmowo-zaporowej

A. tłumi sygnały o niskich częstotliwościach.
B. przepuszcza sygnały o niskich częstotliwościach.
C. przepuszcza sygnały w zakresie określonego pasma częstotliwości.
D. tłumi sygnały o częstotliwościach w obrębie określonego pasma częstotliwości.
Filtr pasmowo-zaporowy to urządzenie elektroniczne, które ma na celu tłumienie sygnałów o częstotliwościach znajdujących się w określonym pasmie, co czyni go niezwykle przydatnym w różnych zastosowaniach inżynieryjnych. Działa on na zasadzie eliminacji zakłóceń, które mogą wpływać na jakość sygnału w systemach komunikacyjnych, audio oraz telewizyjnych. Przykładami zastosowania filtrów pasmowo-zaporowych są systemy audio, gdzie eliminuje się szumy z zakresu częstotliwości, które nie są potrzebne dla jakości dźwięku, oraz w telekomunikacji, gdzie pozwala to na poprawę jakości odbioru sygnałów bez zakłóceń. W kontekście standardów branżowych, filtry pasmowo-zaporowe są zgodne z normami ITU (Międzynarodowa Unia Telekomunikacyjna) i IEEE, co zapewnia ich efektywność oraz kompatybilność w różnych systemach. Warto także pamiętać, że konstrukcja tych filtrów może być zrealizowana zarówno w technologii analogowej, jak i cyfrowej, co zwiększa ich wszechstronność w nowoczesnych aplikacjach.

Pytanie 38

Jakie czynności trzeba wykonać, aby zamocować koło pasowe na wale przy użyciu pasowania?

A. Podgrzać koło pasowe oraz wał
B. Podgrzać wał i schłodzić koło pasowe
C. Podgrzać koło pasowe i schłodzić wał
D. Obniżyć temperaturę koła pasowego i wału
Wybór nieprawidłowych metod zamocowania koła pasowego na wale jest często wynikiem nieprawidłowego zrozumienia procesów fizycznych zachodzących podczas montażu. Schładzanie koła pasowego, jak sugeruje jedna z odpowiedzi, byłoby szkodliwe, ponieważ doprowadziłoby do zmniejszenia jego średnicy, co znacznie utrudniłoby, a wręcz uniemożliwiło, jego montaż na wałku. W przypadku rozgrzewania wału i schładzania koła pasowego, również nie osiągnęlibyśmy pożądanego efektu, ponieważ schłodzenie koła spowodowałoby, że jego średnica zmniejszyłaby się, co również prowadziłoby do trudności z montażem. Ponadto, pomysły na rozgrzanie obu elementów mogą wydawać się logiczne, jednak nie uwzględniają one zasady, że oba elementy muszą mieć różne temperatury, aby mogły ze sobą współdziałać. Metody te są sprzeczne z podstawowymi zasadami inżynierii mechanicznej oraz praktykami montażowymi, które zalecają różnicowanie temperatur w celu ułatwienia montażu. Efektywność procesów montażowych opiera się na zrozumieniu zachowań materiałów i ich reakcji na zmiany temperatury, co jest kluczowe dla zapewnienia prawidłowego funkcjonowania maszyn. Dlatego tak ważne jest przestrzeganie sprawdzonych procedur, które gwarantują nie tylko wygodę montażu, ale również długotrwałe i niezawodne działanie urządzeń.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Montaż realizowany według zasady całkowitej zamienności polega na

A. tym, że wymagana precyzja wymiaru montażowego osiągana jest przez dopasowanie jednego z elementów składowych poprzez obróbkę jej powierzchni w trakcie montażu
B. tym, że pewien odsetek elementów składowych ma wyższe tolerancje wymiarowe, co obniża koszty produkcji części
C. montażu elementów składowych wykonanych z dużą precyzją, czyli o bardzo małych tolerancjach wymiarowych
D. podziale obrobionych komponentów tworzących zespół według ich rzeczywistych wymiarów
Zrozumienie zasady całkowitej zamienności w montażu jest fundamentalne dla uzyskania wysokiej jakości produktów. Wiele osób błędnie interpretuje, że montaż może opierać się na tolerancjach wymiarowych, które są zbyt szerokie, co jest odzwierciedlone w jednym z podejść, które sugeruje, że pewien procent części składowych może mieć większe tolerancje, co prowadzi do obniżenia kosztów wykonania. W rzeczywistości, taka strategia może skutkować problemami z kompatybilnością i wymiennością elementów, co narusza zasadę całkowitej zamienności. Niewłaściwe podejście do podziału obrobionych części według ich rzeczywistych wymiarów, jak sugeruje inna odpowiedź, również nie jest zgodne z najlepszymi praktykami w obszarze montażu. Każda część powinna być projektowana z myślą o tym, aby pasować do innych w zespole bez dodatkowej obróbki. Zasada ta zakłada, że części muszą być produkowane zgodnie z określonymi normami tolerancyjnymi, co zapewnia ich wymienność. Kolejna niepoprawna koncepcja dotyczy uzyskiwania wymagań dotyczących wymiarów montażowych poprzez dopasowanie jednej z części w czasie montażu. Takie podejście jest niewłaściwe, ponieważ wprowadza niepotrzebny czas i koszty oraz ryzyko błędów montażowych. Kluczowym elementem skutecznego montażu jest standaryzacja wymiarów, co pozwala na uniknięcie sytuacji wymagających dostosowań. Zrozumienie wymagań stawianych przez zasady całkowitej zamienności oraz ich zastosowanie w praktyce to krok ku zwiększeniu efektywności produkcji oraz jakości finalnych wyrobów.