Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 13 kwietnia 2025 21:08
  • Data zakończenia: 13 kwietnia 2025 21:31

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Wymiana tranzystora wyjściowego w CMOS sterowniku PLC powinna być przeprowadzana z użyciem

A. okularów ochronnych
B. opaski uziemiającej
C. bawełnianego fartucha ochronnego
D. butów z izolowaną podeszwą
Użycie opaski uziemiającej podczas wymiany tranzystora wyjściowego w układzie CMOS sterownika PLC jest kluczowe dla zapewnienia bezpieczeństwa i zminimalizowania ryzyka uszkodzenia komponentów. Opaska uziemiająca działa jako środek ochronny, który odprowadza ładunki elektrostatyczne z ciała osoby pracującej, zapobiegając ich nagromadzeniu. W obwodach CMOS, które są bardzo wrażliwe na zjawisko ESD (elektrostatyczne wyładowania), nawet niewielkie ładunki mogą prowadzić do uszkodzenia tranzystorów i innych komponentów. Stosowanie opaski uziemiającej jest zgodne z dobrymi praktykami w branży elektronicznej, które zalecają uziemianie operatorów w celu ochrony delikatnych układów. Dodatkowo, przy wymianie tranzystora, ważne jest, aby pracować w odpowiednim środowisku, które ogranicza ryzyko ESD, na przykład poprzez stosowanie mat antystatycznych oraz unikanie materiałów, które mogą generować ładunki elektrostatyczne. Przykładem dobrych praktyk jest przestrzeganie norm IPC, które definiują standardy dotyczące ochrony przed ESD w procesach produkcyjnych oraz serwisowych.

Pytanie 4

Aby chronić silnik przed wystąpieniem napięcia zasilającego po krótkim zgaśnięciu, należy użyć przekaźnika

A. podnapięciowy zwłoczny
B. różnicowoprądowy
C. nadnapięciowy zwłoczny
D. nadprądowy zwłoczny
Wybór innych typów przekaźników, takich jak nadnapięciowy zwłoczny, nadprądowy zwłoczny czy różnicowoprądowy, nie jest odpowiedni w kontekście zabezpieczania silnika przed pojawieniem się napięcia zasilania po krótkotrwałym zaniku. Przekaźnik nadnapięciowy zwłoczny jest zaprojektowany do wyłączania obwodu, gdy napięcie przekracza ustaloną wartość, co w przypadku zaniku napięcia nie zabezpiecza silnika, lecz może doprowadzić do niebezpiecznej sytuacji, gdy napięcie powraca. Nadprądowy zwłoczny z kolei ma na celu zabezpieczenie przed przeciążeniem, a nie przed zanikami napięcia, więc jego funkcjonalność w tym kontekście będzie niewystarczająca. Przekaźnik różnicowoprądowy wykrywa różnice w prądzie między przewodami roboczymi, chroniąc przed porażeniem elektrycznym, ale nie zareaguje na zmiany w napięciu zasilania. Wybór niewłaściwego przekaźnika może prowadzić do potencjalnych uszkodzeń silnika, a także stwarzać ryzyko dla osób pracujących w pobliżu. Dlatego istotne jest zrozumienie specyfiki działania różnych typów przekaźników, aby skutecznie zabezpieczyć urządzenia w warunkach zmienności napięcia zasilania.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Jakie narzędzia powinno się zastosować do montażu przewlekanego komponentów elektronicznych na płytce PCB?

A. Rozlutownica
B. Stacja lutownicza
C. Lutownica na gorące powietrze z dyszą w kształcie 7x7
D. Lutownica z końcówką 'minifala'
Stacja lutownicza to narzędzie, które zapewnia precyzyjne i stabilne warunki pracy, co jest kluczowe podczas lutowania przewlekanego elementów elektronicznych na płytkach drukowanych. Dzięki regulowanej temperaturze i możliwości dostosowania przepływu powietrza, stacja lutownicza umożliwia skuteczne lutowanie, minimalizując ryzyko przegrzewania komponentów. Na przykład, w przypadku lutowania małych elementów, takich jak kondensatory czy oporniki, stacja lutownicza pozwala na dokładne ustawienie temperatury, co jest niezbędne do uzyskania mocnych połączeń bez uszkodzenia wrażliwych elementów. Dobre praktyki branżowe sugerują użycie stacji z technologią podgrzewania, co umożliwia równomierne rozgrzanie obszaru lutowanego, co jest szczególnie przydatne w przypadku złożonych układów. Stacje lutownicze są także wyposażone w różnorodne końcówki, co zwiększa ich wszechstronność i umożliwia pracę z różnymi rodzajami elementów elektronicznych. W kontekście standardów IPC (Institute of Printed Circuits), stosowanie stacji lutowniczych w procesie montażu jest zalecane, ponieważ pozwala na osiągnięcie wyższej jakości połączeń lutowanych oraz dłuższej żywotności urządzeń elektronicznych.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Aby poprawić efektywność montażu połączeń gwintowych, wykorzystuje się klucze

A. zapadkowe
B. płaskie
C. uniwersalne
D. oczko
Stosowanie kluczy uniwersalnych, oczkowych czy płaskich w kontekście zwiększenia wydajności montażu połączeń gwintowych może być mylące, gdyż każdy z tych typów narzędzi ma swoje ograniczenia, które wpływają na efektywność pracy. Klucze uniwersalne, choć oferują wszechstronność, mogą nie zapewniać odpowiedniego momentu obrotowego i precyzji potrzebnej w aplikacjach wymagających dużej siły. Ich konstrukcja nie zawsze pozwala na łatwe dopasowanie do różnych głowic śrubowych, co może prowadzić do uszkodzenia elementów. Klucze oczkowe natomiast są przeznaczone do dokręcania śrub z główkami sześciokątnymi, ale ich użycie może wymagać częstego przestawiania narzędzia do kolejnych ruchów, co znacząco spowalnia proces. Klucze płaskie, choć również powszechnie stosowane, mają ograniczoną możliwość działania w ciasnych przestrzeniach, co może prowadzić do trudności w pracy w niektórych aplikacjach. Warto zauważyć, że błędne przekonania o uniwersalności tych narzędzi mogą prowadzić do nieefektywności i frustracji w pracy, co może z kolei negatywnie wpływać na czas realizacji projektów oraz jakość montażu. Świadomość tych ograniczeń oraz dobór narzędzi zgodnie z zasadami ergonomii i specyfiki zadania są kluczowe w celu optymalizacji procesów montażowych.

Pytanie 9

Podaj kolejność działań prowadzących do demontażu siłownika dwustronnego działania z układu pneumatycznego, który jest sterowany elektrozaworem 5/2 oraz posiada dwa czujniki kontaktronowe zamontowane na cylindrze.

A. Wyłączenie zasilania, zdjęcie czujników z cylindra, odkręcenie siłownika od podstawy, odłączenie przewodów pneumatycznych, wyłączenie zasilania sprężonym powietrzem
B. Wyłączenie zasilania sprężonym powietrzem, zdjęcie czujników, odłączenie przewodów pneumatycznych od siłownika, wyłączenie zasilania
C. Wyłączenie zasilania, odkręcenie siłownika od podstawy, odłączenie zasilania sprężonym powietrzem, odłączenie przewodów pneumatycznych od siłownika
D. Wyłączenie zasilania oraz odłączenie sprężonego powietrza, odłączenie przewodów pneumatycznych od siłownika, odłączenie przewodów czujników od układu sterującego, odkręcenie siłownika od podstawy
Poprawna odpowiedź zakłada, że przed przystąpieniem do demontażu jakiegokolwiek elementu układu pneumatycznego należy przede wszystkim zapewnić bezpieczeństwo operacji. Wyłączenie napięcia oraz zasilania sprężonym powietrzem jest niezbędnym krokiem, który zapobiega przypadkowemu uruchomieniu systemu w trakcie pracy. Następnie, odłączenie przewodów pneumatycznych od siłownika pozwala na bezpieczne zdemontowanie elementu, eliminując ryzyko wycieków powietrza, które mogłyby prowadzić do niebezpiecznych sytuacji. Odłączenie przewodów czujników od układu sterowania jest również kluczowe, gdyż pozwala na uniknięcie uszkodzenia czujników oraz zapewnia, że nie będą one przeszkadzały w procesie demontażu. Na końcu, odkręcenie siłownika od podstawy może być przeprowadzone bez obaw o bezpieczeństwo, ponieważ wszystkie niebezpieczne źródła energii zostały wcześniej wyeliminowane. Takie podejście jest zgodne z zaleceniami dotyczącymi bezpieczeństwa pracy z systemami pneumatycznymi i elektrycznymi, co jest kluczowe w utrzymaniu dobrych praktyk branżowych.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Aby zmierzyć napięcie na cewce elektrozaworu o nominalnym U<sub>n</sub> = 24 V, zastosowano analogowy woltomierz z 75 podziałami na skali, ustawiony na zakres 30 V. Ile podziałów wskaże ten woltomierz, jeśli napięcie na cewce elektrozaworu jest poprawne?

A. 24
B. 75
C. 30
D. 60
Odpowiedzi, które wskazują na 24, 75 lub 30 działek, oparte są na błędnych założeniach dotyczących sposobu pomiaru napięcia. W przypadku odpowiedzi 24 działki, może występować mylne przekonanie, że każda działka odpowiada napięciu 1 V - jednak w rzeczywistości, z uwagi na zakres 30 V i 75 działek, wartość, która przypada na jedną działkę, to 0,4 V. Natomiast odpowiedź 75 działek sugeruje, że woltomierz mógłby wskazać maksymalną wartość zakresu, co nie jest możliwe, gdyż mierzymy napięcie 24 V, a nie jego maksymalne dozwolone napięcie. Z kolei 30 działek odnosi się do błędnego założenia, że napięcie 24 V odpowiada 30% zakresu 30 V, co jest nieprawidłowe, ponieważ stanowiłoby to wartość mniejszą od rzeczywistego odczytu. W praktyce istotne jest zrozumienie, że pomiar napięcia wymaga nie tylko wiedzy na temat używanego narzędzia, ale także o jego właściwościach i układzie skali. Typowe błędy myślowe, które prowadzą do tych niepoprawnych odpowiedzi, to brak zrozumienia mechanizmu działania woltomierzy, co może skutkować nieprawidłową interpretacją danych pomiarowych. Prawidłowe zrozumienie skali oraz wartości mierzonych jest kluczowe, aby uniknąć nieporozumień i zapewnić dokładność pomiarów, co jest niezwykle ważne w inżynierii elektrotechnicznej.

Pytanie 14

Które urządzenie pośredniczy w komunikacji pomiędzy urządzeniem mechatronicznym a jego operatorem?

A. Panel operatorski HMI.
B. Przekaźnik programowalny.
C. Robot przemysłowy.
D. Sterownik PLC.
Panel operatorski HMI (Human-Machine Interface) jest kluczowym elementem w komunikacji pomiędzy urządzeniem mechatronicznym a jego operatorem. Działa jako interfejs, który umożliwia użytkownikowi monitorowanie i kontrolowanie procesów technologicznych w czasie rzeczywistym. Dzięki panelom HMI, operatorzy mogą łatwo odczytywać dane, takie jak temperatura, ciśnienie czy prędkość, a także wprowadzać zmiany w ustawieniach systemu. Przykładem zastosowania panelu HMI może być linia produkcyjna, gdzie operatorzy mogą zarządzać maszynami, przeglądać alarmy oraz dostosowywać parametry produkcji. W kontekście standardów branżowych, panele HMI są zgodne z normami takimi jak ISA-101, które określają zasady projektowania interfejsów użytkownika w systemach sterowania. Wspierają także dobre praktyki w zakresie ergonomii, co wpływa na bezpieczeństwo i efektywność pracy operatorów.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Które z wymienionych czynności prowadzących do wymiany oleju i filtrów w zasilaczu hydraulicznym należy wykonać w ostatniej kolejności?

A. Wlać olej do odpowiedniego poziomu i włączyć zasilanie, aby nastąpiło samoczynne odpowietrzenie.
B. Wymienić uszczelkę zbiornik – pokrywa i wymienić wkłady filtrujące, a następnie połączyć zbiornik z pokrywą przestrzegając zalecanej siły dokręcania.
C. Odłączyć wszystkie obwody, wyłączyć napięcie, odkręcić śrubę odpowietrzającą lub wykręcić korek wlewowy i lekko przechylając zasilacz zlać olej.
D. Odkręcić śruby łączące pokrywę ze zbiornikiem, zdjąć pokrywę, dokładnie przepłukać i oczyścić zbiornik.
Właściwy przebieg czynności przy wymianie oleju i filtrów w zasilaczu hydraulicznym powinien kończyć się wlaniem nowego oleju do odpowiedniego poziomu i włączeniem zasilania. Jest to kluczowy etap, ponieważ zapewnia prawidłowe funkcjonowanie systemu hydraulicznego. Po napełnieniu zbiornika olejem, należy uruchomić zasilacz, co pozwala na samoczynne odpowietrzenie układu. W praktyce, odpowietrzanie jest istotne, ponieważ usunięcie powietrza z układu hydraulicznego zapobiega powstawaniu kawitacji, a tym samym zwiększa efektywność i żywotność urządzeń. Zgodnie z wytycznymi producentów zasilaczy hydraulicznych, tego rodzaju czynności powinny być zawsze wykonywane według ścisłych norm, aby zapewnić bezpieczeństwo i niezawodność systemu. Na przykład, jeżeli w systemie pozostało powietrze, może to prowadzić do nieprawidłowego działania siłowników, co negatywnie wpływa na dokładność operacji hydraulicznych. Zatem, kluczowe znaczenie ma również monitorowanie poziomu oleju oraz regularne sprawdzanie stanu filtrów, co jest zgodne z praktykami zarządzania konserwacją w branży hydraulicznej.

Pytanie 19

Silnik krokowy (skokowy) nie reaguje na próby zmiany prędkości obrotów. Możliwą przyczyną nieprawidłowego działania silnika może być

A. nadmierne obciążenie silnika
B. brak modyfikacji częstotliwości impulsów z kontrolera
C. wysyłanie impulsów sterujących w błędnej kolejności
D. zbyt wysokie napięcie zasilające
Silnik krokowy, aby poprawnie zmieniać prędkość obrotową, wymaga odpowiedniego sterowania impulsami, które muszą być podawane z określoną częstotliwością. Gdy częstotliwość impulsów ze sterownika pozostaje niezmieniona, silnik nie jest w stanie dostosować swojej prędkości obrotowej do pożądanych wartości. W praktyce oznacza to, że jeśli na przykład wymagamy od silnika przyspieszenia lub zwolnienia, a częstotliwość impulsów nie zostaje zwiększona ani zmniejszona, silnik pozostaje w tej samej prędkości obrotowej. Dobrym przykładem zastosowania tej zasady jest w systemach CNC, gdzie zmiana prędkości obrotowej silnika krokowego jest kluczowa dla precyzyjnego wykonywania operacji obróbczych. Zgodnie z dobrymi praktykami w projektowaniu systemów sterowania, należy zapewnić odpowiednie algorytmy regulacji, które będą automatycznie dostosowywać częstotliwość impulsów na podstawie wymagań aplikacji, co gwarantuje optymalną pracę silnika i jego efektywność.

Pytanie 20

Jak można zweryfikować, czy przewód elektryczny jest w pełni sprawny?

A. omomierz
B. amperomierz
C. woltomierz
D. induktor
Induktor, amperomierz i woltomierz to urządzenia pomiarowe, które mają inne zastosowania i nie są odpowiednie do sprawdzania ciągłości przewodów elektrycznych. Induktor jest elementem pasywnym stosowanym w obwodach elektrycznych do magazynowania energii w polu magnetycznym, jednak jego rola nie obejmuje pomiaru oporu elektrycznego. Użycie induktora w kontekście diagnozowania przerwy w przewodzie jest niewłaściwe, gdyż nie dostarcza informacji o ciągłości przewodów. Amperomierz, z kolei, służy do pomiaru natężenia prądu w obwodzie. Pomimo że jego działanie może być pomocne w określaniu, czy prąd płynie przez dany obwód, nie dostarcza informacji o oporze i przerwach w przewodach, co czyni go nieodpowiednim narzędziem do tego celu. Woltomierz mierzy napięcie elektryczne, a jego użycie w kontekście sprawdzania przewodów również nie jest właściwe, ponieważ nie wskazuje on na problemy związane z oporem elektrycznym. Osoby, które wybierają te urządzenia do diagnozowania przerw w przewodach, mogą natrafić na pułapki myślowe, takie jak błędne założenia dotyczące ich funkcji i zastosowania, co prowadzi do nieefektywnego rozwiązywania problemów z instalacją elektryczną. Aby skutecznie diagnozować uszkodzenia przewodów, kluczowe jest zrozumienie funkcji każdego z urządzeń pomiarowych oraz ich właściwego zastosowania w praktyce.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Skrót THT (Through-Hole Technology) odnosi się do metody montażu

A. przewlekanego
B. skręcanego
C. zaciskowego
D. powierzchniowego
Skrót THT (Through-Hole Technology) odnosi się do technologii montażu komponentów elektronicznych, w której elementy są umieszczane w otworach wykonanych w płytce drukowanej. Ta technika montażu jest szczególnie popularna w przypadku komponentów o większych rozmiarach, takich jak kondensatory elektrolityczne, złącza czy elementy pasywne. Przykładem zastosowania THT są urządzenia elektroniczne, które wymagają wysokiej wytrzymałości mechanicznej, takie jak zasilacze czy moduły czołowe w systemach audio. W praktyce, podczas montażu THT, komponenty są najpierw wstawiane do otworów, a następnie lutowane od spodu płytki, co zapewnia trwałe i solidne połączenie. W branży stosuje się standardy IPC (Institute for Interconnecting and Packaging Electronic Circuits), które określają zasady dotyczące jakości i trwałości takich połączeń. Technologia THT, mimo rosnącej popularności montażu powierzchniowego (SMT), pozostaje kluczowa w wielu aplikacjach, gdzie wymagane są wytrzymałe połączenia oraz łatwość naprawy lub wymiany komponentów.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Przy realizacji sterowania sieciowego w systemie mechatronicznym, aby maksymalnie zwiększyć odległość przesyłania danych i zminimalizować wpływ zakłóceń elektromagnetycznych na transmisję, należy zastosować kabel

A. symetryczny nieekranowany (tzw. skrętka nieekranowana).
B. symetryczny ekranowany (tzw. skrętka ekranowana).
C. światłowodowy.
D. koncentryczny.
Wybór innych typów kabli, jak kable symetryczne ekranowane czy koncentryczne, to nie najlepsze rozwiązanie, jeśli chodzi o przesył danych na długie dystansy i ochronę przed zakłóceniami. Kable symetryczne ekranowane mogą bronić sygnał przed zakłóceniami, ale nie są tak dobre jak światłowody na dłuższych trasach. Wynika to z tego, że w kablach miedzianych przesył opiera się na sygnałach elektrycznych, które są łatwo zakłócane. Kable koncentryczne, chociaż używa się ich w różnych aplikacjach, mają ograniczenia długości przesyłu i są bardziej narażone na zakłócenia. Z kolei kable symetryczne nieekranowane mogą działać lepiej w sprzyjających warunkach, ale w zgiełku elektromagnetycznym ich efektywność spada. Wybór złego kabla może prowadzić do problemów z komunikacją, większych opóźnień, a czasem nawet do całkowitej utraty sygnału. Zrozumienie tych różnic to kluczowa sprawa dla inżynierów, którzy tworzą systemy mechatroniczne, żeby wszystko działało jak należy.

Pytanie 25

Do metod oceny stanu łożysk tocznych nie zalicza się pomiaru

A. prędkości.
B. szumów.
C. temperatury.
D. drgań.
Wszystkie wymienione metody, takie jak pomiar drgań, szumów i temperatury, są uznawane za kluczowe w ocenie stanu łożysk tocznych, co może prowadzić do mylnego przekonania o znaczeniu pomiaru prędkości. Pomiar drgań jest jedną z najczęściej stosowanych technik w diagnostyce stanu maszyn, pozwalającą na szybkie wykrycie anomalii, które mogą prowadzić do awarii. Drgania generowane przez łożyska mogą być analizowane w różnych zakresach częstotliwości, co umożliwia identyfikację konkretnego problemu, jak na przykład uszkodzenia bieżni. Pomiar szumów, choć mniej powszechny, także może dostarczać cennych informacji o stanie łożysk, pomagając w identyfikacji problemów związanych z zużyciem lub zanieczyszczeniami. Z kolei pomiar temperatury jest kluczowy dla zachowania optymalnych warunków pracy łożysk, gdyż przekroczenie normy temperatury może wskazywać na problemy z wentylacją lub niedostateczne smarowanie. Dlatego ważne jest, aby mieć na uwadze, że wszelkie pomiary związane z ocena łożysk powinny być prowadzone zgodnie z najlepszymi praktykami i standardami branżowymi, aby zapewnić ich niezawodność i długowieczność. Wnioskując, pomiar prędkości nie wnosi istotnych informacji do analizy stanu łożysk, co czyni go mniej użytecznym w tym kontekście.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Modulacja szerokości impulsu (PWM) w systemach sterujących odnosi się do regulacji poprzez zmianę

A. fazy sygnału
B. amplitudy impulsu
C. częstotliwości sygnału
D. szerokości impulsu
W poprzednich odpowiedziach pojawiły się koncepcje, które nie odpowiadają zasadom działania modulatorów PWM. Zmiana częstotliwości sygnału nie jest głównym sposobem działania PWM, ale może wpływać na wydajność w pewnych kontekstach. W rzeczywistości, w PWM częstotliwość pozostaje stała, a zmienia się szerokość impulsów. Amplituda impulsu również nie odgrywa kluczowej roli w PWM, gdyż sygnał PWM zazwyczaj operuje na stałym poziomie napięcia, a jego moc modyfikowana jest przez szerokość impulsu, a nie jego wysokość. W kontekście fazy sygnału, jest to zupełnie inna technika modulacji, która nie ma zastosowania w PWM. Zmiana fazy może wprowadzać inne zjawiska, takie jak interferencja w falach sinusoidalnych, ale nie ma związku z modulacją szerokości impulsu. Typowym błędem myślowym jest mylenie tych różnych technik, co prowadzi do nieporozumień dotyczących ich zastosowań i skuteczności. Zrozumienie, że PWM koncentruje się na szerokości impulsu, jest kluczowe dla prawidłowego zastosowania tej technologii w praktycznych aplikacjach, takich jak sterowanie silnikami czy regulacja jasności światła.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Za pomocą multimetru cyfrowego zmierzono spadek napięcia na podwójnym złączu półprzewodnikowym Si. Odczyt multimetru wynosi około

A. 1,4 V
B. 0 V
C. 0,6 V
D. 0,3 V
W przypadku pomiaru spadku napięcia na podwójnym złączu półprzewodnikowym wykonanym z krzemu, wartość około 1,4 V jest typowa dla złącza p-n w stanie przewodzenia. Złącze to zachowuje się jak dioda, która wymaga określonego spadku napięcia, aby rozpocząć przewodzenie prądu. Dla diod krzemowych, wartość ta jest zazwyczaj w przedziale od 0,6 V do 0,7 V dla pierwszego złącza, a dla drugiego złącza, zwłaszcza w przypadku podwójnego złącza, wartość ta podwaja się, co daje około 1,4 V. To zjawisko jest wykorzystywane w praktycznych zastosowaniach elektroniki, takich jak prostowniki i układy regulacji napięcia. Przy pomiarze multimetrem cyfrowym ważne jest, aby upewnić się, że miernik jest ustawiony na odpowiedni zakres pomiarowy, co pozwoli na dokładne odczyty. W przypadku pomiarów diodowych, zaleca się również zwrócenie uwagi na polaryzację diody, aby uniknąć błędnych wyników. Przykładowo, w zastosowaniach takich jak zasilacze impulsowe, umiejętność prawidłowego pomiaru spadku napięcia na połączeniach półprzewodnikowych jest kluczowym elementem diagnostyki i naprawy.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Aby połączyć dwa stalowe elementy w procesie zgrzewania, należy

A. wprowadzić płynne spoiwo pomiędzy te elementy.
B. stopić je w miejscu styku z użyciem spoiwa.
C. docisnąć je podczas podgrzewania miejsca łączenia.
D. stopić je w miejscu zetknięcia bez użycia spoiwa.
Zgrzewanie elementów stalowych bez użycia odpowiedniego podgrzania oraz docisku prowadzi do nieefektywnego połączenia, co może skutkować osłabieniem struktury. Odpowiedzi sugerujące stopienie materiałów w miejscu styku bez dodawania spoiwa lub z dodatkiem spoiwa zakładają, że podstawowe zasady zgrzewania, takie jak generowanie ciepła poprzez opór, są pomijane. Proces ten wymaga precyzyjnego zarządzania temperaturą oraz siłą docisku, co jest kluczowe dla uzyskania wysokiej jakości połączenia. Zastosowanie ciekłego spoiwa w miejscu styku jest typowe dla lutowania, a nie zgrzewania, co jest fundamentalnym błędem w rozumieniu tych procesów. W rzeczywistości, w zgrzewaniu nie jest przewidziane stosowanie spoiw, ponieważ celem jest stopienie materiałów na krawędziach, co prowadzi do ich wzajemnego związania. Liczne standardy, takie jak AWS D1.1, podkreślają znaczenie odpowiednich warunków zgrzewania, które obejmują zarówno temperaturę, jak i nacisk. Ignorowanie tych parametrów może prowadzić do powstania wad strukturalnych, takich jak pęknięcia czy niepełne połączenia, co w konsekwencji zagraża bezpieczeństwu konstrukcji.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Na przyłączach zaworu hydraulicznego 4/2 znajdują się literowe oznaczenia: A, B, P i T. Do czego należy podłączyć przyłącze oznaczone literą "T"?

A. Do siłownika dwustronnego działania.
B. Do zbiornika sprężonego powietrza.
C. Do zbiornika oleju hydraulicznego.
D. Do siłownika jednostronnego działania.
Odpowiedź "Do zbiornika oleju hydraulicznego" jest jak najbardziej trafna. Przyłącze oznaczone literą "T" w układzie hydrauliki siłowej faktycznie działa jako odpływ. W standardowych zaworach hydraulicznych 4/2 to właśnie tam kierowany jest olej, którego nie wykorzystujemy w danym momencie do pracy siłownika. Moim zdaniem, świetnym przykładem jest hydraulika w maszynach budowlanych - po prostu musimy odprowadzać nadmiar oleju, żeby nie było problemów z przegrzewaniem się układu. Dobrze jest też regularnie sprawdzać poziom oleju w zbiorniku, bo jak będzie zbyt niski, to może się zdarzyć, że pompa zacznie zassysać powietrze, a to już poważnie obniża efektywność całego systemu.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Silnik komutatorowy przez dłuższy czas był przeciążony, co doprowadziło do powstania zwarć międzyzwojowych. Proces naprawy silnika obejmuje wymianę

A. łożysk
B. szczotek
C. uzwojenia
D. komutatora
Kiedy mówimy o naprawach silnika komutatorowego, wybór odpowiednich komponentów do wymiany jest kluczowy dla przywrócenia jego sprawności. Odpowiedzi takie jak łożyska, komutator czy szczotki, mimo że mogą być istotnymi elementami silnika, nie są odpowiednie w kontekście problemu z zwarciami międzyzwojowymi. W przypadku łożysk, ich zadaniem jest jedynie umożliwienie swobodnego obrotu wirnika, a ich uszkodzenie nie prowadzi bezpośrednio do zwarć w uzwojeniu. Z kolei komutator, który przekształca prąd stały na prąd zmienny, również nie jest bezpośrednią przyczyną takich awarii. Jeśli komutator jest uszkodzony, może to prowadzić do niewłaściwego działania silnika, ale nie jest to bezpośredni skutek przeciążenia uzwojenia. Wymiana szczotek, które są elementami stykowymi, również nie rozwiąże problemu przyczynowego, jakim są zwarcia w uzwojeniach. Te pomyłki wynikają często z braku zrozumienia roli poszczególnych elementów w silniku komutatorowym oraz ich wpływu na ogólną funkcjonalność urządzenia. Aby skutecznie naprawić silnik, konieczne jest zrozumienie, że uzwojenie w przypadku uszkodzeń związanych z przeciążeniem wymaga szczególnej uwagi, co jest zgodne z najlepszymi praktykami w dziedzinie inżynierii elektrycznej.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Jakie wymiary biorą pod uwagę dopuszczalne odchylenia w realizacji elementu mechanicznego?

A. Nominalne
B. Jednostronne
C. Graniczne
D. Rzeczywiste
Odpowiedzi "Nominalne", "Rzeczywiste" oraz "Jednostronne" nie uwzględniają prawidłowych koncepcji odnoszących się do tolerancji wykonania elementów mechanicznych. Wymiar nominalny to teoretyczna wartość, która nie bierze pod uwagę ewentualnych błędów wykonawczych. W praktyce, stosowanie jedynie wymiarów nominalnych prowadziłoby do niezgodności w produkcie, gdyż nie zabezpieczałoby to elementów przed nieprawidłowościami w procesie ich wytwarzania. Z kolei wymiary rzeczywiste opisują rzeczywisty wymiar wykonanej części, który może się różnić od wymiaru nominalnego oraz są wynikiem procesów produkcyjnych, a ich analiza jest istotna na etapie kontroli jakości. Wymiar jednostronny z kolei odnosi się do systemu tolerancji, który definiuje jedynie jeden kierunek tolerancji, co w wielu zastosowaniach nie jest wystarczające, ponieważ nie uwzględnia błędów w innym kierunku, co może prowadzić do problemów z pasowaniem. Stosowanie takich koncepcji w projektowaniu elementów mechanicznych często prowadzi do niewłaściwego zrozumienia zasad tolerancji oraz ich wpływu na finalną jakość produktu. Kluczowe jest zrozumienie, że tolerancje graniczne są niezbędne dla zapewnienia, że części będą funkcjonować poprawnie razem w odpowiednich warunkach eksploatacyjnych.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.