Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 4 czerwca 2025 16:20
  • Data zakończenia: 4 czerwca 2025 16:21

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Utrzymanie równomiernego ciśnienia w gazowym zbiorniku można osiągnąć poprzez składowanie biogazu z wykorzystaniem

A. dzwonu gazowego
B. zbiornika niskociśnieniowego
C. zbiornika ciśnieniowego
D. zbiornika komory fermentacyjnej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dzwon gazowy jest efektywnym rozwiązaniem do utrzymania stałego ciśnienia w systemach magazynowania biogazu. Działa na zasadzie wykorzystania różnicy ciśnień pomiędzy gazem a otoczeniem, co pozwala na swobodne gromadzenie gazu bez ryzyka jego nadmiernego sprężania. W praktyce, dzwon gazowy jest dużym zbiornikiem umieszczonym na platformie, który zanurza się w wodzie. Gaz produkowany w wyniku fermentacji beztlenowej w komorze gnilnej przemieszcza się do dzwonu, gdzie ciśnienie wewnętrzne jest regulowane przez poziom wody. Gdy ciśnienie w dzwonie wzrasta, nadmiar gazu jest usuwany, co zapobiega ewentualnym uszkodzeniom systemu. Takie podejście jest zgodne z normami bezpieczeństwa w branży biogAZowej, które zalecają stosowanie rozwiązań minimalizujących ryzyko wybuchu. W praktyce dzwon gazowy jest szeroko stosowany w biogazowniach, gdzie zapewnia zarówno stabilność ciśnienia, jak i efektywność procesu produkcji biogazu.

Pytanie 2

Jakie narzędzie jest używane do pomiarów średnic rur, zaworów i kształtek, zarówno zewnętrznych, jak i wewnętrznych?

A. kątomierz
B. suwmiarka
C. anemometr
D. dalmierz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Suwmiarka to narzędzie pomiarowe, które pozwala na precyzyjne mierzenie zarówno zewnętrznych, jak i wewnętrznych średnic różnych obiektów, takich jak rury, zawory czy kształtki. W praktyce, suwmiarka wykorzystywana jest w wielu branżach, w tym w mechanice, budownictwie oraz inżynierii, gdzie dokładność pomiarów jest kluczowa dla zapewnienia jakości wykonywanych prac. Suwmiarki mogą być analogowe lub cyfrowe, co umożliwia łatwe odczytywanie wyników. Dobre praktyki zalecają użycie suwmiarek z funkcją zerowania oraz z dokładnością pomiaru wynoszącą co najmniej 0,02 mm, co jest szczególnie istotne w precyzyjnych zastosowaniach. Ponadto, obsługa suwmiarek jest dosyć intuicyjna, co czyni je narzędziem dostępnym dla szerokiego kręgu użytkowników, nawet tych początkujących w dziedzinie pomiarów. Dlatego suwmierz jest uważany za niezbędne narzędzie w każdym warsztacie czy laboratorium, gdzie wymagane są dokładne pomiary liniowe.

Pytanie 3

W trakcie transportu kolektory słoneczne powinny być chronione przed uszkodzeniami mechanicznymi?

A. folią ochronną i kołkami świadkami
B. obudową drewnianą i taśmą bitumiczną
C. folią ochronną i obudową drewnianą
D. obudową stalową i kołkami świadkami

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Folia ochronna oraz drewniana obudowa to genialne rozwiązanie, żeby dobrze zabezpieczyć kolektory słoneczne podczas transportu. Folia świetnie chroni delikatne elementy przed różnymi rysami, kurzem i innymi brudami, które mogą się przydarzyć w drodze. Z kolei drewniana obudowa, to już coś solidniejszego, co świetnie ochroni kolektory przed mechanicznymi uderzeniami i zapewni stabilność w trakcie przewozu. Takie podejście jest zgodne z tym, co mówi branża, bo stosowanie odpowiednich materiałów ochronnych naprawdę zmniejsza ryzyko uszkodzenia sprzętu. W praktyce niektóre firmy zajmujące się instalacją kolektorów słonecznych korzystają z takich rozwiązań, co pozwala im utrzymać jakość i ograniczyć reklamacje. Dobrze zabezpieczone kolektory to też lepsza reputacja firmy w oczach klientów, a to w dłuższym czasie przekłada się na sukces biznesowy.

Pytanie 4

Liczbę robót związanych z realizacją wykopu należy zapisać w obmiarze z odpowiednią jednostką

A. m2
B. r-g
C. m3
D. m-g

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to m3, ponieważ ilość robót związanych z wykonaniem wykopu odnosi się do objętości ziemi, którą należy usunąć. Objecie wykopu, niezależnie od jego kształtu, oblicza się w metrach sześciennych (m3). Przykładem może być wykop pod fundamenty budynku, gdzie konieczne jest obliczenie objętości ziemi do usunięcia, aby określić ilość materiałów, kosztów robocizny oraz czasu potrzebnego na wykonanie prac. W branży budowlanej zgodnie z dobrymi praktykami standardowe jednostki miary, takie jak m3, są kluczowe do precyzyjnego kalkulowania ilości materiałów i kosztów, które są istotne na każdym etapie inwestycji budowlanej. Efektywne zarządzanie projektem wymaga nie tylko znajomości jednostek, ale także umiejętności ich zastosowania w praktyce, co pozwala na optymalizację procesów budowlanych oraz minimalizację kosztów.

Pytanie 5

Najlepiej poprowadzić przewody łączące płaski kolektor, usytuowany na dachu, z zasobnikiem ciepła znajdującym się w piwnicy

A. po wewnętrznej elewacji budynku
B. w kanale wentylacyjnym komina
C. po zewnętrznej elewacji budynku
D. w kanale spalinowym komina

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi dotyczącej prowadzenia przewodów w kanale spalinowym komina jest uzasadniony ze względu na kilka kluczowych aspektów związanych z efektywnością systemu grzewczego oraz bezpieczeństwem. Przewody te transportują ciepło z kolektora słonecznego umieszczonego na dachu do zasobnika ciepła w piwnicy. Kanał spalinowy komina zazwyczaj zapewnia skuteczną izolację termiczną, co pozwala na minimalizację strat ciepła w trakcie transportu energii. Dodatkowo, kanał komina jest zaprojektowany tak, aby poradzić sobie z ewentualnymi kondensatami, co jest szczególnie istotne w przypadku przewodów transportujących ciepło. W praktyce, umieszczając przewody w kanale spalinowym, można również uniknąć problemów związanych z narażeniem na działanie warunków atmosferycznych, co przyczynia się do dłuższej żywotności systemu. Ważne jest również, aby spełniać normy budowlane oraz instalacyjne, które zalecają stosowanie odpowiednich materiałów odpornych na wysoką temperaturę oraz działanie spalin.

Pytanie 6

Płynem, który ma wysoką temperaturę wrzenia w rurce cieplnej (heat-pipe) w systemie kolektora rurowego próżniowego nie jest

A. propan
B. woda
C. butan
D. R410

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Woda nie jest płynem szybko wrzącym w rurce cieplnej (heat-pipe) w kolektorze rurowym próżniowym, ponieważ jej punkt wrzenia wynosi 100°C przy normalnym ciśnieniu atmosferycznym, co czyni ją niewłaściwym wyborem w kontekście systemów, które muszą działać w niskich temperaturach oraz w próżni. W kolektorach rurowych, takich jak heat-pipe, preferuje się czynniki robocze o niższym ciśnieniu wrzenia, co zapewnia bardziej efektywne transfery ciepła. Przykładowo, butan i propan, których temperatury wrzenia wynoszą odpowiednio około -0,5°C i -42°C, umożliwiają skuteczne odprowadzanie ciepła w warunkach, które są typowe dla systemów próżniowych. Dobre praktyki w projektowaniu takich systemów zalecają użycie płynów, które w odpowiednich warunkach mogą łatwo przechodzić między fazami, co maksymalizuje ich efektywność. W przypadku zastosowań w kolektorach słonecznych, odpowiedni dobór czynnika roboczego jest kluczowy dla optymalizacji wydajności energetycznej.

Pytanie 7

Zasobnik w kotle na biomasę ma pojemność 250 kg peletów. Kocioł uzupełniany jest co 3 dni. Jaki jest całkowity koszt paliwa zużywanego w ciągu 30 dni, jeśli cena 1 kg peletu wynosi 1,10 zł?

A. 2 750 zł
B. 825 zł
C. 275 zł
D. 8 250 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć koszt paliwa zużywanego w ciągu 30 dni, należy najpierw określić, ile razy kocioł zostanie napełniony w tym czasie. Zasobnik kotła na biomasę ma pojemność 250 kg peletu, a kocioł napełniany jest co 3 dni. W ciągu 30 dni kocioł będzie napełniany 10 razy (30 dni / 3 dni = 10 napełnień). Ponieważ każde napełnienie wymaga 250 kg peletu, łączna ilość peletów zużytych w ciągu 30 dni wynosi 250 kg x 10 = 2500 kg. Koszt 1 kg peletu wynosi 1,10 zł, więc całkowity koszt paliwa wyniesie 2500 kg x 1,10 zł = 2750 zł. Takie obliczenia są standardem w zarządzaniu kosztami energii w systemach ogrzewania, szczególnie przy stosowaniu biomasy jako odnawialnego źródła energii. Zrozumienie tego procesu pozwala na efektywne planowanie wydatków oraz optymalizację zużycia paliwa w instalacjach grzewczych, co jest kluczowe dla zrównoważonego rozwoju i ograniczenia emisji CO2.

Pytanie 8

Z informacji zawartych w dokumentacji wynika, że roczne wydatki na energię elektryczną w obiekcie użyteczności publicznej wynoszą 6000 zł. Inwestor postanowił zamontować na dachu budynku system paneli fotowoltaicznych, aby obniżyć te wydatki. Dzięki temu koszty zużycia energii elektrycznej będą niższe o 75%. Jaką kwotę będzie płacił za energię elektryczną po przeprowadzeniu tej inwestycji?

A. 5975 zł
B. 4500 zł
C. 1500 zł
D. 5925 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 1500 zł, ponieważ inwestor decydując się na montaż paneli fotowoltaicznych, zmniejsza swoje roczne koszty energii elektrycznej o 75%. To oznacza, że po wdrożeniu systemu będzie płacił jedynie 25% pierwotnej kwoty rachunków. Wyliczenie jest proste: 25% z 6000 zł to 1500 zł (6000 zł x 0,25 = 1500 zł). Instalacja paneli fotowoltaicznych to nie tylko sposób na redukcję kosztów, ale również na zredukowanie śladu węglowego budynku, co jest zgodne z trendami zrównoważonego rozwoju i efektywności energetycznej. Panele fotowoltaiczne przekształcają energię słoneczną w energię elektryczną, co może znacząco obniżyć zależność od zewnętrznych dostawców energii. Przed podjęciem decyzji o inwestycji warto przeprowadzić analizę techniczną i ekonomiczną, aby oszacować potencjalne oszczędności oraz czas zwrotu z inwestycji, co jest kluczowe w kontekście długoterminowego planowania finansowego budynków użyteczności publicznej.

Pytanie 9

Podczas sporządzania przedmiaru robót dla systemów wodociągowych, długość rur określa się w metrach?

A. bez wyłączania długości łączników oraz armatury łączonej lutowaniem lub gwintowaniem
B. z wyłączeniem długości łączników oraz armatury
C. wliczając armaturę z kołnierzami
D. a liczba podejść ustalana jest wspólnie dla zimnej i ciepłej wody

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "bez odliczania długości łączników oraz armatury łączonej przez lutowanie lub gwintowanie" jest zgodna z praktykami stosowanymi w branży wodociągowej. W przypadku przedmiaru robót dla instalacji wodociągowych, długość rurociągów należy mierzyć wyłącznie jako długość prostych odcinków rur, co jest zgodne z zasadami określonymi w normach budowlanych oraz standardach dotyczących obliczeń hydraulicznych. W praktyce oznacza to, że nie uwzględniamy długości łączników, jak kolanka czy złączki, które nie wpływają na całkowitą długość rurociągu. Przykładowo, przy obliczaniu ilości materiałów potrzebnych do instalacji, koncentrujemy się na długościach rur, co pozwala na precyzyjne określenie zapotrzebowania na materiały. Dodatkowo, takie podejście ogranicza ryzyko nadmiernych zakupów lub marnotrawstwa materiałów, co jest kluczowe w budownictwie. Ponadto, standardy takie jak PN-EN 805 oraz PN-EN 12056 wskazują na konieczność dokonywania pomiarów zgodnie z określonymi zasadami, co podkreśla znaczenie niewliczania łączników w przedmiarze robót.

Pytanie 10

W skład systemu solarnego przeznaczonego do produkcji ciepłej wody użytkowej z zastosowaniem energii słonecznej wchodzą:

A. kolektor rurowy, falownik, konstrukcja montażowa na dach, konektor, przewód solarny, naczynie przeponowe
B. kolektor fotowoltaiczny, elektroniczny mikroprocesorowy system sterujący, elektroniczna pompa wody, zestaw montażowy zawierający kable, rury, zawiesia
C. kolektor próżniowy, inwerter sieciowy, konstrukcja montażowa na dach, konektor, przewód solarny
D. kolektor płaski, pompa solarna, stacja solarna z grupą pompową, mikroprocesorowy system sterowania systemem solarnym, naczynie przeponowe, zestaw przyłączeniowy hydrauliczny, zestaw montażowy, zasobnik

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór kolektora płaskiego, pompy solarnej, stacji solarnej z grupą pompową, mikroprocesorowego systemu sterowania systemem solarnym, naczynia przeponowego, zestawu przyłączeniowego hydraulicznego, zestawu montażowego oraz zasobnika jako elementów systemu solarnego do wytwarzania ciepłej wody użytkowej jest trafny. Kolektor płaski skutecznie absorbuje promieniowanie słoneczne, przekształcając je w ciepło, które następnie przekazywane jest do czynnika roboczego, zazwyczaj wody, krążącego w układzie. Pompa solarna jest kluczowym komponentem, który umożliwia cyrkulację tego czynnika, a stacja solarna z grupą pompową integruje wszystkie te elementy, zapewniając efektywne przekazywanie ciepła. Mikroprocesorowy system sterowania pozwala na optymalne zarządzanie pracą systemu, co przekłada się na oszczędności energii oraz zwiększenie efektywności. Naczynie przeponowe zabezpiecza system przed nadciśnieniem, a zestaw przyłączeniowy hydrauliczny oraz montażowy zapewniają prawidłowe połączenia i stabilność całej instalacji. Taki zestaw komponentów spełnia standardy jakości i efektywności, gwarantując trwałość i niezawodność w długoterminowym użytkowaniu.

Pytanie 11

W przypadku, gdy źródłem ciepła są wody gruntowe lub powierzchniowe, a temperatura może być niższa od zera, którą z pomp ciepła należy zastosować?

A. solanka - woda
B. woda - woda
C. grunt - woda
D. powietrze - woda

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pompa ciepła typu solanka - woda jest odpowiednia, gdy źródłem ciepła są wody gruntowe lub powierzchniowe, szczególnie w obszarach, gdzie temperatura może spadać poniżej zera. W tym systemie ciepło jest pobierane z gruntu za pomocą obiegu solanki, która krąży w układzie zamkniętym. Zastosowanie solanki jako medium antyzamarzającego pozwala na efektywne wykorzystanie energii geotermalnej, nawet przy niskich temperaturach. Często stosuje się takie rozwiązania w budynkach jednorodzinnych, gdzie instalacja gruntowych wymienników ciepła jest w stanie zapewnić odpowiednią efektywność grzewczą. Dzięki swojej wydajności i możliwości pracy w trudnych warunkach, pompy te są zgodne z normami ECODESIGN, a ich zastosowanie pozytywnie wpływa na redukcję emisji CO2. Ponadto, wykorzystując grunt jako źródło energii, można uzyskać stabilne i przewidywalne źródło ciepła przez cały rok, co jest niezmiernie ważne w kontekście zrównoważonego rozwoju oraz oszczędności energii.

Pytanie 12

W obiekcie o powierzchni użytkowej 180 m3 system grzewczy działa dzięki kotłowi kondensacyjnemu współpracującemu z kolektorem słonecznym, co w przypadku tej instalacji pozwala na redukcję zużycia gazu o 18%. Jaki jest koszt ogrzewania, jeżeli roczne zużycie gazu wysokometanowego dla tego obiektu wynosi około 2 935 m3, a jednostkowy koszt gazu to przybliżone 1,8 zł/m3?

A. 3 336,00 zł
B. 5 283,00 zł
C. 4 332,06 zł
D. 6 233,94 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi 4 332,06 zł jest poprawny, gdyż koszt obsługi grzewczej budynku można obliczyć na podstawie rocznego zużycia gazu oraz jego jednostkowego kosztu. Z danych wynika, że roczne zużycie gazu wynosi 2 935 m3. Dzięki zastosowaniu kotła kondensacyjnego wspomaganego kolektorem słonecznym, zużycie gazu jest obniżone o 18%. Możemy obliczyć rzeczywiste zużycie gazu po zastosowaniu tego udogodnienia: 2 935 m3 x 0,18 = 528,30 m3 oszczędności. Następnie należy odjąć ten wynik od całkowitego zużycia, co daje 2 935 m3 - 528,30 m3 = 2 406,70 m3 gazu, które będzie potrzebne do ogrzewania. Koszt roczny obsługi grzewczej wyniesie zatem 2 406,70 m3 x 1,80 zł/m3 = 4 332,06 zł. Takie podejście jest zgodne z najlepszymi praktykami w dziedzinie inżynierii cieplnej i efektywności energetycznej, co pokazuje, jak ważne jest odpowiednie dobranie systemu grzewczego, aby uzyskać oszczędności energetyczne oraz finansowe.

Pytanie 13

Jaką obudowę o oznaczeniu stopnia ochrony należy zastosować w przypadku urządzenia elektrycznego działającego w zapylonym środowisku?

A. IP 45
B. IP 65
C. IP 46
D. IP 2X

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Obudowy elektryczne o stopniu ochrony IP 65 zapewniają wysoki poziom ochrony przed pyłem oraz wodą. Wartym podkreślenia jest, że pierwsza cyfra (6) oznacza całkowitą ochronę przed wnikaniem pyłu, co jest kluczowe w środowiskach zapylonych, gdzie obecność cząstek stałych może prowadzić do uszkodzeń urządzeń. Druga cyfra (5) natomiast wskazuje na ochronę przed strumieniami wody, co czyni je odpowiednimi do stosowania w trudnych warunkach atmosferycznych. Przykładowo, urządzenia takie jak czujniki, napędy czy skrzynki rozdzielcze wykorzystywane w przemyśle budowlanym lub w produkcji mogą być narażone na działanie pyłu oraz wilgoci, stąd zastosowanie obudowy IP 65 jest nie tylko zalecane, ale wręcz wymagane w celu zapewnienia ich niezawodności i wydajności operacyjnej. Takie rozwiązania są zgodne z normami IEC 60529, które określają wymagania dla stopni ochrony obudów.

Pytanie 14

Który rodzaj kosztorysu tworzony na podstawie przedmiaru robót, jest wykorzystywany do określenia kosztów całej planowanej inwestycji przez ustalenie cen materiałów budowlanych oraz wynagrodzenia za pracę sprzętu i ludzi?

A. Ślepy
B. Inwestorski
C. Powykonawczy
D. Dodatkowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Inwestorski' jest prawidłowa, ponieważ kosztorys inwestorski jest kluczowym dokumentem w procesie planowania i realizacji inwestycji budowlanych. Sporządzany na podstawie przedmiaru robót, kosztorys ten pozwala na oszacowanie całkowitych kosztów projektu, uwzględniając ceny materiałów budowlanych, wynagrodzenie pracowników oraz koszty eksploatacji sprzętu. Jego poprawne przygotowanie jest niezbędne do zabezpieczenia finansowania oraz do podejmowania świadomych decyzji inwestycyjnych. Przykładowo, w przypadku budowy nowego obiektu komercyjnego, kosztorys inwestorski pozwala inwestorowi zrozumieć, jakie będą całkowite wydatki związane z realizacją projektu, co umożliwia efektywne zarządzanie budżetem oraz planowanie harmonogramu robót. Dobre praktyki branżowe zalecają, aby kosztorys inwestorski był regularnie aktualizowany w miarę postępu prac, co pomaga w monitorowaniu ewentualnych odchyleń od pierwotnych założeń finansowych oraz w identyfikowaniu potencjalnych oszczędności.

Pytanie 15

Jaką liczbę łopat wirnika należy uznać za optymalną w turbinie wiatrowej?

A. 3
B. 5
C. 2
D. 7

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Optymalna liczba łopat wirnika w turbinie wiatrowej wynosi zazwyczaj trzy. Taka konfiguracja zapewnia równowagę pomiędzy efektywnością generowania energii a stabilnością działania. Trzy łopaty pozwalają na optymalne wykorzystanie siły wiatru, co zwiększa wydajność turbiny. Dzięki równomiernemu rozkładowi masy, wirnik z trzema łopatami działa płynniej, co minimalizuje drgania i hałas. Dodatkowo, turbiny z trzema łopatami są bardziej odporne na silne wiatry, co zwiększa ich trwałość i niezawodność. Przykłady zastosowania takich turbin można znaleźć w wielu nowoczesnych farmach wiatrowych, gdzie ich konstrukcja została dostosowana do standardów IEC 61400, które określają wymagania dotyczące projektowania i testowania turbin wiatrowych. Trzy łopaty zapewniają również lepszą możliwość dostosowania do różnych warunków wiatrowych, co jest kluczowe w kontekście zmieniającego się klimatu i lokalnych uwarunkowań geograficznych.

Pytanie 16

Palnik widoczny na ilustracji może być używany w kotłach przystosowanych do peletów oraz ziaren. Jakiego rodzaju palnik to jest?

A. rynnowy
B. rusztowy
C. zasypowy
D. retortowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Palnik retortowy to typ palnika, który jest szczególnie dedykowany do spalania paliw stałych, takich jak pelet i ziarna zbóż. Jego konstrukcja umożliwia efektywne i kontrolowane spalanie, co przekłada się na wysoką efektywność energetyczną oraz niską emisję zanieczyszczeń. Retorty charakteryzują się komorą spalania, w której paliwo jest podawane w sposób ciągły, co zapewnia stabilność procesu. Zastosowanie palników retortowych w kotłach na pelet i ziarna zbóż pozwala na osiągnięcie optymalnej temperatury spalania, co minimalizuje ryzyko powstawania niepełnego spalania. Dodatkowo, palniki te często są wyposażone w systemy automatycznego podawania paliwa oraz regulacji powietrza, co ułatwia ich obsługę i zwiększa komfort użytkowania. W praktyce, instalacje z palnikami retortowymi są często wykorzystywane w systemach ogrzewania budynków jednorodzinnych oraz przemysłowych, gdzie kluczowe są zarówno efektywność, jak i ekologia.

Pytanie 17

Jaki materiał jest najczęściej używany do wytwarzania ogniw fotowoltaicznych?

A. Aluminium
B. Stal
C. Miedź
D. Krzem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Krzem jest najczęściej wykorzystywanym materiałem do produkcji fotoogniw, co wynika z jego unikalnych właściwości półprzewodnikowych. W procesie fotowoltaicznym krzem absorbuje energię świetlną i przekształca ją w energię elektryczną dzięki zjawisku fotowoltaicznemu. Krzem krystaliczny, a także amorficzny, są powszechnie stosowane w ogniwach solarnych. W przypadku krzemu krystalicznego, jego struktura krystaliczna zapewnia wysoką wydajność konwersji energii, co czyni go preferowanym wyborem dla paneli solarnych stosowanych w instalacjach domowych oraz przemysłowych. Ponadto, produkcja ogniw krzemowych jest dobrze rozwinięta, co obniża koszty produkcji i umożliwia masową produkcję. W branży stosowane są standardy, takie jak IEC 61215 i IEC 61730, które dotyczą wydajności oraz bezpieczeństwa fotoogniw. Właściwości krzemu, takie jak łatwość w obróbce oraz stabilność chemiczna, sprawiają, że cały czas pozostaje on kluczowym materiałem w rozwijającym się sektorze energii odnawialnej.

Pytanie 18

W celu regulacji przepływu wody bezpośrednio na grzejnikach instaluje się

A. zawór termostatyczny
B. zawór trójdrożny
C. odpowietrznik
D. zawór czterodrożny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawór termostatyczny jest kluczowym elementem systemu grzewczego, który umożliwia precyzyjną regulację temperatury w pomieszczeniach. Jego działanie opiera się na automatycznym dopasowywaniu przepływu wody do aktualnych potrzeb grzewczych, co przyczynia się do oszczędności energii oraz poprawy komfortu użytkowania. Dzięki zastosowaniu zaworów termostatycznych można uniknąć przegrzewania pomieszczeń, co jest szczególnie istotne w okresie grzewczym. Przykładowo, w systemach ogrzewania podłogowego, gdzie temperatura może łatwo osiągać zbyt wysokie wartości, zawór termostatyczny działa jako zabezpieczenie, regulując ilość ciepłej wody wpływającej do obiegu. Ważne jest również, aby zawory te były odpowiednio dobrane do specyfiki instalacji, co powinno być zgodne z normami takimi jak PN-EN 215, które dotyczą wymagań dotyczących zaworów termostatycznych. Dzięki ich zastosowaniu można zwiększyć efektywność energetyczną budynków oraz poprawić ich komfort termiczny.

Pytanie 19

W trakcie modernizacji elektrowni wodnej dokonano wymiany turbiny na nowy model o znamionowym przepływie Qn większym o 20%. Następnie zainstalowano rurę ssącą, co spowodowało wzrost użytecznego spadu Hu na turbinie z 1,6 m do 2 m. W rezultacie moc nominalna elektrowni Pn, wyrażona równaniem Pn = 9,81xQnxHuxη, wzrosła o około

A. 30%
B. 40%
C. 20%
D. 50%

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wzrost mocy nominalnej elektrowni wodnej można obliczyć, analizując zależność Pn = 9,81 x Qn x Hu x η, gdzie Pn to moc nominalna, Qn to przełyk znamionowy, Hu to spad użyteczny, a η to sprawność turbiny. W przypadku tego zadania, przełyk znamionowy Qn wzrósł o 20%, co oznacza, że nowy Qn wynosi 1,2 x Qn (stare). Dodatkowo, spad użyteczny Hu wzrósł z 1,6 m do 2 m, co stanowi wzrost o 25% (2 m / 1,6 m = 1,25). Łączny wzrost mocy można obliczyć mnożąc te dwa czynniki: (1,2) x (1,25) = 1,5, co oznacza wzrost o 50%. Przykład zastosowania tej wiedzy można zobaczyć w praktyce modernizacji elektrowni, gdzie inżynierowie starają się maksymalizować efektywność energetyczną poprzez optymalizację zarówno turbiny, jak i parametrów hydraulicznych. Zmiany te są zgodne z najlepszymi praktykami w branży, które dążą do zwiększenia wydajności systemów energetycznych. Warto również zauważyć, że poprawa parametrów turbiny przyczyni się do lepszej wykorzystania dostępnej energii wody, co jest kluczowe w kontekście zrównoważonego rozwoju energetyki wodnej.

Pytanie 20

Rozmieszczenie podłączeń urządzeń oraz armatury w instalacji ilustrują rysunki

A. przybliżonych
B. dokładnych
C. schematycznych
D. lokalnych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "schematycznych" jest prawidłowa, ponieważ schematy instalacji przedstawiają ogólny układ i połączenia pomiędzy urządzeniami w instalacjach budowlanych, takich jak instalacje elektryczne, wodociągowe czy grzewcze. Schematy te są kluczowe dla inżynierów i techników, ponieważ ułatwiają zrozumienie zasady działania systemu oraz kolejności podłączeń. W praktyce, schematyczne rysunki stosowane są podczas projektowania i instalacji, co pozwala na szybsze lokalizowanie problemów oraz planowanie serwisów. W branży budowlanej istnieją standardy, takie jak normy ISO i PN, które regulują sposób tworzenia takich schematów, co zapewnia ich jednolitość i zrozumiałość dla wszystkich użytkowników. Przykładem może być schemat instalacji elektrycznej, który ilustruje rozmieszczenie gniazdek, włączników oraz źródeł światła, co jest niezbędne do poprawnego wykonania instalacji oraz późniejszego jej użytkowania.

Pytanie 21

Aby uszczelnić złącza gwintowe stalowych rur, należy użyć

A. celulozy
B. taśmę polietylenową
C. klej uszczelniający
D. pakuły lniane lub konopne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pakuły lniane lub konopne to tradycyjne materiały uszczelniające, które są powszechnie stosowane do uszczelniania połączeń gwintowych rur stalowych. Dzięki swojej strukturze włókienkowej, pakuły doskonale wypełniają przestrzenie między gwintami, co zapobiega nieszczelnościom. W praktyce, pakuły są używane w instalacjach wodociągowych, gazowych oraz w innych systemach, gdzie wymagane jest szczelne połączenie rur. Warto podkreślić, że pakuły lniane są bardziej odporne na działanie wody, podczas gdy pakuły konopne charakteryzują się większą wytrzymałością mechaniczną. Standardy branżowe, takie jak PN-EN 10226, zalecają stosowanie pakuł jako skutecznego materiału do uszczelniania, zwłaszcza w miejscach narażonych na wysokie ciśnienie. Dobrą praktyką jest także ich impregnacja odpowiednimi smarami, co dodatkowo zwiększa ich właściwości uszczelniające oraz odporność na korozję. Stosowanie pakuł lnianych lub konopnych w połączeniach gwintowych jest nie tylko efektywne, ale i zgodne z normami dotyczącymi materiałów uszczelniających.

Pytanie 22

Gdzie należy zamontować zewnętrzną jednostkę powietrznej pompy ciepła?

A. bezpośrednio przy zewnętrznej ścianie budynku z wyrzutnią powietrza kierującą się w stronę ściany
B. w odległości co najmniej 0,5 m od zewnętrznej ściany z wyrzutnią powietrza skierowaną poza ścianę
C. w odległości co najmniej 0,5 m od zewnętrznej ściany z wyrzutnią powietrza skierowaną w stronę ściany
D. bezpośrednio przy zewnętrznej ścianie budynku z czerpnią powietrza zwróconą w stronę ściany

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybierając tę odpowiedź, dobrze trafiłeś. Montaż zewnętrznego zespołu powietrznej pompy ciepła przynajmniej 0,5 m od ściany z wyrzutnią powietrza skierowaną na zewnątrz jest naprawdę dobrym rozwiązaniem. Dzięki temu powietrze swobodnie krąży i nie ma ryzyka zastoju, co jest kluczowe dla efektywnego działania urządzenia. Z mojego doświadczenia, jeśli zachowasz odpowiednią odległość, to ciepłe powietrze łatwiej się rozprasza i nie wraca znów do wlotu, co mogłoby obniżyć wydajność. Dobrze jest też unikać miejsc z przeszkodami, bo to może zablokować przepływ powietrza. Pamiętaj też, aby mieć na uwadze, jak blisko są inne obiekty – hałas generowany przez pompę może być ważny, szczególnie w otoczeniu mieszkalnym. Trzymanie się tych zasad pomoże wydłużyć żywotność urządzenia i zyskać lepszą efektywność energetyczną.

Pytanie 23

W jednym cyklu obiegu wody nie wolno łączyć rur ze stali ocynkowanej z rurami

A. miedzianymi
B. polietylenowymi sieciowanymi
C. polietylenowymi warstwowymi
D. polipropylenowymi

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Połączenie rur ze stali ocynkowanej z rurami miedzianymi jest niewłaściwe z powodu różnic w przewodnictwie elektrycznym i reakcji chemicznych, które mogą wystąpić między tymi dwoma materiałami. Stal ocynkowana, która jest pokryta warstwą cynku, może wchodzić w reakcje galwaniczne z miedzią, co prowadzi do korozji i uszkodzenia rur. Przykładowo, w instalacjach wodociągowych, gdzie pojawia się obecność elektrolitów, taka korozja może znacznie osłabić integralność systemu, prowadząc do wycieków i awarii. Dlatego w praktyce inżynierskiej stosuje się standardy, które zalecają unikanie takich połączeń. Dobre praktyki dotyczące projektowania instalacji hydraulicznych obejmują także stosowanie odpowiednich złączek i przejściówek, które są zaprojektowane w sposób, który minimalizuje ryzyko korozji. Na przykład, zamiast łączyć rury miedziane z ocynkowanymi, lepiej jest zastosować rury z tworzyw sztucznych, które nie wchodzą w reakcje chemiczne z metalami i są bardziej odporne na korozję.

Pytanie 24

Przed zainstalowaniem systemu solarnego dokonano pomiarów wewnątrz obiektu. Instalacji solarnych nie można realizować w technologii PEX/Al/PEX, ponieważ

A. nie są odporne na wysokie temperatury
B. obecne w nich aluminium prowadzi do degradacji glikolu
C. brak jest odpowiednich złączek do połączenia z kolektorem
D. warstwy polietylenowe mają słabe właściwości przewodzenia ciepła

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rury PEX/Al/PEX, składające się z warstw polietylenu i aluminium, nie są odpowiednie do zastosowań w systemach solarnych ze względu na ich niską odporność na wysokie temperatury. W instalacjach solarnych, zwłaszcza w kolektorach, mogą występować temperatury znacznie przekraczające 100°C, co prowadzi do degradacji materiałów takich jak polietylen. Wysoka temperatura może powodować osłabienie struktury rury, co skutkuje ryzykiem wycieków i awarii całego systemu. Przykładem alternatywnych materiałów, które są bardziej odpowiednie do takich instalacji, są rury miedziane lub stalowe, które charakteryzują się wysoką odpornością na temperaturę i ciśnienie. Wybór właściwych materiałów jest kluczowy dla zapewnienia efektywności energetycznej i trwałości systemu solarnego, co jest zgodne z najlepszymi praktykami w branży instalacji OZE. Warto pamiętać, że zgodność z normami PN-EN 12976 dotyczącymi systemów solarnych może pomóc w uniknięciu problemów związanych z niewłaściwym doborem materiałów.

Pytanie 25

Ocena właściwości glikolu polega na ustaleniu wartości pH. Glikol powinien być niezwłocznie wymieniony, jeśli jego odczyn spadnie poniżej

A. pH 10
B. pH 9
C. pH 11
D. pH 7

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź pH 7 jest prawidłowa, ponieważ wartość ta oznacza neutralne pH, które jest kluczowe dla zachowania właściwości glikolu. W przemyśle chemicznym oraz podczas obiegu wody w systemach grzewczych i chłodniczych, pH na poziomie 7 wskazuje na brak nadmiernej kwasowości lub zasadowości, co zapewnia optymalne warunki dla pracy wielu komponentów. Spadek wartości pH poniżej 7 może prowadzić do korozji metali i osadzania się niepożądanych substancji, co negatywnie wpływa na efektywność systemu oraz jego żywotność. Ponadto, wiele systemów, takich jak kotły, wymaga regulacji chemii wody, w tym pH, aby uniknąć uszkodzeń. Dlatego ważne jest, aby regularnie monitorować pH glikolu i w razie potrzeby go wymienić, aby zapewnić długoterminową niezawodność systemów, w których jest używany. W branży często stosuje się testy pH jako standardową praktykę konserwacyjną.

Pytanie 26

W standardowych warunkach temperaturowych i ciśnieniowych (STC) do uzyskania mocy nominalnej systemu na poziomie 1 kWp potrzebna będzie powierzchnia 1 m2 modułu, który cechuje się teoretyczną efektywnością wynoszącą 100%. Przeciętna efektywność paneli krystalicznych dostępnych na rynku wynosi około 14%. Dlatego, aby stworzyć farmę fotowoltaiczną o mocy 1 MWp z paneli o tej efektywności nominalnej, całkowita powierzchnia powinna wynosić w przybliżeniu

A. 7 tys. m2
B. 14 tys. m2
C. 4 tys. m2
D. 10 tys. m2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby uzyskać moc nominalną 1 MWp za pomocą paneli fotowoltaicznych o sprawności 14%, należy obliczyć powierzchnię potrzebną do ich zainstalowania. Moc nominalna systemu na poziomie 1 kWp wymaga 1 m² modułu o 100% sprawności. Przy sprawności 14% jeden panel o mocy 1 kWp potrzebuje 1 m²/0,14, co daje około 7,14 m² na 1 kWp. Zatem na uzyskanie 1 MWp potrzebujemy 1000 kWp * 7,14 m²/kWp, co daje 7142 m², co można zaokrąglić do 7000 m². To obliczenie jest zgodne z praktykami w branży fotowoltaicznej, które uwzględniają efektywność modułów i ich rozmieszczenie. W praktyce, podczas projektowania farmy fotowoltaicznej, należy również uwzględnić strefy dostępu, unikanie cieniowania oraz odpowiednie ułożenie paneli, co może wpływać na rzeczywistą powierzchnię zajmowaną przez instalację. Dobrze zaprojektowana farma uwzględnia te czynniki, co prowadzi do optymalizacji produkcji energii elektrycznej.

Pytanie 27

Całkowity koszt materiałów do zainstalowania systemu pompy ciepła wynosi 62 000 zł, a koszt sprzętu to 8 900 zł. Wiedząc, że koszt robocizny wynosi 20 % wartości materiałów, oblicz całkowitą wartość inwestycji?

A. 83 300 zł
B. 70 900 zł
C. 74 400 zł
D. 86 800 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć całkowitą wartość inwestycji w instalację pompy ciepła, należy zsumować koszty materiałów, sprzętu oraz robocizny. Koszt materiałów wynosi 62 000 zł, a koszt sprzętu to 8 900 zł. Robocizna została ustalona na 20% wartości materiałów, co daje 12 400 zł (20% z 62 000 zł). Zatem całkowity koszt inwestycji obliczamy jako: 62 000 zł (materiały) + 8 900 zł (sprzęt) + 12 400 zł (robocizna) = 83 300 zł. Wyliczenia te są zgodne z praktykami stosowanymi w branży budowlanej, gdzie szczegółowe rozliczenia kosztów są kluczowe dla zarządzania projektami. Praktyczne zastosowanie tej wiedzy polega na umiejętnym planowaniu budżetu inwestycyjnego oraz przewidywaniu kosztów całkowitych przed rozpoczęciem prac, co jest niezbędne dla uniknięcia nieprzewidzianych wydatków i utrzymania rentowności projektu.

Pytanie 28

Aby przygotować kosztorys powykonawczy, wielkości wydatków na robociznę, materiały oraz sprzęt ustala się na podstawie

A. o Katalog Nakładów Rzeczowych
B. o Plan Bezpieczeństwa i Ochrony Zdrowia
C. o Katalog Wyrobów Gotowych
D. o Polskie Normy - zharmonizowane

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Katalog Nakładów Rzeczowych jest kluczowym dokumentem w procesie sporządzania kosztorysów powykonawczych, ponieważ zawiera szczegółowe dane dotyczące nakładów robocizny, materiałów i sprzętu, które są niezbędne do oszacowania kosztów realizacji projektu budowlanego. Dzięki tym informacjom, kosztorysant ma możliwość precyzyjnego określenia wydatków związanych z każdym etapem realizacji inwestycji. Katalog ten jest zgodny z obowiązującymi normami oraz standardami branżowymi, co zapewnia jego rzetelność i aktualność. Na przykład, w praktyce, jeśli wykonawca planuje budowę obiektu, korzysta z Katalogu Nakładów Rzeczowych, aby uwzględnić specyficzne koszty materiałów budowlanych oraz robocizny związanej z ich montażem. Warto również podkreślić, że właściwe posługiwanie się tym katalogiem przyczynia się do optymalizacji kosztów i zwiększenia efektywności projektów budowlanych, co jest niezbędne w konkurencyjnym środowisku rynku budowlanego.

Pytanie 29

Aby pompy ciepła funkcjonujące w systemie ogrzewania mogły przez cały okres eksploatacji skutecznie pełnić swoje zadania, konieczne jest zapewnienie regularnych przeglądów technicznych, które powinny być realizowane przynajmniej raz

A. na pięć lat przed rozpoczęciem sezonu grzewczego
B. na pięć lat po zakończeniu sezonu grzewczego
C. w roku przed rozpoczęciem sezonu grzewczego
D. w roku po zakończeniu sezonu grzewczego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź „w roku przed sezonem grzewczym” jest prawidłowa, ponieważ regularne przeglądy techniczne pomp ciepła są kluczowe dla ich niezawodności i efektywności. Przeglądy powinny być przeprowadzane przed rozpoczęciem sezonu grzewczego, aby zidentyfikować ewentualne usterki i zapewnić optymalne działanie urządzenia. Dobrym przykładem zastosowania tej praktyki jest wykonanie przeglądu całego systemu, w tym sprawdzenie stanu wymiennika ciepła, układu chłodniczego oraz poziomu czynnika chłodniczego. Ponadto, zgodnie z normą PN-EN 14511, producent pomp ciepła zaleca regularne przeglądy w celu oceny efektywności energetycznej oraz zmniejszenia ryzyka awarii. Przegląd można również połączyć z konserwacją, co pozwala na przedłużenie żywotności urządzenia oraz redukcję kosztów eksploatacyjnych. Regularne działania serwisowe przed sezonem grzewczym pozwalają na wczesne wykrycie problemów, co jest niezbędne do zapewnienia komfortu cieplnego w budynku.

Pytanie 30

Klient, który pragnie jednocześnie uzyskiwać energię elektryczną oraz ciepło z odnawialnych źródeł, powinien rozważyć użycie

A. pompy ciepła multi-split
B. kotła dwufunkcyjnego
C. kolektora rurowego próżniowego
D. kolektora słonecznego hybrydowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kolektor słoneczny hybrydowy to urządzenie, które łączy funkcje produkcji energii elektrycznej oraz ciepła w jeden system. Dzięki zastosowaniu nowoczesnych technologii, takich jak ogniwa fotowoltaiczne i kolektory cieplne, możliwe jest jednoczesne pozyskiwanie obu form energii z promieniowania słonecznego. W praktyce oznacza to, że użytkownik może zaspokoić zarówno potrzeby grzewcze, jak i elektryczne budynku, co przekłada się na zwiększenie efektywności energetycznej. Przykładem zastosowania mogą być domy jednorodzinne, które chcą być mniej zależne od tradycyjnych źródeł energii oraz obniżyć koszty eksploatacji. Dodatkowo, integracja systemu hybrydowego z istniejącymi instalacjami OZE, jak pompy ciepła czy systemy zarządzania energią, pozwala na jeszcze lepszą optymalizację zużycia energii. Zgodnie z aktualnymi standardami budownictwa energooszczędnego, takie rozwiązania są rekomendowane jako część strategii zrównoważonego rozwoju i dążenia do neutralności węglowej.

Pytanie 31

W pompach ciepła z bezpośrednim odparowaniem, jakie zadanie pełni wymiennik gruntowy?

A. parownika
B. zaworu rozprężnego
C. zaworu odcinającego
D. skraplacza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W pompach ciepła z bezpośrednim odparowaniem, wymiennik gruntowy pełni rolę parownika, co oznacza, że absorbuje ciepło z gruntu, które następnie jest wykorzystywane do odparowania czynnika chłodniczego. Proces ten umożliwia efektywne ogrzewanie budynków w zimie oraz chłodzenie latem. W praktyce, wymienniki gruntowe mogą być wykonane w różnych konfiguracjach, takich jak pionowe lub poziome kolektory, w zależności od warunków geologicznych i potrzeb energetycznych obiektu. Zastosowanie technologii gruntowych pozwala na wykorzystanie stabilnej temperatury gruntu, co znacząco zwiększa efektywność energetyczną systemu. Standardy branżowe, takie jak normy EN 14511 dotyczące pomp ciepła, podkreślają znaczenie optymalizacji wymienników ciepła, co wpisuje się w działania mające na celu zwiększenie efektywności energetycznej budynków oraz redukcję emisji CO2. W praktycznych zastosowaniach, właściwie zaprojektowany i zainstalowany wymiennik gruntowy może zapewnić znaczące oszczędności w kosztach ogrzewania i chłodzenia, a także przyczynić się do zrównoważonego rozwoju poprzez wykorzystanie odnawialnych źródeł energii.

Pytanie 32

Zestaw paneli fotowoltaicznych składa się z dwóch paneli fotowoltaicznych, regulatora ładowania oraz dwóch akumulatorów 12 V każdy. Aby zasilać tym zestawem urządzenia o napięciu znamionowym 12 V DC, należy podłączyć

A. akumulatory równolegle
B. panele równolegle
C. akumulatory szeregowo
D. panele szeregowo

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to akumulatory połączone równolegle, co umożliwia uzyskanie niezmiennego napięcia 12 V przy zwiększonej pojemności. Takie połączenie pozwala na zachowanie napięcia każdego z akumulatorów na poziomie 12 V, co jest kluczowe dla urządzeń zasilanych tym napięciem. W praktyce, łącząc akumulatory równolegle, sumujemy ich pojemności, co zwiększa czas pracy zestawu fotowoltaicznego, a jednocześnie nie zmienia napięcia wyjściowego. Na przykład, dwa akumulatory 12 V o pojemności 100 Ah po połączeniu równolegle dadzą 12 V i 200 Ah, co oznacza, że urządzenia mogą być zasilane przez dłuższy czas. Tego rodzaju połączenie jest zgodne z najlepszymi praktykami w dziedzinie energii odnawialnej, zapewniając stabilność zasilania oraz dłuższą żywotność akumulatorów. Równoległe połączenie akumulatorów jest powszechnie stosowane w systemach solarnych, co pozwala na efektywniejsze zarządzanie energią oraz minimalizowanie ryzyka nadmiernego rozładowania jednego z akumulatorów.

Pytanie 33

W trakcie działania systemu fotowoltaicznego na inwerterze zauważono kod błędu dotyczący zwarcia doziemnego. Jakie mogą być przyczyny tego zjawiska?

A. zacienienie modułów
B. rozładowany akumulator
C. niedostosowanie prądowe paneli
D. uszkodzony przewód

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Uszkodzony przewód w instalacji fotowoltaicznej może prowadzić do zwarcia doziemnego, co jest poważnym problemem, mogącym zagrażać bezpieczeństwu całego systemu. Zwarcie doziemne występuje, gdy przewód fazowy styka się z ziemią lub innym uziemionym elementem, co prowadzi do niebezpiecznego wzrostu prądu. W takim przypadku inwerter wykrywa ten problem i generuje kod błędu, aby zasygnalizować potrzebę interwencji. Praktycznym przykładem może być sytuacja, w której przewód ochronny został uszkodzony w wyniku działania czynników atmosferycznych, takich jak deszcz czy intensywne nasłonecznienie, co prowadzi do degradacji materiałów izolacyjnych. W takiej sytuacji ważne jest, aby regularnie kontrolować stan przewodów i zainstalować systemy monitoringu, które pomogą wcześniej wykryć potencjalne problemy i zapobiec poważnym uszkodzeniom. Dobre praktyki branżowe sugerują, aby instalacje były projektowane z uwzględnieniem odpowiednich zabezpieczeń oraz regularnych przeglądów technicznych, co pozwoli na minimalizację ryzyka wystąpienia zwarć doziemnych i poprawi trwałość systemu.

Pytanie 34

Z jakich materiałów produkowane są łopaty wirników dużych turbin wiatrowych?

A. Z miedzi elektrolitycznej
B. Z aluminium
C. Z włókna szklanego
D. Ze stali

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Łopaty wirników dużych turbin wiatrowych są najczęściej wykonane z włókna szklanego, co wynika z jego korzystnych właściwości mechanicznych. Włókno szklane charakteryzuje się wysoką wytrzymałością na rozciąganie oraz niską gęstością, co przekłada się na lekkość konstrukcji. To istotne, ponieważ zmniejsza obciążenie strukturalne turbiny i pozwala na efektywniejsze wykorzystanie energii wiatru. Dodatkowo, materiał ten jest odporny na korozję i działanie niekorzystnych warunków atmosferycznych, co zapewnia długotrwałą żywotność łopat. W praktyce, zastosowanie włókna szklanego w budowie turbin wiatrowych jest zgodne z zaleceniami branżowymi, które promują wykorzystanie materiałów kompozytowych w celu zwiększenia efektywności energetycznej. To podejście jest również zgodne z nowoczesnymi trendami w inżynierii, które stawiają na zrównoważony rozwój i efektywność energetyczną.

Pytanie 35

Jak często należy przeprowadzać pomiar rezystancji poszczególnych ogniw w akumulatorach?

A. co 6 miesięcy
B. raz w roku
C. codziennie
D. raz w miesiącu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji ogniw w bateriach akumulatorów co 6 miesięcy stanowi najlepszą praktykę w zakresie monitorowania stanu technicznego akumulatorów. Takie podejście pozwala na wczesne wykrywanie potencjalnych problemów, takich jak degradacja ogniw czy nieprawidłowe połączenia. Regularne pomiary umożliwiają również ocenę efektywności procesów ładowania oraz rozładowania akumulatorów. Wiele norm branżowych, takich jak IEC 62485, podkreśla znaczenie systematycznego monitorowania parametrów elektrycznych akumulatorów, co przyczynia się do poprawy ich żywotności oraz bezpieczeństwa eksploatacji. Przykładowo, w aplikacjach takich jak zasilanie awaryjne lub systemy energii odnawialnej, regularne sprawdzanie rezystancji ogniw może zapobiec nieprzewidzianym awariom i zapewnia ciągłość działania systemów zasilających. Systematyczne pomiary są również istotne dla oceny stanu cyklu życia akumulatorów, co ma kluczowe znaczenie w kontekście przywracania ich do pełnej funkcjonalności.

Pytanie 36

W jakim dokumencie powinny być odnotowane wszystkie działania wykonane przez montera pompy ciepła w trakcie realizacji gwarancyjnych prac serwisowych?

A. W dokumentacji techniczno-ruchowej
B. W instrukcji serwisowej
C. Na fakturze za wykonaną pracę
D. W karcie gwarancyjnej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Karta gwarancyjna to naprawdę ważny dokument. Powinna zawierać wszystkie istotne informacje o tym, co robił monter w trakcie serwisu w czasie gwarancji. Zgodnie z branżowymi standardami oraz normami ISO, ta dokumentacja służy jako dowód, że serwis został wykonany, co chroni prawa konsumenta. W karcie gwarancyjnej zapisujemy nie tylko daty serwisu, ale też dokładny opis prac, jakie były wykonane, jak i uwagi o stanie technicznym sprzętu oraz sugestie na przyszłość. Na przykład, jeśli monter zauważył jakieś problemy z pompą ciepła, to powinien to dokładnie opisać w karcie, żeby w razie czego ułatwić przyszłe naprawy. No i w branży HVAC naprawdę ważne jest, żeby wszystkie działania serwisowe były dokładnie udokumentowane. Robi to nie tylko dla ochrony praw konsumentów, ale też podnosi odpowiedzialność wykonawcy.

Pytanie 37

Podczas łączenia modułów fotowoltaicznych w układzie szeregowym, jakie efekty się uzyskuje?

A. zmniejszenie napięcia i zwiększenie natężenia prądu
B. zwiększenie napięcia i zwiększenie mocy
C. zwiększenie natężenia prądu i zwiększenie mocy
D. zwiększenie napięcia i zwiększenie natężenia prądu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Łączenie modułów fotowoltaicznych szeregowo prowadzi do zwiększenia napięcia systemu, co jest kluczowe dla efektywności instalacji. W przypadku modułów o napięciu 30 V każdy, po połączeniu szeregowo trzech takich modułów, otrzymujemy napięcie 90 V. Wzrost napięcia ma istotne znaczenie, gdyż umożliwia bardziej efektywne przesyłanie energii na większe odległości oraz zmniejsza straty związane z oporem przewodów. Zwiększenie napięcia w systemie wpływa również na wzrost mocy, ponieważ moc jest iloczynem napięcia i natężenia prądu (P = U * I). W praktyce, stosując moduły połączone szeregowo, można łatwiej dostosować system do wymagań inwertera oraz ograniczyć ilość przewodów i złączy, co z kolei zmniejsza ryzyko awarii oraz obniża koszty instalacji. Warto również zaznaczyć, że zgodne z normami instalacje fotowoltaiczne powinny uwzględniać odpowiednie zabezpieczenia, takie jak bezpieczniki i wyłączniki, aby chronić system przed przetężeniem oraz przeciążeniem. Takie podejście jest zgodne z najlepszymi praktykami w branży, co przekłada się na zwiększenie niezawodności oraz bezpieczeństwa systemu.

Pytanie 38

Gdzie w instalacji solarnej umieszcza się zawór zwrotny?

A. przed pompą solarną
B. za pompą solarną
C. przed inwerterem
D. za separatorem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawór zwrotny w instalacji solarnej to naprawdę ważny element, który pomaga utrzymać system w dobrym stanie i działać efektywnie. Odpowiednie jego umiejscowienie za pompą solarną jest zgodne z praktykami branżowymi, bo zapobiega cofaniu się medium grzewczego w kierunku kolektorów, gdy pompa nie działa. Dzięki temu nie musimy się martwić o spadki ciśnienia czy uszkodzenie paneli słonecznych. Wyobraź sobie, co by się stało, gdyby ten zawór był zamontowany przed pompą - to mogłoby doprowadzić do tego, że medium cofnęłoby się do kolektorów, co z kolei mogłoby przegrzać i uszkodzić instalację. Przykłady norm, jak EN oraz wytyczne różnych organizacji, jasno mówią, że zawory zwrotne powinny być umieszczane tam, gdzie naprawdę mogą dobrze działać i nie narażać nas na awarie. Na przykład, w instalacjach z wymiennikami ciepła, zawór zwrotny jest wręcz konieczny dla prawidłowego działania systemu grzewczego. Dobrze dobrane komponenty i ich odpowiednie umiejscowienie to klucz do osiągnięcia maksymalnej efektywności energetycznej.

Pytanie 39

Czym są zrębki?

A. mieszanina trocin i kleju
B. rozdrobnione pnie i gałęzie drzew
C. odpady powstałe podczas pielęgnacji drzew
D. wióry z obróbki drewna

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zrębki to materiał pochodzący z rozdrobnienia pni i gałęzi drzew, co sprawia, że są jednym z istotnych produktów w kontekście zarządzania drewnem. W procesie tym wykorzystuje się rębaki do drewna, które skutecznie rozdrabniają większe fragmenty drzewa na mniejsze kawałki. Zrębki mają szerokie zastosowanie – często używane są jako biomasa do produkcji energii odnawialnej, co przyczynia się do zmniejszenia emisji CO2 w porównaniu do tradycyjnych paliw kopalnych. W ogrodnictwie stanowią doskonały materiał mulczujący, który pomaga w zatrzymywaniu wilgoci w glebie oraz w ograniczeniu wzrostu chwastów. Zrębki są również wykorzystywane do poprawy struktury gleby, co sprzyja wzrostowi roślin. W kontekście branżowym, zrębki mogą być klasyfikowane według ich wielkości i jakości, co wpływa na ich wartość rynkową oraz zastosowania. W Polsce coraz częściej stosuje się zrębki w elektrowniach biomasowych, co pokazuje rosnące zainteresowanie odnawialnymi źródłami energii.

Pytanie 40

Kiedy temperatura zasilania systemu grzewczego wynosi 70°C, w jakim trybie powinna działać pompa ciepła?

A. biwalentnym rozdzielonym
B. monoenergetycznym
C. monowalentnym
D. biwalentnym równoległym
Jak mamy temperaturę zasilania 70°C, to system monoenergetyczny może być problematyczny. System ten opiera się tylko na jednym źródle ciepła, co powoduje, że jest mniej elastyczny, jeśli chodzi o zmieniające się warunki na zewnątrz. Nie radzi sobie dobrze przy niskich temperaturach, co może skutkować wyższymi kosztami i większą emisją zanieczyszczeń. Z drugiej strony, system biwalentny rozdzielony, który działa na dwóch źródłach ciepła, też nie zawsze sobie poradzi w sytuacjach, gdzie jedno źródło nie daje rady dostarczyć wystarczającej energii do ogrzewania. Wybór systemu monowalentnego, opartego wyłącznie na pompie ciepła, może być kiepskim pomysłem, szczególnie w przypadku wyższych temperatur, bo wiele pomp nie działa efektywnie przy takich warunkach. Często ludzie popełniają błędy, bo nie doceniają, jak ważna jest elastyczność źródeł ciepła i zbyt dużo ufają jednemu rozwiązaniu, nie analizując konkretnych potrzeb budynku i warunków zewnętrznych, co może prowadzić do problemów z komfortem i efektywnością energetyczną.