Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 4 kwietnia 2025 19:44
  • Data zakończenia: 4 kwietnia 2025 19:52

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Usterka, której kod zaczyna się na literę B, odnosi się do komponentu

A. podwozia
B. układu napędowego
C. systemu komunikacyjnego
D. nadwozia
Kod awarii zaczynający się na literę B dotyczy nadwozia, co jest zgodne z międzynarodowymi standardami, jak ISO 15031. Problemy z nadwoziem mogą obejmować różne uszkodzenia, jak zniekształcenia, problemy z malowaniem, a także kłopoty z działaniem drzwi i okien. Moim zdaniem, to zrozumienie jest kluczowe, bo technicy mogą szybciej rozpoznać usterki i dokonać napraw, co w efekcie zwiększa bezpieczeństwo i komfort jazdy. Zrozumienie, jakie konkretne problemy mogą dotyczyć nadwozia, to także pomoc w lepszym planowaniu przeglądów i konserwacji. To wszystko ma znaczenie dla długowieczności pojazdu i obniżenia kosztów. Warto też wiedzieć, że znajomość kodów usterek i ich klasyfikacji to podstawowa umiejętność dla każdego mechanika, co pokazuje, jak ważne jest ciągłe kształcenie w tym temacie.

Pytanie 2

Podczas montażu nowego łańcucha rozrządu konieczna jest również wymiana

A. obudowy napędu łańcuchowego
B. oleju silnikowego
C. kół łańcuchowych
D. napinaczy rolkowych
Wymiana kół łańcuchowych podczas montażu nowego łańcucha rozrządu jest kluczowym elementem zapewnienia prawidłowej pracy silnika. Koła łańcuchowe pełnią zasadniczą rolę w przekazywaniu ruchu z wału korbowego na wałek rozrządu, co wpływa na synchronizację pracy silnika. Z biegiem czasu koła te mogą ulegać zużyciu, co prowadzi do nieprawidłowego napięcia łańcucha, a w konsekwencji do uszkodzeń silnika. Standardy w branży motoryzacyjnej, takie jak zalecenia producentów pojazdów, często wskazują na wymianę kół łańcuchowych w momencie zmiany łańcucha rozrządu. Przykładem może być sytuacja w silnikach VAG, gdzie producent zaleca wymianę zarówno łańcucha, jak i kół w celu uniknięcia kosztownych napraw w przyszłości. Regularna konserwacja i wymiana tych elementów są kluczowe dla utrzymania optymalnej wydajności silnika oraz jego niezawodności w długim okresie użytkowania.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

W specyfikacji rozmiaru opony 225/65R17 101H litera R wskazuje na

A. średnicę opony
B. maksymalną prędkość jazdy
C. maksymalne dopuszczalne obciążenie (nośność opony)
D. typ konstrukcji osnowy opony
Litera R w oznaczeniu rozmiaru opony 225/65R17 101H odnosi się do konstrukcji osnowy opony, co wskazuje, że opona jest oponą radialną. Opony radialne charakteryzują się tym, że włókna osnowy są ułożone w kierunku promieniowym, co pozwala na lepsze rozkładanie sił działających na oponę podczas jazdy. Dzięki tej konstrukcji, opony radialne zapewniają większą stabilność, lepszą przyczepność oraz niższe opory toczenia w porównaniu do opon diagonalnych. W praktyce oznacza to, że pojazdy wyposażone w opony radialne mogą osiągać lepsze osiągi, a także wyższą efektywność paliwową. Opony radialne są obecnie standardem w branży motoryzacyjnej, co potwierdzają normy ISO oraz standardy producentów samochodów. Warto dodać, że stosowanie opon odpowiednich do konstrukcji pojazdu jest kluczowe dla bezpieczeństwa i efektywności jazdy, a ich właściwy wybór powinien być oparty na specyfikacji producenta i zaleceniach branżowych.

Pytanie 5

Aby zlikwidować wyciek płynu hamulcowego z cylindra zacisku hamulcowego, należy wykonać

A. wymianę pierścienia uszczelniającego
B. użycie smaru do uszczelnienia
C. dodanie dodatkowej uszczelki
D. naciśnięcie tłoczka głębiej do cylindra
Wymiana pierścienia uszczelniającego jest kluczowym krokiem w usuwaniu wycieków płynu hamulcowego z cylindra zacisku hamulcowego. Pierścienie uszczelniające pełnią istotną funkcję w zapewnieniu szczelności układu hamulcowego, a ich uszkodzenie może prowadzić do niepożądanych wycieków, co z kolei może wpływać na skuteczność hamowania. Gdy pierścień uszczelniający jest zużyty lub uszkodzony, jego wymiana jest jedynym sposobem na przywrócenie prawidłowej funkcji zacisku. W praktyce, aby wymienić pierścień uszczelniający, należy zdjąć zacisk hamulcowy, co może wymagać demontażu kół i zasięgnięcia do odpowiednich narzędzi, takich jak klucze i szczypce. Ważne jest, aby przed rozpoczęciem wymiany upewnić się, że nowy pierścień uszczelniający jest zgodny z zaleceniami producenta. Wymiana pierścienia uszczelniającego jest zgodna z dobrymi praktykami branżowymi, które zalecają regularne przeglądy i konserwację układu hamulcowego w celu zapewnienia bezpieczeństwa pojazdu. W sytuacjach, gdy mamy do czynienia z nieszczelnościami, natychmiastowa reakcja i zastosowanie odpowiednich metod naprawczych mogą zapobiec poważniejszym uszkodzeniom układu hamulcowego oraz zagrożeniu podczas jazdy.

Pytanie 6

W alternatorze, który generuje prąd przemienny do zasilania elektryki w samochodzie, zastosowane jest zjawisko indukcji

A. elektrycznej
B. wzajemnej
C. elektromagnetycznej
D. elektrostatycznej
Alternator w samochodzie generuje prąd przemienny dzięki zjawisku indukcji elektromagnetycznej. Zjawisko to polega na wytwarzaniu siły elektromotorycznej w przewodniku, gdy znajduje się on w zmiennym polu magnetycznym. W alternatorze wirnik (rotor) obraca się w polu magnetycznym stworzonym przez stałe magnesy lub elektromagnesy, co powoduje zmianę strumienia magnetycznego, co z kolei indukuje prąd przemienny w stojanie. Prąd ten jest następnie prostowany przez prostownik, aby zasilić systemy elektryczne pojazdu. Praktycznym zastosowaniem tej technologii jest dostarczanie energii do akumulatora oraz różnych komponentów elektrycznych, takich jak oświetlenie, systemy audio czy jednostki sterujące. Właściwe projektowanie alternatorów zgodnie z normami SAE (Society of Automotive Engineers) oraz IEC (International Electrotechnical Commission) zapewnia ich wydajność oraz trwałość, co jest kluczowe dla niezawodności pojazdów. W związku z tym zrozumienie zasady działania indukcji elektromagnetycznej jest niezbędne dla specjalistów w dziedzinie inżynierii elektrycznej i motoryzacyjnej.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jaką jednostkę stosuje się do określenia momentu obrotowego silnika?

A. KM
B. Nm
C. N
D. kW
Moment obrotowy silnika, określany w niutonometrach (Nm), jest kluczowym parametrem, który wskazuje na zdolność silnika do wykonywania pracy obrotowej. W praktyce, moment obrotowy jest istotny w zastosowaniach takich jak napęd pojazdów, gdzie większy moment obrotowy pozwala na lepsze przyspieszenie i osiąganie wyższych prędkości w niższych zakresach obrotów silnika. Na przykład, silniki diesla zazwyczaj charakteryzują się wyższym momentem obrotowym w porównaniu do silników benzynowych, co czyni je bardziej efektywnymi w cięższych pojazdach transportowych. W branży motoryzacyjnej i inżynieryjnej, moment obrotowy jest również kluczowym wskaźnikiem dla systemów napędowych, gdyż pozwala na optymalizację konstrukcji przekładni. Standardy ISO oraz SAE dostarczają wytycznych dotyczących pomiarów i interpretacji momentu obrotowego, co jest niezbędne dla zapewnienia spójności i jakości w produkcji oraz testach silników.

Pytanie 10

Zapewnienie różnicowania prędkości obrotowej kół napędowych w trakcie pokonywania zakrętu przez pojazd realizowane jest dzięki

A. przekładni głównej
B. odpowiedniemu kątowi nachylenia kół
C. mechanizmowi różnicowemu
D. odpowiedniemu kątowi nachylenia sworznia zwrotnicy
Mechanizm różnicowy jest kluczowym elementem w układzie napędowym pojazdów, którego główną funkcją jest umożliwienie różnicowania prędkości obrotowej kół napędzanych podczas pokonywania zakrętów. W sytuacji, gdy pojazd skręca, koło znajdujące się po zewnętrznej stronie zakrętu przebywa dłuższą drogę niż koło wewnętrzne, co wymaga od nich różnej prędkości obrotowej. Mechanizm różnicowy rozwiązuje ten problem, pozwalając na swobodny ruch kół w osi poziomej, co zapobiega poślizgom i zapewnia lepszą przyczepność do drogi. W praktyce, zastosowanie mechanizmów różnicowych jest standardem w większości nowoczesnych pojazdów osobowych oraz ciężarowych. Przyczyniają się one nie tylko do poprawy komfortu jazdy, ale również do bezpieczeństwa i efektywności paliwowej. Dodatkowo, mechanizmy różnicowe mogą występować w różnych konfiguracjach, takich jak otwarte, zamknięte czy z ograniczonym poślizgiem, co pozwala na dostosowanie pojazdu do różnych warunków drogowych i stylów jazdy.

Pytanie 11

W systemie smarowania silnika najczęściej wykorzystuje się pompy

A. tłoczkowe
B. zębate
C. membranowe
D. nurnikowe
Pompy zębate są najczęściej stosowanym typem pomp w układach smarowania silników, ponieważ zapewniają one stabilne ciśnienie i wysoką wydajność. Działają na zasadzie przesuwania oleju między zębami kół zębatych, co pozwala na efektywne pobieranie i tłoczenie smaru w obrębie silnika. Ich konstrukcja jest stosunkowo prosta, co wpływa na niskie koszty produkcji oraz łatwość w serwisowaniu. W praktyce, pompy zębate są powszechnie używane w silnikach spalinowych oraz w hydraulice, gdzie wymagane jest dostarczanie oleju pod odpowiednim ciśnieniem. Ponadto, ich działanie jest mało wrażliwe na zmiany lepkości oleju, co czyni je bardziej uniwersalnymi. W standardach branżowych, takich jak ISO 6743, podkreśla się znaczenie efektywnego smarowania, co czyni pompy zębate kluczowym elementem zapewniającym długowieczność i sprawność silników. Dobre praktyki w inżynierii mechanicznej zalecają regularne kontrole i konserwację pomp zębatych, aby uniknąć awarii i zapewnić optymalną wydajność silnika.

Pytanie 12

Aby zmierzyć odległość między elektrodami świecy zapłonowej, należy zastosować

A. wzorcową płytkę.
B. suwmiarkę.
C. mikrometr do średnic.
D. szczelinomierz.
Szczelinomierz to narzędzie pomiarowe, które jest idealnie przystosowane do pomiaru przerwy między elektrodami świecy zapłonowej. Dzięki swojej budowie, szczelinomierz pozwala na dokładne określenie wymiaru szczeliny, co jest kluczowe dla prawidłowego funkcjonowania świecy zapłonowej. Utrzymanie odpowiedniej przerwy między elektrodami jest istotne, ponieważ wpływa na efektywność zapłonu mieszanki paliwowej, co z kolei przekłada się na osiągi silnika oraz jego oszczędność paliwa. Zbyt mała przerwa może prowadzić do niepełnego spalania i zwiększonej emisji spalin, natomiast zbyt duża może skutkować trudnościami w uruchomieniu silnika oraz niestabilną pracą. Użycie szczelinomierza, zwłaszcza w kontekście regularnych przeglądów i konserwacji, jest zgodne z najlepszymi praktykami w branży motoryzacyjnej. Przykładowo, podczas wymiany świec zapłonowych warto sprawdzić ich przerwę, aby upewnić się, że silnik będzie pracował optymalnie.

Pytanie 13

O jakim oznaczeniu mowa, gdy chodzi o oponę przeznaczoną do pojazdu dostawczego?

A. C
B. M+S
C. 3MPSF
D. M/C
Oznaczenie 'C' na oponie to znak, że jest stworzona specjalnie dla samochodów dostawczych. Takie opony są projektowane z myślą o większych obciążeniach, przez co są trwalsze i bardziej odporne niż zwykłe opony osobowe. Często mają też twardszą gumę, co przekłada się na ich dłuższy okres użytkowania i lepszą odporność na różne uszkodzenia. Na przykład, kiedy przewozisz towary, opony 'C' dają lepszą stabilność i wydajność, co jest mega ważne na co dzień. Warto dodać, że opony dostawcze są zazwyczaj testowane pod kątem norm jakościowych, takich jak ECE-R 30, co zapewnia ich bezpieczeństwo i komfort jazdy. Więc korzystając z opon z oznaczeniem 'C', zmniejszasz ryzyko awarii i poprawiasz efektywność transportu.

Pytanie 14

Po wymianie końcówki drążka kierowniczego konieczne jest sprawdzenie oraz ewentualna regulacja

A. zbieżności kół przednich
B. kątów pochylenia kół
C. równoległości osi
D. kąta wyprzedzenia zwrotnicy
Zbieżność kół przednich jest kluczowym parametrem wpływającym na stabilność i kierowalność pojazdu. Po wymianie końcówki drążka kierowniczego, konieczne jest sprawdzenie i ewentualna regulacja zbieżności, ponieważ nieprawidłowe ustawienie może prowadzić do nierównomiernego zużycia opon oraz problemów z prowadzeniem. Zbieżność polega na kącie, pod jakim opony przednie są ustawione względem linii centralnej pojazdu, co wpływa na ich kontakt z nawierzchnią. Przykładowo, zbyt duża zbieżność może powodować, że pojazd będzie ściągał w jedną stronę, co jest niebezpieczne na drodze. W praktyce, regulacja zbieżności kół jest procesem, który powinien być przeprowadzany w wyspecjalizowanych warsztatach, wykorzystujących odpowiednie urządzenia pomiarowe. Zgodnie z normami producentów, nieprawidłowe ustawienia zbieżności mogą prowadzić do trwalszych uszkodzeń układu zawieszenia, co zwiększa koszty eksploatacji pojazdu. Dlatego regularne kontrole i dostosowywanie zbieżności kół są niezbędne dla zapewnienia bezpieczeństwa oraz komfortu jazdy.

Pytanie 15

Optymalny poziom płynu chłodzącego w zbiorniku wyrównawczym powinien

A. być poniżej dna zbiornika.
B. znajdować się pomiędzy poziomami oznaczającymi minimum i maksimum.
C. przekraczać poziom maksymalny.
D. być poniżej poziomu minimalnego.
Prawidłowy poziom cieczy chłodzącej w zbiorniku wyrównawczym powinien znajdować się pomiędzy kreskami oznaczającymi minimum i maksimum, ponieważ to zapewnia optymalne działanie systemu chłodzenia silnika. Utrzymanie odpowiedniego poziomu cieczy jest kluczowe dla efektywności chłodzenia, co wpływa na prawidłowe funkcjonowanie silnika oraz zapobiega przegrzewaniu. Jeśli poziom cieczy będzie poniżej minimum, może to prowadzić do zjawiska 'wrzenia' płynu chłodzącego, a w konsekwencji do uszkodzenia silnika. Z drugiej strony, zbyt wysoki poziom cieczy może powodować nadmiar ciśnienia w układzie, co również jest niebezpieczne. Przykładowo, w samochodach osobowych, producenci zalecają regularne sprawdzanie poziomu płynu chłodzącego, szczególnie przed dłuższymi trasami. Dobre praktyki sugerują, aby sprawdzać poziom cieczy co najmniej raz w miesiącu oraz pamiętać o sezonowej wymianie płynu chłodzącego zgodnie z zaleceniami producenta pojazdu, co przyczynia się do wydłużenia żywotności silnika.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

W diagnostyce samochodów wykorzystuje się oprogramowanie komputerowe

A. AutoCAD
B. Warsztat
C. ESItronic
D. Eurotax
ESItronic to zaawansowane oprogramowanie diagnostyczne używane w warsztatach samochodowych do analizy i naprawy pojazdów. Program ten umożliwia diagnozowanie usterek oraz odczytywanie danych z różnych systemów elektronicznych w samochodach, co jest kluczowe w nowoczesnym serwisowaniu. ESItronic jest dostosowany do wielu marek i modeli pojazdów, co czyni go uniwersalnym narzędziem w diagnostyce. Dzięki zastosowaniu tego oprogramowania mechanicy mogą szybko zidentyfikować problemy, co znacząco przyspiesza proces naprawy i zwiększa efektywność pracy. Program oferuje również dostęp do informacji technicznych, schematów, a także najnowszych aktualizacji dotyczących procedur serwisowych, co jest zgodne z najlepszymi praktykami branżowymi w zakresie utrzymania pojazdów. Przykładem zastosowania ESItronic może być diagnoza problemu z systemem ABS, gdzie mechanik korzysta z aplikacji do odczytu kodów błędów i analizy danych w czasie rzeczywistym.

Pytanie 18

Pasek rozrządu silnika powinien być wymieniany

A. przed każdym okresem zimowym
B. w trakcie każdego przeglądu serwisowego
C. przy wymianie olejowej pompy
D. po zalecanym przebiegu
Wymiana paska rozrządu silnika jest kluczowym elementem konserwacji pojazdu, a jej przeprowadzenie po wskazanym przebiegu jest zgodne z zaleceniami producentów samochodów oraz standardami branżowymi. Zazwyczaj interwał wymiany paska rozrządu oscyluje w granicach 60 000 do 150 000 kilometrów, w zależności od marki i modelu pojazdu. Niezwykle istotne jest przestrzeganie tych zaleceń, ponieważ zużycie paska prowadzi do ryzyka jego zerwania, co może skutkować poważnymi uszkodzeniami silnika, w tym uszkodzeniem zaworów czy tłoków. W praktyce, podczas wymiany paska, warto również kontrolować stan rolek prowadzących i napinaczy, a także wymieniać płyn chłodniczy, co zapewni prawidłowe funkcjonowanie układu rozrządu na kolejne kilometry. Przykładowo, w samochodach takich jak Volkswagen Golf V, brak wymiany paska w odpowiednim czasie może prowadzić do kosztownych napraw, co pokazuje, jak istotne jest regularne monitorowanie stanu paska w kontekście całej konserwacji pojazdu.

Pytanie 19

Ciśnienie powietrza w oponach pojazdu określane jest

A. przez wytwórcę pojazdu.
B. dla określonego rozmiaru opon.
C. w zależności od wzoru bieżnika.
D. w zależności od sezonu.
Ciśnienie powietrza w oponach to naprawdę ważna sprawa. Wiesz, jak to jest – odpowiednie ciśnienie wpływa na to, jak jeździsz, pożerasz paliwo i czy podróż jest wygodna. Producenci aut ustalają te wartości, bo robią różne testy i mają swoje normy dla każdego modelu. Ważne, żeby trzymać się tych zalecanych ciśnień, bo wtedy opony dobrze przylegają do drogi, co oznacza lepszą przyczepność i stabilność. Na przykład, niskie ciśnienie może sprawić, że opony szybciej się zużywają, a nawet mogą pęknąć. Z kolei zbyt wysokie ciśnienie może być niebezpieczne, bo opony mogą gorzej trzymać się drogi, zwłaszcza w deszczu. Z mojego doświadczenia wynika, że kierowcy powinni regularnie kontrolować ciśnienie w oponach, szczególnie przed dłuższymi trasami, bo to naprawdę się opłaca. Warto też pamiętać o zaleceniach różnych organizacji, jak ETRTO czy ANSI.

Pytanie 20

SL/CH 5W/40 to symbol oleju silnikowego, który można wykorzystać

A. w silniku dwusuwowym z zapłonem iskrowym
B. w silniku czterosuwowym z zapłonem iskrowym lub samoczynnym
C. tylko w silniku czterosuwowym z zapłonem iskrowym
D. wyłącznie w silniku czterosuwowym z zapłonem samoczynnym
Olej silnikowy oznaczony jako SL/CH 5W/40 to dobry wybór dla silników czterosuwowych. Można go używać zarówno w silnikach benzynowych, jak i diesla. To oznaczenie SL mówi nam, że ten olej spełnia normy API, co oznacza, że dobrze chroni silnik, a także może pomóc w oszczędności paliwa. Lepkość 5W/40 sprawia, że olej jest efektywny w różnych temperaturach, co jest ważne, bo warunki pogodowe często się zmieniają. Co ciekawe, takich olejów używa się w wielu autach, jak na przykład Volkswagen, Ford czy Toyota. Używając takiego oleju, można liczyć na dłuższy czas życia silnika i mniejsze koszty utrzymania.

Pytanie 21

Jaki jest łączny koszt wymiany łożyska w kole pojazdu, jeśli cena łożyska wynosi 100 zł, a czas pracy to 1 godzina 12 minut przy stawce za roboczogodzinę równiej 160 zł?

A. 132 zł
B. 260 zł
C. 292 zł
D. 192 zł
Całkowity koszt wymiany łożyska koła samochodu wynosi 292 zł, co można obliczyć, sumując koszt zakupu łożyska oraz koszt pracy mechanika. Cena łożyska wynosi 100 zł. Czas potrzebny na naprawę to 1 godzina 12 minut, co przekłada się na 1,2 godziny (1 godzina + 12 minut / 60 minut). Przy stawce za roboczogodzinę wynoszącej 160 zł, koszt robocizny wyniesie 1,2 godziny * 160 zł = 192 zł. Zatem, całkowity koszt to 100 zł (łożysko) + 192 zł (robocizna) = 292 zł. Wymiana łożysk kołowych jest kluczową czynnością w utrzymaniu sprawności pojazdu, a dokładne obliczenie kosztów pozwala na lepsze zarządzanie budżetem na naprawy. W praktyce, mechanicy powinni uwzględniać zarówno ceny części, jak i stawki robocizny, aby dostarczyć klientom pełen obraz kosztów związanych z serwisem. Dobre praktyki w branży obejmują także informowanie klientów o przewidywanych kosztach przed przystąpieniem do pracy, co zwiększa przejrzystość i zaufanie.

Pytanie 22

W klasyfikacji olejów American Petroleum Institute /API/ olej oznaczony symbolem GL to olej

A. do silników o ZI
B. do silników o ZS
C. przekładniowy
D. hydrauliczny
Symbol GL w klasyfikacji olejów American Petroleum Institute (API) odnosi się do olejów przekładniowych, które są zaprojektowane do smarowania różnych typów układów przeniesienia napędu. Oleje te charakteryzują się odpowiednimi właściwościami, takimi jak odporność na utlenianie, stabilność termiczna oraz właściwości przeciwzużyciowe. Zastosowanie olejów GL jest powszechne w pojazdach mechanicznych, w tym w skrzyniach biegów, dyferencjałach i innych komponentach, gdzie niezbędne jest zapewnienie skutecznej ochrony przed zużyciem i korozją. W praktyce, oleje przekładniowe muszą spełniać określone normy, które zapewniają ich wydajność w trudnych warunkach eksploatacyjnych. Na przykład, olej klasy GL-5 jest odpowiedni do smarowania skrzyń biegów w pojazdach osobowych i ciężarowych, a jego formulacja zapewnia dodatkową ochronę przed pittingiem, co jest istotne w kontekście obciążeń mechanicznych, jakie mogą występować w tych układach. Użycie odpowiedniego oleju przekładniowego jest kluczowe dla zapewnienia prawidłowego funkcjonowania układów przeniesienia napędu, co wpływa na trwałość i efektywność pojazdu.

Pytanie 23

W celu naprawienia otworu, który podczas użytkowania stracił swój nominalny wymiar, powinno się wykorzystać

A. tulejowanie
B. spawanie
C. nitowanie
D. kucie
Tulejowanie to taki sprytny sposób na naprawę otworów, które straciły swoje wymiary przez długotrwałe użytkowanie. W tym procesie wkłada się tuleje do środka otworów, co pozwala na przywrócenie ich właściwej średnicy. Można to spotkać w takich branżach jak przemysł maszynowy czy motoryzacyjny, gdzie dokładność wymiarów jest bardzo ważna. Na przykład, kiedy remontuje się bloki silników, to jeśli otwory na cylindry są uszkodzone, można zastosować tulejowanie, żeby zamontować nowe tłoki. Warto też wiedzieć, że standardy jak ISO 286 określają tolerancje wymiarowe, co ma duże znaczenie w tym procesie. Dobrze jest również pamiętać, żeby dobierać odpowiednie materiały tulei oraz dokładnie mierzyć przed i po naprawie. Tulejowanie to naprawdę fajna opcja, bo może zaoszczędzić czas i kasę w porównaniu do wymiany całych elementów, więc firmy chętnie z tego korzystają.

Pytanie 24

Podczas testu po naprawie pojazdu zauważono samoczynny wzrost poziomu oleju w układzie smarowania silnika. Co może być przyczyną tej sytuacji?

A. uszkodzenie pompy olejowej
B. nadmierne zabrudzenie filtra oleju
C. zużycie czopów wału korbowego
D. uszkodzenie uszczelki pod głowicą
Jak się okazuje, uszkodzenie uszczelki pod głowicą to dość poważna sprawa, bo może prowadzić do niebezpiecznego wzrostu poziomu oleju w silniku. Kiedy ta uszczelka nie działa, płyny chłodzące czy olej mogą przedostać się tam, gdzie nie powinny – do komory spalania albo do układu smarowania. Jak olej dostaje się do układu chłodzenia, to robi się nieciekawie, bo może to być sygnał, że coś jest nie tak, i trzeba być ostrożnym. Z mojej perspektywy, jeśli widzisz, że poziom oleju nagle rośnie, szczególnie po jakiejś naprawie, to warto to zbadać. Jeśli chodzi o silniki, to regularne kontrole uszczelki pod głowicą są kluczowe. No i nie zapominaj o przeglądach technicznych oraz monitorowaniu poziomu oleju – to naprawdę może pomóc wychwycić problemy zanim przerodzą się w większe kłopoty.

Pytanie 25

Aby pozbyć się nadmiernego luzu nowego sworznia tłokowego w główce korbowodu, konieczne jest wykonanie operacji na tulejce ślizgowej główki korbowodu

A. przetoczyć
B. wymienić na nową
C. frezować
D. szlifować
Przetaczanie tulejki ślizgowej główki korbowodu może wydawać się atrakcyjnym rozwiązaniem, jednak wiąże się z wieloma ryzykami. Przetoczenie polega na mechanicznym skrawaniu materiału, co może prowadzić do nierównomiernego zużycia oraz pogorszenia właściwości mechanicznych tulejki. Dodatkowo, przetoczenie nie gwarantuje, że osiągnięte w ten sposób wymiary będą zgodne z wymaganiami technicznymi, co w efekcie może prowadzić do dalszego luzu. Frezowanie, z kolei, również nie jest optymalnym rozwiązaniem, ponieważ może skutkować osłabieniem struktury materiału, zwłaszcza jeżeli nie jest przeprowadzane z należytą precyzją. Szlifowanie wydaje się lepszą opcją, jednak jest to proces czasochłonny i wymaga dużej staranności, a także nie zawsze zapewnia odpowiednią jakość powierzchni, co jest kluczowe dla prawidłowego funkcjonowania silnika. W praktyce, wiele osób wybiera te metody z zamiarem zaoszczędzenia na kosztach, nie zdając sobie sprawy, że mogą one prowadzić do poważniejszych awarii w przyszłości. Z perspektywy standardów branżowych, wymiana na nową część jest jedynym rozwiązaniem, które zapewnia długoterminową niezawodność oraz bezpieczeństwo eksploatacji pojazdu.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Elementy nazywane "tulejami mokrymi" są instalowane w

A. układzie smarowania silnika
B. sprzęgle dwustopniowym
C. bloku silnika
D. skrzyni biegów
Tuleje mokre, znane również jako tuleje cylindrowe, to elementy montowane w bloku silnika, które mają kluczowe znaczenie dla efektywnego działania jednostki napędowej. Ich główną funkcją jest zapewnienie miejsca dla tłoka oraz optymalizacja procesu smarowania. Tuleje mokre są osadzone w bloku silnika w taki sposób, że współpracują z płynem chłodzącym, co pozwala na utrzymanie odpowiedniej temperatury pracy silnika. Przykładem zastosowania tulei mokrej może być silnik spalinowy, w którym olej silnikowy krąży wokół tulei, minimalizując tarcie oraz zużycie. Niektóre nowoczesne silniki stosują standardy, takie jak SAE J300, które określają właściwości olejów silnikowych i ich kompatybilność z różnymi materiałami, w tym z tulejami mokrymi. W ramach dobrych praktyk branżowych, regularna kontrola stanu tulei oraz ich smarowania jest niezbędna dla zapewnienia długowieczności silnika oraz jego optymalnej wydajności.

Pytanie 28

Podczas uzupełniania oleju w automatycznej skrzyni biegów, należy użyć oleju oznaczonego symbolem

A. API
B. ŁT4
C. ATF
D. SAE
Odpowiedź ATF (Automatic Transmission Fluid) jest poprawna, ponieważ jest to specyficzny typ oleju stosowanego w automatycznych skrzyniach biegów. Oleje ATF są zaprojektowane, aby spełniać rygorystyczne wymagania dotyczące pracy układów hydraulicznych, smarowania oraz chłodzenia, co jest kluczowe dla prawidłowego funkcjonowania automatycznej przekładni. Właściwości fizykochemiczne oleju ATF, takie jak lepkość, stabilność termiczna oraz odporność na utlenianie, są dostosowane do warunków pracy, jakie panują w skrzyniach automatycznych. Przykładem zastosowania oleju ATF może być jego użycie w samochodach osobowych, gdzie producenci zalecają stosowanie określonych specyfikacji, takich jak Dexron lub Mercon, w zależności od modelu pojazdu. Właściwy dobór oleju ATF wpływa na wydajność skrzyni biegów, a także na jej żywotność, co czyni go kluczowym elementem w serwisowaniu i konserwacji pojazdów.

Pytanie 29

W trakcie okresowych przeglądów technicznych pojazdów analizowany jest stan techniczny

A. komponentów wpływających zarówno na bezpieczeństwo, jak i ekologię
B. wszystkich komponentów pojazdu
C. komponentów wpływających wyłącznie na bezpieczeństwo
D. komponentów mających znaczenie jedynie dla ekologii
Podczas okresowych badań technicznych pojazdów, kluczowe jest ocenienie stanu technicznego zespołów mających wpływ na bezpieczeństwo i ekologię. Ta odpowiedź jest właściwa, ponieważ badania te mają na celu zapewnienie, że pojazdy są w dobrym stanie technicznym, co wpływa na bezpieczeństwo kierowcy, pasażerów i innych uczestników ruchu drogowego. W praktyce oznacza to, że ocenia się hamulce, oświetlenie, zawieszenie, a także układ wydechowy pod kątem emisji spalin. Zgodnie z normami Unii Europejskiej, standardy emisji takie jak Euro 6 obligują producentów do produkcji pojazdów spełniających określone normy ekologiczne. Regularne kontrole techniczne pomagają w identyfikacji usterek, które mogą zagrażać bezpieczeństwu, takich jak zużyte klocki hamulcowe czy niewłaściwie działające światła. W ten sposób, systematyczne badania nie tylko minimalizują ryzyko wypadków, ale również wspierają ochronę środowiska poprzez ograniczenie emisji szkodliwych substancji.

Pytanie 30

Jaki jest koszt robocizny mechanika, który pracował przez 1 godzinę i 30 minut, przy stawce 40,00 zł za jedną roboczogodzinę?

A. 40,50 zł
B. 20,00 zł
C. 60,00 zł
D. 80,50 zł
Poprawna odpowiedź wynika z prawidłowego obliczenia kosztu robocizny mechanika, który pracował przez 1 godzinę i 30 minut. Aby uzyskać całkowity koszt, należy najpierw przeliczyć czas pracy na godziny. 1 godzina i 30 minut to 1,5 godziny. Następnie, mnożymy liczbę roboczogodzin przez stawkę za godzinę, która wynosi 40,00 zł. Zatem obliczenie wygląda następująco: 1,5 godziny x 40,00 zł/godzina = 60,00 zł. Takie podejście do wyceny robocizny jest standardową praktyką w branży, gdzie precyzyjne obliczenia są kluczowe dla właściwego rozliczenia usług. Warto również dodać, że znajomość umiejętności kalkulacji kosztów robocizny jest niezbędna nie tylko dla mechaników, ale także dla wszystkich specjalistów w branży usługowej, ponieważ pozwala na precyzyjne oszacowanie kosztów zlecenia oraz na efektywne zarządzanie budżetem.

Pytanie 31

Aby ocenić skuteczność działania systemu bezpieczeństwa aktywnego w pojeździe, należy zweryfikować

A. szczelność systemu paliwowego
B. oświetlenie zewnętrzne pojazdu
C. mechanizmy napinaczy pasów bezpieczeństwa
D. stan oleju w silniku
Weryfikacja działania układu bezpieczeństwa czynnego pojazdu powinna koncentrować się na elementach, które bezpośrednio wpływają na zdolność do bezpiecznego prowadzenia. Poziom oleju w silniku, choć istotny dla ogólnej kondycji silnika, nie jest bezpośrednio związany z systemem bezpieczeństwa czynnego. Odpowiedzialność za prawidłowe smarowanie silnika ma na celu przede wszystkim zapobieganie uszkodzeniom, a nie aktywne zabezpieczenie w sytuacji zagrożenia. Napinacze pasów bezpieczeństwa, mimo iż są elementem, który wpływa na bezpieczeństwo pasażerów, nie stanowią same w sobie aktywnego elementu bezpieczeństwa, który byłby weryfikowany w kontekście ogólnej funkcjonalności pojazdu. Kontrola szczelności układu paliwowego, chociaż istotna dla uniknięcia ryzyka pożaru, również nie należy do czynnych systemów bezpieczeństwa, które obowiązkowo muszą być weryfikowane przed jazdą. Oświetlenie zewnętrzne jest tym elementem, który z jasno określonym celem ma na celu zapewnienie widoczności. Prawidłowe działania w tym zakresie są niezbędne dla bezpieczeństwa na drogach, a zaniedbanie może prowadzić do niebezpiecznych sytuacji. Kierowcy często błędnie oceniają wagę poszczególnych elementów, wybierając te, które nie są kluczowe dla aktywnego bezpieczeństwa, co może prowadzić do poważnych konsekwencji w ruchu drogowym.

Pytanie 32

W oznaczeniu opony 205/55 R15 82 T symbol T wskazuje na

A. oponę bezdętkową
B. wysokość bieżnika
C. indeks nośności
D. indeks prędkości
Odpowiedzi wskazujące na oponę bezdętkową, indeks nośności oraz wysokość bieżnika są nieprawidłowe, ponieważ nie odnoszą się bezpośrednio do symbolu T w oznaczeniu opony. Opona bezdętkowa to typ opony, który nie wymaga dętki, a jego oznaczenie w numeracji zazwyczaj nie zawiera symbolu T. Indeks nośności, oznaczany innymi cyframi, odnosi się do maksymalnej wagi, którą opona może unieść, co jest kluczowe dla bezpieczeństwa pojazdu, lecz nie ma związku z maksymalną prędkością. W praktyce, nieprawidłowe zrozumienie indeksu nośności może prowadzić do wyboru opon niewłaściwych dla danego pojazdu, co w konsekwencji może skutkować ich uszkodzeniem. Wysokość bieżnika jest również elementem wpływającym na osiągi opony, ale nie jest reprezentowana przez symbol T. Często błędnie myli się różne aspekty oznaczeń opon, co może prowadzić do nieodpowiednich wyborów przy zakupie. Warto pamiętać, że każde oznaczenie na oponie ma swoje precyzyjne znaczenie, i zrozumienie tych symboli jest kluczowe dla zapewnienia bezpieczeństwa i efektywności jazdy. Edukacja w zakresie oznaczeń opon może znacząco poprawić świadomość kierowców, co do właściwych wyborów podczas zakupu opon.

Pytanie 33

W tabeli przedstawiono wartości dotyczące prawidłowych średnic nominalnych i naprawczych silników. Podczas pomiaru średnic cylindrów w kadłubie silnika ABS stwierdzono maksymalny wymiar ϕ81,35. Oznacza to, że blok silnika

Typ silnika/
Średnica
ABDAAM,
ABS
2E
Nominalna75,0181,0182,51
Naprawcza +0,2575,2681,2682,76
Naprawcza +0,5075,5181,5183,01
Naprawcza +0,7575,76--
Granica zużycia+0,08

A. podlega naprawie na wymiar nominalny.
B. podlega naprawie na średnicę naprawczą +0,25.
C. osiągnął granicę zużycia i nie nadaje się do naprawy.
D. podlega naprawie na średnicę naprawczą +0,50.
Analizując inne odpowiedzi, należy zwrócić uwagę na błędne podejście do definicji wymiarów nominalnych oraz naprawczych. Odpowiedź sugerująca, że blok silnika "osiągnął granicę zużycia i nie nadaje się do naprawy" jest mylna, ponieważ, pomimo przekroczenia nominalnego wymiaru, istnieje możliwość naprawy do określonej średnicy. Wartości graniczne dla poszczególnych elementów silnika są ściśle określone przez normy techniczne, a ich znajomość jest kluczowa w procesie diagnostyki i naprawy. Kolejną niepoprawną koncepcją jest twierdzenie, że silnik "podlega naprawie na wymiar nominalny". Tego rodzaju naprawa nie jest możliwa, ponieważ przeszły wymiar oznacza, że cylinder jest w stanie przekroczyć maksymalne tolerancje, a zatem nie ma możliwości przywrócenia go do stanu nominalnego bez ryzyka dalszego zużycia. Odpowiedzi, które odwołują się do określonej średnicy naprawczej +0,25, również ignorują standardy wskazujące na to, że przy wymiarze ϕ81,35 mm naprawa musi być przeprowadzona zgodnie z wytycznymi dla średnicy +0,50 mm. W praktyce, każdy mechanik powinien być świadomy tych różnic, gdyż niewłaściwa ocena stanu technicznego może prowadzić do niebezpiecznych sytuacji na drodze oraz znacznych kosztów naprawy w przyszłości. Zrozumienie odpowiednich standardów pozwala na podjęcie trafnych decyzji w zakresie naprawy silników i innych komponentów mechanicznych.

Pytanie 34

Amortyzatory na tej samej osi powinny być wymieniane w parach, ponieważ

A. unika się ich czyszczenia
B. upraszcza to ich demontaż oraz montaż
C. zapobiega to przyspieszonemu ich zużywaniu
D. obniża koszty napraw
Wybór wymiany amortyzatorów pojedynczo, jak sugerują niektóre odpowiedzi, jest oparty na błędnych założeniach dotyczących działania zawieszenia. Twierdzenie, że wymiana pojedynczego amortyzatora może zredukować koszty naprawy, ignoruje długoterminowe konsekwencje związane z niewłaściwym funkcjonowaniem zawieszenia. Amortyzatory są zaprojektowane tak, by działać w parze, a ich różne stany techniczne mogą prowadzić do niestabilności pojazdu, co w efekcie zwiększa ryzyko wypadków i kosztów związanych z naprawami innego rodzaju uszkodzeń, które mogą nastąpić z powodu niewłaściwego działania zawieszenia. Co więcej, twierdzenie, że wymiana amortyzatorów w parach wiąże się z trudnościami w demontażu i montażu, pomija fakt, że wiele warsztatów dysponuje odpowiednimi narzędziami i procedurami, które ułatwiają ten proces. Niezrozumienie znaczenia symetrii w układzie zawieszenia prowadzi do poważnych błędów myślowych. Ostatecznie, nie tylko komfort jazdy, ale również bezpieczeństwo i trwałość pojazdu są zagrożone, co czyni wymianę amortyzatorów w parach nie tylko zaleceniem, ale wręcz koniecznością w kontekście odpowiedzialnej eksploatacji pojazdu.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Aby ocenić techniczny stan układu chłodzenia silnika, należy w pierwszej kolejności

A. sprawdzić czystość żeber chłodnicy
B. zweryfikować zakres działania wentylatora
C. skontrolować poziom cieczy chłodzącej
D. dokonać pomiaru ciśnienia w układzie chłodzenia
Sprawdzanie poziomu cieczy chłodzącej to mega ważna sprawa, jeśli chodzi o ocenę stanu układu chłodzenia silnika. Ciecz chłodząca, czyli ta mieszanka wody i płynu, ma kluczowe znaczenie, żeby silnik działał w odpowiedniej temperaturze i żeby się nie przegrzewał. Jak poziom cieczy jest za niski, to może być problem z chłodzeniem, a to z kolei stwarza ryzyko awarii silnika. Z mojego doświadczenia, przed tymi bardziej skomplikowanymi pomiarami, warto najpierw sprawdzić poziom płynu. Zawsze dobrze jest uzupełniać płyn chłodzący odpowiednimi specyfikami, bo one nie tylko zmniejszają ryzyko zamarzania, ale też chronią przed korozją. Regularne kontrolowanie poziomu cieczy to coś, co powinno być stałym elementem dbania o auto, bo to wydłuża jego żywotność i niezawodność.

Pytanie 39

Jakiego rodzaju parametr opisuje zapis 100A (Amper)?

A. Napięcia prądu
B. Lepkości cieczy
C. Temperatury cieczy
D. Natężenia prądu
Odpowiedź 'Natężenia prądu' jest poprawna, ponieważ zapis 100A odnosi się bezpośrednio do wartości natężenia prądu elektrycznego, które mierzone jest w amperach (A). Natężenie prądu definiuje ilość ładunku elektrycznego przepływającego przez punkt w obwodzie w jednostce czasu. W praktyce, zrozumienie natężenia prądu jest kluczowe w wielu zastosowaniach inżynieryjnych i elektronicznych, np. przy projektowaniu obwodów elektrycznych, w których należy zapewnić, aby przekroje przewodów były odpowiednie do przewodzenia określonego natężenia prądu bez ryzyka przegrzania. Standardy takie jak IEC 60228 dotyczące przewodów elektrycznych zawierają szczegółowe wytyczne dotyczące doboru przekrojów przewodów w zależności od natężenia prądu. Warto również zauważyć, że w systemach zasilania, takich jak instalacje domowe czy przemysłowe, natężenie prądu ma kluczowe znaczenie dla obliczania mocy elektrycznej, co jest niezbędne do prawidłowego doboru urządzeń oraz zabezpieczeń elektrycznych.

Pytanie 40

Typowa wartość stopnia sprężania w silniku o zapłonie iskrowym to

A. od 8 do 14
B. od 14 do 20
C. od 26 do 32
D. od 20 do 26
Odpowiedź "od 8 do 14" jest prawidłowa, ponieważ przeciętny stopień sprężania w silnikach o zapłonie iskrowym, takich jak te stosowane w samochodach osobowych, oscyluje właśnie w tym zakresie. Wartości te są zgodne z normami branżowymi i praktykami inżynieryjnymi, które definiują optymalne parametry dla efektywności spalania oraz osiągów silników. Na przykład, silniki o stopniu sprężania w przedziale 9-11 są powszechnie stosowane w pojazdach osobowych, co pozwala na uzyskanie dobrych osiągów i oszczędności paliwa. Wyższe stopnie sprężania, choć umożliwiają większą moc, na ogół wymagają stosowania paliw o wyższej jakości, aby uniknąć wystąpienia spalania stukowego. Dobrą praktyką inżynieryjną jest również dostosowanie stopnia sprężania do konstrukcji silnika, co wpływa na jego trwałość oraz efektywność energetyczną. Dlatego znajomość tego zakresu jest kluczowa dla konstruktorów i mechaników zajmujących się projektowaniem oraz serwisowaniem silników. Warto również przytoczyć, że w silnikach sportowych stopnie sprężania mogą sięgać wartości od 10 do 14, co pozwala na uzyskanie wyższej mocy, ale wiąże się z większymi wymaganiami dotyczącymi paliwa i smarowania.