Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 15 maja 2025 15:57
  • Data zakończenia: 15 maja 2025 16:22

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Oblicz wynagrodzenie zatrudnionego za przeprowadzenie obustronnego tynkowania ściany o wymiarach 10 × 3 m, jeśli stawka godzinowa tynkarza wynosi 15,00 zł, a czas pracy na wykonanie 1 m2 tynku zwykłego wynosi 1,4 r-g?

A. 450,00 zł
B. 1 260,00 zł
C. 900,00 zł
D. 630,00 zł
Aby obliczyć wynagrodzenie pracownika za wykonanie obustronnego tynkowania ściany o wymiarach 10 × 3 m, należy najpierw obliczyć powierzchnię do tynkowania. Powierzchnia jednej strony ściany wynosi 10 m × 3 m = 30 m². Ponieważ tynkowanie jest obustronne, całkowita powierzchnia wynosi 30 m² × 2 = 60 m². Następnie należy uwzględnić nakład pracy na wykonanie 1 m² tynku, który wynosi 1,4 roboczogodziny (r-g). Zatem całkowity czas pracy potrzebny do wykonania tynkowania wynosi 60 m² × 1,4 r-g = 84 r-g. Przy stawce godzinowej wynoszącej 15,00 zł, całkowite wynagrodzenie wynosi 84 r-g × 15,00 zł/r-g = 1260,00 zł. Taka kalkulacja jest zgodna z dobrymi praktykami w branży budowlanej, gdzie precyzyjne obliczenia oraz znajomość nakładów pracy są kluczowe dla efektywnego zarządzania kosztami i harmonogramami. Przykładowo, w przemyśle budowlanym dokładne oszacowanie czasu pracy pozwala na lepsze planowanie projektów i unikanie opóźnień, co przekłada się na zadowolenie klientów oraz rentowność wykonawców.

Pytanie 2

Wykończenie powierzchni tynku zwykłego klasy IVf polega na

A. przeszlifowaniu stwardniałej zaprawy osełką.
B. dociśnięciu świeżej zaprawy za pomocą packi.
C. przetarciu stwardniałej zaprawy ząbkowaną cykliną.
D. zatarciu świeżej zaprawy packą obłożoną filcem.
Zatarcie świeżej zaprawy packą obłożoną filcem jest prawidłowym procesem wykończenia tynku zwykłego kategorii IVf. Ta technika ma na celu uzyskanie gładkiej, estetycznej powierzchni, która będzie dobrze współpracować z późniejszymi warstwami wykończeniowymi, takimi jak farby czy tynki dekoracyjne. Packa obłożona filcem pozwala na równomierne rozprowadzenie zaprawy, a także wygładzenie jej powierzchni, co jest kluczowe dla uzyskania właściwej przyczepności i trwałości. Użycie filcu zmniejsza ryzyko powstawania rys i innych uszkodzeń, co przekłada się na lepszy efekt końcowy. Dobrą praktyką jest wykonanie zatarcia po około 24 godzinach od nałożenia zaprawy, kiedy materiał jest jeszcze wystarczająco wilgotny, ale już na tyle stwardniały, by można było z nim pracować. Standardy budowlane wskazują, że odpowiednie wykończenie tynku ma kluczowe znaczenie dla jego funkcji ochronnych i estetycznych, dlatego warto stosować sprawdzone metody i materiały.

Pytanie 3

Rzeczywiste wymiary pomieszczenia biurowego wynoszą 8 x 5 m. Jakie będą jego wymiary na rysunku sporządzonym w skali 1:200?

A. 4,0 x 2,5 cm
B. 16,0 x 10,0 cm
C. 8,0 x 5,0 cm
D. 40,0 x 25,0 cm
Aby obliczyć wymiary pomieszczenia biurowego w skali 1:200, należy najpierw zrozumieć, że skala ta oznacza, iż 1 jednostka na rysunku odpowiada 200 jednostkom w rzeczywistości. Wymiary pomieszczenia wynoszą 8 m x 5 m, co w centymetrach daje 800 cm x 500 cm. Przy zastosowaniu skali 1:200, obliczamy wymiary na rysunku, dzieląc rzeczywiste wymiary przez 200. Tak więc: 800 cm / 200 = 4 cm, a 500 cm / 200 = 2,5 cm. Zatem wymiary przedstawione na rysunku wynoszą 4,0 x 2,5 cm. W praktyce, umiejętność przeliczania wymiarów na rysunkach technicznych jest kluczowa w architekturze, inżynierii i projektowaniu wnętrz. Przy projektowaniu biur, poprawne odwzorowanie wymiarów budynków w rysunkach technicznych zapewnia dokładność i zgodność z rzeczywistością, co jest zgodne z normami branżowymi i wspomaga procesy konstrukcyjne oraz weryfikację planów budowlanych.

Pytanie 4

Jeśli na rysunku w skali 1:50 długość ściany, która ma być otynkowana, wynosi 15 cm, to rzeczywista długość tej ściany to

A. 7,50 m
B. 1,50 m
C. 15,00 m
D. 0,75 m
Aby obliczyć rzeczywistą długość ściany na podstawie rysunku wykonanego w skali 1:50, należy zastosować zasadę proporcji. Skala 1:50 oznacza, że 1 cm na rysunku odpowiada 50 cm w rzeczywistości. W tym przypadku długość ściany wynosi 15 cm, więc rzeczywista długość można obliczyć mnożąc długość na rysunku przez współczynnik skali: 15 cm * 50 = 750 cm, co jest równoznaczne z 7,50 m. Tego typu obliczenia są niezwykle istotne w branży budowlanej oraz architektonicznej, gdzie precyzja jest kluczowa. Używanie odpowiednich skal i umiejętność przeliczania wymiarów to podstawowe umiejętności, które pozwalają na dokładne planowanie oraz realizację projektów budowlanych. W praktyce, znajomość zasad przeliczania skali jest niezbędna do interpretacji rysunków technicznych oraz tworzenia kosztorysów, które są oparte na rzeczywistych wymiarach obiektów. Dodatkowo, znajomość skali umożliwia dokonanie właściwych pomiarów i planów, co jest kluczowe w procesach projektowych oraz budowlanych.

Pytanie 5

Kielnia to podstawowe narzędzie używane przez murarza, które służy do

A. nanoszenia zaprawy i jej wyrównywania
B. rozprowadzania zaprawy oraz oczyszczania cegieł
C. rozprowadzania zaprawy oraz jej zagęszczania
D. nanoszenia zaprawy oraz przycinania cegieł
Wybór innych odpowiedzi, które wskazują na niewłaściwe zastosowanie kielni, może prowadzić do nieefektywnego wykonania prac murarskich. Rozprowadzanie zaprawy i jej zagęszczanie, jak sugeruje jedna z odpowiedzi, nie oddaje pełni funkcji kielni. Chociaż rozprowadzanie zaprawy jest częściowo poprawne, zagęszczanie nie jest typowym zastosowaniem kielni, a raczej odnosi się do procesów związanych z betonowaniem. Kolejna odpowiedź dotycząca nanoszenia zaprawy i przycinania cegieł łączy dwie odrębne czynności, które nie powinny być realizowane jednocześnie przy użyciu tego samego narzędzia. Przycinanie cegieł wymaga zastosowania innych narzędzi, takich jak piła murarska, co jest zgodne z zasadami ergonomii i efektywności pracy. Ostatnia nieprawidłowa odpowiedź, dotycząca rozprowadzania zaprawy i oczyszczania cegieł, także nie odzwierciedla rzeczywistych praktyk budowlanych. Oczyszczanie cegieł jest oddzielnym procesem, który jest niezbędny przed rozpoczęciem nanoszenia zaprawy, aby zapewnić dobre połączenie między materiałami. Niewłaściwe podejście do użycia kielni może prowadzić do osłabienia struktury, dlatego ważne jest zrozumienie, jak każde narzędzie i czynność wpływają na jakość wykonawstwa budowlanego.

Pytanie 6

Jakie są zasady bezpiecznej rozbiórki muru według przepisów?

A. Mur o wysokości kondygnacji należy przewrócić na strop, a pokruszone materiały spuszczać specjalną rynną
B. Mur należy rozbierać w pionowych pasach, a odzyskane cegły układać na stropie
C. Pas muru o wysokości do 50 cm należy podciąć, a pokruszone fragmenty spuszczać za pomocą suwnicy pochyłej
D. Mur należy rozbierać warstwami od góry do dołu, a cegły spuszczać zsypem
Rozbiórka ściany warstwami od góry do podłogi jest najbezpieczniejszą i najbardziej zalecaną metodą, ponieważ minimalizuje ryzyko upadku materiałów i zapewnia lepszą kontrolę nad procesem demontażu. Pracownicy mogą od razu usuwać każdą warstwę, co pozwala na dokładne sprawdzenie struktury podczerwonej, eliminując ryzyko zawalenia się niekontrolowanych fragmentów. Zsyp do transportu cegieł dalej obniża ryzyko - umożliwia bezpieczne usuwanie materiałów bez potrzeby ich przenoszenia w sposób ręczny, co z kolei ogranicza ryzyko kontuzji. Tego typu technika jest zgodna z normami BHP i praktykami inżynieryjnymi, które zalecają ograniczenie kontaktu pracowników z opadającymi materiałami. Przykłady zastosowania tej metody można znaleźć w projektach renowacyjnych, gdzie kluczowe jest zachowanie bezpieczeństwa oraz ograniczenie uszkodzenia istniejącej struktury budynku, co jest szczególnie istotne w obszarach miejskich z gęstą zabudową.

Pytanie 7

Keramzyt to lekkie materiały budowlane, wykorzystywane do wytwarzania zapraw

A. szamotowych
B. ciepłochronnych
C. kwasoodpornych
D. krzemionkowych
Keramzyt to innowacyjne lekkie kruszywo budowlane, które ze względu na swoje właściwości doskonale sprawdza się w produkcji zapraw ciepłochronnych. Jego niska gęstość oraz porowata struktura pozwalają na skuteczną izolację termiczną, co jest kluczowe w tworzeniu energooszczędnych budynków. Przykładem zastosowania keramzytu może być jego użycie w warstwie izolacyjnej w budynkach jednorodzinnych, gdzie przyczynia się do minimalizacji strat ciepła. W standardach budowlanych, takich jak PN-EN 13055, podkreśla się znaczenie stosowania materiałów, które nie tylko spełniają normy wytrzymałościowe, ale również przyczyniają się do efektywności energetycznej budynków. Keramzyt, dzięki swoim właściwościom, jest także materiałem ekologicznym, co wpisuje się w trendy zrównoważonego budownictwa, dążącego do ograniczenia wpływu na środowisko. Stosując keramzyt w zaprawach ciepłochronnych, inwestorzy mogą znacząco obniżyć koszty ogrzewania, co jest szczególnie istotne w kontekście rosnących cen energii.

Pytanie 8

Określenie lokalizacji nowych ścianek działowych w renowowanym obiekcie następuje na podstawie

A. warunków technicznych wykonania i odbioru robót
B. specyfikacji technicznej wykonania i odbioru robót
C. projektu budowlanego
D. założeń do kosztorysu
Projekt budowlany jest kluczowym dokumentem w procesie przebudowy budynku, ponieważ określa on szczegółowe rozwiązania architektoniczne oraz konstrukcyjne, w tym lokalizację nowych ścianek działowych. Zawiera on rysunki techniczne, które ilustrują układ pomieszczeń, a także specyfikacje materiałowe i technologiczne. Przykładowo, w przypadku przekształcenia przestrzeni biurowej, projekt budowlany pomoże zdecydować, gdzie najlepiej umieścić ścianki działowe, aby zachować optymalną funkcjonalność oraz estetykę. Ponadto, każda realizacja powinna być zgodna z obowiązującymi normami budowlanymi i technicznymi, które są zawarte w planie. Stosowanie się do zatwierdzonego projektu budowlanego minimalizuje ryzyko konfliktów z przepisami prawa budowlanego, co może prowadzić do kosztownych opóźnień w realizacji projektu oraz konieczności wprowadzenia zmian w już zrealizowanych elementach budowlanych.

Pytanie 9

Który z rodzajów tynków jest stosowany do finalizacji powierzchni elewacji podczas ocieplania budynku płytami styropianowymi w systemie BSO (Bezspoinowym Systemie Ocieplania)?

A. Cementowo-wapienny
B. Gipsowo-wapienny
C. Cementowy
D. Akrylowy
Odpowiedź akrylowy jest prawidłowa, ponieważ tynki akrylowe są najczęściej stosowane w systemach ocieplania budynków płytami styropianowymi metodą BSO (Bezspoinowego Systemu Ocieplania). Ich główną zaletą jest doskonała elastyczność oraz odporność na czynniki atmosferyczne, co jest kluczowe w przypadku elewacji. Tynki akrylowe charakteryzują się również wysoką przyczepnością do podłoża oraz łatwością w aplikacji, co sprawia, że są bardzo popularnym wyborem w budownictwie. Stosowanie tynków akrylowych pozwala na uzyskanie estetycznego wykończenia, dostępnego w szerokiej gamie kolorystycznej. Zgodnie z normami budowlanymi, tynki te powinny być aplikowane zgodnie z zasadami producenta, co zapewnia ich długotrwałość oraz trwałość estetyczną. W praktyce, tynki akrylowe są szczególnie polecane w przypadku budynków narażonych na intensywne warunki atmosferyczne, ponieważ dobrze znoszą zmiany temperatury i wilgotności, co jest istotne dla zachowania izolacyjności termicznej budynku.

Pytanie 10

Jakiej zaprawy nie wykorzystuje się w miejscach, gdzie styka się z elementami stalowymi, z powodu ryzyka pojawienia się korozji stali?

A. Szamotowej
B. Cementowo-wapiennej
C. Gipsowo-wapiennej
D. Cementowej
Gipsowo-wapienna zaprawa nie jest stosowana w miejscach styku z elementami stalowymi, ponieważ jej skład chemiczny sprzyja korozji stali. Gips, jako mineralny składnik, zawiera wodę krystaliczną oraz siarczany, które w obecności wilgoci mogą prowadzić do reakcji chemicznych z materiałami stalowymi. W praktyce oznacza to, że w miejscach, gdzie gipsowo-wapienna zaprawa styka się ze stalą, może dochodzić do korozji i osłabienia konstrukcji. W związku z tym, w przemyśle budowlanym, szczególnie w obiektach narażonych na działanie wilgoci, zaleca się stosowanie zapraw, które są bardziej odporne na korozję, takich jak zaprawy cementowe czy cementowo-wapienne. Standardy budowlane, takie jak Eurokod 6, podkreślają znaczenie doboru materiałów w kontekście ich właściwości chemicznych i fizycznych, co ma kluczowe znaczenie dla długowieczności i bezpieczeństwa konstrukcji.

Pytanie 11

Na podstawie zestawienia kosztów robocizny oblicz wynagrodzenie robotnika należne za montaż w remontowanym pomieszczeniu 5 okien o wymiarach 120 × 150 cm i 2 drzwi o wymiarach 90 × 210 cm.

Zestawienie kosztów robocizny
koszt montażu okna – 73,00 zł/m
koszt montażu drzwi – 205,00 zł/szt.

A. 775,00 zł
B. 1 971,00 zł
C. 2 091,00 zł
D. 2 381,00 zł
Niewłaściwe odpowiedzi często wynikają z błędnych założeń dotyczących obliczeń powierzchni lub nieprawidłowego ustalenia kosztów montażu. W przypadku obliczania wynagrodzenia za montaż, kluczowe jest zrozumienie zarówno jednostek miary, jak i czynników wpływających na koszt robocizny. Na przykład, pomijając istotne elementy, takie jak różnice w wielkości okien i drzwi, można podjąć błędne próby szacowania kosztów. Często występującym błędem jest także nieprawidłowe pomnożenie liczby sztuk przez jednostkowy koszt montażu. Innym typowym myśleniem jest przyjmowanie niewłaściwych stawek, które mogą być oparte na przestarzałych danych, co prowadzi do znacznych nieścisłości w końcowym wyniku. Dlatego tak ważne jest, aby przed przystąpieniem do obliczeń dokładnie zweryfikować wszelkie wartości oraz metodykę obliczeń. Ustalając wynagrodzenie, należy również uwzględnić dodatkowe koszty, które mogą być związane z montażem, takie jak materiały czy transport. Nieprawidłowe zrozumienie tych elementów prowadzi często do mylnego wyliczenia całkowitych kosztów, co negatywnie wpływa na prawidłowość oszacowania wynagrodzenia. Właściwa metoda obliczeń jest kluczowa dla uzyskania rzetelnych informacji o kosztach robocizny w branży budowlanej.

Pytanie 12

Aby wykonać tynk ciągniony, należy zastosować

A. paki oraz profilowane kielnie
B. stalowe listewki kierunkowe
C. pneumatyczne urządzenia natryskowe
D. profile przesuwane po prowadnicach
Użycie profili na prowadnicach to kluczowa sprawa przy robieniu tynku ciągnionego. W tej metodzie chodzi o nałożenie zaprawy tynkarskiej na ścianę za pomocą tych profili, co pozwala równomiernie rozprowadzić materiał. Dzięki profilowanym prowadnicom łatwiej kontrolować grubość tynku i uzyskać gładką powierzchnię. W praktyce najpierw montuje się te profile na ścianie, a potem nakłada się zaprawę i wygładza narzędziami tynkarskimi. Ta technika jest zgodna z normami budowlanymi, które mówią, że tynki muszą być robione w sposób zapewniający trwałość i odpowiednie parametry. No i tynk ciągniony jest często stosowany w budynkach, gdzie estetyka jest bardzo ważna, jak w obiektach publicznych czy domach jednorodzinnych - tam gładkie ściany są pożądane przez inwestorów.

Pytanie 13

Tynk klasy IV wykonuje się

A. dwuwarstwowo, wygładzając packą styropianową
B. trójwarstwowo, wygładzając packą obłożoną filcem
C. dwuwarstwowo, wygładzając packą na ostro
D. trójwarstwowo, wygładzając packą na gładko
Tynk kategorii IV, który jest zacierany packą na gładko, charakteryzuje się wysoką jakością wykończenia, co jest istotne w przypadku powierzchni, które mają być estetyczne oraz funkcjonalne. Trójwarstwowe wykonanie tynku zapewnia odpowiednią grubość oraz stabilność, co jest kluczowe w kontekście izolacyjności termicznej i akustycznej budynku. Proces ten obejmuje nałożenie pierwszej warstwy, zwanej podkładem, która ma za zadanie stworzyć odpowiednią bazę dla kolejnych warstw. Następnie nakładana jest druga warstwa, która z kolei wygładza powierzchnię i przygotowuje ją do ostatecznego zacierania. Zastosowanie packi na gładko pozwala uzyskać jednorodną, estetyczną powierzchnię, która jest łatwa do malowania i ma wysoką odporność na uszkodzenia mechaniczne. Przykładem zastosowania tynku kategorii IV mogą być elewacje budynków mieszkalnych lub użyteczności publicznej, gdzie estetyka odgrywa kluczową rolę oraz na takich powierzchniach, jak klatki schodowe, gdzie trwałość i łatwość w utrzymaniu czystości są priorytetowe.

Pytanie 14

Która z wymienionych metod łączenia dodatków podczas wytwarzania zaprawy cementowej jest błędna?

A. Dodatki suche i rozpuszczalne w wodzie powinny być stosowane w formie roztworów
B. Ciekłe należy połączyć z cementem przed wymieszaniem z piaskiem
C. Ciecze należy rozpuścić w wodzie przed dodaniem do składników sypkich
D. Dodatki sypkie i nierozpuszczalne w wodzie trzeba wymieszać na sucho z cementem przed dodaniem do piasku
Stwierdzenie, że suche i rozpuszczalne w wodzie dodatki należy stosować w postaci roztworów, jest nieco mylące. Chociaż niektóre dodatki rzeczywiście powinny być stosowane w formie roztworu, kluczowe jest, aby stosować je we właściwy sposób, decydując o ich proporcjonalnym rozcieńczeniu. Niektóre dodatki mogą wymagać wcześniejszego rozpuszczenia w wodzie, ale stosowanie ich w formie roztworu przed dodaniem do cementu może skutkować ich niewłaściwym wchłonięciem przez materiał. Koncentracja roztworu ma kluczowe znaczenie, a nieodpowiednie proporcje mogą prowadzić do nieprawidłowych reakcji chemicznych, co osłabia końcową wytrzymałość zaprawy. W przypadku cieczy, które należy rozprowadzić w wodzie przed dodaniem ich do składników sypkich, ułatwia to wilgotnienie sypkich składników, ale nie zawsze jest to optymalne podejście. Jeśli ciecz zostanie bezpośrednio wymieszana z cementem, może to zapewnić lepsze połączenie chemiczne. W kontekście mieszania sypkich i nierozpuszczalnych w wodzie dodatków, należy przestrzegać zasad ich wprowadzania do mieszanki, aby uniknąć grudek i nierównomiernego rozkładu, co jest niezgodne z praktykami budowlanymi. Kluczowe jest zrozumienie, że każda metoda mieszania ma swoje ograniczenia i zastosowania, które muszą być dostosowane do specyficznych wymagań projektu.

Pytanie 15

Aby przygotować zaprawę cementowo-wapienną w proporcji objętościowej 1:2:6 (cement:wapno:piasek), wykorzystano 20 dm3 ciasta wapiennego. Jaką ilość piasku należy dodać do tej zaprawy?

A. 0,009 m3
B. 0,090 m3
C. 0,060 m3
D. 0,006 m3
Aby obliczyć, ile piasku należy dodać do zaprawy cementowo-wapiennej o proporcjach 1:2:6, zaczynamy od zrozumienia, że proporcja odnosi się do objętości poszczególnych składników. W tym przypadku mamy 1 część cementu, 2 części wapna i 6 części piasku. Suma proporcji wynosi 1 + 2 + 6 = 9 części. Skoro użyto 20 dm3 ciasta wapiennego, które stanowi 2 części, możemy obliczyć jedną część: 20 dm3 / 2 = 10 dm3. Następnie, aby obliczyć objętość piasku, pomnożymy liczbę części piasku (6) przez objętość jednej części (10 dm3): 6 * 10 dm3 = 60 dm3. Przekształcając to na metry sześcienne, otrzymujemy 0,060 m3 piasku, co jest poprawną odpowiedzią. Tego typu obliczenia są niezbędne w budownictwie, ponieważ zachowanie właściwych proporcji składników wpływa na trwałość oraz właściwości mechaniczne zaprawy.

Pytanie 16

Aby zbudować 1 m2 jednowarstwowej ściany, potrzebnych jest 8 sztuk bloczków z betonu komórkowego. Jeśli koszt jednego bloczka wynosi 21 zł, to ile wyniesie całkowity koszt bloczków potrzebnych do budowy ściany o powierzchni 15 m2?

A. 2 520 zł
B. 3 860 zł
C. 3 520 zł
D. 2 860 zł
Aby obliczyć koszt bloczków z betonu komórkowego potrzebnych do wykonania ściany o powierzchni 15 m2, należy najpierw ustalić ilość bloczków potrzebnych na 1 m2. Z informacji wynika, że do wykonania 1 m2 jednowarstwowej ściany potrzeba 8 sztuk bloczków. Dla ściany o powierzchni 15 m2 potrzebujemy zatem 8 bloczków/m2 x 15 m2 = 120 bloczków. Koszt jednego bloczka wynosi 21 zł, więc całkowity koszt bloczków wynosi 120 bloczków x 21 zł/bloczek = 2 520 zł. Obliczenia te są zgodne z zasadami efektywnego planowania budowy i pozwalają na uwzględnienie wszystkich niezbędnych materiałów, co jest kluczowe w standardach budowlanych. Przykład ten ilustruje, jak ważne jest precyzyjne oszacowanie kosztów materiałów budowlanych w celu uniknięcia nieprzewidzianych wydatków oraz sprawne zarządzanie budżetem projektu budowlanego.

Pytanie 17

Wzmocnienie budowlanych ław fundamentowych wykonanych z cegły poprzez podmurowanie oraz zwiększenie ich szerokości powinno się przeprowadzać w odcinkach o długości

A. 2,5 m
B. 3,0 m
C. 2,0 m
D. 1,0 m
Wybór długości odcinków do wzmocnienia ław fundamentowych jest kluczowym aspektem w procesie budowlanym. Odpowiedzi sugerujące 2,0 m, 2,5 m czy 3,0 m opierają się na błędnych założeniach dotyczących sposobu reakcji materiałów budowlanych na obciążenia. Długie odcinki mogą skutkować powstawaniem niepożądanych naprężeń w konstrukcji, co prowadzi do ryzyka pęknięć, osiadania czy kruszenia się materiałów. W praktyce budowlanej, zbyt duża długość podmurowania ogranicza możliwość skutecznego zarządzania deformacjami, a ich kontrola staje się utrudniona. W przypadku ław fundamentowych z cegły, które mają ograniczoną wytrzymałość na rozciąganie, kluczowe jest stosowanie zasad tzw. „pracy sekcyjnej”, w której każdy segment jest wzmocniony w sposób pozwalający na jednoczesne rozłożenie obciążeń i minimalizację ryzyka lokalnych uszkodzeń. Normy budowlane oraz najlepsze praktyki inżynieryjne jednoznacznie wskazują na preferencję dla krótszych odcinków, co umożliwia bardziej efektywną adaptację do lokalnych warunków gruntowych oraz obciążeń. Dlatego należy unikać długich segmentów, które mogą prowadzić do nieefektywnego wzmocnienia i potencjalnych problemów strukturalnych w przyszłości.

Pytanie 18

W przypadku, gdy nierównomierna praca podłoża prowadzi do rozłączenia ścian konstrukcyjnych, jakie działania można podjąć, aby je ponownie połączyć?

A. wypełnienie pęknięć zaczynem cementowym
B. iniekcję środka wiążącego
C. zastosowanie ściągów metalowych
D. wypełnienie środkami bitumicznymi
Ściągi metalowe to naprawdę świetny sposób na to, żeby naprawić ściany, które się rozdzieliły przez nierówne podłoże. Działają jak mostki między górną a dolną częścią ścian, co fajnie stabilizuje całą konstrukcję. W sytuacjach, gdy budynek osiada na fundamentach, takie ściągi mogą pomóc wzmocnić całość, zwiększając wytrzymałość. Z tego, co widziałem, często używa się stali do ich wykonania, bo jest odporna na różne trudne warunki. W dodatku, według norm budowlanych, jak Eurokod 3, ważne jest, żeby projektować je z myślą o różnych obciążeniach, żeby były skuteczne i bezpieczne. Dobrze dobrane ściągi nie tylko przywracają dawną integralność konstrukcji, ale też pomagają w przyszłości znieść możliwe przemieszczenia. Ich instalacja zazwyczaj nie jest jakoś bardzo inwazyjna, co jest dużym plusem, bo pozwala zachować estetykę budynku.

Pytanie 19

Można zmniejszyć chłonność podłoża przeznaczonego do tynkowania poprzez

A. wcześniejsze wysuszenie ściany
B. pomalowanie powierzchni farbą
C. wykonanie tynków dedykowanych
D. zastosowanie gruntów podkładowych
Zastosowanie substancji gruntujących to kluczowy krok w procesie tynkowania, który pozwala na zmniejszenie chłonności podłoża. Gruntowanie ma na celu przygotowanie powierzchni, na którą zostanie nałożony tynk, poprzez poprawę przyczepności oraz wyrównanie chłonności. Dzięki temu tynk nie wchłania wody zbyt szybko, co może prowadzić do problemów z jego wiązaniem i trwałością. Przykładem substancji gruntującej mogą być preparaty na bazie żywic syntetycznych, które tworzą cienką warstwę ochronną, a jednocześnie są przepuszczalne dla pary wodnej. Zastosowanie gruntów jest zgodne z normami i zaleceniami producentów tynków, co podkreśla ich znaczenie w budownictwie. W praktyce, przed nałożeniem tynku, należy nanieść grunt równomiernie na całą powierzchnię, co zapewnia optymalne warunki do dalszych prac. Dobre praktyki wskazują również na konieczność dostosowania rodzaju gruntu do konkretnego materiału podłoża, co zwiększa efektywność całego procesu.

Pytanie 20

Wszystkie techniczne wymagania związane z realizacją i odbiorem prac tynkarskich znajdują się w

A. dzienniku budowy
B. kosztorysie ofertowym
C. projekcie architektonicznym
D. specyfikacji technicznej
Specyfikacja techniczna to kluczowy dokument w procesie budowlanym, który określa wszystkie wymagania dotyczące wykonania i odbioru robót, w tym robót tynkarskich. Zawiera szczegółowe informacje o materiałach, technologiach, standardach jakości oraz metodach wykonania. Przykładowo, w specyfikacji technicznej dotyczącej tynków mogą być opisane wymagania dotyczące grubości tynku, rodzaju zastosowanych materiałów, a także procedury odbioru robót. Zgodnie z normami PN-EN 13914-1, specyfikacja powinna również zawierać zalecenia dotyczące warunków atmosferycznych, w jakich prace mogą być prowadzone, co jest kluczowe dla osiągnięcia trwałości i estetyki tynków. Tylko dobrze opracowana specyfikacja techniczna gwarantuje, że wykonawcy będą przestrzegać standardów branżowych, co w efekcie przyczynia się do wysokiej jakości realizacji inwestycji.

Pytanie 21

Jaką technikę powinno się zastosować do murowania na puste spoiny?

A. Z nakładaniem zaprawy na całą powierzchnię cegły
B. Na docisk zaprawy kielnią
C. Na wycisk z podcięciem zaprawy kielnią
D. Na wycisk zaprawy cegłą
Nieprawidłowe metody murowania, takie jak murowanie na docisk zaprawy kielnią, nie są zalecane, ponieważ mogą prowadzić do problemów związanych z jakością muru. Technika ta nie zapewnia odpowiedniego wypełnienia spoin, co skutkuje powstawaniem szczelin, które mogą negatywnie wpływać na trwałość i stabilność konstrukcji. Murowanie z użyciem kielni może prowadzić do nadmiaru zaprawy w spoinach, co z kolei przyczynia się do deformacji cegieł oraz może prowadzić do ich pęknięcia w dłuższym okresie użytkowania. Nakładanie zaprawy na całą powierzchnię cegły, choć może wydawać się wygodne, również nie jest zalecane, ponieważ może spowodować, że zaprawa będzie się wydobywać na zewnątrz, co wpływa na estetykę muru. W przypadku zastosowania wycisku z podcięciem zaprawy kielnią, może dochodzić do nieprzewidywalnych efektów związanych z przyczepnością, co jest niezgodne z aktualnymi standardami budowlanymi. Wszystkie te błędne podejścia często wynikają z niewłaściwego zrozumienia zasad murowania oraz zaniedbania w zakresie techniki, które są kluczowe dla stworzenia solidnej i estetycznej konstrukcji. Dlatego warto kłaść nacisk na odpowiednie metody, które są zgodne z najlepszymi praktykami w budownictwie.

Pytanie 22

Narzut tynku cementowo-wapiennego kategorii III powinien być nałożony na

A. suchej obrzutce
B. zwilżonej gładzi
C. zwilżonej obrzutce
D. związanej gładzi
Wybór zwilżonej gładzi jako podłoża do nałożenia tynku pospolitego cementowo-wapiennego kategorii III jest niewłaściwy, ponieważ gładź, niezależnie od stanu wilgotności, nie zapewnia odpowiedniej struktury dla aplikacji tynku. Gładkie powierzchnie mają tendencję do obniżenia przyczepności, co może prowadzić do nieodpowiedniego wiązania materiału tynkarskiego z podłożem. W przypadku suchej obrzutki, brak wilgoci może skutkować zbyt szybkim wchłanianiem wody przez tynk, co może prowadzić do jego kruszenia się oraz powstawania pęknięć. Ponadto, wybór związanej gładzi jako podłoża również jest błędny, ponieważ takie podłoże nie oferuje wymaganej porowatości, co jest istotne dla prawidłowego wchłaniania i wiązania tynku. Podczas stosowania tynków cementowych ważne jest, aby przestrzegać zasad przygotowania podłoża, które powinno być z jednej strony odpowiednio zwilżone, a z drugiej strony charakteryzować się teksturą sprzyjającą przyczepności. Nieprzestrzeganie tych zasad prowadzi do typowych błędów budowlanych, które mogą skutkować koniecznością wykonania kosztownych napraw w przyszłości.

Pytanie 23

Z jakiego surowca wykonane są komponenty systemu YTONG?

A. Z polistyrenu
B. Z betonu komórkowego
C. Z gipsobetonowej masy
D. Z żelbetonu
Elementy systemu YTONG są wykonane z betonu komórkowego, znanego również jako beton porowaty. Ten materiał charakteryzuje się niską gęstością oraz dobrą izolacyjnością termiczną, co czyni go idealnym do zastosowań budowlanych, zwłaszcza w konstrukcjach ścian zewnętrznych i wewnętrznych. Beton komórkowy wykazuje również wysoką odporność na ogień oraz dobra akustykę, co przyczynia się do komfortu mieszkańców. Dzięki swojej strukturze, materiały YTONG są łatwe w obróbce, co umożliwia szybką i efektywną budowę. W praktyce, elementy YTONG są szeroko stosowane w budownictwie jednorodzinnym oraz wielorodzinnym, co potwierdzają liczne projekty budowlane, które spełniają normy europejskie dotyczące efektywności energetycznej. Dodatkowo, system YTONG wspiera ekologiczne podejście do budownictwa, dzięki możliwości recyklingu oraz niskiej emisji CO2 podczas produkcji.

Pytanie 24

Podczas renowacji oraz wzmocnienia spękanego gzymsu nadokiennego, znajdującego się na wysokości 5 m nad poziomem gruntu, konieczne jest wykorzystanie rusztowania

A. na stojakach teleskopowych
B. kozłowe
C. na wysuwnicach
D. stolikowe
Odpowiedź 'na wysuwnicach' jest prawidłowa, ponieważ rusztowania wysuwnicze są zaprojektowane do pracy na dużych wysokościach, co czyni je idealnym rozwiązaniem dla prac budowlanych i konserwacyjnych, takich jak wzmacnianie gzymsu nadokiennego. Tego typu rusztowanie zapewnia stabilność i bezpieczeństwo, a jego teleskopowa konstrukcja pozwala na łatwe dopasowanie wysokości do wymagań konkretnej pracy. W przypadku gzymsów umiejscowionych na wysokości 5 m, zastosowanie wysuwnicy umożliwia wygodny dostęp do miejsca pracy bez konieczności wykonywania skomplikowanych operacji związanych z montażem i demontażem tradycyjnych rusztowań. Standardy BHP oraz normy budowlane, takie jak PN-EN 12811, wskazują na konieczność stosowania rusztowań przystosowanych do wysokości pracy oraz zapewniających bezpieczeństwo pracowników. Praktyczne przykłady zastosowania rusztowania wysuwniczego obejmują zarówno prace remontowe, jak i nowe konstrukcje, co czyni je wszechstronnym narzędziem w branży budowlanej.

Pytanie 25

Jakie narzędzia są przeznaczone do demontażu ścian?

A. Przecinak, kielnia, młotek do murowania
B. Kilof, oskard, młot pneumatyczny
C. Strug, szpachla, wiertarka o niskich obrotach
D. Paca, młotek z gumowym zakończeniem
Kilof, oskard i młot pneumatyczny to jakby must-have w rozbiórce ścian, zwłaszcza jak robisz coś w budowlance czy remoncie. Kilof to takie mocne narzędzie, które świetnie sobie radzi z twardymi materiałami jak beton czy cegła. Z kolei oskard ma szersze ostrze i jest super do zdzierania tynku albo rozdzielania konstrukcji. Młot pneumatyczny to już technologia, bo używa sprężonego powietrza, żeby zrobić duże uderzenie i to naprawdę przyspiesza rozbiórkę, zwłaszcza jak mamy do czynienia z grubymi ściankami. Ważne jest, żeby używać tych narzędzi mądrze, czyli dbać o bezpieczeństwo, zakładać odpowiednią odzież ochronną i ogólnie trzymać porządek w miejscu pracy. Dobrze zaplanowana rozbiórka, z właściwymi narzędziami w ręku, może znacznie zmniejszyć ryzyko uszkodzeń i sprawi, że wszystko pójdzie sprawniej.

Pytanie 26

Tynk III kategorii powszechny to

A. narzut o jednej warstwie, wyrównany kielnią
B. tynk trójwarstwowy zatarty packą na gładko
C. tynk trójwarstwowy wygładzony pacą pokrytą filcem
D. narzut jedno- lub dwu-warstwowy wygładzany pacą
Tynk pospolity III kategorii, jako tynk trójwarstwowy zatarty packą na gładko, jest odpowiednim rozwiązaniem w przypadku, gdy zależy nam na uzyskaniu estetycznej, gładkiej powierzchni. Tego rodzaju tynk składa się z trzech warstw: warstwy podkładowej, warstwy zasadniczej oraz warstwy wykończeniowej, co pozwala na uzyskanie odpowiedniej wytrzymałości oraz trwałości. Takie podejście jest zgodne z normami budowlanymi, które zalecają stosowanie trzech warstw w celu osiągnięcia najlepszych właściwości termoizolacyjnych oraz akustycznych. Przykładem zastosowania tynku pospolitego III kategorii mogą być wnętrza budynków mieszkalnych, gdzie gładka powierzchnia ścian jest zarówno estetyczna, jak i funkcjonalna. Dobra praktyka polega na prawidłowym wykonaniu każdej z warstw, co wpływa na końcowy efekt estetyczny oraz trwałość tynku, a także na jego odporność na uszkodzenia mechaniczne czy wilgoć. Dodatkowo, tynk taki może być malowany, co otwiera dodatkowe możliwości aranżacyjne w przestrzeni. Zastosowanie tynku trójwarstwowego zwiększa też wartość estetyczną obiektów budowlanych.

Pytanie 27

Jak powinno się zregenerować stare, odpryskujące tynki?

A. Pokryć je warstwą zaczynu wapiennego
B. Pomalować je farbą silikatową
C. Skuć je i uzupełnić nowym tynkiem
D. Nałożyć na nie warstwę gładzi
Skuwanie starych tynków i ich uzupełnianie nowym tynkiem jest kluczowym krokiem w przywracaniu estetyki oraz funkcjonalności ścian. Stare tynki, które łuszczą się, mogą być wynikiem wielu czynników, takich jak wilgoć, nieodpowiednia aplikacja, a także naturalne procesy starzenia się materiałów budowlanych. Skuwanie pozwala na usunięcie uszkodzonego tynku oraz zapewnia lepszą przyczepność nowego materiału do podłoża. Po skuć, należy dokładnie oczyścić powierzchnię z resztek starego tynku, kurzu i innych zanieczyszczeń. Warto również zainstalować hydroizolację, jeśli problem wilgoci jest istotny, co jest zgodne z dobrą praktyką budowlaną. Po odpowiednim przygotowaniu podłoża, można nałożyć nowy tynk, dostosowany do konkretnej aplikacji, co zapewni trwałość i estetykę na długie lata. Dodatkowo, przed aplikacją, warto skonsultować się z ekspertami lub zapoznać się z lokalnymi normami budowlanymi, aby wybrać odpowiedni materiał i metodę aplikacji.

Pytanie 28

Tynki 1-warstwowe obejmują tynki

A. surowe
B. wytworne
C. powszechne
D. selektywne
Tynki surowe to rodzaj tynków 1-warstwowych, które charakteryzują się prostotą wykonania i szybkim czasem aplikacji. Są one najczęściej stosowane w budownictwie jako podkład pod dalsze warstwy wykończeniowe, a dzięki swojej naturalnej strukturze i porowatości, zapewniają dobrą przyczepność dla kolejnych warstw. W praktyce, tynki surowe mogą być wykonane z tradycyjnych materiałów, takich jak cement, wapno czy gips, które po nałożeniu tworzą jednolitą powłokę. Warto zaznaczyć, że tynki surowe mogą być również stosowane w pomieszczeniach o podwyższonej wilgotności, gdyż odpowiednio przygotowane materiały mogą minimalizować ryzyko pojawienia się pleśni. W budownictwie ekologicznym, tynki surowe zyskują na popularności, ponieważ są produkowane z lokalnych surowców i mają niską emisję CO2. Zgodnie z normami PN-EN 998-1, tynki surowe muszą spełniać określone wymagania dotyczące wytrzymałości i trwałości, co czyni je kluczowym elementem w kontekście długoterminowej eksploatacji budynków.

Pytanie 29

Jakie składniki należy podgrzać podczas przygotowywania zaprawy murarskiej w chłodnych miesiącach, gdy temperatura otoczenia spada poniżej +5°C?

A. Piasek i wodę przed ich wymieszaniem
B. Wodę i cement po ich wymieszaniu
C. Piasek i cement przed ich wymieszaniem
D. Wodę i piasek po ich wymieszaniu
Dobra robota z odpowiedzią! Podgrzanie piasku i wody przed wymieszaniem to naprawdę ważna zasada, zwłaszcza w zimie. Jak temperatura spada poniżej +5°C, istnieje duże ryzyko, że woda w zaprawie zamarznie. A to nie byłoby dobre, bo osłabia strukturę muru. Podgrzewając wodę do przynajmniej +20°C i używając ciepłego piasku, poprawiamy plastyczność mieszanki i adhezję składników. Dzięki temu zaprawa jest bardziej jednorodna. Warto też pomyśleć o różnych dodatkach przeciwmroźnych, które mogą jeszcze bardziej zwiększyć odporność zaprawy na zimno. Dlatego naprawdę warto stosować te sprawdzone metody w budownictwie, żeby zapewnić solidność konstrukcji.

Pytanie 30

Warstwę wierzchnią tynków kamieniarskich realizuje się przy użyciu zaprawy

A. cementowo-glinianej
B. wapiennej
C. gipsowo-wapiennej
D. cementowej
Wybór zaprawy wapiennej jako materiału na wierzchnią warstwę tynków kamieniarskich może wydawać się sensowny, jednak ma swoje ograniczenia. Zaprawa wapienna, mimo że jest elastyczna i dobrze związana z podłożem, jest mniej odporna na zawilgocenie i nie zapewnia tak wysokiej wytrzymałości, jak zaprawa cementowa. To sprawia, że w kontekście tynków kamieniarskich, gdzie trwałość i odporność są kluczowe, nie jest najlepszym wyborem. Z kolei zaprawa cementowo-glinianej, pomimo iż dobrze działa w przypadku naturalnych materiałów, nie jest odpowiednia do tynków kamieniarskich. Często prowadzi to do problemów z kruszeniem się i pękaniem w wyniku zmieniających się warunków atmosferycznych. Gipsowo-wapienna zaprawa ma swoje miejsce w budownictwie, ale jest stosowana głównie do wnętrz, gdzie nie występuje tak intensywna ekspozycja na warunki zewnętrzne. Jej ograniczona odporność na wilgoć sprawia, że nie jest odpowiednia do wierzchniej warstwy tynków kamieniarskich. Kluczowym błędem w rozumieniu tego zagadnienia jest pomijanie specyfiki warunków, w jakich tynki są stosowane, oraz właściwości materiałów, które istotnie wpływają na trwałość i estetykę powierzchni. Wybór niewłaściwego rodzaju zaprawy może prowadzić do nieodwracalnych uszkodzeń w strukturze budynku.

Pytanie 31

Który z rodzajów tynków dekoracyjnych charakteryzuje się twardą, gładką i lśniącą strukturą, przypominającą polerowany kamień?

A. Sztablatura
B. Sztukateria
C. Sgraffito
D. Stiuk
Stiuk to tynk szlachetny, który charakteryzuje się twardą, gładką i lśniącą powierzchnią, co sprawia, że imituje polerowany kamień. Jest stosowany w architekturze zarówno wewnętrznej, jak i zewnętrznej, często w eleganckich wnętrzach lub jako element dekoracyjny fasad budynków. Proces jego aplikacji wymaga dużej precyzji i doświadczenia, ponieważ polega na nakładaniu wielu warstw specjalnie przygotowanej masy tynkarskiej, która po wyschnięciu jest szlifowana i polerowana. Przykładowo, stiuk często spotyka się w klasycznych pałacach oraz kościołach, gdzie elewacje lub wnętrza mają naśladować drogie materiały kamienne, co podnosi prestiż budowli. Dobrze wykonany stiuk nie tylko nadaje estetyczny wygląd, ale również zapewnia trwałość i odporność na różne czynniki atmosferyczne, co czyni go popularnym wyborem wśród architektów i projektantów.

Pytanie 32

Tynk dekoracyjny o wielu warstwach i różnorodnych kolorach, w którym barwę wzoru uzyskuje się poprzez skrobanie lub wycinanie odpowiednich górnych warstw to

A. sztablatura
B. sztukateria
C. stiuk
D. sgraffito
Sgraffito to technika zdobnicza, która polega na tworzeniu wzorów w wielowarstwowym tynku poprzez wyskrobanie lub wycięcie wierzchniej warstwy, co pozwala na odsłonięcie dolnych, różnokolorowych warstw. Jest to metoda, która cieszy się dużą popularnością w architekturze i sztuce dekoracyjnej, szczególnie w regionach o bogatej tradycji rzemieślniczej, takich jak Włochy czy Hiszpania. Przykładem zastosowania sgraffito mogą być elewacje budynków, gdzie twórcy wykorzystują tę technikę, aby dodać unikalny charakter i głębię wizualną. Dzięki zastosowaniu różnych kolorów tynku, artyści mogą tworzyć skomplikowane wzory i kompozycje, które przyciągają uwagę przechodniów. Sgraffito może być wykorzystane nie tylko w architekturze, ale również w sztukach plastycznych, takich jak ceramika czy malarstwo, gdzie technika ta pozwala na osiągnięcie złożonych efektów wizualnych. W kontekście standardów budowlanych, ważne jest, aby stosować materiały o wysokiej jakości, co zapewnia trwałość i estetykę wykonania tego typu zdobień.

Pytanie 33

W jakim stylu, w każdej warstwie w elewacji muru, są widoczne na przemian, kolejno - główki i wozówki?

A. Holenderskim
B. Śląskim
C. Amerykańskim
D. Polskim
Wiązanie polskie to ciekawy sposób układania cegieł w mury, gdzie naprzemiennie kładzie się główki i wozówki. Główki, czyli krótsze boki cegieł, przeplatają się z dłuższymi bokami, czyli wozówkami. Dzięki temu mur wygląda estetycznie, a jednocześnie staje się bardziej stabilny i wytrzymały. Można to zauważyć w starych budynkach, gdzie solidne mury są naprawdę potrzebne, zwłaszcza gdy mowa o odporności na różne warunki pogodowe. Układając cegły w ten sposób, równomiernie rozkładamy obciążenia, co jest zgodne z najlepszymi praktykami w budownictwie. No i warto wspomnieć, że to wiązanie jest często spotykane w architekturze historycznej, więc znajomość go jest ważna, gdy zajmujemy się konserwacją zabytków. Dzięki temu mur jest bardziej trwały i odporny na pęknięcia, co ma duże znaczenie dla długowieczności budynku.

Pytanie 34

Betonowe podłoże, które ma być tynkowane, powinno charakteryzować się równą powierzchnią oraz

A. zwilżone i gładkie
B. suche i chropowate
C. suche i gładkie
D. zwilżone i chropowate
Odpowiedź zwilżone i chropowate jest prawidłowa, ponieważ podłoże betonowe przeznaczone do tynkowania powinno mieć odpowiednie właściwości fizyczne, które zapewniają skuteczne przywieranie tynku. Zastosowanie podłoża chropowatego zwiększa powierzchnię kontaktu pomiędzy tynkiem a podłożem, co wspomaga mechaniczne wiązanie. Dodatkowo lekko zwilżone podłoże redukuje ryzyko odparowania wody z tynku zbyt szybko, co może prowadzić do pęknięć i osłabienia struktury tynku. Przykładem dobrych praktyk jest stosowanie tzw. „mokra na mokrą” metody, gdzie świeżo nałożony tynk aplikowany jest na wcześniej nawilżone podłoże, co zapewnia lepsze połączenie. W kontekście standardów budowlanych, normy takie jak PN-EN 998-1 wskazują na konieczność odpowiedniego przygotowania podłoża dla zapewnienia długotrwałej trwałości i estetyki wykończenia. Instalacja tynku na podłożu spełniającym te wymogi znacząco wpływa na jakość wykonania i przyszłe użytkowanie pomieszczeń.

Pytanie 35

Po zakończeniu nakładania tynków gipsowych, ich odbiór może nastąpić najwcześniej po upływie

A. 7 dni
B. 4 dni
C. 5 dni
D. 2 dni
Odpowiedzi wskazujące na 5 dni, 4 dni czy 2 dni, są błędne z kilku powodów, które mają swoje korzenie w zrozumieniu procesów technologicznych związanych z tynkowaniem. Pierwszym z nich jest zbyt krótki czas potrzebny na wyschnięcie tynku gipsowego, który w praktyce wymaga minimum 5 dni, ale zalecane jest dłuższe oczekiwanie, by osiągnąć pełne utwardzenie. Krótszy czas schnięcia może prowadzić do nieodwracalnych uszkodzeń, takich jak pęknięcia czy zmniejszona przyczepność do podłoża. Ponadto, wilgotność otoczenia oraz temperatura mają kluczowe znaczenie dla procesu schnięcia. W zimnych i wilgotnych warunkach, czas schnięcia może się wydłużyć, co dodatkowo wymaga zachowania ostrożności w czasie odbioru. Przyspieszone odbiory mogą prowadzić do nieprawidłowości, które będą widoczne dopiero po pewnym czasie, co generuje dodatkowe koszty w zakresie naprawy i ponownego wykończenia tynku. Dlatego, ważne jest, by nie ignorować standardów branżowych, które jasno określają optymalny czas na odbiór tynków, co w dłuższej perspektywie zapewnia jakość i trwałość robót budowlanych.

Pytanie 36

Jak przeprowadza się ocenę gładkości tynków zwykłych w trakcie odbioru prac tynkarskich?

A. Pocierając powierzchnię tynku dłonią
B. Uderzając w powierzchnię delikatnym młotkiem
C. Zarysowując powierzchnię przy pomocy gwoździa
D. Przesuwając gąbką po tynku
Prawidłowa odpowiedź opiera się na metodzie oceny gładkości tynków, która polega na bezpośrednim pocieraniu powierzchni dłonią. Ta technika pozwala na bezpośrednie odczucie ewentualnych nierówności, chropowatości czy innych defektów, które mogą być niewidoczne dla oka. Umożliwia to sprawdzenie, czy tynk spełnia wymagania w zakresie estetyki i funkcjonalności, które są kluczowe w branży budowlanej. W praktyce, podczas odbioru robót tynkarskich, inspektorzy często stosują tę metodę, aby szybko ocenić jakość wykonania. Gdy powierzchnia jest gładka, tynk jest zazwyczaj uznawany za właściwie nałożony, co jest zgodne ze standardami branżowymi określającymi dopuszczalne odchylenia i wymagania dotyczące gładkości. Warto również zauważyć, że odpowiednia gładkość tynków ma wpływ na późniejsze procesy malarskie czy tapetowania, dlatego kontrola ta jest niezbędna w każdym etapie budowy.

Pytanie 37

Który typ cegieł charakteryzuje się wysoką odpornością na oddziaływanie warunków atmosferycznych?

A. Klinkierowe
B. Sylikatowe
C. Poryzowane
D. Ceramiczne pełne
Cegły klinkierowe charakteryzują się wyjątkową odpornością na działanie czynników atmosferycznych, co czyni je idealnym materiałem budowlanym do zastosowań zewnętrznych. Wytwarzane są z wysokiej jakości gliny, która jest wypalana w wysokotemperaturowych piecach, co prowadzi do ich twardości i niskiej porowatości. Dzięki tym właściwościom, cegły klinkierowe nie tylko doskonale znoszą zmiany temperatury, ale również są odporne na działanie wody, co minimalizuje ryzyko ich deformacji czy zniszczenia. Stosowane są powszechnie na elewacjach budynków, chodnikach, tarasach oraz w infrastrukturze, takiej jak mosty czy mury oporowe. W zgodzie z normą PN-EN 771-1, klinkierowe cegły spełniają wymagania dotyczące wytrzymałości i trwałości w różnych warunkach klimatycznych. Dodatkowo, ich estetyka oraz szeroka gama kolorystyczna sprawiają, że są chętnie wybierane przez architektów i inwestorów, co podkreśla ich uniwersalność i zastosowanie w nowoczesnym budownictwie.

Pytanie 38

Na podstawie fragmentu instrukcji producenta oblicz, ile bloczków gazobetonowych o wymiarach
240×240×590 mm potrzeba do wymurowania ściany grubości 24 cm, długości 12 m i wysokości 4 m.

Fragment instrukcji producenta
Wymiary bloczków
[mm]
Zużycie bloczków
[szt./m²]
240×240×5907
120×240×5907

A. 672 szt.
B. 336 szt.
C. 80 szt.
D. 8064 szt.
Dobrze, że obliczyłeś ilość bloczków gazobetonowych, które potrzebujesz na ścianę. Z tego co widzę, wykorzystałeś dane wymiary ściany i bloczków. Ściana 12 m długości i 4 m wysokości daje nam 48 m² powierzchni. Potem ładnie obliczyłeś powierzchnię bloczka, która wynosi 0,0576 m². Jeżeli podzielisz 1 m² przez tę wartość, otrzymasz coś koło 17,36 bloczków na m². To oznacza, że do pokrycia całej ściany potrzebujesz około 833 bloczków. Ale pamiętaj, że zazwyczaj warto doliczyć trochę więcej na wszelki wypadek, żeby uniknąć problemów na budowie. W końcu w praktyce budowlanej to nie tylko liczby, ale też umiejętność przewidywania strat materiałowych, więc dobrze, że wziąłeś to pod uwagę!

Pytanie 39

Na podstawie informacji zawartych w tabeli określ, która ilość składników odpowiada proporcji wagowej stosowanej przy wykonaniu zaprawy cementowej klasy M7.

Skład i marka zapraw cementowych w zależności od klasy cementu
Klasa cementuSkład wagowy przy marce zaprawy
M4M7M12M15
32,51 : 5,51 : 4,51 : 3,51 : 3

A. 100 kg cementu i 900 kg piasku.
B. 200 kg cementu i 900 kg piasku.
C. 200 kg piasku i 900 kg cementu.
D. 100 kg piasku i 450 kg cementu.
Odpowiedź "200 kg cementu i 900 kg piasku" jest poprawna, ponieważ odpowiada proporcji wagowej 1:4,5, którą zastosowano przy wykonaniu zaprawy cementowej klasy M7. Zgodnie z tą proporcją, na każdą jednostkę cementu przypada 4,5 jednostki piasku. W tym przypadku, 200 kg cementu wymaga 900 kg piasku, co w pełni spełnia wymagania dotyczące tej mieszanki. Takie proporcje są kluczowe, ponieważ wpływają na właściwości mechaniczne zaprawy, takie jak wytrzymałość na ściskanie i trwałość. W praktyce, stosując te proporcje, uzyskujemy dobrze zharmonizowaną zaprawę, która zapewnia odpowiednią przyczepność i stabilność. Warto również pamiętać, że stosowanie właściwych proporcji jest zgodne z normami budowlanymi, co przekłada się na bezpieczeństwo i jakość realizowanych prac budowlanych.

Pytanie 40

Wyrównanie powierzchni tynku w narożach wklęsłych odbywa się poprzez

A. zacieranie powierzchni pacą styropianową w ruchach okrężnych
B. przesuwanie pacy w ruchu zygzakowym od dołu ku górze
C. przesuwanie pacy narożnikowej w ruchach 'góra-dół'
D. zacieranie powierzchni packą narożnikową w ruchach w 'ósemkę'
Techniki zacierania narożników wklęsłych, takie jak zacieranie powierzchni packą narożnikową ruchami w 'ósemkę', przesuwanie pacy ruchem zygzakowym od dołu do góry lub użycie pacy styropianowej w ruchach kolistych, nie są właściwymi metodami w kontekście profesjonalnego wykończenia tynków. Ruchy w 'ósemkę' mogą prowadzić do nierównomiernego rozłożenia materiału, co skutkuje powstawaniem widocznych nierówności oraz problemów z przyczepnością tynku. Z kolei przesuwanie pacy w ruchu zygzakowym od dołu do góry wprowadza dodatkowe ryzyko, gdyż może to generować nadmiar materiału w niektórych miejscach, prowadząc do niepożądanych efektów wizualnych oraz strukturalnych. Co więcej, użycie pacy styropianowej w ruchach kolistych nie zapewnia odpowiedniej kontroli nad materiałem, co jest kluczowe podczas obrabiania narożników, gdzie precyzja jest niezwykle ważna. Prawidłowe wyrównanie tynku w narożach wklęsłych wymaga techniki, która sprzyja równomiernemu rozkładowi materiału i zwiększa jego trwałość. Dlatego, aby osiągnąć wysoką jakość wykonania, należy unikać błędnych technik i stosować sprawdzone metody, takie jak ruch 'góra-dół', co jest zgodne z najlepszymi praktykami w branży budowlanej.