Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 13 maja 2025 00:03
  • Data zakończenia: 13 maja 2025 00:15

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Efektor umieszczony na końcu ramienia robota pełni przede wszystkim funkcję

A. umieszczania elementu w odpowiedniej lokalizacji
B. ochrony ramienia robota przed przeciążeniem
C. ochrony ramienia robota przed zderzeniem z operatorem
D. chwytania elementu z odpowiednią siłą
Wybór odpowiedzi dotyczącej zabezpieczania ramienia robota przed kolizją z operatorem jest nieprawidłowy, ponieważ główną funkcją efektora jest manipulacja obiektami, a nie zapewnianie bezpieczeństwa użytkowników. Choć bezpieczeństwo jest kluczowe w kontekście pracy z robotami, to odpowiedzialność ta leży w gestii innych komponentów systemu, takich jak czujniki i urządzenia zabezpieczające. Ustawianie elementu we właściwej pozycji również nie jest zadaniem efektora, lecz wynikiem programowania robota i jego algorytmów ruchu. Efektor działa w oparciu o informacje dostarczane przez system kontrolny, a jego rola koncentruje się na chwytaniu i manipulacji, a nie na precyzyjnym pozycjonowaniu. Zabezpieczanie ramienia robota przed przeciążeniem jest również nieadekwatne, ponieważ ten aspekt jest regulowany przez systemy monitorowania obciążenia i kontroli siły. Efektory są projektowane tak, aby dostarczać odpowiednią siłę chwytu w zależności od materiału, co sprawia, że zabezpieczenie przed przeciążeniem nie jest ich podstawową funkcją. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków obejmują mylenie roli efektora z innymi systemami zabezpieczeń oraz niedostateczne zrozumienie jego funkcji w kontekście całości systemu automatyzacji.

Pytanie 2

Jaką metodę łączenia metali należy wybrać, gdy maksymalna temperatura w trakcie łączenia nie może przekroczyć 450OC?

A. Spawanie elektryczne
B. Lutowanie miękkie
C. Spawanie gazowe
D. Lutowanie twarde
Lutowanie miękkie jest techniką, która polega na łączeniu materiałów metalowych za pomocą stopów lutowniczych, których temperatura topnienia nie przekracza 450°C. Dzięki temu proces lutowania miękkiego jest idealnym rozwiązaniem w sytuacjach, gdzie ważne jest, aby nie narażać łączonych materiałów na wysokie temperatury, które mogłyby prowadzić do ich deformacji, osłabienia struktury lub innych niepożądanych efektów. Lutowanie miękkie znajduje zastosowanie w elektronice, gdzie łączenie elementów na płytkach drukowanych wymaga precyzyjnego podejścia i ochrony delikatnych komponentów przed ciepłem. Warto również zaznaczyć, że ta metoda jest szeroko stosowana w produkcji biżuterii, gdzie pożądana jest estetyka oraz trwałość połączeń bez ryzyka zagrożenia dla materiałów bazowych. Stosowanie lutowania miękkiego jest zgodne z normami branżowymi, takimi jak ISO 9453, które regulują wymagania dotyczące lutów i procesów lutowania, zapewniając wysoką jakość i bezpieczeństwo połączeń.

Pytanie 3

Aby zrealizować lutowanie na płytce drukowanej, konieczne jest użycie stacji lutowniczej oraz

A. obcinacze i odsysacz
B. obcinacze i szczypce
C. lampy UV i odsysacz
D. lampy UV i szczypce
Odpowiedź 'obcinacze i szczypce' jest prawidłowa, ponieważ obydwa te narzędzia są niezbędne w procesie lutowania na płytkach drukowanych. Obcinacze służą do precyzyjnego przycinania nadmiaru nogi elementów elektronicznych po ich zamontowaniu, co ma kluczowe znaczenie dla estetyki oraz funkcjonalności płytki. Z kolei szczypce umożliwiają odpowiednie chwytanie i manipulowanie drobnymi komponentami, co jest ważne podczas montażu oraz lutowania w trudno dostępnych miejscach. Zastosowanie tych narzędzi jest zgodne z dobrymi praktykami w inżynierii elektronicznej, które podkreślają znaczenie precyzyjnego i estetycznego wykonania połączeń lutowanych, co przekłada się na niezawodność i długowieczność urządzeń elektronicznych. Warto również pamiętać o standardach IPC, które definiują zalecenia dotyczące lutowania i obróbki komponentów na płytkach, co czyni użycie obcinaczy i szczypców kluczowym elementem w procesie produkcji elektroniki.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Który z elementów nie wchodzi w skład systemu przygotowania sprężonego powietrza?

A. Zawór redukcyjny
B. Filtr
C. Sprężarka
D. Smarownica
Sprężarka to ważny element w systemie sprężonego powietrza, ale nie wchodzi w skład zespołu przygotowania. W tym zespole są inne części, takie jak zawory redukcyjne, filtry i smarownice. Te elementy mają swoje zadania, jak na przykład oczyszczanie powietrza, regulację jego ciśnienia i nawilżanie przed użyciem. Zawór redukcyjny dba o to, żeby ciśnienie było odpowiednie, co jest naprawdę ważne, żeby maszyny działały jak trzeba. Filtr zajmuje się usuwaniem zanieczyszczeń i wilgoci, a to prolonguje żywotność urządzeń i zwiększa ich efektywność. Smarownica z kolei dodaje odpowiednią ilość oleju, co zmniejsza tarcie i zapobiega uszkodzeniom. Jak dobrze się rozumie rolę każdego z tych elementów, to można lepiej zarządzać systemami pneumatycznymi i je optymalizować w przemyśle, co jest naprawdę ważne w tej branży.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Przed zainstalowaniem podtynkowej instalacji zasilającej dla urządzenia mechatronicznego nie weryfikuje się

A. stanu izolacji przewodu
B. średnicy żył przewodu
C. ciągłości żył przewodu
D. wagi żył w przewodzie
Wybór odpowiedzi dotyczącej wagi żył w przewodzie jako niewłaściwego elementu do sprawdzenia przed montażem podtynkowej instalacji zasilającej jest poprawny. W praktyce inżynieryjnej, przed rozpoczęciem instalacji, kluczowe jest zweryfikowanie średnicy żył, ciągłości oraz stanu izolacji przewodów. Średnica żył ma fundamentalne znaczenie dla obliczenia obciążalności przewodu oraz dla zapewnienia, że przewód nie będzie się przegrzewał podczas pracy. Sprawdzenie ciągłości żył jest istotne, aby upewnić się, że nie ma przerw w obwodzie, co mogłoby prowadzić do uszkodzenia urządzeń podłączonych do instalacji. Stan izolacji jest niezbędny do zapewnienia bezpieczeństwa użytkowania instalacji, ponieważ uszkodzona izolacja może prowadzić do zwarć lub porażenia prądem. Waga żył, chociaż może być istotna w niektórych kontekstach konstrukcyjnych, nie jest kluczowym czynnikiem przy montażu instalacji elektrycznej, co czyni tę odpowiedź poprawną. Przykładowo, w projektach na budowach stosuje się normy, takie jak PN-IEC 60364, które precyzują wymagania dotyczące sprawdzeń przedmontażowych.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Silnik krokowy dysponuje 4 uzwojeniami wzbudzającymi, z których każde ma 8 nabiegunników. Jakie będzie przesunięcie kątowe silnika przypadające na pojedynczy krok przy sterowaniu jednym uzwojeniem?

A. 2°49'
B. 11°15'
C. 22°30'
D. 5°38'
Silnik krokowy z czterema uzwojeniami wzbudzającymi i ośmioma nabiegunnikami w każdym uzwojeniu charakteryzuje się określoną ilością kroków na pełny obrót. W tym przypadku mamy 4 uzwojenia, co oznacza, że przy każdym aktywowaniu jednego uzwojenia, silnik wykonuje część obrotu, a liczba nabiegunników wpływa na precyzyjność tego ruchu. Aby obliczyć kąt przesunięcia na krok, należy zastosować wzór: 360° / (Liczba uzwojeń * Liczba nabiegunników). W tym przypadku obliczenia wyglądają następująco: 360° / (4 * 8) = 360° / 32 = 11°15'. Praktyczne zastosowania silników krokowych obejmują zautomatyzowane systemy, w których wymagana jest precyzyjna kontrola pozycji, jak np. w drukarkach 3D, robotyce czy automatyce przemysłowej. Zrozumienie tego obliczenia pozwala na lepsze projektowanie układów sterujących oraz optymalizację ich pracy w różnych aplikacjach.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Podłączenie kondensatora (w układzie równoległym do obciążenia) do wyjścia jednofazowego prostownika działającego w konfiguracji mostka Graetza wpłynie na napięcie wyjściowe w sposób

A. zmiany przebiegu jednopulsowego na dwupulsowy
B. redukcji tętnień
C. zmiany przebiegu dwupulsowego na jednopulsowy
D. zmniejszenia składowej stałej
Dołączenie kondensatora równolegle do obciążenia w wyjściu jednofazowego prostownika pracującego w układzie mostka Graetza ma na celu zmniejszenie tętnień napięcia wyjściowego. Kondensator działa jak filtr, magazynując energię elektryczną podczas szczytów napięcia i oddając ją w czasie, gdy napięcie spada, co prowadzi do bardziej stabilnego poziomu napięcia. W praktyce, zmniejszenie tętnień jest kluczowe w aplikacjach, gdzie wymagane są stałe wartości napięcia, takich jak zasilanie urządzeń elektronicznych, w których wahania napięcia mogą powodować uszkodzenia komponentów. Użycie kondensatora jest zgodne z najlepszymi praktykami inżynieryjnymi, które wskazują na znaczenie filtracji w układach zasilających. Dodatkowo, zastosowanie kondensatorów o odpowiednich parametrach pojemnościowych i napięciowych, zgodnych z normami IEC 61000, przyczynia się do poprawy jakości energii elektrycznej i stabilności systemów zasilających.

Pytanie 21

Niewielkie, drobne zarysowania na tłoczysku hydraulicznego siłownika eliminuje się za pomocą

A. polerowania
B. napawania
C. spawania
D. lutowania
Polerowanie to skuteczna metoda usuwania drobnych, niewielkich rys na tłoczysku siłownika hydraulicznego, ponieważ pozwala na wygładzenie powierzchni metalowej bez potrzeby dodawania materiału. W procesie polerowania wykorzystuje się różne materiały ścierne, takie jak pasty polerskie czy materiały ścierne o drobnych ziarnach, co umożliwia osiągnięcie wysokiej jakości wykończenia. Przykładem zastosowania polerowania w praktyce jest konserwacja siłowników hydraulicznych w maszynach budowlanych, gdzie ich długowieczność oraz niezawodność są kluczowe. Polerowanie nie tylko poprawia estetykę, ale również minimalizuje ryzyko dalszego uszkodzenia, zmniejszając tarcie i zużycie materiału. W branży hydraulicznej standardy jakości, takie jak ISO 9001, zalecają regularne kontrolowanie stanu tłoczysk i ich polerowanie w celu zapewnienia optymalnej wydajności oraz bezpieczeństwa operacyjnego urządzeń hydraulicznych. Warto również wspomnieć, że polerowanie przyczynia się do poprawy właściwości tribologicznych powierzchni, co wpływa na efektywność pracy siłowników.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jakie są kolejne kroki w przygotowaniu sprężonego powietrza do systemu pneumatycznego?

A. obniżenie ciśnienia do wartości wymaganej w systemie, osuszenie oraz filtrowanie powietrza, nasycenie mgłą olejową
B. nasycenie mgłą olejową (jeśli jest to potrzebne), osuszenie oraz filtrowanie powietrza, obniżenie ciśnienia do wartości wymaganej w systemie
C. nasycenie mgłą olejową, obniżenie ciśnienia do wartości wymaganej w systemie, osuszenie oraz filtrowanie powietrza
D. osuszenie oraz filtrowanie powietrza, obniżenie ciśnienia do wartości wymaganej w systemie, nasycenie mgłą olejową
No cóż, wiesz, przygotowanie sprężonego powietrza to nie taka prosta sprawa. W swojej odpowiedzi pomyliłeś kolejność działań. Najpierw powinno się osuszyć i przefiltrować powietrze, a dopiero potem nasycać je olejem. Jak zrobisz to inaczej, to wprowadzasz zanieczyszczenia do układu, co może potem prowadzić do sporych problemów. Przykładowo, zanieczyszczony olej może zatykać elementy pneumatyczne, i później tylko kłopoty. A jeśli chodzi o redukcję ciśnienia, to też ważne jest, żeby zrobić to po osuszeniu, bo inaczej wilgoć zostaje w powietrzu, a to już w ogóle nie powinno mieć miejsca. Krytyczna jest ta kolejność, żeby zapewnić, że powietrze jest naprawdę czyste i gotowe do użycia, bo w przeciwnym razie to może zrobić więcej złego niż dobrego w systemie pneumatycznym.

Pytanie 25

Jakie jest przeznaczenie przyłącza oznaczonego literą T na zaworze hydraulicznym 4/2, które ma oznaczenia A, B, P oraz T?

A. Zbiornika oleju hydraulicznego
B. Zbiornika sprężonego powietrza
C. Siłownika dwustronnego działania
D. Siłownika jednostronnego działania
Podłączenie przyłącza oznaczonego literą T do zbiornika oleju hydraulicznego jest kluczowe dla prawidłowego funkcjonowania systemu hydraulicznego. Przyłącze T, znane również jako przyłącze powrotne, służy do odprowadzania oleju hydraulicznego po jego przejściu przez układ. W standardowych zaworach hydraulicznych 4/2, przyłącze T łączy się z zbiornikiem, umożliwiając powrót oleju do obiegu, co zapobiega nadciśnieniu i pozwala na efektywne zarządzanie ciśnieniem w systemie. W praktyce, gdy ciśnienie w systemie wzrasta, olej jest kierowany do zbiornika, gdzie może być schłodzony i ponownie wykorzystywany. Zgodnie z dobrymi praktykami, ważne jest, aby przyłącze T było właściwie zabezpieczone i miało odpowiednią średnicę, aby uniknąć zatorów, co mogłoby prowadzić do uszkodzeń systemu hydraulicznego. Wiele aplikacji przemysłowych, takich jak maszyny budowlane czy linie produkcyjne, korzysta z tego rozwiązania, co potwierdza jego znaczenie w hydraulice.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jakie jest moment obrotowy na wale silnika synchronicznego o mocy 3,14 kW przy prędkości obrotowej 3000 obr/min?

A. 1 Nm
B. 10 Nm
C. 986 Nm
D. 9 420 Nm
Obliczenie momentu obrotowego na wale silnika synchronicznego można przeprowadzić za pomocą wzoru: M = P / (2 * π * n), gdzie M to moment obrotowy w niutonometrach (Nm), P to moc w watach (W), a n to prędkość obrotowa w obrotach na minutę (obr/min). W przypadku mocy 3,14 kW, co odpowiada 3140 W, oraz prędkości obrotowej 3000 obr/min, obliczenia wyglądają następująco: M = 3140 W / (2 * π * (3000/60)) = 10 Nm. Wynik ten jest zgodny z praktycznymi zastosowaniami silników synchronicznych, które często znajdują zastosowanie w aplikacjach przemysłowych. Silniki te charakteryzują się wysoką efektywnością oraz stabilną prędkością obrotową, co czyni je idealnym wyborem do napędu maszyn wymagających precyzyjnej kontroli prędkości. W kontekście standardów branżowych, takie obliczenia są istotne dla prawidłowego doboru silników oraz ich efektywnego wykorzystania w różnych aplikacjach.

Pytanie 30

Jakie napięcie wyjściowe przetwornika ciśnienia będzie przy wartościach ciśnienia wynoszących 450 kPa, jeśli jego napięcie wyjściowe mieści się w zakresie od 0 V do 10 V dla ciśnienia od 0 kPa do 600 kPa przy liniowej charakterystyce?

A. 3,0 V
B. 4,5 V
C. 7,5 V
D. 10,0 V
Odpowiedź 7,5 V to dobra odpowiedź. Przetwornik ciśnienia działa liniowo, co znaczy, że napięcie na wyjściu rośnie proporcjonalnie do ciśnienia. Zaczynając od 0 kPa do 600 kPa, napięcia wahają się od 0 do 10 V. Możemy łatwo policzyć napięcie dla 450 kPa. To 75% całego zakresu, bo 450 kPa podzielone przez 600 kPa daje 0,75. Jak to pomnożymy przez 10 V, dostajemy 7,5 V. W inżynierii, zwłaszcza w automatyce, takie dokładne pomiary ciśnienia są naprawdę ważne. Liniowe przetworniki są wszędzie tam, gdzie trzeba mieć precyzyjne dane. Oczywiście warto regularnie kalibrować te urządzenia, bo to zapewnia ich prawidłowe działanie i eliminuje błędy w pomiarach.

Pytanie 31

Jakim symbolem literowym określa się zmienną wyjściową w sterowniku PLC?

A. R
B. Q
C. I
D. T
Odpowiedź Q jest poprawna, ponieważ w systemach programowalnych sterowników logicznych (PLC) zmienne wyjściowe oznaczane są właśnie tym symbolem. Wyjścia są sygnałami, które sterownik generuje na podstawie przetworzonych danych wejściowych oraz zaimplementowanych algorytmów. Standardowe oznaczenia w programowaniu PLC opierają się na konwencjach przyjętych w branży, gdzie 'I' oznacza wejścia (Input), 'Q' wyjścia (Output), 'R' jest często używane dla rejestrów, a 'T' odnosi się do timerów. Przykładem zastosowania zmiennych wyjściowych jest kontrola urządzeń wykonawczych, takich jak silniki, siłowniki czy zawory. Na przykład, w prostym procesie automatyzacji, sygnał wyjściowy Q0.0 może być użyty do włączania lub wyłączania silnika w odpowiedzi na warunki zdefiniowane przez czujniki wejściowe. Zrozumienie tych oznaczeń jest kluczowe dla efektywnego programowania i diagnostyki systemów automatyki przemysłowej, co jest zgodne z normami IEC 61131-3, które definiują struktury programowania w PLC.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Wśród silników elektrycznych prądu stałego największy moment startowy wykazują silniki

A. synchroniczne
B. obcowzbudne
C. bocznikowe
D. szeregowe
Silniki obcowzbudne, w których uzwojenie wzbudzenia jest zasilane z osobnego źródła prądowego, nie mają takich samych właściwości rozruchowych jak silniki szeregowe. W silnikach tych, moment rozruchowy zależy od wartości prądu wzbudzenia, które jest ustalone niezależnie od prądu wirnika. To oznacza, że w momencie startu silnika obcowzbudnego moment obrotowy jest mniejszy, a ich główną zaletą jest stabilność prędkości przy różnych obciążeniach, co czyni je bardziej odpowiednimi do aplikacji wymagających stałej prędkości, takich jak wentylatory czy pompy. Silniki synchroniczne są z kolei stosowane w zastosowaniach, gdzie wymagane są precyzyjne obroty i synchronizacja z siecią elektryczną. Ich konstrukcja i sposób działania sprawiają, że nie są one w stanie wygenerować dużego momentu rozruchowego, co czyni je mniej praktycznymi dla aplikacji, w których istotne jest szybkie uruchomienie. Silniki bocznikowe, z drugiej strony, mają połączenie równoległe uzwojenia wzbudzenia z wirnikiem, co również wpływa na niższy moment rozruchowy w porównaniu do silników szeregowych. W praktyce, wybór odpowiedniego silnika powinien być podyktowany specyfiką aplikacji oraz wymaganiami dotyczącymi momentu obrotowego i dynamiki rozruchu, aby uniknąć typowych błędów w doborze silnika do konkretnego zadania.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.