Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 19 maja 2025 20:50
  • Data zakończenia: 19 maja 2025 21:01

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Kolektor solarny umieszczony na dachu obiektu powinien być skierowany w stronę

A. wschodnią
B. południową
C. zachodnią
D. północną
Odpowiedź 'południowym' jest prawidłowa, ponieważ kolektory słoneczne powinny być zorientowane w kierunku południowym, aby maksymalizować ilość otrzymywanej energii słonecznej w ciągu dnia. W Polsce, gdzie występuje znacząca ilość dni słonecznych, orientacja południowa pozwala na optymalne wykorzystanie promieniowania słonecznego, co przekłada się na efektywność systemu grzewczego lub produkcji energii elektrycznej. Kolektory słoneczne, umieszczone na dachu w takiej orientacji, mogą zwiększyć wydajność o 15-30% w porównaniu do kierunków alternatywnych, takich jak wschód czy zachód. Dobrą praktyką jest również uwzględnienie kąta nachylenia kolektora, który w przypadku orientacji południowej powinien wynosić około 30-45 stopni. Warto także zwrócić uwagę na przeszkody, takie jak inne budynki czy drzewa, które mogą rzucać cień na kolektor, co dodatkowo wpływa na jego wydajność. Zastosowanie tej wiedzy w projektowaniu systemów solarnych jest kluczowe dla efektywności energetycznej budynków.

Pytanie 2

Na podstawie danych zawartych w tabeli oblicz koszt materiałów niezbędnych do wymiany 50 metrów sieci biogazu uzbrojonej w 3 zasuwy i 2 trójniki.

Nazwa urządzeniaJednostka miaryCena jednostkowa (zł)
Rura PEm30,00
Zasuwaszt.300,00
Trójnikszt.250,00

A. 500 zł
B. 1 500 zł
C. 900 zł
D. 2 900 zł
Poprawna odpowiedź to 2900 zł, co zostało obliczone na podstawie dokładnej analizy kosztów materiałów do wymiany sieci biogazu. W przypadku takich projektów kluczowe jest precyzyjne określenie ilości oraz cen jednostkowych materiałów, co pozwala na dokładne oszacowanie całkowitych kosztów. W tym przypadku, 50 metrów sieci biogazu wymagało zakupu rur, zasuw oraz trójników. Zastosowanie zasuw umożliwia kontrolowanie przepływu biogazu, co jest niezbędne w wielu instalacjach biogazowych. Z kolei trójniki są istotne, gdyż pozwalają na rozgałęzianie instalacji, co jest często wymagane w praktycznych zastosowaniach. Przy planowaniu takich projektów warto zwrócić uwagę na standardy branżowe, takie jak normy dotyczące jakości materiałów oraz ich zgodności z przepisami budowlanymi. Dobre praktyki obejmują także uwzględnienie potencjalnych kosztów serwisowania i konserwacji, co może wpłynąć na całkowity budżet projektu.

Pytanie 3

W trakcie modernizacji elektrowni wodnej dokonano wymiany turbiny na nowy model o znamionowym przepływie Qn większym o 20%. Następnie zainstalowano rurę ssącą, co spowodowało wzrost użytecznego spadu Hu na turbinie z 1,6 m do 2 m. W rezultacie moc nominalna elektrowni Pn, wyrażona równaniem Pn = 9,81xQnxHuxη, wzrosła o około

A. 50%
B. 20%
C. 40%
D. 30%
Wzrost mocy nominalnej elektrowni wodnej można obliczyć, analizując zależność Pn = 9,81 x Qn x Hu x η, gdzie Pn to moc nominalna, Qn to przełyk znamionowy, Hu to spad użyteczny, a η to sprawność turbiny. W przypadku tego zadania, przełyk znamionowy Qn wzrósł o 20%, co oznacza, że nowy Qn wynosi 1,2 x Qn (stare). Dodatkowo, spad użyteczny Hu wzrósł z 1,6 m do 2 m, co stanowi wzrost o 25% (2 m / 1,6 m = 1,25). Łączny wzrost mocy można obliczyć mnożąc te dwa czynniki: (1,2) x (1,25) = 1,5, co oznacza wzrost o 50%. Przykład zastosowania tej wiedzy można zobaczyć w praktyce modernizacji elektrowni, gdzie inżynierowie starają się maksymalizować efektywność energetyczną poprzez optymalizację zarówno turbiny, jak i parametrów hydraulicznych. Zmiany te są zgodne z najlepszymi praktykami w branży, które dążą do zwiększenia wydajności systemów energetycznych. Warto również zauważyć, że poprawa parametrów turbiny przyczyni się do lepszej wykorzystania dostępnej energii wody, co jest kluczowe w kontekście zrównoważonego rozwoju energetyki wodnej.

Pytanie 4

Rury miedziane miękkie pakowane w kręgach umieszczane są w kartonach. Waga jednego opakowania nie powinna być większa niż

A. 35 kg
B. 50 kg
C. 40 kg
D. 25 kg
Poprawna odpowiedź to 50 kg, ponieważ zgodnie z normami branżowymi i przepisami dotyczącymi pakowania rur miedzianych, masa jednego opakowania nie powinna przekraczać tego limitu. Przekroczenie tej wartości może prowadzić do problemów z transportem, w tym do trudności w podnoszeniu i przenoszeniu ciężkich paczek przez pracowników, co może z kolei zwiększać ryzyko wypadków i kontuzji. W praktyce, stosowanie limitów masowych, takich jak 50 kg, jest zgodne z zasadami ergonomii i zapewnia bezpieczeństwo w miejscu pracy. Takie limity są także zgodne z regulacjami dotyczącymi transportu i logistyki, które wprowadzają wymogi dotyczące maksymalnej masy ładunków, aby uniknąć przeciążenia pojazdów transportowych. Warto również zauważyć, że stosowanie odpowiednich materiałów opakowaniowych, które nie tylko zabezpieczają rury, ale również są dostosowane do ich masy, jest kluczowe dla zachowania jakości produktu podczas transportu.

Pytanie 5

Uchwyt PV bezpiecznika powinien być zamontowany na szynie DIN przy użyciu

A. kołków montażowych
B. zatrzasków
C. nitów
D. śrub
Montaż uchwytów PV bezpieczników na szynie DIN za pomocą nitów jest nieodpowiedni ze względu na brak możliwości łatwego demontażu. Nity tworzą trwałe połączenie, co w przypadku konieczności konserwacji lub wymiany elementów może prowadzić do znacznych trudności. W środowisku przemysłowym, gdzie elastyczność i adaptacja są kluczowe, takie podejście może prowadzić do nieefektywności i zwiększenia kosztów. Podobnie, użycie kołków montażowych nie jest zalecane, ponieważ również wymagają one precyzyjnego wiercenia otworów oraz dodatkowego sprzętu, co może zwiększać czas montażu i ryzyko błędów. Śruby, z drugiej strony, mogą oferować stabilność, ale ich montaż jest bardziej czasochłonny i wymaga regularnego sprawdzania dokręcenia, co w dłuższej perspektywie może prowadzić do problemów z utrzymaniem odpowiedniego połączenia. Wiele osób może myśleć, że bardziej skomplikowane metody montażu są bardziej niezawodne, jednak w praktyce to prostota i efektywność są kluczowe w nowoczesnych instalacjach elektroenergetycznych. Dlatego ważne jest, aby stosować odpowiednie metody zgodnie z zaleceniami producentów i normami branżowymi, aby zapewnić efektywność oraz bezpieczeństwo systemu.

Pytanie 6

Aby podłączyć kocioł na biomasę do wymiennika c.w.u w wodnej instalacji grzewczej w systemie otwartym, można zastosować rurę

A. z polipropylenu
B. ze stali ocynkowanej
C. Alu-PEX
D. ze stali nierdzewnej
Stal nierdzewna jest materiałem, który doskonale sprawdza się w instalacjach grzewczych, w tym w podłączeniach kotłów na biomasę do wężownic zasobników c.w.u. W porównaniu z innymi materiałami, stal nierdzewna charakteryzuje się wysoką odpornością na korozję oraz na wysokie temperatury i ciśnienia, co jest kluczowe w instalacjach, gdzie zachodzi transfer energii cieplnej. Zastosowanie stali nierdzewnej zapewnia długotrwałość i niezawodność połączenia, co jest istotne dla użytkowników szukających efektywnych i bezpiecznych rozwiązań. Przykładowo, w wielu nowoczesnych instalacjach grzewczych w budynkach mieszkalnych, stal nierdzewna jest preferowanym materiałem do tworzenia węzłów ciepłowniczych oraz do łączenia elementów takich jak kotły, zasobniki czy wymienniki ciepła. Dodatkowo, stosowanie stali nierdzewnej często jest zgodne z wymogami norm budowlanych oraz standardów dotyczących instalacji grzewczych, co zwiększa bezpieczeństwo oraz efektywność systemów grzewczych.

Pytanie 7

W wymienniku ciepła jednopłaszczowym z dwoma wężownicami, który współpracuje z instalacją solarną oraz kotłem, podgrzewa się

A. ciepłą wodę użytkową
B. mieszaninę glikolu
C. ciecz solarną
D. powietrze
W jednopłaszczowym, dwuwężownicowym wymienniku ciepła, który współpracuje z instalacją solarną oraz kotłem, ciepła woda użytkowa jest kluczowym medium, które jest ogrzewane. Wymienniki ciepła tego typu są zaprojektowane w taki sposób, aby efektywnie przekazywać ciepło z jednego medium do drugiego. W tym przypadku, energia cieplna jest przekazywana z płynu solarnego lub z wody grzewczej dostarczanej przez kocioł do wody użytkowej. Ogrzewanie wody użytkowej jest istotnym elementem w systemach grzewczych, ponieważ zapewnia komfort w domach oraz spełnia podstawowe potrzeby sanitarno-higieniczne. Przykładowo, w domach jednorodzinnych lub budynkach użyteczności publicznej, wymienniki ciepła są szeroko stosowane do efektywnego podgrzewania wody, co jest zgodne z normami i wymaganiami efektywności energetycznej. Warto również zaznaczyć, że stosowanie wymienników ciepła wspomaga w osiąganiu celów związanych z redukcją zużycia energii oraz poprawą efektywności energetycznej budynków, co jest zgodne z obowiązującymi standardami budowlanymi.

Pytanie 8

Aby prawidłowo rozliczyć wykonane prace montażowe instalacji CWU w budynku jednorodzinnym, w sytuacji gdy w trakcie ich realizacji nastąpiła zmiana trasy jej przebiegu, konieczne jest przeprowadzenie

A. odbioru międzyoperacyjnego
B. obmiaru powykonawczego
C. obmiaru projektowanych robót
D. geodezyjnej inwentaryzacji powykonawczej
Obmiar powykonawczy to proces, który powinien zostać przeprowadzony po zakończeniu prac montażowych, szczególnie w przypadku, gdy zmienił się przebieg trasy instalacji. Taki obmiar ma na celu dokładne zarejestrowanie rzeczywiście wykonanych robót oraz ich wymiarów, co jest kluczowe dla poprawnego rozliczenia z inwestorem. W sytuacji, gdy na etapie montażu zmienia się trasa instalacji, niezbędne jest weryfikowanie tych zmian, aby zapewnić zgodność z dokumentacją projektową. Obmiar powykonawczy umożliwia również identyfikację ewentualnych odchyleń od projektu i umożliwia ich skorygowanie już na etapie rozliczeń. Zgodnie z wytycznymi branżowymi, wszelkie zmiany powinny być dokumentowane, co jest istotne również dla późniejszych prac konserwacyjnych i serwisowych. Przykładem może być sytuacja, gdy podczas montażu instalacji CWU zmienia się lokalizacja zbiornika, co wymaga ponownego pomiaru długości rur czy ilości użytych materiałów. Takie podejście zwiększa transparentność procesu budowlanego oraz minimalizuje ryzyko sporów podczas finalizacji umowy.

Pytanie 9

Przy jakim ciśnieniu powinien zadziałać zawór bezpieczeństwa w systemie solarnym?

A. 8 barów
B. 2 barów
C. 6 barów
D. 4 barów
Zawór bezpieczeństwa w instalacji solarnej jest kluczowym elementem zapewniającym bezpieczeństwo systemu. Ustalenie odpowiedniego ciśnienia, przy którym zawór powinien zadziałać, jest niezwykle istotne. W przypadku instalacji solarnych, wartość 6 barów jest uznawana za standardową granicę, przy której zawór bezpieczeństwa powinien otworzyć się, aby zapobiec nadmiernemu wzrostowi ciśnienia. Praktyczne zastosowanie tego rozwiązania można zaobserwować w sytuacjach, gdy ciśnienie w układzie, na przykład w wyniku niskiej temperatury lub awarii, zbliża się do tej wartości. W rzeczywistości, zawory te są projektowane zgodnie z normą PN-EN 12828, która odnosi się do projektowania i wykonania systemów grzewczych, w tym instalacji solarnych. Zastosowanie zaworu przy ciśnieniu 6 barów zapobiega ryzyku pęknięcia rur oraz uszkodzenia kolektorów słonecznych, co z kolei przekłada się na długowieczność całego systemu oraz zwiększa bezpieczeństwo użytkowania.

Pytanie 10

Kluczową wartością niezbędną do przygotowania przedmiaru robót instalacji solarnej jest średnie zapotrzebowanie na wodę użytkową w trakcie

A. miesiąca
B. doby
C. tygodnia
D. roku
Przy projektowaniu instalacji solarnych niepełne zrozumienie kryteriów obliczeniowych może prowadzić do poważnych błędów w oszacowaniu wydajności systemu. Ustalanie zapotrzebowania na wodę użytkową w skali tygodnia, miesiąca czy roku nie uwzględnia codziennych wahań i specyfiki użytkowania wody. Na przykład, wybierając tydzień jako okres, w którym chcemy określić średnie zapotrzebowanie, możemy nie uwzględnić dni, w które generowane jest większe zużycie, jak weekendy czy święta. Takie podejście może prowadzić do zaniżenia wymagań, co w konsekwencji sprawia, że system solarny nie będzie w stanie zaspokoić bieżących potrzeb użytkowników. Co więcej, dobranie parametrów w skali miesięcznej lub rocznej nie oddaje dynamicznych zmian w zużyciu wody, co jest kluczowe dla precyzyjnego projektowania. W praktyce, nieprecyzyjne określenie średniego zapotrzebowania może prowadzić do niewłaściwego dobrania wielkości zbiornika, co skutkuje nadmiernym zużyciem energii i obniżeniem efektywności systemu. Standardy branżowe oraz dobre praktyki w projektowaniu instalacji solarnych zalecają uwzględnianie danych dobowych, aby zapewnić optymalną wydajność i efektywność ekonomiczną systemu. Stąd kluczowe jest posługiwanie się odpowiednimi danymi, które odzwierciedlają rzeczywiste potrzeby użytkownika w codziennych warunkach.

Pytanie 11

Jakie jest optymalne nachylenie kolektora słonecznego zamontowanego na fasadzie budynku na konsoli ściennej?

A. 70°
B. 65°
C. 45°
D. 30°
Kąt nachylenia kolektora słonecznego ma kluczowe znaczenie dla efektywności jego działania. W przypadku montażu na fasadzie budynku, zalecany kąt wynoszący 45° sprzyja optymalnemu wykorzystaniu promieniowania słonecznego przez większość roku. Taki kąt pozwala na maksymalne naświetlenie kolektora zarówno w okresie letnim, kiedy słońce jest wysoko na niebie, jak i w zimie, gdy jego kąt padania jest niższy. Dodatkowo, kąt 45° ułatwia również odprowadzanie śniegu i wody deszczowej, co zmniejsza ryzyko uszkodzeń systemu. Dobrą praktyką jest także uwzględnienie lokalnych warunków klimatycznych oraz orientacji budynku, co może wpłynąć na ostateczny wybór kąta nachylenia. W kontekście standardów, zaleca się konsultację z fachowcami, którzy mogą przeprowadzić symulacje lub analizy, aby dostosować kąt do specyficznych warunków konkretnego miejsca. Wiedza ta jest niezbędna dla osób zajmujących się projektowaniem i instalacją systemów fotowoltaicznych oraz solarnych.

Pytanie 12

Gdzie w instalacji solarnej umieszcza się mieszacz wody użytkowej?

A. pomiędzy obiegiem solarnym a obiegiem wody ciepłej
B. pomiędzy wodą zimną a obiegiem wody ciepłej
C. pomiędzy obiegiem solarnym a obiegiem wody zimnej
D. pomiędzy centralnym ogrzewaniem a obiegiem wody zimnej
Pojęcie umiejscowienia mieszacza wody użytkowej w instalacji solarnej związane jest z kilkoma kluczowymi aspektami, które mogą zostać błędnie zrozumiane, prowadząc do niepoprawnych odpowiedzi. Przykładowo, umieszczenie mieszacza między obiegiem solarnym a obiegiem wody zimnej nie ma sensu, ponieważ woda zimna nie wymaga regulacji temperatury, a jej mieszanie z wodą solarną prowadziłoby do strat ciepła. Alternatywne opcje, jak mieszanie wody ciepłej z zimną lub umiejscowienie mieszacza w obszarze centralnego ogrzewania, mogą wydawać się logiczne, jednak w rzeczywistości mogą wprowadzać błędy w zarządzaniu temperaturą i ciśnieniem. Centralne ogrzewanie funkcjonuje na zasadzie obiegu ciepłej wody, a mieszacz powinien znajdować się w strefie, gdzie woda użytkowa zmienia swoje właściwości termiczne. W praktyce, niewłaściwe umiejscowienie mieszacza może skutkować nieefektywnym działaniem całego systemu, co prowadzi do zwiększonego zużycia energii i potencjalnych uszkodzeń instalacji. Ważne jest zatem, aby zrozumieć, że mieszacz pełni rolę regulatora, który powinien być umieszczony w odpowiedniej lokalizacji dla osiągnięcia optymalnej wydajności i efektywności energetycznej.

Pytanie 13

Przez realizację odwiertów weryfikuje się hydrotermalne zasoby energii, dotyczące

A. gorących suchych skał
B. wody, pary lub mieszaniny parowo-wodnej
C. atmosfery
D. suchych, ogrzanych i porowatych skał
Odpowiedź dotycząca wody, pary lub mieszaniny parowo-wodnej jest poprawna, ponieważ hydrotermiczne zasoby energii odnosi się bezpośrednio do energii geotermalnej, która znajduje się w płynach geotermalnych. Woda i para wodna są kluczowymi nośnikami energii w systemach geotermalnych, które są wykorzystywane do produkcji energii elektrycznej oraz do zastosowań grzewczych. Przykładem praktycznego zastosowania jest użycie geotermalnych źródeł energii w elektrowniach geotermalnych, gdzie woda pod wysokim ciśnieniem jest wydobywana z głębokich odwiertów, a następnie używana do napędzania turbin. W wielu krajach, takich jak Islandia czy Nowa Zelandia, dobrze rozwinięte systemy geotermalne przyczyniają się do znacznej części produkcji energii. Stosowanie odwiertów geotermalnych w celu potwierdzenia zasobów wód gruntowych jest zgodne z najlepszymi praktykami w branży, a także z normami środowiskowymi, które dbają o zrównoważony rozwój i efektywność energetyczną."

Pytanie 14

Podczas sporządzania przedmiaru robót dla systemów wodociągowych, długość rur określa się w metrach?

A. wliczając armaturę z kołnierzami
B. bez wyłączania długości łączników oraz armatury łączonej lutowaniem lub gwintowaniem
C. a liczba podejść ustalana jest wspólnie dla zimnej i ciepłej wody
D. z wyłączeniem długości łączników oraz armatury
Odpowiedź "bez odliczania długości łączników oraz armatury łączonej przez lutowanie lub gwintowanie" jest zgodna z praktykami stosowanymi w branży wodociągowej. W przypadku przedmiaru robót dla instalacji wodociągowych, długość rurociągów należy mierzyć wyłącznie jako długość prostych odcinków rur, co jest zgodne z zasadami określonymi w normach budowlanych oraz standardach dotyczących obliczeń hydraulicznych. W praktyce oznacza to, że nie uwzględniamy długości łączników, jak kolanka czy złączki, które nie wpływają na całkowitą długość rurociągu. Przykładowo, przy obliczaniu ilości materiałów potrzebnych do instalacji, koncentrujemy się na długościach rur, co pozwala na precyzyjne określenie zapotrzebowania na materiały. Dodatkowo, takie podejście ogranicza ryzyko nadmiernych zakupów lub marnotrawstwa materiałów, co jest kluczowe w budownictwie. Ponadto, standardy takie jak PN-EN 805 oraz PN-EN 12056 wskazują na konieczność dokonywania pomiarów zgodnie z określonymi zasadami, co podkreśla znaczenie niewliczania łączników w przedmiarze robót.

Pytanie 15

Podczas użytkowania systemu grzewczego zasilanego energią słoneczną zaobserwowano opóźnione uruchamianie pompy obiegowej przy wysokiej temperaturze powracającej z kolektora. Możliwą przyczyną tego zjawiska może być

A. wadliwy czujnik temperatury
B. niewłaściwa histereza ustawiona na regulatorze
C. zepsuta pompa solarna
D. aktywny tryb urlop na regulatorze
Uszkodzony czujnik temperatury jest kluczowym elementem systemu grzewczego, który odpowiada za monitorowanie temperatury w obiegu solarnym. Kiedy czujnik nie działa prawidłowo, może przekazywać błędne informacje do regulatora, co z kolei prowadzi do nieprawidłowego załączania pompy obiegowej. W przypadku wysokiej temperatury na powrocie z kolektora, system powinien automatycznie włączyć pompę, aby zredukować ryzyko przegrzania. Jeżeli czujnik jest uszkodzony, pompa może nie działać zgodnie z oczekiwaniami, co może prowadzić do strat energii oraz uszkodzenia samego systemu. Praktycznym przykładem jest regulacja systemu grzewczego, który musi być zgodny z normami DIN EN 12976, co zapewnia efektywność i bezpieczeństwo. Regularne sprawdzanie i konserwacja czujników temperatury powinny być integralną częścią planu utrzymania systemu, aby uniknąć takich problemów w przyszłości.

Pytanie 16

Aby połączyć dwie stalowe rury o identycznej średnicy z gwintem zewnętrznym, jakie złącze należy zastosować?

A. złączki wkrętnej, znanej jako nypl.
B. łącznika zaprasowywano-gwintowanego.
C. złączki nakrętnej, określanej jako mufy.
D. łącznika zaprasowywanego.
Zastosowanie złączki wkrętnej, znanej jako nypl, do łączenia dwóch stalowych rur zakończonych gwintem zewnętrznym jest nieodpowiednie. Nypl to złączka, która ma gwinty z obu stron i jest przeznaczona do łączenia rur o różnych średnicach lub do wydłużania istniejących połączeń. W przypadku rur o tej samej średnicy, użycie nypla może doprowadzić do problemów z montażem, ponieważ nie zapewnia on właściwego dopasowania ani stabilności połączenia. Z kolei łącznik zaprasowywany jest przeznaczony do rur wykonanych z materiałów takich jak miedź lub PVC, które są zaprasowywane w specjalny sposób, co również nie ma zastosowania w przypadku stalowych rur z gwintem zewnętrznym. Natomiast łącznik zaprasowywano-gwintowany łączy cechy obu tych typów złączek, jednak nie jest on przystosowany do bezpośredniego łączenia rur zakończonych gwintem zewnętrznym, co czyni go niewłaściwym wyborem w tej sytuacji. W praktyce, wybór niewłaściwej złączki może prowadzić do wycieków, osłabienia strukturalnego połączeń oraz innych problemów operacyjnych, co podkreśla znaczenie odpowiedniego doboru elementów instalacyjnych.

Pytanie 17

Aby zapewnić długotrwałe i bezpieczne używanie zasobnika c.w.u. z ceramiczną emalią, ważne jest regularne

A. konserwacja powłoki ceramicznej
B. kontrola chlorowania wody użytkowej
C. wymiana grzałki elektrycznej
D. wymiana anody magnezowej
Wymiana anody magnezowej jest kluczowym działaniem, które zapewnia długotrwałą ochronę zasobnika c.w.u. pokrytego emalią ceramiczną. Anoda magnezowa działa na zasadzie katodowej ochrony, co oznacza, że jest bardziej podatna na korozję niż metalowy materiał zasobnika. W wyniku tego procesu anoda, będąca mniej szlachetnym metalem, ulega stopniowemu zużyciu, chroniąc w ten sposób powłokę ceramiczną przed uszkodzeniami. Zgodnie z dobrą praktyką, zaleca się przeprowadzanie kontroli anody co 1-2 lata, a jej wymiana powinna nastąpić w momencie, gdy jest już znacznie zredukowana. Przykładem zastosowania tej praktyki może być użytkowanie zasobników w obszarach o wysokiej twardości wody, gdzie korozja jest bardziej intensywna. Przestrzeganie tego zalecenia pozwala znacznie wydłużyć żywotność urządzenia i zminimalizować ryzyko awarii, co jest zgodne z zaleceniami producentów oraz normami branżowymi.

Pytanie 18

Z jaką minimalną separacją powinny być instalowane kolektory w stosunku do wszelkich uziemionych elementów systemu ochrony odgromowej, uziemienia oraz pozostałych metalowych struktur dachu, które nie są częścią systemu ochrony odgromowej?

A. 0,50 - 1,00 m
B. 1,50 - 2,00 m
C. 0,10 - 0,20 m
D. 0,35 - 0,45 m
Zastosowanie niewłaściwej odległości między kolektorami a uziemionymi punktami ochrony odgromowej może prowadzić do poważnych konsekwencji. Odpowiedzi sugerujące mniejsze odległości, takie jak 0,10 - 0,20 m lub 0,35 - 0,45 m, ignorują fundamentalne zasady dotyczące bezpieczeństwa elektrycznego i ochrony przed skutkami wyładowań atmosferycznych. Warto zauważyć, że prąd udarowy wywołany piorunem może rozprzestrzeniać się w różnych kierunkach, a zbyt bliskie usytuowanie kolektorów wobec elementów uziemiających stwarza ryzyko, że te prądy trafią na wrażliwe komponenty instalacji, prowadząc do ich uszkodzenia lub nawet pożaru. Ponadto, zwiększa to ryzyko uszkodzenia samej konstrukcji dachu. Standardy branżowe jasno określają minimalne odległości, które powinny być przestrzegane, aby skutecznie zminimalizować ryzyko związane z wyładowaniami atmosferycznymi. Ignorowanie tych zasad może wynikać z błędnego postrzegania bezpieczeństwa instalacji, co często prowadzi do oszczędności na niewłaściwych kosztach, a w efekcie do większych wydatków związanych z naprawami. Umożliwienie odpowiedniego odstępu nie tylko zabezpiecza instalację, ale również wspiera długofalowe zarządzanie ryzykiem związanym z pogodą.

Pytanie 19

Rura łącząca kocioł c.o. na drewno kawałkowe z otwartym naczyniem wzbiorczym ma charakterystykę

A. przelewowa
B. bezpieczeństwa
C. odpowietrzająca
D. sygnalizacyjna
Wybór odpowiedzi, które nie dotyczą funkcji rury bezpieczeństwa, wynika z nieporozumienia dotyczącego roli poszczególnych elementów instalacji grzewczej. Rura przelewowa, choć również istotna, ma za zadanie odprowadzenie nadmiaru wody z naczynia wzbiorczego, jednak nie pełni funkcji zabezpieczającej w kontekście ciśnienia w systemie. Pojęcie sygnalizacyjne odnosi się zazwyczaj do elementów, które monitorują parametry pracy systemu, ale nie mają one wpływu na bezpieczeństwo jego użytkowania. Odpowiedź dotycząca rury odpowietrzającej jest kolejnym błędnym podejściem, gdyż jej funkcja sprowadza się do umożliwienia wyrównania ciśnienia w obiegu, zwłaszcza w momentach, gdy system napełnia się wodą lub podczas jego pracy. Ważne jest zrozumienie, że wszystkie wymienione funkcje mają swoje miejsce w instalacji, jednak tylko rura bezpieczeństwa jest bezpośrednio odpowiedzialna za ochranianie systemu przed nadmiernym ciśnieniem, co czyni ją kluczowym elementem w kontekście bezpieczeństwa. W praktyce, pominięcie rury bezpieczeństwa może prowadzić do niebezpiecznych sytuacji, w tym eksplozji kotła, co ilustruje, jak istotne jest właściwe zrozumienie funkcji i przeznaczenia każdego z komponentów w instalacji centralnego ogrzewania, zgodnie z normami i dobrymi praktykami branżowymi.

Pytanie 20

Montaż paneli fotowoltaicznych na dachu o płaskiej powierzchni zrealizował instalator w towarzystwie dwóch asystentów. Stawka wynagrodzenia instalatora to 48,00 zł, a stawka asystenta wynosi 25,00 zł za każdą godzinę pracy. Jaka jest kosztorysowa wartość robocizny, jeśli czas pracy wynosi 5 godzin?

A. 98,00 zł
B. 605,00 zł
C. 490,00 zł
D. 365,00 zł
Aby obliczyć kosztorysową wartość robocizny przy montażu paneli fotowoltaicznych, należy uwzględnić stawki robocze dla instalatora oraz pomocników. Instalator otrzymuje 48,00 zł za godzinę, a każdy z dwóch pomocników 25,00 zł za godzinę. Przy nakładzie robocizny wynoszącym 5 godzin, obliczenia przeprowadzamy w następujący sposób: koszt pracy instalatora wynosi 5 godzin x 48,00 zł = 240,00 zł. Koszt pracy dwóch pomocników wynosi 5 godzin x 25,00 zł x 2 = 250,00 zł. Łączny kosztorys robocizny wynosi zatem 240,00 zł + 250,00 zł = 490,00 zł. Tego rodzaju kalkulacje są kluczowe w branży odnawialnych źródeł energii, ponieważ pomagają w dokładnym oszacowaniu kosztów projektu oraz w planowaniu budżetu. Praktyczne zastosowanie takich obliczeń pozwala na precyzyjne zarządzanie kosztami, co jest zgodne z dobrymi praktykami w zakresie zarządzania projektami budowlanymi oraz finansami.

Pytanie 21

Filtry powietrza w rekuperatorze powinny być wymieniane

A. co 5-6 miesięcy.
B. na podstawie oceny ich stanu.
C. na podstawie wskazówek od instalatora.
D. co 7-8 miesięcy.
Wymiana filtrów powietrza w rekuperatorze nie powinna być oparta na ogólnych zaleceniach czasowych, takich jak co 7-8 lub co 5-6 miesięcy. Takie podejście może prowadzić do nieefektywności kosztowej, ponieważ niektóre filtry mogą wymagać wymiany znacznie rzadziej, podczas gdy inne mogą wymagać częstszej interwencji. Ustalanie harmonogramu wymiany na podstawie danych od wykonawcy instalacji również nie jest najlepszym rozwiązaniem, ponieważ może nie uwzględniać rzeczywistych warunków pracy systemu. Różne czynniki, takie jak poziom zanieczyszczenia powietrza, intensywność użytkowania systemu, a także rodzaj filtrów, mają znaczący wpływ na ich trwałość i efektywność. Bezkrytyczne stosowanie standardowych ram czasowych do wymiany filtrów może prowadzić do sytuacji, w której filtry są wymieniane, gdy nie jest to jeszcze konieczne, co generuje dodatkowe koszty i odpady. Rozwiązaniem jest przeprowadzanie regularnych inspekcji oraz stosowanie monitorowania parametrów technicznych, które dostarczą precyzyjnych informacji na temat stanu filtrów. Rekomendowane jest także stosowanie filtrów o określonej klasie efektywności, co pozwoli na dłuższe ich utrzymanie w dobrym stanie, a także na lepsze zarządzanie jakością powietrza wewnętrznego.

Pytanie 22

Możliwość ogrzewania oraz chłodzenia przy użyciu jednego urządzenia jest efektem zastosowania

A. ogniwa wodorowego
B. rewersyjnej pompy ciepła
C. ogniwa fotowoltaicznego typu CIGS
D. próżniowego kolektora słonecznego
Rewersyjna pompa ciepła to urządzenie, które w zależności od potrzeb użytkownika może zarówno ogrzewać, jak i chłodzić pomieszczenia. Działa na zasadzie wymiany ciepła z otoczeniem, wykorzystując cykl termodynamiczny, który pozwala na odwrócenie kierunku przepływu czynnika chłodniczego. W trybie ogrzewania, pompa ciepła pobiera ciepło z zewnątrz (nawet przy niskich temperaturach) i przekształca je, aby podnieść temperaturę w budynku. Natomiast w trybie chłodzenia, proces jest odwrotny, co pozwala na usuwanie ciepła z wnętrza budynku. Dzięki tej uniwersalności, rewersyjne pompy ciepła znajdują szerokie zastosowanie w nowoczesnym budownictwie, w tym w domach jednorodzinnych, biurach oraz obiektach przemysłowych. Standardy dotyczące efektywności energetycznej, takie jak SEER i HSPF, mają na celu oceny wydajności systemów HVAC, w tym pomp ciepła, co potwierdza ich znaczenie w zrównoważonym rozwoju. W praktyce, instalacja pompy ciepła może prowadzić do znacznego obniżenia kosztów ogrzewania i chłodzenia, a także redukcji emisji CO2, co jest zgodne z globalnymi trendami proekologicznymi.

Pytanie 23

Kiedy powinien być przeprowadzany przegląd techniczny kotła na biomasę?

A. co dwa lata
B. przynajmniej dwa razy w roku
C. raz w roku, najlepiej przed rozpoczęciem sezonu grzewczego
D. jeden raz w roku, najlepiej po zakończeniu sezonu grzewczego
Kiedy mówimy o przeglądzie technicznym kotła na biomasę, to warto pamiętać, że najlepiej robić to raz w roku. Najlepszy moment to przed sezonem grzewczym, bo wtedy można znaleźć jakieś potencjalne usterki na czas. Takie przeglądy to nie tylko kwestia bezpieczeństwa, ale też efektywności kotła. Regularne sprawdzanie stanu technicznego kotła pomaga uniknąć problemów i wydatków w przyszłości. Przykładowo, ważne jest, żeby sprawdzić palnik, wymiennik ciepła czy systemy bezpieczeństwa. Jak wiadomo, normy, takie jak PN-EN 303-5, mówią, że te kontrole są ważne dla ochrony środowiska i bezpieczeństwa użytkowników. Nie bez znaczenia jest, żeby przeglądów dokonywali fachowcy, bo tylko oni będą w stanie zauważyć wszelkie nieprawidłowości i zasugerować, co należy poprawić.

Pytanie 24

Aby zainstalować instalację fotowoltaiczną, wymagany jest zakup inwertera o mocy 17 kVA według projektu, którego koszt wynosi 5900 zł. Koszty materiałów pomocniczych stanowią 2,5% wydatków na zakup, co daje wartość

A. 147,5 zł
B. 1,48 zł
C. 1475,00 zł
D. 14,75 zł
Odpowiedź 147,5 zł jest jak najbardziej właściwa. Koszty materiałów pomocniczych obliczamy jako procent od całkowitych kosztów zakupu inwertera. Tu mamy inwerter za 5900 zł, a materiały pomocnicze to 2,5% tej kwoty. Wychodzi to w prosty sposób: 5900 zł pomnożone przez 0,025, co daje nam 147,5 zł. To ważne, żeby tak dokładnie analizować, bo w planowaniu inwestycji w instalacje fotowoltaiczne nie chcemy się za bardzo zdziwić przy wydatkach. W branży energii odnawialnej precyzyjne liczby pozwalają lepiej zarządzać budżetem i przewidywać, co nas czeka w przyszłości. Dobrym zwyczajem jest zawsze pamiętać o dodatkowych kosztach, takich jak materiały pomocnicze, ponieważ one mogą znacząco wpłynąć na cały koszt inwestycji, zwłaszcza w większych projektach solarnych. Dzięki temu lepiej podejmujemy decyzje o finansowaniu i możemy przewidzieć, czy inwestycja będzie opłacalna.

Pytanie 25

W systemie, gdzie występuje grawitacyjny obieg czynnika grzewczego, nie spotka się

A. pompa obiegowa
B. zawór bezpieczeństwa
C. zawór odcinający
D. zawór zwrotny
Pompa obiegowa nie jest elementem instalacji grzewczej o grawitacyjnym obiegu czynnika grzewczego, ponieważ jej funkcją jest wymuszanie cyrkulacji wody w systemie. W instalacjach grawitacyjnych obieg czynnika grzewczego opiera się na różnicy gęstości pomiędzy ciepłą i zimną wodą. Gdy woda się nagrzewa, jej gęstość maleje, co powoduje, że unosi się ku górze, a zimniejsza woda, mająca większą gęstość, opada. Taki naturalny proces tworzy krąg obiegu wody, który nie wymaga wsparcia mechanicznego. W praktyce systemy grawitacyjne są stosowane w budynkach o prostych układach instalacyjnych, gdzie nie ma potrzeby stosowania pompy, co łączy się z niższymi kosztami eksploatacji i mniejszą awaryjnością. Zawory odcinające, zwrotne i bezpieczeństwa są natomiast istotnymi elementami tych instalacji, zapewniającymi kontrolę przepływu, ochronę przed cofaniem się wody oraz bezpieczeństwo całego systemu grzewczego.

Pytanie 26

W trakcie instalacji płaskich kolektorów słonecznych w słoneczny dzień należy je osłonić, aby zabezpieczyć

A. pokrycie dachu przed odkształceniami termicznymi
B. monterów przed oparzeniami
C. przezroczyste pokrywy przed zanieczyszczeniem
D. kolektory przed zniszczeniem w wyniku upadku
Podstawowe zrozumienie zagrożeń związanych z montażem kolektorów słonecznych jest kluczowe, aby uniknąć niebezpieczeństw wynikających z niewłaściwych praktyk. Przykrycie kolektorów w celu ochrony pokrycia dachowego przed naprężeniami termicznymi jest mylnym podejściem, ponieważ kolektory są projektowane z myślą o pracy w różnych warunkach atmosferycznych, a ich doświadczalne rozprężanie i kurczenie się nie wpływa negatywnie na dach. Dodatkowo, chociaż ochrona kolektorów przed uszkodzeniem w wyniku upadku jest ważna, to nie jest to bezpośrednio związane z ich działaniem w trakcie montażu. Właściwe zabezpieczenie sprzętu powinno być realizowane poprzez stosowanie stabilnych konstrukcji oraz stosowanie platform roboczych. Ochrona pokryw przezroczystych przed zapyleniem, mimo że może być istotnym czynnikiem w kontekście efektywności kolektorów, nie odpowiada na kluczowe zagadnienie bezpieczeństwa monterów. Typowym błędem jest zatem koncentrowanie się na ochronie sprzętu, podczas gdy głównym celem powinno być zapewnienie bezpieczeństwa osobom pracującym. Właściwe praktyki montażowe, jak ochronne przykrycia w odpowiednich warunkach, są niezbędne, aby zminimalizować ryzyko związane z pracą w intensywnym słońcu.

Pytanie 27

Największe ryzyko stłuczenia podczas transportu elementów systemu solarnego mają

A. czujniki temperatury
B. rury próżniowe
C. karbowane rury do łączenia kolektora z grupą pompową
D. pompy obiegowe
Rury próżniowe są elementem systemu solarnego, który odgrywa kluczową rolę w efektywności energetycznej instalacji. Ich delikatna konstrukcja, oparta na szkle, pozwala na utrzymanie próżni wewnętrznej, co znacząco zwiększa ich zdolność do absorpcji energii słonecznej. W praktyce, podczas transportu, rury te wymagają szczególnej ostrożności ze względu na ich kruchość. W standardach transportu i przechowywania elementów systemów solarnych zaleca się używanie specjalnych opakowań ochronnych oraz unikanie uderzeń i upadków, które mogłyby skutkować stłuczeniem. Dobre praktyki wskazują również na konieczność oznaczania miejsc, gdzie rury są transportowane, aby zmniejszyć ryzyko uszkodzeń. Podczas montażu systemów solarnych, ważne jest, aby technicy byli świadomi wrażliwości tych elementów i zachowywali odpowiednie środki ostrożności, co nie tylko zwiększa trwałość instalacji, ale również zapewnia jej efektywność w dłuższym okresie czasu.

Pytanie 28

Co oznacza symbol sprężarkowej pompy ciepła B/A?

A. dolne źródło solanka, gromadzenie energii powietrze
B. dolne źródło woda, gromadzenie energii woda
C. dolne źródło powietrze, gromadzenie energii woda
D. dolne źródło woda, gromadzenie energii powietrze
Odpowiedź 'źródło dolne solanka, odbiornik energii powietrze' jest prawidłowa, ponieważ w kontekście sprężarkowych pomp ciepła stosuje się różne źródła dolne oraz odbiorniki energii. W tym przypadku solanka stanowi medium, które pobiera ciepło z gruntu, co jest typowe dla systemów gruntowych, a powietrze jako odbiornik energii wskazuje, że system wykorzystuje powietrze do ogrzewania budynku. Tego rodzaju rozwiązania są szczególnie efektywne w klimatach o umiarkowanych temperaturach, gdzie grunt utrzymuje względnie stałą temperaturę. Przykłady zastosowania obejmują systemy ogrzewania budynków jednorodzinnych oraz obiektów przemysłowych, gdzie nie ma możliwości zastosowania gruntowych wymienników ciepła. Ponadto, zgodnie z normami branżowymi, takie systemy wymagają odpowiedniego projektowania i dostosowania do specyficznych warunków lokalnych. Warto również zaznaczyć, że pompy ciepła oparte na solance mają wysoką efektywność energetyczną, co przekłada się na niższe koszty eksploatacji oraz mniejszy wpływ na środowisko, jeśli porównamy je do tradycyjnych systemów grzewczych.

Pytanie 29

Przy opracowywaniu kosztorysu, należy wskazać, gdzie powinny być zainstalowane kolektory słoneczne. Które z poniższych miejsc jest niewłaściwe dla ich montażu?

A. Na dachu skośnym pod kątem 45º na południe
B. Na dachu skośnym pod kątem 45º na północ
C. Na dachu płaskim pod kątem 45º na południe
D. Na gruncie pod kątem 45º na południe
Montaż kolektorów słonecznych na dachu skośnym pod kątem 45º na północ jest niewskazany, ponieważ kolektory te powinny być umieszczane w miejscach o maksymalnej ekspozycji na promieniowanie słoneczne. W Polsce najlepszym rozwiązaniem jest lokowanie ich na dachach skierowanych na południe, co zapewnia optymalną wydajność energetyczną. Kolektory słoneczne działają najlepiej, gdy są ustawione pod odpowiednim kątem, co pozwala na jak najefektywniejsze pochłanianie promieni słonecznych przez cały dzień. W praktyce, montaż kolektorów na stronach północnych prowadzi do znaczącego spadku ich efektywności, ponieważ ta strona dachu ma znacznie ograniczoną ilość światła słonecznego w ciągu roku. Warto również zwrócić uwagę, że różne normy dotyczące instalacji systemów solarnych, takie jak EN 12975, zalecają ustawienie kolektorów w kierunku południowym, aby zmaksymalizować ich wydajność oraz efektywność energetyczną, co jest kluczowe w kontekście zmniejszenia kosztów energii i zwiększenia efektywności wykorzystania odnawialnych źródeł energii.

Pytanie 30

W trakcie lutowania rur i złączek miedzianych wykorzystywane jest zjawisko

A. kapilarne
B. kawitacji
C. grawitacji
D. kohezji
Wiesz, grawitacja jest ważna w różnych sytuacjach, ale nie wpływa bezpośrednio na lutowanie złączek i rur miedzianych. Chociaż wpływa na przepływ cieczy, nie decyduje o tym, gdzie dokładnie znajdzie się materiał lutowniczy, co jest kluczowe w lutowaniu kapilarnym. Kawitacja, czyli to tworzenie i znikanie pęcherzyków powietrza w cieczy, też nie ma tu większego sensu. Może wręcz doprowadzić do problemów z materiałami lub pogorszyć jakość połączeń, co jest totalnie niezgodne z tym, co chcemy osiągnąć w lutowaniu miedzianych rur. Kohezja, czyli przyciąganie cząsteczek tej samej substancji, ma znaczenie, ale podczas lutowania nie odgrywa kluczowej roli. Ważne, żeby zrozumieć, że w lutowaniu nie wystarczy ogólna znajomość zjawisk fizycznych. Trzeba wiedzieć, jak konkretne zjawiska, jak kapilarność, wpływają na trwałość połączeń. Kiedy podchodzimy do tego tematu nieco nieodpowiednio, to możemy dojść do błędnych wniosków i źle wybrać metody lutowania, co w dłuższym czasie może naprawdę zagrażać bezpieczeństwu i funkcjonowaniu instalacji.

Pytanie 31

Na podstawie danych zawartych w tabeli określ roczny uzysk energii z elektrowni wiatrowej w instalacji o mocy 1500 kW i średniej prędkości wiatru 7 m/s.

Wielkość instalacjiRoczny uzysk energii w MWh
wirnikmocV = 5 m/s6 m/s7 m/s8 m/s9 m/s
30 m200 kW320500670820950
40 m500 kW610970136017302050
55 m1000 kW11501840257032803920
65 m1500 kW15202600375048605860
80 m2500 kW23804030583077009220
120 m5000 kW53009000130001700020000

A. 3 750 MWh
B. 2 600 MWh
C. 4 830 MWh
D. 1 520 MWh
Roczny uzysk energii z elektrowni wiatrowej można obliczyć, uwzględniając moc instalacji oraz średnią prędkość wiatru. W przypadku instalacji o mocy 1500 kW i średniej prędkości wiatru wynoszącej 7 m/s, roczny uzysk energii wynosi 3750 MWh. Obliczenia bazują na standardzie IEC 61400, który określa metody oceny wydajności turbin wiatrowych. Przykładowo, przy takiej prędkości wiatru, turbiny wiatrowe generują znaczną ilość energii, co czyni je efektywnym rozwiązaniem w zakresie odnawialnych źródeł energii. W praktyce, elektrownie wiatrowe są kluczowe w realizacji celów związanych z ograniczeniem emisji CO2 i przejściem na zrównoważone źródła energii. Warto również wspomnieć o roli analizy zasobów wiatrowych, która jest niezbędna do optymalizacji lokalizacji elektrowni oraz ich wydajności.

Pytanie 32

W jakim dokumencie powinny być odnotowane wszystkie działania wykonane przez montera pompy ciepła w trakcie realizacji gwarancyjnych prac serwisowych?

A. W karcie gwarancyjnej
B. Na fakturze za wykonaną pracę
C. W dokumentacji techniczno-ruchowej
D. W instrukcji serwisowej
Zobaczmy, co się mówi o innych dokumentach, które raczej nie powinny mieć szczegółowych opisów działań montera. Na przykład dokumentacja techniczno-ruchowa, chociaż jest ważna w użytkowaniu i konserwacji, zazwyczaj skupia się na specyfikacjach technicznych i ogólnych zasadach działania, a nie na detalach serwisu. Instrukcja serwisowa dostarcza ogólnych informacji o konserwacji, ale nie powinna zawierać dokładnych zapisów tego, co było robione podczas serwisu. A faktura za wykonaną pracę to dokument finansowy potwierdzający transakcję, ale nie ma w sobie szczegółów o pracach serwisowych ani nie nadaje się do archiwizacji informacji technicznych. Także nie ma to nic wspólnego z przyszłą ochroną gwarancyjną. Dlatego mylenie tych dokumentów z kartą gwarancyjną może w przyszłości sprawić problemy w dochodzeniu praw gwarancyjnych i w kolejnych działaniach serwisowych. Ważne, żeby ogarnąć, że karta gwarancyjna służy do dokumentowania wykonanych prac i jest podstawą do ewentualnych roszczeń, a inne dokumenty mają swoje zupełnie inne funkcje.

Pytanie 33

Jak należy przechowywać kolektory słoneczne ułożone w poziomie?

A. Szybą do góry bez przykrycia
B. Szybą w dół bez przykrycia
C. Szybą w dół i ułożone na listwach drewnianych
D. Szybą do góry i przykryte kartonem
Odpowiedź 'szybą do góry i przełożone kartonem' jest poprawna, ponieważ zapewnia optymalne warunki przechowywania kolektorów słonecznych, które są delikatnymi urządzeniami narażonymi na uszkodzenia mechaniczne oraz działanie czynników atmosferycznych. Ułożenie ich szyba do góry pozwala na uniknięcie kontaktu z powierzchnią, która mogłaby zarysować lub uszkodzić powłokę ochronną. Dodatkowe zabezpieczenie w postaci kartonu działa jako amortyzator, chroniąc sprzęt przed uderzeniami i wstrząsami. Storage w ten sposób jest zgodne z najlepszymi praktykami branżowymi, które zalecają przechowywanie kolektorów w suchym, czystym miejscu, gdzie nie są narażone na działanie ekstremalnych temperatur czy wilgoci. W praktyce, jeśli kolektory będą przechowywane w ten sposób, ich trwałość i efektywność energetyczna będą dłuższe, co jest kluczowe dla inwestycji w energię odnawialną. Dobre przechowywanie jest również istotne w kontekście serwisowania i konserwacji, co może przyczynić się do uniknięcia kosztownych napraw w przyszłości.

Pytanie 34

Współczynnik efektywności COP pompy ciepła o parametrach podanych w tabeli przy podgrzewaniu wody do temperatury 40°C przy temperaturze otoczenia 3°C wynosi

Parametry pompy
ParametrJednostka miaryWartość
Moc cieplna*kW12,5
Moc elektryczna doprowadzona do sprężarki*kW2,5
Pobór prądu*A6,5
Moc cieplna**kW15,5
Moc elektryczna doprowadzona do sprężarki**kW3,5
Pobór prądu*A6,7
* temp. otoczenia 3°C, temp. wody 40°C
** temp. otoczenia 8°C, temp. wody 50°C

A. 0,2
B. 5,0
C. 4,4
D. 12,5
Współczynnik efektywności COP, czyli ten nasz Coefficient of Performance, to naprawdę ważna sprawa, jeśli chodzi o pompy ciepła. Mówiąc prosto, pokazuje, ile ciepła pompa potrafi dostarczyć w porównaniu do energii elektrycznej, którą zużywa. Gdy mamy temperaturę na zewnątrz 3°C, a woda jest podgrzewana do 40°C, to COP wynosi 5,0. To oznacza, że pompa jakby pięciokrotnie więcej ciepła wydobywa niż sama zużywa energii. Fajnie, co? Takich wyników można się spodziewać, bo pompy ciepła działają tak, że korzystają z energii cieplnej, która jest w otoczeniu. W praktyce, pompy ciepła z takim wysokim COP są mega efektywne – zarówno dla naszej planety, jak i dla portfela. W nowoczesnych systemach grzewczych to wręcz must-have. Zgodnie z normami branżowymi, takimi jak EN 14511, projektuje się takie pompy, żeby maksymalizować COP. Dzięki temu zużycie energii jest mniejsze, a emisja CO2 też spada. Dlatego dobrze jest wybierać pompy ciepła z myślą o COP, bo to klucz do komfortu użytkowników.

Pytanie 35

Kolektory słoneczne płaskie powinny być umieszczane na dachu budynku, zwrócone w stronę

A. południową
B. północną
C. wschodnią
D. zachodnią
Kolektory słoneczne płaskie powinny być zorientowane w kierunku południowym, ponieważ to ustawienie maksymalizuje ilość promieniowania słonecznego, które mogą być absorbowane przez ich powierzchnię. W Polsce, ze względu na położenie geograficzne, największa ilość energii słonecznej dociera z kierunku południowego w ciągu całego dnia. To oznacza, że kolektory ustawione w tym kierunku będą generować najwięcej energii cieplnej, co jest kluczowe dla efektywności systemu. Dobrą praktyką jest również uwzględnienie kątów nachylenia kolektorów, które powinny wynosić od 30 do 45 stopni, co dodatkowo zwiększa ich wydajność. W kontekście standardów branżowych, zaleca się, aby instalacje solarne były projektowane przez wykwalifikowanych specjalistów, którzy wezmą pod uwagę także lokalne warunki meteorologiczne i architektoniczne budynków, co może wpłynąć na optymalizację wydajności systemu oraz jego długoterminową opłacalność.

Pytanie 36

Pompy obiegowe w systemach solarnych mają funkcję soft-start. Jakie jest jej przeznaczenie?

A. ochrony pompy przed przepięciem
B. zablokowania pompy, gdy temperatura płynu przekroczy 110°C
C. kontroli prędkości obrotowej pompy
D. redukcji prądu rozruchu pompy
W kontekście działania pomp obiegowych, często pojawia się mylne przekonanie dotyczące ich zabezpieczeń. Zablokowanie pompy, gdy temperatura czynnika przekroczy 110°C, nie jest funkcją soft-start, lecz raczej mechanizmem zabezpieczającym, który zapobiega przegrzaniu instalacji. Tego rodzaju zabezpieczenia są istotne w kontekście ochrony systemów przed uszkodzeniem, ale nie mają związku z funkcją soft-start. Regulacja prędkości obrotowej pompy również nie jest bezpośrednio związana z soft-startem; taka regulacja jest realizowana za pomocą falowników lub innych systemów sterowania, które dostosowują prędkość do bieżących potrzeb systemu. Zabezpieczenie pompy przed przepięciem to kolejny istotny aspekt ochrony, jednak nie jest to funkcjonalność związana z soft-startem, który koncentruje się na ograniczeniu prądu rozruchowego, a nie na ochronie przed nagłymi skokami napięcia. Typowym błędem myślowym prowadzącym do tych niepoprawnych wniosków jest mylenie funkcji zabezpieczeń z funkcjami wspierającymi efektywność energetyczną. Zrozumienie różnicy między tymi mechanizmami jest kluczowe dla prawidłowego projektowania i eksploatacji instalacji solarnych.

Pytanie 37

Klient, który pragnie jednocześnie uzyskiwać energię elektryczną oraz ciepło z odnawialnych źródeł, powinien rozważyć użycie

A. kotła dwufunkcyjnego
B. kolektora rurowego próżniowego
C. pompy ciepła multi-split
D. kolektora słonecznego hybrydowego
Propozycje, takie jak kocioł dwufunkcyjny, pompa ciepła multi-split oraz kolektor rurowy próżniowy, nie są odzwierciedleniem nowoczesnych potrzeb w zakresie jednoczesnego pozyskiwania energii elektrycznej i ciepła ze źródeł odnawialnych. Kocioł dwufunkcyjny, mimo że potrafi efektywnie ogrzewać wodę i pomieszczenia, nie jest zaprojektowany do produkcji energii elektrycznej. Zwykle wykorzystuje paliwa kopalne, co jest sprzeczne z ideą wykorzystywania odnawialnych źródeł energii. Pompa ciepła multi-split, choć efektywna w pozyskiwaniu energii cieplnej z otoczenia, również koncentruje się na ogrzewaniu i chłodzeniu, a nie na wytwarzaniu energii elektrycznej. Kolektor rurowy próżniowy jest doskonały do produkcji ciepła, zwłaszcza w warunkach niskich temperatur, jednak nie generuje energii elektrycznej. Typowe błędy myślowe prowadzące do takich wniosków to mylenie funkcji i zastosowań różnych technologii OZE oraz brak zrozumienia, że dla efektywnej produkcji energii elektrycznej potrzebne są urządzenia, które mogą zarówno produkować prąd, jak i ciepło, jak właśnie kolektory hybrydowe, a nie jedynie koncentrować się na jednym z tych aspektów.

Pytanie 38

Najkorzystniejszą strefą energetyczną pod względem wiatru jest województwo

A. dolnośląskie
B. małopolskie
C. lubelskie
D. pomorskie
Wybór dolnośląskiego, lubelskiego czy małopolskiego województwa jako strefy energetycznej pod względem wiatru może wynikać z błędnego postrzegania warunków wietrznych w tych regionach. Dolnośląskie, zdominowane przez tereny górzyste, charakteryzuje się zmiennością warunków atmosferycznych, co negatywnie wpływa na potencjał wiatrowy. Warto zauważyć, że farmy wiatrowe najlepiej sprawdzają się w otwartych przestrzeniach, gdzie wiatr ma swobodny dostęp do turbin. Z kolei w województwie lubelskim, chociaż są tereny z umiarkowanym wiatrem, to nie osiągają one wartości prędkości wiatru, które są potrzebne do uzasadnienia inwestycji w energetykę wiatrową. Małopolskie, znane ze swojego terenu górzystego, również nie sprzyja efektywnej produkcji energii wiatrowej, co może prowadzić do typowych błędów myślowych w ocenie lokalizacji farm wiatrowych. Właściwa analiza danych meteorologicznych i geograficznych jest kluczowa dla skutecznych inwestycji w OZE. Dlatego ważne jest, aby podchodzić do tematu z odpowiednią wiedzą o dynamice wiatru w różnych regionach oraz korzystać z norm i standardów branżowych w procesach planowania i lokalizacji projektów energetycznych.

Pytanie 39

Gdzie powinien być zainstalowany zawór bezpieczeństwa w zamkniętej instalacji centralnego ogrzewania?

A. bezpośrednio na kotłach lub wymiennikach ciepła w górnej części ich przestrzeni wodnej
B. w dolnej części każdego pionu oraz przed naczyniem wzbiorczym
C. na przyłączach pionów do przewodów rozprowadzających
D. przed grzejnikami zarówno na gałęzi zasilającej, jak i powrotnej
Montaż zaworu bezpieczeństwa w nieodpowiednich miejscach, takich jak przed grzejnikami, w dolnej części pionów czy na przyłączach pionów do przewodów rozprowadzających, nie spełnia podstawowych wymogów bezpieczeństwa i efektywności instalacji centralnego ogrzewania. Umieszczanie zaworu przed grzejnikami może prowadzić do zbyt późnego odcięcia nadmiaru ciśnienia, co naraża system na uszkodzenia. Ponadto, umiejscowienie zaworu w dolnej części pionów nie pozwala na efektywne usunięcie nadmiaru ciśnienia, gdyż gorąca woda ma tendencję do unikania dół, co może prowadzić do zjawisk przegrzewania w górnych częściach instalacji. Zawór bezpieczeństwa powinien być w odpowiedniej lokalizacji, aby działał w chwilach krytycznych, co jest kluczowe dla zapobiegania awariom i zagrożeniom. Montaż na przyłączach pionów również nie zapewnia wymaganego poziomu ochrony, gdyż zawór powinien być umiejscowiony jak najbliżej źródła ciepła. Standardy branżowe oraz przepisy budowlane jasno określają wymagania dotyczące lokalizacji zaworu bezpieczeństwa, podkreślając, że niewłaściwe umiejscowienie może prowadzić do katastrofalnych skutków, w tym do zniszczenia urządzeń oraz zagrożenia dla użytkowników instalacji.

Pytanie 40

Aby uszczelnić złącza gwintowe stalowych rur, należy użyć

A. pakuły lniane lub konopne
B. celulozy
C. taśmę polietylenową
D. klej uszczelniający
Pakuły lniane lub konopne to tradycyjne materiały uszczelniające, które są powszechnie stosowane do uszczelniania połączeń gwintowych rur stalowych. Dzięki swojej strukturze włókienkowej, pakuły doskonale wypełniają przestrzenie między gwintami, co zapobiega nieszczelnościom. W praktyce, pakuły są używane w instalacjach wodociągowych, gazowych oraz w innych systemach, gdzie wymagane jest szczelne połączenie rur. Warto podkreślić, że pakuły lniane są bardziej odporne na działanie wody, podczas gdy pakuły konopne charakteryzują się większą wytrzymałością mechaniczną. Standardy branżowe, takie jak PN-EN 10226, zalecają stosowanie pakuł jako skutecznego materiału do uszczelniania, zwłaszcza w miejscach narażonych na wysokie ciśnienie. Dobrą praktyką jest także ich impregnacja odpowiednimi smarami, co dodatkowo zwiększa ich właściwości uszczelniające oraz odporność na korozję. Stosowanie pakuł lnianych lub konopnych w połączeniach gwintowych jest nie tylko efektywne, ale i zgodne z normami dotyczącymi materiałów uszczelniających.