Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 30 maja 2025 16:28
  • Data zakończenia: 30 maja 2025 16:37

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Po przeprowadzeniu naprawy układu pneumatycznego zszywacza tapicerskiego zauważono, że zszywki nie są całkowicie wbite w drewno. Co należy zrobić w pierwszej kolejności?

A. zmierzyć siłę zszywania
B. ocenić działanie układu roboczego zszywacza
C. sprawdzić jakość zszywek
D. ustawić odpowiednie ciśnienie robocze
Regulacja ciśnienia roboczego jest kluczowym krokiem w diagnostyce problemów z niepełnym wbijaniem zszywek w drewno. W układzie pneumatycznym, odpowiednie ciśnienie powietrza wpływa bezpośrednio na siłę zszywania oraz efektywność pracy zszywacza. Zbyt niskie ciśnienie może spowodować, że zszywki nie będą miały wystarczającej energii do wniknięcia w materiał, co skutkuje ich niepełnym wbijaniem. Z kolei zbyt wysokie ciśnienie może prowadzić do uszkodzenia materiału lub zszywek, a także do niestabilnego działania narzędzia. W praktyce, aby zapewnić optymalne parametry pracy, powinno się regularnie kontrolować ciśnienie w układzie, zgodnie z zaleceniami producenta narzędzia. Warto również przeprowadzać okresowe przeglądy i konserwację układu pneumatycznego, co pozwoli na uniknięcie wielu problemów związanych z jakością zszywania. Prawidłowe ustawienie ciśnienia to zatem nie tylko element diagnostyki, ale także kluczowy aspekt utrzymania wysokiej jakości pracy zszywacza.

Pytanie 2

Jakie rodzaje środków ochrony osobistej powinny być używane podczas pracy z tokarką CNC?

A. Kask ochronny
B. Kamizelka odblaskowa
C. Ubranie robocze przylegające do ciała
D. Rękawice elektroizolacyjne
Przylegające do ciała ubranie robocze to kluczowy element ochrony osobistej podczas obsługi tokarki CNC. Tego rodzaju odzież minimalizuje ryzyko wciągnięcia luźnych materiałów w ruchome elementy maszyny, co może prowadzić do poważnych obrażeń. W branży obróbczej, zgodnie z normami BHP, zaleca się stosowanie odzieży roboczej o właściwych właściwościach, która nie tylko zapewnia bezpieczeństwo, ale również komfort. Przykładowo, specjalistyczne ubrania wykonane z materiałów odpornych na działanie olejów i smarów, a także z odpowiednich tkanin, mogą zwiększyć ochronę. Dodatkowo, zastosowanie takiej odzieży wspiera zachowanie ergonomii pracy, co ma kluczowe znaczenie w kontekście długotrwałej obsługi maszyn. Obowiązujące wytyczne dotyczące BHP podkreślają znaczenie świadomości zagrożeń oraz stosowania odpowiednich środków ochrony indywidualnej, co jest fundamentem odpowiedzialnego zachowania w miejscu pracy.

Pytanie 3

Jakie urządzenie pneumatyczne ma następujące cechy: napięcie 230 V, moc 1,1 kW, ciśnienie 8 bar, wydajność ssawna 200 l/min, wydajność wyjściowa 115 l/min, pojemność zbiornika 24 l, liczba cylindrów 1, prędkość obrotowa 2850 obr/min?

A. Silnik tłokowy
B. Zbiornik ciśnieniowy
C. Siłownik obrotowy
D. Sprężarka tłokowa
Analizując podane odpowiedzi, warto zauważyć, że zbiornik ciśnieniowy, mimo że jest istotnym elementem systemu pneumatycznego, nie jest urządzeniem samodzielnym, lecz jedynie akumulatorowym elementem, który przechowuje sprężone powietrze, a więc nie może być odpowiedzią na pytanie o urządzenie pneumatyczne. Siłownik obrotowy, z drugiej strony, jest urządzeniem, które przekształca energię pneumatyczną na ruch obrotowy, ale nie ma związku z podanymi parametrami, ponieważ nie operuje na ciśnieniach czy wydajnościach ssawnych w ten sposób, jak sprężarka. Silnik tłokowy, chociaż również oparty na technologii tłokowej, jest zazwyczaj elementem napędowym i nie odpowiada na potrzeby generowania sprężonego powietrza, co czyni go nieadekwatnym do przedstawionych specyfikacji. Typowym błędem myślowym w takich przypadkach jest mylenie funkcji poszczególnych urządzeń, gdzie zamiast skupić się na ich specyficznych zastosowaniach i parametrach, można paść ofiarą ogólnikowego podejścia do tematu. W kontekście pneumatyki kluczowe jest zrozumienie, że każde z wymienionych urządzeń ma swoje unikalne funkcje i zastosowania, co powinno być podstawą do ich rozróżnienia."

Pytanie 4

Jakie zalecenie dotyczące weryfikacji ciągłości obwodu ochronnego urządzeń zaprojektowanych w I klasie ochronności powinno być zawarte w dokumentacji eksploatacyjnej urządzeń elektrycznych?

A. Pomiar wykonuje się pomiędzy stykiem fazowym wtyczki, a metalowymi elementami obudowy urządzenia
B. Pomiar wykonuje się pomiędzy stykiem ochronnym, a stykiem fazowym wtyczki
C. Pomiar wykonuje się pomiędzy stykiem ochronnym wtyczki, a metalowymi elementami obudowy urządzenia
D. Pomiar wykonuje się pomiędzy stykiem ochronnym, a stykiem neutralnym wtyczki
Pomiar ciągłości obwodu ochronnego dla urządzeń wykonanych w I klasie ochronności jest kluczowy dla zapewnienia bezpieczeństwa ich użytkowania. Właściwe wykonanie tego pomiaru polega na sprawdzeniu ciągłości połączenia między stykiem ochronnym wtyczki a metalowymi elementami obudowy urządzenia, ponieważ obwód ochronny ma za zadanie odprowadzenie ewentualnych prądów upływowych do ziemi, co skutecznie zapobiega porażeniu prądem. Zgodnie z normami, takimi jak PN-IEC 60364, każdy element metalowy, mogący stać się naładowany w przypadku uszkodzenia izolacji, musi być odpowiednio uziemiony. W praktyce, wykonując ten pomiar, możemy użyć urządzenia pomiarowego, które umożliwia sprawdzenie oporności między tymi punktami. Niska wartość oporności wskazuje na dobrą ciągłość obwodu ochronnego. Dobrą praktyką jest również regularne przeprowadzanie takich pomiarów w ramach konserwacji urządzeń, aby zapewnić ich bezpieczeństwo i sprawność.

Pytanie 5

Schemat połączeń układu hydraulicznego powinien być tworzony zgodnie z kierunkiem przepływu sygnału, czyli od dołu do góry. Z perspektywy elementów zasilających, wskaż właściwą sekwencję poszczególnych części układu hydraulicznego.

A. Zawory reagujące na sygnały obiektowe, zawory robocze, zawory sterujące, elementy wykonawcze
B. Zawory reagujące na sygnały obiektowe, zawory sterujące, elementy wykonawcze, zawory robocze
C. Zawory reagujące na sygnały obiektowe, zawory sterujące, zawory robocze, elementy wykonawcze
D. Zawory sterujące, zawory reagujące na sygnały obiektowe, zawory robocze, elementy wykonawcze
Poprawna odpowiedź wskazuje na prawidłowy układ elementów w hydraulice, gdzie najpierw umieszczamy zawory reagujące na sygnały obiektowe, a następnie zawory sterujące, robocze i na końcu elementy wykonawcze. Taki układ jest zgodny z zasadami projektowania systemów hydraulicznych, które zalecają, aby sygnały były przekazywane w kierunku od źródła zasilania do elementów wykonawczych. Przykładem praktycznym może być układ hydrauliczny w maszynach budowlanych, gdzie precyzyjne sterowanie ruchem siłowników jest kluczowe dla efektywności pracy. Dobrze zaprojektowany układ hydrauliczny nie tylko zwiększa wydajność, ale także poprawia bezpieczeństwo operacji, ponieważ odpowiednie sterowanie pozwala na szybsze i bardziej precyzyjne reakcje na zmiany w otoczeniu. W branży hydraulicznej, zgodność z normami ISO oraz PN EN jest istotna, ponieważ przyczynia się do zwiększenia niezawodności i trwałości systemów. Zastosowanie takiej kolejności elementów pozwala również na łatwiejsze diagnozowanie usterek oraz optymalizację procesu serwisowego.

Pytanie 6

Jakiej czynności nie wykonuje się podczas odbioru maszyny po przeprowadzeniu przeglądu technicznego?

A. Określenia zakresu następnego przeglądu technicznego
B. Weryfikacji działania maszyny bez obciążenia
C. Sprawdzenia kondycji oraz poprawności działania urządzeń zabezpieczających
D. Przeprowadzenia testowego uruchomienia maszyny pod obciążeniem znamionowym
Ustalenie zakresu kolejnego przeglądu technicznego jest kluczowym elementem zarządzania utrzymaniem obrabiarek. Ta czynność ma na celu zapewnienie, że urządzenie będzie poddawane regularnym kontrolom, które są zgodne z zaleceniami producenta oraz obowiązującymi normami bezpieczeństwa. W praktyce, ustalenie to powinno uwzględniać aspekty takie jak intensywność eksploatacji maszyny, jej typ oraz specyfikę produkcji. Na przykład, w przypadku obrabiarek wykorzystywanych do precyzyjnej obróbki metalu, częstsze przeglądy mogą być konieczne ze względu na duże obciążenia i wymagania co do dokładności. Dobrze przeprowadzony przegląd techniczny pozwala na wczesne wykrycie potencjalnych usterek, co z kolei przyczynia się do zwiększenia bezpieczeństwa pracy oraz minimalizacji przestojów produkcyjnych. Warto również zaznaczyć, że zgodnie z normami ISO oraz regulacjami BHP, dokumentacja przeglądów powinna być rzetelnie prowadzona, co ułatwia późniejszą analizę stanu technicznego maszyny oraz podejmowanie decyzji o jej dalszej eksploatacji.

Pytanie 7

Gdzie nie mogą być umieszczone przewody sieci komunikacyjnych?

A. W pomieszczeniach o niskich temperaturach
B. W pobliżu przewodów silnoprądowych
C. W pomieszczeniach z dużym zakurzeniem
D. Na zewnątrz obiektów
Odpowiedź, że przewody sieci komunikacyjnych nie powinny znajdować się blisko przewodów silnoprądowych, jest prawidłowa z kilku istotnych względów. Przede wszystkim, są to dwa różne typy przewodów, które z definicji pełnią różne funkcje: przewody silnoprądowe dostarczają energię elektryczną, podczas gdy przewody komunikacyjne przesyłają sygnały danych. Umieszczanie ich w bliskiej odległości może prowadzić do zakłóceń elektromagnetycznych, co negatywnie wpływa na jakość przesyłanych danych. Dodatkowo, w przypadku uszkodzenia przewodów silnoprądowych, istnieje ryzyko powstania zwarcia, co może zagrażać bezpieczeństwu nie tylko kabli komunikacyjnych, ale i całej instalacji. W praktyce, zgodnie z normami branżowymi, np. PN-EN 50174-2, zaleca się utrzymanie odpowiednich odległości między tymi przewodami oraz stosowanie odpowiednich osłon i ochrony kablowej. Dzięki przestrzeganiu tych zasad, można zminimalizować ryzyko zakłóceń oraz zapewnić bezpieczeństwo i niezawodność obu systemów.

Pytanie 8

W systemach hydraulicznych, jaki jest główny powód stosowania zaworów bezpieczeństwa?

A. Zmniejszenie kosztów eksploatacji
B. Poprawa jakości filtracji
C. Zwiększenie przepływu cieczy roboczej
D. Ochrona układu przed nadmiernym ciśnieniem
Zawory bezpieczeństwa w systemach hydraulicznych pełnią kluczową rolę w ochronie układów przed nadmiernym ciśnieniem. Ich podstawowym zadaniem jest zapobieganie uszkodzeniom elementów układu, które mogą prowadzić do awarii czy niebezpiecznych sytuacji. Zawory te działają na zasadzie odprowadzania nadmiaru ciśnienia, gdy przekroczy ono określoną wartość, co w praktyce zapobiega eksplozji przewodów czy uszkodzeniu pomp. Wyobraź sobie, że ciśnienie w układzie zaczyna gwałtownie rosnąć - w tym momencie zawór bezpieczeństwa otwiera się i pozwala na ucieczkę nadmiaru płynu, przywracając bezpieczne warunki pracy. Jest to standardowe rozwiązanie zgodne z normami bezpieczeństwa, które znacznie przedłuża żywotność systemu i chroni pracowników oraz urządzenia. W branży mechatronicznej jest to szczególnie ważne, ponieważ układy hydrauliczne są często używane w maszynach i urządzeniach, które muszą działać niezawodnie w trudnych warunkach. Zastosowanie zaworów bezpieczeństwa jest powszechną praktyką i stanowi podstawę projektowania bezpiecznych systemów hydraulicznych, co jest kluczowym elementem wiedzy w kwalifikacji ELM.06.

Pytanie 9

Która z podanych sieci w systemach mechatronicznych funkcjonuje jako sieć bezprzewodowa?

A. ModbusTCP
B. Ethernet/IP
C. Profinet
D. ZigBee
ZigBee jest siecią bezprzewodową, która działa w oparciu o standard IEEE 802.15.4. Jest to protokół zaprojektowany z myślą o komunikacji w małych, niskonapięciowych urządzeniach, co czyni go idealnym rozwiązaniem dla aplikacji IoT (Internet of Things) oraz systemów automatyki domowej. ZigBee charakteryzuje się niskim poborem mocy, co pozwala na długotrwałe działanie zasilanych bateryjnie urządzeń. Przykłady zastosowań ZigBee obejmują inteligentne oświetlenie, systemy monitorowania środowiska oraz urządzenia wearable. W kontekście mechatroniki, ZigBee może być wykorzystywane do komunikacji między różnymi komponentami systemów automatyki w sposób, który minimalizuje potrzebę okablowania. Warto również zaznaczyć, że ZigBee obsługuje topologie sieci typu mesh, co zwiększa zasięg i niezawodność komunikacji, a także umożliwia łatwe dodawanie nowych urządzeń do istniejącej sieci.

Pytanie 10

W schemacie układu hydraulicznego przyłącze rury zasilającej rozdzielacza oznaczane jest literą

A. T
B. P
C. B
D. A
Odpowiedź P jest naprawdę na miejscu. W schematach układów hydraulicznych ten symbol oznacza przyłącze zasilające rozdzielacz, co jest mega istotne. To w tym punkcie dostarczane jest ciśnienie robocze, które potrzebne jest, żeby cały układ działał jak należy. W praktyce, ogarnianie oznaczeń w takich schematach jest kluczowe dla inżynierów i techników, którzy zajmują się projektowaniem lub serwisowaniem instalacji hydraulicznych. Poza P, warto znać inne symbole, jak B dla odpływu, A i B dla wyjść roboczych czy T dla powrotu oleju do zbiornika. Wiedza o tych oznaczeniach ma ogromne znaczenie przy czytaniu i tworzeniu dokumentacji technicznej. To pomaga w zwiększeniu efektywności i bezpieczeństwa operacji hydraulicznych. Warto też trzymać się standardów, jak ISO 1219, które dotyczą symboliki hydraulicznej, bo to sprawia, że komunikacja między inżynierami jest lepsza, a współpraca w różnych działach łatwiejsza.

Pytanie 11

Jakim skrótem literowym określa się oprogramowanie do tworzenia wizualizacji procesów industrialnych?

A. CAD
B. SCADA
C. CAE
D. CAM
SCADA, czyli Supervisory Control and Data Acquisition, to kluczowy system stosowany w automatyce przemysłowej, który umożliwia monitorowanie oraz kontrolowanie procesów technologicznych w czasie rzeczywistym. W praktyce SCADA zbiera dane z różnorodnych czujników i urządzeń, co pozwala na wizualizację procesów na interaktywnych panelach operatorskich. Tego typu systemy są stosowane w różnych branżach, w tym w energetyce, wodociągach, transporcie oraz przemyśle chemicznym. SCADA umożliwia nie tylko zbieranie danych, ale także ich analizę i generowanie raportów, co jest istotne dla podejmowania decyzji zarządzających. Dodatkowo, systemy SCADA często integrują różne protokoły komunikacyjne, takie jak Modbus czy OPC, co zapewnia ich elastyczność i interoperacyjność. W dobie Przemysłu 4.0 SCADA odgrywa także kluczową rolę w implementacji IoT (Internet of Things), co otwiera nowe możliwości w zakresie automatyzacji i optymalizacji procesów przemysłowych.

Pytanie 12

Jakie parametry mierzy prądnica tachometryczna?

A. naprężeń liniowych
B. prędkości obrotowych
C. wydłużeń
D. odkształceń
Prądnica tachometryczna jest kluczowym urządzeniem w systemach automatyki przemysłowej, a jej główną funkcją jest pomiar prędkości obrotowych silników i innych elementów mechanicznych. Działa na zasadzie zjawiska elektromagnetycznego, gdzie obracająca się wirnik generuje pole magnetyczne, które przekształca się w sygnał elektryczny proporcjonalny do prędkości obrotowej. Taki sygnał można następnie używać do monitorowania parametrów pracy maszyn, co pozwala na optymalizację ich wydajności i zapobieganie awariom. Przykładowo, w systemach napędowych, monitorowanie prędkości obrotowej jest kluczowe dla synchronizacji ruchu i zapewnienia bezpieczeństwa. Normy takie jak ISO 9001 często wymagają dokładnych pomiarów parametrów pracy urządzeń, co czyni prądnice tachometryczne niezastąpionym narzędziem w wielu gałęziach przemysłu. Zrozumienie zasad działania prądnic tachometrycznych jest niezbędne dla inżynierów zajmujących się automatyką i kontrolą procesów.

Pytanie 13

W mechatronicznym urządzeniu uszkodzony został sterownik LOGO 12/24RC. W tabeli przedstawiono producenta informacje dotyczące stosowanych oznaczeń. Które dane odpowiadają uszkodzonemu sterownikowi?

 — 12/24: zasilanie napięciem 12/24 V DC
 — 230: zasilanie napięciem 115 ÷ 240 V AC/DC
 — R: wyjścia przekaźnikowe (brak symbolu R - wyjścia tranzystorowe)
 — C: wbudowany zegar tygodniowy
 — o: wersja bez wyświetlacza (LOGO! Pure)
 — DM: binarny moduł rozszerzenia
 — AM: analogowy moduł rozszerzenia
 — CM: komunikacyjny moduł zewnętrzny (np. moduły EIB/KNX)
 — TD: Panel tekstowy

A. Napięcie zasilania 115 ÷ 240 V AC, wyjścia przekaźnikowe, analogowy moduł rozszerzenia, wersja bez wyświetlacza.
B. Napięcie zasilania 12 V lub 24 V DC, wyjścia przekaźnikowe, wbudowany zegar tygodniowy, wersja z wyświetlaczem.
C. Napięcie zasilania 115 ÷ 240 V AC, wyjścia tranzystorowe, wbudowany zegar tygodniowy, wersja bez wyświetlacza.
D. Napięcie zasilania 12 V lub 24 V AC, wyjścia tranzystorowe, binarny moduł rozszerzenia, wersja z wyświetlaczem.
Wybrana odpowiedź jest poprawna, ponieważ dokładnie odzwierciedla specyfikację sterownika LOGO 12/24RC. Ten model rzeczywiście działa na napięciu 12 V lub 24 V DC, co jest kluczowe dla jego prawidłowego funkcjonowania w różnych aplikacjach automatyki. Wyjścia przekaźnikowe pozwalają na sterowanie obwodami z większymi obciążeniami, co jest niezbędne w wielu projektach mechatronicznych. Wbudowany zegar tygodniowy umożliwia programowanie zaawansowanych harmonogramów pracy, co zwiększa efektywność energetyczną systemów oraz pozwala na automatyzację procesów zgodnie z wymaganiami użytkownika. Wersja z wyświetlaczem ułatwia monitorowanie i diagnostykę, co jest nieocenione w praktyce inżynieryjnej. Dobrym przykładem zastosowania może być automatyka budynkowa, gdzie sterownik ten kontroluje oświetlenie i systemy grzewcze zgodnie z zaprogramowanym harmonogramem. Zrozumienie specyfikacji sterowników, takich jak LOGO, jest kluczowe dla inżynierów zajmujących się automatyką, ponieważ pozwala na ich prawidłowy dobór i zastosowanie w praktyce.

Pytanie 14

Jakie ciśnienie powietrza powinno panować w komorze siłownika jednostronnego działania o powierzchni tłoka A = 0,005 m2 oraz sprawności η = 0,7, aby siła przenoszona przez tłoczysko wynosiła F = 2100 N? (F = η· p · A)

A. 7 bar
B. 5 bar
C. 6 bar
D. 8 bar
Odpowiedź 6 bar jest poprawna, ponieważ zgodnie z równaniem F = η·p·A możemy obliczyć ciśnienie powietrza w komorze siłownika. W naszym przypadku mamy siłę F równą 2100 N, sprawność η równą 0,7 oraz powierzchnię tłoka A równą 0,005 m². Podstawiając te wartości do wzoru, otrzymujemy p = F / (η·A) = 2100 N / (0,7·0,005 m²) = 6 bar. Dzięki tym obliczeniom możemy stwierdzić, że ciśnienie 6 bar jest wystarczające do przeniesienia zadanego obciążenia. Takie obliczenia są kluczowe w projektowaniu układów hydraulicznych, gdzie precyzyjne oszacowanie ciśnienia roboczego pozwala na zapewnienie efektywności oraz bezpieczeństwa działania siłowników. W praktyce, odpowiednie ciśnienie ma wpływ na dynamikę ruchu oraz na żywotność komponentów systemu, a także na oszczędność energii.

Pytanie 15

W przypadku siłownika zasilanego powietrzem pod ciśnieniem równym 8 barów, który jest w stanie wykonać maksymalnie nmax = 50 cykli/min, a w trakcie jednego cyklu zużywa 1,4 litra powietrza, jakie powinny być parametry sprężarki do jego zasilania?

A. Wydajność 80 l/min, ciśnienie maksymalne 1,0 MPa
B. Wydajność 80 l/min, ciśnienie maksymalne 0,7 MPa
C. Wydajność 60 l/min, ciśnienie maksymalne 1,0 MPa
D. Wydajność 60 l/min, ciśnienie maksymalne 0,7 MPa
Wydajność sprężarki powinna wynosić 80 l/min, ponieważ siłownik zużywa 1,4 litra powietrza na jeden cykl pracy, a przy maksymalnej liczbie 50 cykli na minutę, całkowite zużycie powietrza wynosi 70 litrów na minutę (1,4 l/cykl * 50 cykli/min = 70 l/min). Dodatkowa wydajność jest zalecana, aby zapewnić stabilną pracę systemu i uwzględnić ewentualne straty ciśnienia w układzie. Ustalając ciśnienie maksymalne, należy wziąć pod uwagę, że 8 barów to równowartość 0,8 MPa. Dlatego sprężarka powinna być w stanie dostarczyć ciśnienie o 20% wyższe, aby zapewnić odpowiednią moc roboczą i uniknąć problemów z wydajnością. Ponadto, zgodnie z normami branżowymi, sprężarki z wyższym ciśnieniem roboczym są bardziej efektywne w zastosowaniach przemysłowych, co przekłada się na dłuższą żywotność komponentów oraz mniejsze ryzyko awarii. Przykładem zastosowania tego typu sprężarki jest zasilanie narzędzi pneumatycznych oraz systemów automatyzacji w zakładach produkcyjnych.

Pytanie 16

W systemie mechatronicznym konieczne jest zastosowanie regulacji temperatury w dwóch stanach. Który z regulatorów odpowiada tym wymaganiom?

A. PID
B. PI
C. Dwustawny
D. Proporcjonalny
Regulator dwustawny, znany również jako regulator on/off, jest idealnym rozwiązaniem dla systemów wymagających dwupołożeniowej regulacji temperatury. Jego działanie polega na przełączaniu pomiędzy dwoma stanami - włączonym i wyłączonym - co zapewnia prostotę i efektywność. Taki regulator jest powszechnie stosowany w systemach grzewczych, klimatyzacyjnych oraz w urządzeniach przemysłowych, gdzie precyzyjne utrzymanie temperatury nie jest kluczowe. Przykładem może być termostat w piecu, który włącza się, gdy temperatura spada poniżej ustawionej wartości, i wyłącza, gdy ją przekracza. Dzięki swojej prostocie, regulator dwustawny jest łatwy do implementacji oraz konfiguracji, co czyni go preferowanym wyborem w wielu aplikacjach. Warto również zauważyć, że takie rozwiązanie spełnia standardy efektywności energetycznej, minimalizując zużycie energii poprzez unikanie niepotrzebnego działania grzałek czy chłodnic.

Pytanie 17

Parametry takie jak powierzchnia membrany, temperatura operacyjna, typ napędu, maksymalne ciśnienie, skok oraz precyzja położenia są charakterystyczne dla

A. silnika hydraulicznego
B. smarownicy pneumatycznej
C. siłownika hydraulicznego
D. siłownika pneumatycznego
Siłowniki pneumatyczne charakteryzują się różnorodnymi parametrami, które wpływają na ich wydajność i zastosowanie w różnych systemach automatyki. Powierzchnia membrany, temperatura pracy i maksymalne ciśnienie to kluczowe aspekty, które determinują zdolność siłownika do generowania odpowiedniej siły. Na przykład, w aplikacjach wymagających precyzyjnej kontroli położenia, takich jak w automatyzacji w przemyśle spożywczym lub pakowaniu, wybór siłownika pneumatycznego z odpowiednimi parametrami staje się kluczowy. Dobre praktyki w branży zalecają dostosowanie tych parametrów do specyfiki aplikacji, co obejmuje m.in. dobór odpowiednich materiałów odpornych na temperatury oraz ciśnienia robocze, aby zapewnić długotrwałość i niezawodność. Dodatkowo, siłowniki pneumatyczne są często wykorzystywane w liniach produkcyjnych ze względu na swoją szybkość działania, co czyni je idealnymi do operacji wymagających dynamicznych ruchów. Zgodność z normami ISO oraz uwzględnienie aspektów bezpieczeństwa jest również istotnym elementem przy projektowaniu systemów z ich użyciem.

Pytanie 18

Zespół odpowiedzialny za obsługę systemu mechtronicznego zauważył nagły spadek efektywności sprężarki tłokowej oraz to, że w czasie jej pracy powietrze wydostaje się z cylindra przez filtr ssawny do atmosfery. Jakie jest prawdopodobne źródło nieprawidłowego działania tego urządzenia?

A. Nieprawidłowy kierunek obrotów silnika
B. Niewłaściwie ustawiony wyłącznik ciśnieniowy
C. Wytarcie jednego z pierścieni uszczelniających tłok
D. Awaria zaworu zwrotnego ssącego
Zespół nieprawidłowych odpowiedzi sugeruje różne koncepcje, które nie są związane z opisaną sytuacją. Źle wyregulowany wyłącznik ciśnieniowy, choć może wpływać na ogólną wydajność systemu, nie jest bezpośrednią przyczyną wydmuchiwania powietrza z cylindra sprężarki. Jego niewłaściwe ustawienie może skutkować wyłączaniem urządzenia w nieodpowiednich momentach, ale nie prowadzi do opisanego zjawiska. Zły kierunek wirowania silnika jest kolejnym błędnym podejściem, które może powodować problemy z pracą całego systemu, ale nie wyjaśnia wydmuchiwania powietrza z cylindra. Tego typu sytuacje mogą prowadzić do poważnych uszkodzeń, jednak nie mają związku z bezpośrednim uszkodzeniem zaworu zwrotnego. Zużycie jednego z pierścieni uszczelniających tłok jest z pewnością istotnym czynnikiem, jednak jego wpływ na wydajność sprężarki objawia się w inny sposób, głównie poprzez spadek ciśnienia i wzrost zużycia energii, a nie przez wydmuchiwanie powietrza do atmosfery. Zrozumienie tych różnic jest kluczowe dla prawidłowej diagnostyki i utrzymania systemów mechatronicznych, gdzie precyzyjne określenie przyczyny problemu ma kluczowe znaczenie dla dalszej pracy urządzenia.

Pytanie 19

Jakie elementy powinny być zacienione na rysunku technicznym przekroju komponentu?

A. O kształtach oczywistych.
B. Tylko o kształtach obrotowych.
C. Żebra.
D. Wyrwania.
Wybór "Wyrwania" jako poprawnej odpowiedzi jest zgodny z zasadami rysunku technicznego oraz praktycznymi aspektami projektowania detali. W rysunku technicznym przekroju detalu zakreskowane elementy są kluczowe dla zrozumienia struktury i funkcji komponentu. Wyrwania, które są usuniętymi fragmentami, są ważne, ponieważ umożliwiają przedstawienie wewnętrznych elementów, które w przeciwnym razie byłyby niewidoczne. Przykładem mogą być otwory lub wcięcia, które są istotne dla montażu lub działania detalu. W praktyce, projektanci muszą przestrzegać norm, takich jak ISO 128 oraz ISO 1101, które określają zasady zakreskowania oraz prezentacji detali na rysunkach technicznych. Dzięki tym standardom, komunikacja pomiędzy inżynierami, producentami i wykonawcami jest bardziej klarowna. Prawidłowe zrozumienie, które elementy należy zakreskować, jest niezbędne w procesie projektowania, aby zapewnić, że wszystkie kluczowe aspekty konstrukcji są jasno przedstawione i zrozumiane przez wszystkich zainteresowanych.

Pytanie 20

Jakie minimalne parametry bitowe powinien mieć przetwornik A/C, aby w zakresie pomiarowym
0 mA ÷ 20 mA osiągnąć rozdzielczość w zaokrągleniu równą 0,01 mA?

A. 16 bitowy
B. 11 bitowy
C. 10 bitowy
D. 12 bitowy
Aby zapewnić rozdzielczość równą 0,01 mA w zakresie pomiarowym od 0 mA do 20 mA, niezbędne jest zastosowanie przetwornika A/C, który potrafi obsłużyć co najmniej 2000 poziomów kwantyzacji. Przetwornik 11-bitowy, oferujący 2048 poziomów kwantyzacji, spełnia to wymaganie, ponieważ umożliwia osiągnięcie pożądanej dokładności. W praktyce oznacza to, że dla każdego odczytu prądu możemy precyzyjnie określić wartości w odstępach 0,01 mA, co jest kluczowe w wielu zastosowaniach, np. w automatyce przemysłowej, gdzie precyzyjne pomiary są niezbędne do zapewnienia wydajności i bezpieczeństwa systemów. Warto pamiętać, że stosowanie przetworników o wyższej rozdzielczości przyczynia się do lepszego monitorowania procesów oraz minimalizowania ryzyka wystąpienia błędów pomiarowych. W branży zaleca się wybór urządzeń z nadmiarem rozdzielczości, co pozwala na większą elastyczność w przyszłych aplikacjach oraz lepsze dopasowanie do zmieniających się wymagań.

Pytanie 21

Nieprzerwane monitorowanie wibracji silnika elektrycznego w systemie napędowym oraz analiza spektrum drgań umożliwiają wczesne zidentyfikowanie

A. przerw w obwodzie zasilania silnika
B. pogorszenia stanu izolacji uzwojeń stojana lub wirnika
C. uszkodzenia łożysk
D. zwarcia w uzwojeniach stojana lub wirnika
Ciągły pomiar wibracji silnika elektrycznego oraz analiza widma drgań są kluczowymi technikami w diagnozowaniu stanu technicznego maszyn. Uszkodzenia łożysk to jeden z najczęściej występujących problemów w układach napędowych, które mogą prowadzić do poważnych awarii, a ich wczesne wykrycie pozwala na zapobieganie kosztownym przestojom produkcyjnym. Zastosowanie analizy drgań umożliwia identyfikację charakterystycznych częstotliwości, które są związane z uszkodzonymi łożyskami. Na przykład, jeśli łożysko ulega degradacji, generuje drgania o specyficznych częstotliwościach, które można zidentyfikować i monitorować. W praktyce, standardy takie jak ISO 10816 dotyczące pomiaru drgań maszyn, dostarczają wytycznych dotyczących interpretacji wyników. Dzięki tej metodzie inżynierowie mogą podejmować decyzje dotyczące konserwacji w oparciu o rzeczywisty stan maszyny, co znacząco zwiększa efektywność zarządzania utrzymaniem ruchu w zakładach przemysłowych.

Pytanie 22

Jakie działania regulacyjne powinny zostać przeprowadzone w napędzie mechatronicznym opartym na przemienniku częstotliwości oraz silniku indukcyjnym, aby zwiększyć prędkość obrotową wirnika bez zmiany wartości poślizgu?

A. Proporcjonalnie zmniejszyć wartość częstotliwości oraz napięcia zasilającego
B. Obniżyć wartość częstotliwości napięcia zasilającego
C. Proporcjonalnie zwiększyć wartość częstotliwości oraz napięcia zasilającego
D. Zwiększyć wartość napięcia zasilającego
Zwiększenie proporcjonalnie wartości częstotliwości i napięcia zasilającego jest kluczowe dla poprawnej regulacji prędkości wirowania wirnika silnika indukcyjnego. Prędkość synchroniczna, a więc i prędkość wirowania, jest bezpośrednio związana z częstotliwością zasilania, co oznacza, że zwiększenie częstotliwości prowadzi do wzrostu prędkości obrotowej. Jednocześnie, aby nie zmieniać wartości poślizgu, co jest istotnym parametrem w pracy silnika, należy równocześnie zwiększyć napięcie zasilające. W przeciwnym razie, przy wyższej częstotliwości, reaktancja indukcyjna silnika wzrasta, co może prowadzić do spadku prądu w uzwojeniu i tym samym zmniejszenia momentu obrotowego. Proporcjonalne zwiększenie napięcia zasilającego pozwala na kompensację tych zmian, co jest zgodne z najlepszymi praktykami w inżynierii mechatronicznej. Na przykład, w zastosowaniach przemysłowych, takich jak przekładnie w maszynach CNC, odpowiednia regulacja tych parametrów jest kluczowa dla zapewnienia stabilności i efektywności pracy systemu.

Pytanie 23

Konserwacja układu stycznikowo-przekaźnikowego nie obejmuje

A. dokonywania regulacji
B. usuwania kurzu
C. sprawdzania dokręcenia śrub zacisków
D. oceny zużycia styków
Regulacje to nie to samo co konserwacja układu stycznikowo-przekaźnikowego. Konserwacja skupia się na tym, żeby sprzęt działał dobrze i był w dobrym stanie. Do tego potrzebne są takie rzeczy jak sprawdzenie dokręcenia śrub czy czyszczenie, co jest super ważne dla stabilnych połączeń elektrycznych. Regularne czyszczenie sprzętu z kurzu jest też kluczowe, bo zapobiega przegrzewaniu się i uszkodzeniom. Musimy też pilnować, co się dzieje ze stykami, bo jak są zużyte, to mogą nas na przykład zaskoczyć jakimś zwarciem, a to już grozi bezpieczeństwu. Dobrze jest też znać normy, na przykład PN-EN 60204-1, które mówią, że trzeba regularnie przeglądać i dbać o nasze urządzenia elektryczne, żeby zapewnić ich niezawodność i bezpieczeństwo w pracy.

Pytanie 24

Aby uzyskać możliwość regulacji prędkości posuwu napędu wałków, który jest zasilany silnikiem bocznikowym prądu stałego, należy zastosować

A. cyklokonwerter.
B. prostownik diodowy.
C. falownik.
D. sterowany prostownik tyrystorowy.
Użycie falownika, cyklokonwertera lub prostownika diodowego w kontekście zasilania silnika bocznikowego prądu stałego ma swoje ograniczenia, które mogą prowadzić do nieprawidłowej regulacji prędkości posuwu. Falowniki, choć efektywne w zastosowaniach z silnikami prądu przemiennego, nie są odpowiednie do silników prądu stałego, ponieważ nie dostarczają stałego napięcia, co jest kluczowe dla ich prawidłowego działania. Cyklokonwertery z kolei, mimo że mogą być używane do konwersji prądu stałego na prąd przemienny, są bardziej skomplikowane w implementacji i często nieefektywne w zastosowaniach wymagających regulacji prędkości silnika prądu stałego. Prostowniki diodowe, chociaż mogą zasilać silnik prądu stałego, nie umożliwiają regulacji napięcia w czasie rzeczywistym, co jest niezbędne dla precyzyjnego sterowania prędkością. Typowym błędem myślowym jest założenie, że jakiekolwiek urządzenie do konwersji mocy będzie odpowiednie do regulacji prędkości. W rzeczywistości, dla silników prądu stałego kluczowe jest dostarczenie odpowiednio przetworzonego napięcia, co zapewniają jedynie sterowane prostowniki tyrystorowe, zdolne do dynamicznej regulacji parametrów pracy silnika.

Pytanie 25

W przypadku PLC, odwołanie do zmiennej 32-bitowej powinno być zapisane w formacie rozpoczynającym się literą

A. b.
B. W.
C. D.
D. B.
Odpowiedź "D" jest poprawna, ponieważ w kontekście programowania w systemach PLC zmienna 32-bitowa jest standardowo oznaczana jako "D". Oznaczenie to pochodzi od terminu "Double word", co wskazuje na to, że zmienna ta zajmuje 32 bity w pamięci. W praktyce, takie zmienne są wykorzystywane do przechowywania większych wartości liczbowych oraz do operacji na danych, które wymagają większej precyzji, na przykład w aplikacjach związanych z kontrolą procesów przemysłowych. Wiele systemów PLC, takich jak Mitsubishi czy Siemens, przyjmuje tę konwencję, co pozwala na spójność i zrozumienie kodu przez programistów. Warto również zaznaczyć, że umiejętność poprawnego definiowania i korzystania ze zmiennych 32-bitowych jest kluczowa w aplikacjach wymagających zaawansowanego przetwarzania danych oraz interakcji z różnymi urządzeniami w sieci przemysłowej. Zrozumienie tego typu oznaczeń i ich zastosowań jest fundamentem efektywnego programowania w środowisku automatyki przemysłowej.

Pytanie 26

Jaką rolę pełnią enkodery w serwonapędach AC?

A. Informują o momencie generowanym przez napęd
B. Chronią serwonapęd przed przeciążeniem
C. Stanowią element wykonawczy serwonapędu
D. Dostarczają informacji o pozycji i prędkości napędu
Enkodery w serwonapędach AC pełnią kluczową rolę w monitorowaniu i regulacji ruchu napędu. Ich głównym zadaniem jest dostarczanie informacji o aktualnej pozycji i prędkości, co jest niezbędne do precyzyjnego sterowania. Dzięki enkoderom, systemy automatyki mogą realizować złożone zadania, takie jak kontrola pozycji w aplikacjach robotycznych czy CNC. Przykładowo, w maszynach sterowanych numerycznie, enkodery umożliwiają dokładne pozycjonowanie narzędzi, co ma kluczowe znaczenie dla precyzji obróbczej. Zgodnie z najlepszymi praktykami w branży, stosowanie wysokiej jakości enkoderów pozwala na osiągnięcie lepszej dynamiki systemu oraz zwiększenie efektywności energetycznej. W standardach takich jak ISO 13849, zaleca się użycie enkoderów w kontekście bezpieczeństwa funkcjonalnego, co podkreśla ich znaczenie nie tylko w kontekście wydajności, ale i bezpieczeństwa operacyjnego.

Pytanie 27

Szczelność systemu pneumatycznego weryfikuje się poprzez pomiar

A. zmiany maksymalnej prędkości siłownika
B. spadku ciśnienia w systemie w ustalonym czasie
C. zmiany maksymalnej siły wytwarzanej przez siłownik
D. ilości powietrza potrzebnego do utrzymania stałego poziomu ciśnienia
Szczelność układu pneumatycznego sprawdza się poprzez pomiar spadku ciśnienia w określonym czasie, co jest kluczowym aspektem diagnostyki i konserwacji systemów pneumatycznych. W przypadku, gdy układ jest szczelny, ciśnienie powinno pozostawać na stałym poziomie. Jeżeli jednak ciśnienie zaczyna spadać, oznacza to, że gdzieś w układzie występuje wyciek lub nieszczelność. W praktyce, technicy często wykorzystują manometry oraz różne czujniki ciśnienia do monitorowania tego parametru. Standardy branżowe, takie jak ISO 8573, podkreślają znaczenie dokładnego pomiaru ciśnienia i jego stabilności w zachowaniu właściwych warunków pracy układów pneumatycznych. Dodatkowo, regularne testowanie szczelności jest zalecane w celu minimalizacji strat energii oraz zwiększenia efektywności operacyjnej systemów, co przekłada się na redukcję kosztów eksploatacji. Warto również pamiętać, że nieszczelności mogą prowadzić do uszkodzenia komponentów systemu, co podkreśla znaczenie precyzyjnego i regularnego monitorowania ciśnienia.

Pytanie 28

Który zawór powinien być uwzględniony w systemie sterowania pneumatycznego, aby przyspieszyć prędkość wsuwu tłoczyska siłownika?

A. Szybkiego spustu
B. Z podwójnym sygnałem
C. Zwrotnego, sterowanego
D. Obiegu przełączającego
Zawór szybkiego spustu to naprawdę ważny element w układach pneumatycznych. Dzięki niemu można błyskawicznie obniżyć ciśnienie w siłowniku, co sprawia, że tłoczysko działa szybciej. To ma ogromne znaczenie w sytuacjach, gdzie wymagana jest szybkość działania. W praktyce, kiedy używa się zaworu szybkiego spustu, poprawia to wydajność procesów produkcyjnych, bo skraca czas cyklu. Na przykład w automatyzacji montażu, gdzie szybkość to podstawa, ten zawór pozwala lepiej reagować na zmieniające się warunki. Standardy branżowe, takie jak ISO 4414, mówią o tym, jak ważny jest dobór odpowiednich komponentów w układach pneumatycznych. Używając zaworu szybkiego spustu, możemy poprawić zarówno wydajność, jak i niezawodność całego systemu. I jeszcze jedno – to rozwiązanie zmniejsza ryzyko osadzania oleju w układzie, co jest istotne dla konserwacji i długości życia komponentów.

Pytanie 29

Wskaż operator używany w języku IL, który musi być uwzględniony w programie sterującym, aby zrealizować instrukcję skoku do etykiety FUN_1?

A. CAL FUN_1
B. JMP FUN_1
C. RET FUN_1
D. LD FUN_1
Operator JMP (jump) w języku IL (Instruction List) odgrywa kluczową rolę w programowaniu sterowników PLC, umożliwiając bezwarunkowe skoki do wskazanych etykiet. Użycie JMP jest szczególnie istotne w sytuacjach, gdy istnieje potrzeba wykonania fragmentu kodu w odpowiedzi na określony warunek lub zdarzenie. Na przykład, w przypadku pętli kontrolnych, operator ten pozwala na powrót do początku pętli, co jest niezbędne dla płynności działania programu. JMP jest zgodny z normą IEC 61131-3, która definiuje języki programowania PLC, co czyni go standardowym rozwiązaniem w branży. Dobrą praktyką jest korzystanie z etykiet, które są jasno zdefiniowane i opisują funkcjonalność, co ułatwia zrozumienie kodu. Przykładem zastosowania może być system automatyki w zakładzie produkcyjnym, gdzie operator JMP kieruje przepływem programu w oparciu o zmieniające się warunki, takie jak sygnały z czujników czy stany maszyn.

Pytanie 30

Jaki rodzaj czujnika wykorzystuje się do pomiaru odległości w zastosowaniach przemysłowych?

A. Temperaturowy
B. Magnetyczny
C. Piezoelektryczny
D. Ultradźwiękowy
Czujniki ultradźwiękowe są często używane do pomiaru odległości w zastosowaniach przemysłowych. Działają one na zasadzie emitowania fal dźwiękowych o wysokiej częstotliwości i mierzenia czasu, jaki zajmuje odbicie tych fal od obiektu do czujnika. Dzięki temu można precyzyjnie określić odległość do badanego obiektu. Czujniki ultradźwiękowe są bardzo uniwersalne i mogą mierzyć odległości od kilku centymetrów do kilku metrów, w zależności od specyfikacji urządzenia. W przemyśle stosuje się je w automatyzacji procesów produkcyjnych, takich jak kontrola poziomu cieczy, wykrywanie obecności obiektów czy nawet w systemach bezpieczeństwa do detekcji zbliżających się obiektów. Znajdują one zastosowanie w różnych branżach, od motoryzacyjnej po spożywczą. Istotnym atutem tych czujników jest ich niezależność od koloru i materiału obiektu, co czyni je bardziej uniwersalnymi w porównaniu z czujnikami optycznymi. Ważne jest również to, że czujniki ultradźwiękowe są odporne na kurz i brud, co jest istotne w trudnych warunkach przemysłowych.

Pytanie 31

Na wyświetlaczu panelu operatorskiego falownika wyświetla się kod błędu F005. Określ na podstawie tabeli z instrukcji serwisowej co może być przyczyną sygnalizowania wystąpienia błędu.

Kod błęduOpis uszkodzeniaCzynności naprawcze
F001PrzepięcieSprawdź czy wielkość napięcia zasilania jest właściwe dla znamion falownika i sterowanego silnika.
Zwiększyć czas opadania częstotliwości (nastawa P003).
Sprawdź czy moc hamowania mieści się w dopuszczalnych granicach.
F002PrzetężenieSprawdź czy moc falownika jest odpowiednia do zastosowanego silnika.
Sprawdź czy długość kabli zasilających silnika nie jest zbyt duża.
Sprawdź czy nie nastąpiło przebicie izolacji uzwojeń silnika lub przewodów kabli zasilających.
Sprawdź czy wartości nastaw P081 - P086 są zgodne z wartościami danych znamionowych silnika.
Sprawdź czy wartość nastawy P089 jest zgodna z wielkością rzeczywistej rezystancji uzwojeń stojana silnika.
Zwiększ czas narastania częstotliwości wyjściowej P002.
Zmniejsz wielkości forsowania częstotliwości (wartość nastaw P078 i P079).
Sprawdź czy wał silnika nie jest zablokowany lub przeciążony.
F003PrzeciążenieSprawdź czy silnik nie jest przeciążony.
Zwiększ częstotliwość maksymalną (wartość nastawy P013) w przypadku gdy używany jest silnik o dużym poślizgu znamionowym.
F005Przegrzanie falownika
(zadziałanie wewnętrznego termistora PTC)
Sprawdź czy temperatura otoczenia przekształtnika nie jest zbyt wysoka.
Sprawdź czy wloty i wyloty powietrza chłodzącego obudowy falownika nie są przysłonięte przez elementy sąsiadujące.
Sprawdź czy wentylator chłodzący funkcjonuje prawidłowo.
F008Przekroczenie okresu oczekiwania na sygnał z łącza szeregowegoSprawdź poprawność łącza szeregowego.
Sprawdź prawidłowość ustawienia parametrów komunikacji łącza szeregowego (wartości nastaw P091 - P093).

A. Za mała częstotliwość.
B. Za duża temperatura otoczenia.
C. Za małe obciążenie na wale silnika.
D. Za duża moc silnika.
Odpowiedź "Za duża temperatura otoczenia." jest prawidłowa, ponieważ kod błędu F005, wskazujący na przegrzanie falownika, jednoznacznie sugeruje, że warunki otoczenia są niewłaściwe. Przegrzanie falownika może prowadzić do poważnych uszkodzeń urządzenia, co w dłuższym czasie może skutkować jego awarią. W praktyce, aby zapobiec takim sytuacjom, ważne jest zapewnienie odpowiedniego chłodzenia i wentylacji falownika w jego miejscu instalacji. Zastosowanie wentylatorów lub systemów klimatyzacyjnych jest kluczowe w zapewnieniu optymalnych warunków pracy. Warto również regularnie monitorować temperaturę otoczenia oraz stan termistora PTC, co pozwoli na wczesne wykrywanie problemów z przegrzewaniem. W przypadku wykrycia wysokiej temperatury otoczenia, należy rozważyć zmianę lokalizacji falownika lub poprawę jego chłodzenia, zgodnie z wytycznymi producenta, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 32

Jaką czynność powinno się wykonać jako pierwszą, gdy automatycznie sterowana brama przesuwna nie zatrzymuje się w pozycji otwartej?

A. Przekazać sterownik do serwisu
B. Zweryfikować zasilanie silnika
C. Skontrolować stan czujnika krańcowego
D. Sprawdzić poziom naładowania baterii w pilocie zdalnego sterowania
Sprawdzanie stanu czujnika krańcowego jako pierwsza czynność w diagnozowaniu problemów z automatycznymi bramami przesuwnymi jest niezwykle istotne. Czujnik krańcowy pełni kluczową rolę w systemie, informując sterownik o tym, że brama osiągnęła maksymalną pozycję otwartą lub zamkniętą. Jeśli czujnik nie działa prawidłowo, brama nie otrzyma sygnału do zatrzymania, co może prowadzić do niebezpiecznych sytuacji. Dobrą praktyką jest regularne serwisowanie systemu, w tym sprawdzanie funkcjonowania czujników, co może zapobiec poważnym usterkom. W przypadku stwierdzenia uszkodzenia czujnika, jego wymiana jest zalecana, aby zapewnić pełną funkcjonalność bramy. Co więcej, w standardach bezpieczeństwa dla automatycznych bram, takich jak normy EN 13241-1, podkreśla się znaczenie sprawności czujników, co ma kluczowe znaczenie dla ochrony osób i mienia w pobliżu bramy.

Pytanie 33

Dwuwejściowa bramka NOR, w której wejścia zostały połączone, jest tożsame z bramką

A. AND
B. NOT
C. OR
D. NAND
Bramka logiczna NOR, będąca połączeniem bramki NOT i OR, działa w sposób, który może być zrozumiany przez analizę jej tabeli prawdy. Gdy oba wejścia są fałszywe, bramka NOR zwraca wynik prawdziwy. W momencie, gdy jedno lub oba wejścia są prawdziwe, wynik wynosi fałsz. Kiedy połączymy dwa wejścia bramki NOR w sposób, w jaki zdefiniowano w pytaniu, uzyskujemy sytuację, w której wynik będzie zawsze fałszywy, chyba że oba wejścia będą fałszywe. W takim przypadku bramka ta działa jak bramka NOT, ponieważ odwraca logiczny stan jednego sygnału. Przykładowo, w zastosowaniach cyfrowych, bramki NOR są często używane w projektowaniu układów, które wymagają negacji sygnałów. W projektowaniu systemów cyfrowych, zastosowanie bramek NOR w układach oszczędzających energię oraz w implementacji pamięci FLASH jest standardem. Takie podejście do projektowania układów logicznych opiera się na praktycznych aspektach działania komponentów oraz ich właściwościach w kontekście minimalizacji zużycia energii oraz przestrzeni na chipie.

Pytanie 34

W procesie automatyzacji produkcji, jaką rolę pełni czujnik indukcyjny?

A. Monitorowanie wilgotności
B. Pomiar temperatury
C. Kontrola poziomu płynów
D. Detekcja obecności metalowych obiektów
Czujnik indukcyjny to niezwykle ważny element w automatyzacji produkcji, szczególnie w branżach, gdzie kluczowe jest wykrywanie obecności metalowych obiektów. Działa na zasadzie zmiany pola elektromagnetycznego w momencie, gdy obiekt metalowy zbliża się do czujnika. Taki mechanizm działania pozwala na skuteczną detekcję metali bez konieczności fizycznego kontaktu z obiektem, co jest nieocenione w aplikacjach, gdzie kontakt może być niebezpieczny lub niewygodny. Przykłady zastosowań obejmują linie montażowe, gdzie czujniki indukcyjne kontrolują obecność metalowych części, czy systemy bezpieczeństwa, gdzie monitorują obecność metalowych elementów w krytycznych punktach systemu. Czujniki te charakteryzują się również dużą trwałością i odpornością na warunki środowiskowe, co czyni je niezastąpionymi w trudnych warunkach przemysłowych. Dzięki swojej precyzji i niezawodności, czujniki indukcyjne są powszechnie stosowane w różnych gałęziach przemysłu, od motoryzacyjnego po spożywczy, zapewniając efektywność i bezpieczeństwo procesów technologicznych.

Pytanie 35

Zanieczyszczony element filtra oleju doprowadził do znacznego obniżenia efektywności układu smarowania. Co należy w takim przypadku zrobić?

A. wyczyścić wkład filtra za pomocą wody destylowanej
B. przedmuchać wkład filtra przy użyciu sprężonego powietrza
C. usunąć zanieczyszczenia z wkładu filtra za pomocą szczotki drucianej
D. wymienić wkład lub filtr
Wymiana wkładu lub filtru oleju jest kluczowym krokiem w utrzymaniu prawidłowej wydajności układu smarowania silnika. Zanieczyszczenia gromadzące się w filtrze mogą prowadzić do poważnych problemów, takich jak zatarcie silnika, które może być wynikiem niewłaściwego smarowania. Wymieniając wkład, eliminujemy wszelkie zanieczyszczenia, co przywraca odpowiedni przepływ oleju i zapewnia jego skuteczną dystrybucję do wszystkich elementów silnika. Zgodnie z najlepszymi praktykami branżowymi, filtry oleju powinny być wymieniane zgodnie z harmonogramem ustalonym przez producenta pojazdu lub co określoną ilość przejechanych kilometrów, co zwykle wynosi od 10 000 do 15 000 km. Regularna wymiana oleju i filtrów nie tylko zwiększa wydajność silnika, ale także prolonguje jego żywotność, co jest kluczowe dla ekonomiki eksploatacji pojazdu. Dodatkowo, stosowanie wysokiej jakości filtrów uznawanych przez renomowane marki wpływa na efektywność i zabezpieczenie silnika przed uszkodzeniami.

Pytanie 36

Wskaż właściwy sposób adresacji zmiennej 32-bitowej w obszarze pamięci markerów sterownika PLC, której pierwsze osiem bitów ma adres w systemie dziesiętnym 102

A. MD102.
B. ML102.
C. MB102
D. MW102.
MD102 jest prawidłową odpowiedzią, ponieważ adresuje zmienną 32-bitową (marker dwubajtowy) w systemach PLC, takich jak Siemens. W nomenklaturze PLC oznaczenie MD wskazuje na standardowy sposób adresowania zmiennych, które zajmują 4 bajty pamięci, więc adres 102 odnosi się do pierwszego bajtu tej zmiennej. Zmienne 32-bitowe są często stosowane w aplikacjach wymagających precyzyjnego przechowywania danych, takich jak zliczanie, akumulacja i inne operacje arytmetyczne w procesach przemysłowych. Używanie odpowiednich oznaczeń jest istotne dla zapewnienia, że programy działają zgodnie z zamierzeniami, a także dla przyszłej konserwacji i rozwoju systemów. Przykładowo, w programowaniu PLC, gdzie istotne jest efektywne zarządzanie zasobami pamięci, prawidłowe adresowanie zmiennych 32-bitowych minimalizuje ryzyko błędów związanych z odczytem lub zapisem danych, co jest szczególnie ważne w zautomatyzowanych liniach produkcyjnych, gdzie błędy mogą prowadzić do poważnych strat. Znajomość takich konwencji jest zatem kluczowa dla każdego inżyniera automatyki.

Pytanie 37

Jaki typ zaworu powinno się użyć w układzie pneumatycznym, aby zachować ciśnienie na określonym poziomie?

A. Zawór redukcyjny
B. Zawór nastawny dławiąco-zwrotny
C. Zawór nastawny podwójnego sygnału
D. Zawór przełączający
Wybór niewłaściwego zaworu w układzie pneumatycznym może prowadzić do poważnych problemów operacyjnych. Zawór nastawny podwójnego sygnału, mimo że pełni funkcję regulacyjną, nie jest przeznaczony do bezpośredniego utrzymania ciśnienia na stałym poziomie. Jego działanie opiera się na regulacji strumienia powietrza w odpowiedzi na zmieniające się sygnały, co w kontekście utrzymania ciśnienia może prowadzić do fluktuacji, a nie stabilizacji. Zawór nastawny dławiąco-zwrotny z kolei, chociaż może być używany do regulacji przepływu, również nie jest odpowiedni do bezpośredniej kontroli ciśnienia, co może skutkować niedostatecznym lub nadmiernym ciśnieniem w systemie. Zawory przełączające, które zmieniają kierunek przepływu medium, również nie mają zastosowania w kontekście regulacji ciśnienia na zadanym poziomie. Te koncepcje mogą wynikać z mylnego założenia, że jakiekolwiek urządzenie regulacyjne może działać jako skuteczny zawór redukcyjny. W rzeczywistości, zawór redukcyjny jest zaprojektowany specjalnie do tego celu, co czyni go niezastąpionym w wielu systemach pneumatycznych. Ignorowanie tej zasady może prowadzić do nieefektywności procesów oraz kosztownych napraw, dlatego zrozumienie właściwego zastosowania każdego typu zaworu jest kluczowe dla prawidłowego funkcjonowania układów pneumatycznych.

Pytanie 38

Jaki symbol literowy jest używany w programie kontrolnym dla PLC, który spełnia normy IEC 61131, aby adresować jego fizyczne wyjścia?

A. S
B. R
C. Q
D. I
Odpowiedź "Q" jest poprawna, ponieważ w kontekście programowania sterowników PLC zgodnie z normą IEC 61131-3, litera "Q" jest bezpośrednio przypisana do fizycznych wyjść systemu. Każde wyjście w programie sterującym jest identyfikowane przez ten symbol, co umożliwia jednoznaczne rozróżnienie wyjść od wejść, które są oznaczane literą "I". Przykładowo, jeżeli programujesz układ, który steruje silnikiem elektrycznym, to odpowiednie wyjście do załączenia silnika zostanie oznaczone właśnie literą "Q". Taka konwencja jest nie tylko zgodna z normą, ale również ułatwia czytelność i utrzymanie kodu, co jest kluczowe w profesjonalnych zastosowaniach. Ponadto, posługiwanie się ustalonymi standardami, takimi jak IEC 61131-3, zwiększa interoperacyjność różnych urządzeń i ułatwia współpracę między inżynierami oraz poprawia efektywność projektowania systemów automatyki przemysłowej.

Pytanie 39

Jaki typ czujnika powinien być wykorzystany do nieprzerwanego pomiaru poziomu cieczy w zbiorniku?

A. Ultradźwiękowy
B. Optyczny
C. Kontaktronowy
D. Indukcyjny
Wybór czujników do pomiaru poziomu cieczy to dość istotna sprawa, bo źle dobrany czujnik może sprawić, że wyniki będą mijały się z prawdą. Na przykład kontaktronowy czujnik, chociaż może się sprawdzić w niektórych sytuacjach, to jednak nie nadaje się do ciągłej obserwacji poziomu. Działa na zasadzie zamykania obwodu, gdy ma kontakt z cieczą, a to nie jest to, co byśmy chcieli w przypadku stałego monitorowania. Indukcyjne czujniki też raczej nie dają rady, gdy ciecz ma różną przewodność elektryczną. Z tego co widzę, w takich sytuacjach ich wiarygodność może być dość ograniczona. Optyczne czujniki, choć mogą działać, są dość wrażliwe na zanieczyszczenia, co może prowadzić do pomyłek. Często wymagają sporo czyszczenia i konserwacji, co generuje dodatkowe koszty. Dlatego wybierając czujnik, warto stawiać na te bardziej niezawodne, jak ultradźwiękowe, bo one naprawdę potrafią zapewnić wysoką precyzję i wiarygodność pomiarów.

Pytanie 40

Podczas inspekcji zauważono zbyt głośną pracę silnika indukcyjnego pierścieniowego. Aby zredukować hałas, konieczna jest wymiana

A. pierścieni ślizgowych
B. sprężyn dociskających
C. łożysk tocznych
D. uszczelek pierścieniowych
Wybór łożysk tocznych jako elementu do wymiany w silniku indukcyjnym pierścieniowym jest kluczowy dla obniżenia hałasu i poprawy wydajności urządzenia. Łożyska toczne, odpowiedzialne za podtrzymywanie wirnika, zapewniają minimalny opór ruchu, co przekłada się na płynność pracy silnika. W przypadku uszkodzenia lub zużycia łożysk, tarcie wzrasta, co generuje dodatkowe hałasy i może prowadzić do poważnych uszkodzeń. Dlatego zaleca się regularne przeglądy stanu łożysk, a ich wymiana zgodnie z zaleceniami producentów może znacząco wydłużyć żywotność silnika. Warto również pamiętać o zastosowaniu odpowiednich smarów, które redukują tarcie i hałas. Dobrą praktyką jest również stosowanie łożysk odpowiadających normom DIN lub ISO, co zapewnia ich wysoką jakość i niezawodność. Właściwe dobieranie i konserwacja łożysk tocznych jest zatem kluczowe nie tylko dla redukcji hałasu, ale także dla efektywności energetycznej silnika.