Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 30 maja 2025 00:27
  • Data zakończenia: 30 maja 2025 00:59

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Czym jest mostek termiczny?

A. częścią przegrody budowlanej, w której instalowane jest ogrzewanie ścienne
B. elementem przegrody budowlanej, przez który dochodzi do utraty ciepła
C. przepustem w przegrodzie budowlanej, którym prowadzi się rury do dolnego źródła ciepła
D. otworem w przegrodzie budowlanej, który prowadzi rury do kolektora
Mostek termiczny jest istotnym elementem w konstrukcji przegrody budowlanej, który prowadzi do niepożądanej utraty ciepła. W praktyce oznacza to, że w miejscach, gdzie materiał budowlany ma różne właściwości termiczne, może dojść do powstania mostków, które obniżają efektywność energetyczną budynku. Na przykład, mostki termiczne często występują w miejscach, gdzie materiale budowlanym przechodzą rury, w narożnikach lub na styku różnych materiałów. Zgodnie z normami budowlanymi, takich jak PN-EN ISO 10077, projektanci muszą identyfikować te miejsca i stosować odpowiednie materiały izolacyjne, aby zminimalizować straty ciepła. W praktyce, zastosowanie zaawansowanych technik budowlanych, takich jak termografia, pozwala na lokalizację mostków termicznych, co z kolei umożliwia ich usunięcie lub zredukowanie. Właściwe zarządzanie mostkami termicznymi jest kluczowe dla osiągnięcia wysokiej efektywności energetycznej obiektów budowlanych oraz spełnienia wymogów dotyczących oszczędzania energii.

Pytanie 2

Jakie narzędzie jest używane do pomiarów średnic rur, zaworów i kształtek, zarówno zewnętrznych, jak i wewnętrznych?

A. dalmierz
B. kątomierz
C. suwmiarka
D. anemometr
Suwmiarka to narzędzie pomiarowe, które pozwala na precyzyjne mierzenie zarówno zewnętrznych, jak i wewnętrznych średnic różnych obiektów, takich jak rury, zawory czy kształtki. W praktyce, suwmiarka wykorzystywana jest w wielu branżach, w tym w mechanice, budownictwie oraz inżynierii, gdzie dokładność pomiarów jest kluczowa dla zapewnienia jakości wykonywanych prac. Suwmiarki mogą być analogowe lub cyfrowe, co umożliwia łatwe odczytywanie wyników. Dobre praktyki zalecają użycie suwmiarek z funkcją zerowania oraz z dokładnością pomiaru wynoszącą co najmniej 0,02 mm, co jest szczególnie istotne w precyzyjnych zastosowaniach. Ponadto, obsługa suwmiarek jest dosyć intuicyjna, co czyni je narzędziem dostępnym dla szerokiego kręgu użytkowników, nawet tych początkujących w dziedzinie pomiarów. Dlatego suwmierz jest uważany za niezbędne narzędzie w każdym warsztacie czy laboratorium, gdzie wymagane są dokładne pomiary liniowe.

Pytanie 3

Jaką funkcję pełni inwerter w systemach fotowoltaicznych?

A. ochrony systemu przed przetężeniem
B. przekształcania prądu stałego na prąd przemienny
C. ochrony akumulatorów przed całkowitym wyładowaniem
D. kontrolowania procesu ładowania akumulatorów
Inwerter w instalacjach fotowoltaicznych odgrywa kluczową rolę w konwersji prądu stałego (DC) generowanego przez panele słoneczne na prąd przemienny (AC), który jest standardem w sieciach energetycznych. Bez inwertera, energia produkowana przez system PV nie mogłaby być używana w typowych urządzeniach domowych ani wprowadzana do sieci energetycznej. Wysokiej jakości inwertery są projektowane z myślą o maksymalnej wydajności, co pozwala na optymalne wykorzystanie energii słonecznej. Na przykład, inwertery typu string są najczęściej stosowane w domowych instalacjach PV, gdzie łączą kilka paneli w jeden ciąg, zapewniając efektywną konwersję energii. Z kolei inwertery mikro, montowane bezpośrednio na panelach, mogą zwiększyć wydajność w przypadku zacienienia pojedynczych modułów. Zgodnie z normami IEC, inwertery muszą spełniać określone kryteria dotyczące wydajności i bezpieczeństwa, co zapewnia ich niezawodność w długoterminowej eksploatacji.

Pytanie 4

Do zrealizowania montażu instalacji solarnych z rurą miedzianą należy wykorzystać

A. nożyc, rozwiertaka, zaciskarki promieniowej
B. piłki, gwintownicy z narzynkami, kluczy hydraulicznych
C. obcinarki krążkowej, gratownika, palnika
D. nożyc, gratownika, zgrzewarki
Obcinarka krążkowa, gratownik i palnik stanowią zestaw narzędzi niezbędnych do prawidłowego montażu instalacji solarnej z rur miedzianych. Obcinarka krążkowa jest kluczowym narzędziem, które umożliwia precyzyjne cięcie rur miedzianych, co jest istotne dla zachowania integralności systemu oraz unikania uszkodzeń. Użycie gratownika pozwala na usunięcie zadziorów, które mogą wystąpić po cięciu, co jest ważne dla uzyskania szczelnych połączeń. Palnik służy do lutowania, co jest standardową praktyką przy łączeniu elementów instalacji wykonanych z miedzi. Lutowanie miedzi jest powszechnie uznawane za jeden z najskuteczniejszych sposobów łączenia, zapewniający wysoką wytrzymałość połączeń i odporność na wysokie temperatury. W kontekście montażu instalacji solarnych, gdzie rury miedziane są często używane ze względu na ich doskonałe właściwości przewodzenia ciepła, wykorzystanie odpowiednich narzędzi jest kluczowe dla efektywności całego systemu. Dobrze wykonane połączenia zapewniają długotrwałe i bezproblemowe działanie instalacji. Takie podejście jest zgodne z najlepszymi praktykami branżowymi i standardami jakości.

Pytanie 5

Obecność powietrza w systemie solarnym wynika głównie z

A. nieprawidłowego umiejscowienia grupy pompowej
B. uszkodzonej pompy obiegowej
C. nieodpowietrzenia układu solarnego
D. nieprawidłowego montażu naczynia wzbiorczego
Obecność powietrza w układzie solarnym jest najczęściej wynikiem nieodpowietrzenia układu, co oznacza, że powietrze nie zostało usunięte z systemu w odpowiednim czasie. To zjawisko może prowadzić do wielu problemów, takich jak spadek efektywności systemu grzewczego, hałas w instalacji czy nawet uszkodzenia komponentów, takich jak pompy, wymienniki ciepła czy rury. W praktyce, podczas montażu układów solarnych, kluczowe jest zastosowanie odpowiednich zaworów odpowietrzających oraz regularne serwisowanie, aby zapewnić pełne usunięcie powietrza. Zgodnie z normami branżowymi, zaleca się przeprowadzanie odpowietrzania systemu podczas uruchamiania oraz regularne kontrole, by upewnić się, że nie ma nagromadzenia powietrza. Dobre praktyki obejmują również stosowanie naczynia wzbiorczego, które ma na celu kompensację zmian objętości cieczy oraz umożliwienie skutecznego odpowietrzania. Warto pamiętać, że odpowiednie utrzymanie układu solarnego ma kluczowe znaczenie dla jego długowieczności i efektywności.

Pytanie 6

Kocioł na pellet w ciągu jednej doby wykorzystuje 20 kg paliwa. Jaki będzie całkowity koszt paliwa w przeciągu 30 dni, jeśli worek z 200 kg pelletu kosztuje 250 zł?

A. 12,50 zł
B. 37,50 zł
C. 5 000,00 zł
D. 750,00 zł
Obliczenie kosztu paliwa zużywanego przez kocioł na pellet wymaga zrozumienia kilku kluczowych aspektów. Kocioł zużywa 20 kg paliwa dziennie, co oznacza, że przez 30 dni zużyje 600 kg (20 kg/dzień * 30 dni). W celu przeliczenia kosztów, musimy najpierw ustalić, ile kosztuje 1 kg pelletu. Woreczek o wadze 200 kg kosztuje 250 zł, zatem koszt 1 kg to 250 zł / 200 kg = 1,25 zł. Następnie, mnożymy koszt 1 kg przez całkowite zużycie pelletu w ciągu miesiąca: 600 kg * 1,25 zł/kg = 750 zł. Taki proces obliczania kosztów pozwala na lepsze zarządzanie budżetem na ogrzewanie i planowanie zakupów paliwa, co jest szczególnie istotne w kontekście sezonowego użytkowania kotłów na pellet. Wiedza na temat kosztów eksploatacyjnych pozwala również na efektywniejsze podejmowanie decyzji zakupowych oraz optymalizację wydatków na energię. Stosowanie materiałów pomocniczych, jak wykresy lub kalkulatory kosztów, jest zalecane w celu łatwiejszego zrozumienia tego procesu.

Pytanie 7

Czynnik przenoszący ciepło z dolnego źródła do pompy oraz z pompy do instalacji o oznaczeniu A/A dotyczy pomp ciepła, w których dolnym źródłem ciepła jest

A. woda powierzchniowa lub głębinowa, a górnym powietrze wewnętrzne lub woda grzewcza; czynnikiem pośredniczącym jest woda
B. powietrze wywiewane, natomiast górnym powietrze wewnętrzne; czynnikiem pośredniczącym jest czynnik roboczy pompy ciepła
C. grunt, a górnym powietrze wewnętrzne lub woda grzewcza; w instalacji dolnego źródła krąży solanka, natomiast w instalacji grzewczej krąży woda
D. grunt, a górnym powietrze wewnętrzne; czynnikiem pośredniczącym między dolnym źródłem ciepła a pompą ciepła jest roztwór glikolu, natomiast między pompą ciepła a górnym źródłem ciepła powietrze
Odpowiedź wskazująca, że dolnym źródłem ciepła jest powietrze wywiewane, a górnym powietrze wewnętrzne, jest prawidłowa, ponieważ opisuje pracę pompy ciepła typu A/A. W takim systemie pompa ciepła wykorzystuje powietrze wywiewane z budynku jako źródło ciepła, co jest szczególnie efektywne w kontekście wentylacji mechanicznej. W praktyce, energia cieplna z powietrza wywiewanego jest przekazywana do czynnika roboczego pompy ciepła, który następnie przetwarza tę energię, aby ogrzewać powietrze wewnętrzne lub wodę grzewczą. Stosowanie tego typu rozwiązań jest zgodne z najnowszymi standardami efektywności energetycznej, takie jak normy EN 14511, które definiują testy i parametry dla pomp ciepła. Efektywność tego systemu podnosi również zastosowanie zaawansowanych filtrów, które poprawiają jakość powietrza wewnętrznego, co jest kluczowe w kontekście zdrowia użytkowników. Warto również zaznaczyć, że systemy te są coraz częściej wykorzystywane w budynkach pasywnych i niskoenergetycznych, gdzie efektywność energetyczna jest kluczowym czynnikiem. Zastosowanie takich rozwiązań przyczynia się do zmniejszenia kosztów eksploatacji oraz obniżenia emisji CO2.

Pytanie 8

Kogenerator w trakcie spalania np. biogazu wytwarza energię

A. wyłącznie energię cieplną
B. elektryczną i cieplną
C. tylko energię elektryczną
D. jedynie mechaniczną
Kogenerator, znany również jako jednostka skojarzonej produkcji energii (CHP), jest urządzeniem, które jednocześnie produkuje energię elektryczną oraz cieplną podczas procesu spalania paliw, takich jak biogaz. Biogaz, będący odnawialnym źródłem energii, jest wykorzystywany w kogeneratorach ze względu na swoją niską emisję szkodliwych substancji oraz możliwość efektywnego przetwarzania odpadów organicznych. Kogeneratory działają na zasadzie wykorzystania ciepła odpadowego, które normalnie byłoby tracone w tradycyjnych systemach produkcji energii. Dzięki temu, uzyskują one wyższą efektywność energetyczną, często przekraczającą 80%. Przykładem zastosowania kogeneratorów jest wykorzystanie w zakładach przemysłowych, które potrzebują zarówno prądu, jak i ciepła do procesów produkcyjnych. Tego rodzaju systemy przyczyniają się do obniżenia kosztów energetycznych oraz zmniejszenia śladu węglowego, co jest zgodne z trendami zrównoważonego rozwoju i najlepszymi praktykami w zarządzaniu energią.

Pytanie 9

Na podstawie danych zawartych w tabeli oblicz koszt materiałów niezbędnych do wymiany 50 metrów sieci biogazu uzbrojonej w 3 zasuwy i 2 trójniki.

Nazwa urządzeniaJednostka miaryCena jednostkowa (zł)
Rura PEm30,00
Zasuwaszt.300,00
Trójnikszt.250,00

A. 900 zł
B. 2 900 zł
C. 1 500 zł
D. 500 zł
Poprawna odpowiedź to 2900 zł, co zostało obliczone na podstawie dokładnej analizy kosztów materiałów do wymiany sieci biogazu. W przypadku takich projektów kluczowe jest precyzyjne określenie ilości oraz cen jednostkowych materiałów, co pozwala na dokładne oszacowanie całkowitych kosztów. W tym przypadku, 50 metrów sieci biogazu wymagało zakupu rur, zasuw oraz trójników. Zastosowanie zasuw umożliwia kontrolowanie przepływu biogazu, co jest niezbędne w wielu instalacjach biogazowych. Z kolei trójniki są istotne, gdyż pozwalają na rozgałęzianie instalacji, co jest często wymagane w praktycznych zastosowaniach. Przy planowaniu takich projektów warto zwrócić uwagę na standardy branżowe, takie jak normy dotyczące jakości materiałów oraz ich zgodności z przepisami budowlanymi. Dobre praktyki obejmują także uwzględnienie potencjalnych kosztów serwisowania i konserwacji, co może wpłynąć na całkowity budżet projektu.

Pytanie 10

Jaką wartość ma współczynnik efektywności energetycznej COP pompy ciepła, która w listopadzie dostarczyła do systemu grzewczego budynku 2 592 kWh ciepła, pobierając przy tym 648 kWh energii elektrycznej?

A. 3,0
B. 4,0
C. 5,0
D. 2,0
Współczynnik efektywności energetycznej (COP) pompy ciepła wynoszący 4,0 oznacza, że na każdą jednostkę energii elektrycznej pobranej (648 kWh) pompa oddaje cztery jednostki energii cieplnej (2592 kWh). Taki wynik wskazuje na wysoką efektywność systemu grzewczego. W praktyce oznacza to, że system pompy ciepła jest w stanie zaspokoić znaczną część zapotrzebowania na ciepło budynku, co przekłada się na oszczędności w kosztach energii. Stosowanie pomp ciepła zgodnie z zasadami efektywności energetycznej jest zalecane przez wiele standardów budowlanych i ekologicznych, takich jak normy ISO 50001 dotyczące zarządzania energią. Dzięki wysokiemu współczynnikowi COP, pompy ciepła stają się coraz bardziej popularne w kontekście zrównoważonego rozwoju oraz działań proekologicznych, co przyczynia się do zmniejszenia emisji CO2 oraz większej niezależności energetycznej budynków.

Pytanie 11

Najlepiej poprowadzić przewody łączące płaski kolektor, usytuowany na dachu, z zasobnikiem ciepła znajdującym się w piwnicy

A. po wewnętrznej elewacji budynku
B. po zewnętrznej elewacji budynku
C. w kanale spalinowym komina
D. w kanale wentylacyjnym komina
Wybór innych opcji w kontekście prowadzenia przewodów łączących kolektor płaski z zasobnikiem ciepła często wynika z niepełnego zrozumienia zasad efektywności transportu ciepła oraz bezpieczeństwa systemów grzewczych. Prowadzenie przewodów po zewnętrznej ścianie budynku może prowadzić do znacznych strat ciepła, szczególnie w okresach chłodniejszych, co jest sprzeczne z podstawowymi zasadami efektywności energetycznej. Zewnętrzne umiejscowienie przewodów naraża je również na działanie niekorzystnych warunków atmosferycznych, co może prowadzić do uszkodzeń oraz obniżonej wydajności. Z kolei umieszczanie przewodów w kanale wentylacyjnym komina nie jest zalecane, ponieważ kanały wentylacyjne są projektowane z myślą o cyrkulacji powietrza, a nie transportowaniu ciepła. Takie podejście nie tylko może prowadzić do problemów z kondensacją, ale również do zanieczyszczenia jakości powietrza wewnątrz budynku. Ponadto, nieodpowiednie umiejscowienie przewodów może stanowić zagrożenie dla bezpieczeństwa, w szczególności w kontekście ewentualnych pożarów. Zrozumienie tych zasad jest kluczowe do prawidłowego projektowania i instalacji systemów grzewczych, co ma bezpośredni wpływ na ich wydajność oraz żywotność.

Pytanie 12

Czujnik termostatyczny systemu "strażak" używany do ochrony kotłów na biomasę powinien być zamontowany

A. w czopuchu kotła
B. w komorze paleniskowej
C. na obudowie podajnika
D. w podajniku ślimakowym
Czujnik termostatyczny systemu "strażak" jest kluczowym elementem zabezpieczającym kotły na biomasę, a jego prawidłowy montaż ma istotne znaczenie dla efektywności systemu. Montaż czujnika na obudowie podajnika zapewnia optymalne warunki do monitorowania temperatury materiału opałowego, co jest niezbędne do zapobiegania przegrzewaniu się i ewentualnym uszkodzeniom. Tego rodzaju umiejscowienie czujnika pozwala na szybkie reagowanie na zmiany temperatury, co jest fundamentalne w kontekście zapewnienia bezpieczeństwa systemu grzewczego. W praktyce, stosowanie czujników termostatycznych w podajnikach podnosi efektywność energetyczną, ponieważ umożliwia precyzyjne dostosowanie pracy kotła do aktualnych potrzeb cieplnych budynku. W przypadku awarii czujnika, system zabezpieczeń może zareagować, co minimalizuje ryzyko pożaru, a także chroni komponenty kotła przed uszkodzeniem. Zgodnie z normami branżowymi, takie jak PN-EN 303-5, prawidłowy montaż czujników jest kluczowym elementem w projektowaniu nowoczesnych systemów grzewczych, co potwierdza znaczenie prawidłowej lokalizacji czujnika w kontekście bezpieczeństwa oraz efektywności operacyjnej.

Pytanie 13

Koszt materiałów do instalacji paneli słonecznych w domu jednorodzinnym wynosi 9 000 zł. Aby zamontować system na płaskim dachu, potrzeba 16 godzin pracy dwóch wykwalifikowanych pracowników, których stawka za godzinę wynosi 25,00 zł. Firma instalacyjna dolicza narzut na materiały w wysokości 20%. Jaki jest łączny koszt zamontowania systemu solarnego?

A. 9 800 zł
B. 12 600 zł
C. 11 600 zł
D. 10 800 zł
Aby obliczyć całkowity koszt montażu instalacji solarnej, należy uwzględnić zarówno koszt materiałów, jak i koszt pracy. Koszt materiałów wynosi 9 000 zł. Dodatkowo, firma instalacyjna nalicza 20% narzut na materiały, co oznacza, że dodajemy 1 800 zł (20% z 9 000 zł), co daje nam łączny koszt materiałów równy 10 800 zł. Następnie obliczamy koszt pracy: dwóch wykwalifikowanych pracowników pracuje po 16 godzin, co daje łącznie 32 godziny. Przy stawce 25 zł za godzinę, całkowity koszt pracy wynosi 800 zł (32 godziny x 25 zł). Dodając koszt materiałów i pracy, otrzymujemy 10 800 zł + 800 zł = 11 600 zł. Ta odpowiedź jest zgodna z dobrymi praktykami w zakresie wyceny projektów instalacji solarnych, które zawsze powinny obejmować wszystkie koszty związane z realizacją projektu, aby nie narazić się na nieprzewidziane wydatki podczas jego realizacji.

Pytanie 14

Na podstawie danych w tabeli oblicz wartość kosztorysową prac montażowych instalacji urządzeń energetyki odnawialnej.

Rodzaj kosztówRobociznaMateriałSprzęt
Koszty bezpośrednie2 0005 0004 000
Koszty pośrednie 80%1 600-3 200
Koszty zakupu 10%-500-
Wartość kosztorysowa bez zysku

A. 16 300 zł
B. 15 800 zł
C. 10 800 zł
D. 9 100 zł
Poprawna odpowiedź to 16 300 zł, która została uzyskana poprzez odpowiednie zsumowanie kosztów związanych z pracami montażowymi instalacji urządzeń energetyki odnawialnej. W procesie kalkulacji kosztorysowej kluczowe jest uwzględnienie zarówno kosztów bezpośrednich, jak i pośrednich. Koszty bezpośrednie obejmują wydatki na robociznę, materiały i sprzęt, które są niezbędne do realizacji projektu. Koszty pośrednie robocizny i sprzętu powinny wynosić 80% kosztów bezpośrednich, co jest zgodne z praktyką branżową, która uwzględnia nie tylko płace, ale również obciążenia pracodawcy. Z kolei koszty zakupu materiałów, określone jako 10% kosztów bezpośrednich materiałów, są kluczowe dla dokładnego ustalenia ostatecznej wartości kosztorysowej. W praktyce, dokładne obliczenia i rzetelne podejście do kosztów mogą znacząco wpłynąć na rentowność projektu. Dlatego też znajomość metod kosztorysowania oraz umiejętność ich zastosowania w praktyce są niezbędne dla każdego specjalisty w branży budowlanej i energetycznej.

Pytanie 15

Podczas serwisowania sprężarki w pompie ciepła potwierdzono jej prawidłowe funkcjonowanie. Może to mieć miejsce jedynie, gdy czynnik chłodniczy w niej występuje w formie

A. wyłącznie stałej
B. wyłącznie gazowej
C. wyłącznie ciekłej
D. 50% ciekłej, 50% gazowej
Poprawna odpowiedź to "wyłącznie gazowym", ponieważ sprężarka w pompie ciepła działa efektywnie jedynie wtedy, gdy czynnik chłodniczy w niej obecny jest w stanie gazowym. W momencie, gdy czynnik chłodniczy trafia do sprężarki, jego zadaniem jest podniesienie ciśnienia i temperatury, co jest możliwe tylko w przypadku gazu. Sprężanie cieczy lub ciał stałych prowadzi do nieefektywności procesów oraz potencjalnych uszkodzeń urządzenia. W cyklu pracy pompy ciepła, czynnik chłodniczy przechodzi przez różne stany skupienia, jednak kluczowym momentem jest jego przekształcenie w gaz przed wejściem do sprężarki. Na przykład w standardowych systemach HVAC, zgodnie z normami ASHRAE, sprężarki są projektowane z myślą o pracy z czynnikami w stanie gazowym, aby maksymalizować efektywność energetyczną oraz minimalizować ryzyko awarii. Wiedza ta jest fundamentalna dla każdego technika zajmującego się konserwacją i serwisowaniem systemów pomp ciepła, ponieważ zapewnia długoterminowe i bezproblemowe funkcjonowanie sprzętu.

Pytanie 16

Na liście materiałów potrzebnych do realizacji instalacji fotowoltaicznej znajduje się symbol YDYt 3×2,5. Co oznacza ten symbol w kontekście rodzaju przewodu?

A. jednodrutowymi miedzianymi do realizacji instalacji elektrycznej wewnątrz budynku w tynku
B. wielodrutowymi miedzianymi do podłączenia akumulatora z regulatorem ładowania
C. wielodrutowym miedzianym do realizacji instalacji elektrycznej wewnątrz budynku w tynku
D. jednodrutowymi aluminiowymi do połączenia w szereg akumulatorów
Wybór niepoprawnych odpowiedzi może wynikać z niepełnego zrozumienia symboliki dotyczącej przewodów elektrycznych. Odpowiedzi sugerujące, że przewód YDYt 3×2,5 ma żyły wielodrutowe, są błędne, ponieważ takie przewody, jak YDYt, są z reguły produkowane z żył jednodrutowych, co zapewnia lepsze parametry elektryczne. Zastosowanie żył aluminiowych w odpowiedziach także jest niewłaściwe, gdyż przewody YDYt są zasadniczo miedziane, co wpływa na ich przewodność oraz odporność na korozję. Użycie przewodów jednodrutowych miedzianych w instalacjach elektrycznych wewnątrz budynków jest zgodne z normami, które zalecają ich stosowanie tam, gdzie przewidywana jest niska obciążalność prądowa oraz gdzie przewody są osłonięte. Typowym błędem jest myślenie, że przewody aluminiowe mogą być z równym powodzeniem stosowane w warunkach domowych, co miedziane, co nie jest prawdą; przewody aluminiowe mają gorszą przewodność oraz wymagają specjalnych złączek. Konsekwencje niewłaściwego doboru przewodów mogą prowadzić do przegrzewania się instalacji, co z kolei zwiększa ryzyko pożaru. Z tego powodu ważne jest, aby przed podjęciem decyzji o wyborze przewodów, dobrze zrozumieć ich specyfikacje oraz wymogi dotyczące bezpieczeństwa.

Pytanie 17

W porowatych skałach o niskiej wilgotności znajdują się zasoby zmagazynowanej energii

A. hydrotermalnej
B. konwencjonalnie nieodnawialnej
C. nieodnawialnej
D. petrotermalnej
Odpowiedzi takie jak 'hydrotermiczna' czy 'nieodnawialna' są nietrafione, bo w kontekście suchych skał nie pasują do tego, co mówimy o zmagazynowywaniu energii. Hydrotermalne źródła energii zazwyczaj są w wilgotnych miejscach, gdzie gorące płyny geotermalne mogą być wykorzystane do produkcji energii. A w suchych skałach brak wody sprawia, że takie źródła się nie tworzą. Z kolei określenie 'nieodnawialna' dotyczy ogółu zasobów, a nie konkretnego typu energii związanej z porowatymi skałami, więc to też jest mylące. Odpowiedź 'konwencjonalnie nieodnawialnej' też nie pasuje, bo nie wyjaśnia konkretnego kontekstu dotyczącego petrotermicznych zasobów. Często popełniane błędy to pomijanie kluczowych cech geologicznych skał oraz mylenie różnych typów zasobów energetycznych z ich właściwościami fizycznymi. Żeby dobrze zrozumieć, jak działa złoże węglowodorowe, ważne jest, żeby odróżniać różne rodzaje energii i ich geologiczne uwarunkowania.

Pytanie 18

Tabela przedstawia kalkulację kosztów związanych z montażem 12 instalacji solarnych. Jaki będzie jednostkowy koszt montażu jednej instalacji solarnej?

Rodzaj kosztówWartość [zł]
Materiały wraz z narzutami75 650,00
Wynagrodzenia dla robotników wraz z narzutami45 680,00
Koszty ogólne budowy8 900,00
Koszty pośrednie firmy2 100,00

A. 11 027,50 zł
B. 10 852,50 zł
C. 6 304,17 zł
D. 10 110,83 zł
Poprawna odpowiedź to 11 027,50 zł, ponieważ jednostkowy koszt montażu jednej instalacji solarnej obliczamy poprzez zsumowanie wszystkich kosztów związanych z montażem i podzielenie tej kwoty przez liczbę instalacji. W praktyce, dokładne obliczenia finansowe są kluczowym elementem każdej inwestycji w energię odnawialną. Przykładowo, jeśli całkowity koszt montażu 12 instalacji wynosi 132 330 zł, to dzieląc tę kwotę przez 12 otrzymamy jednostkowy koszt montażu wynoszący 11 027,50 zł na jedną instalację. Takie obliczenia pomagają w ocenie rentowności inwestycji oraz w porównywaniu ofert różnych wykonawców. Wiedza na temat kalkulacji kosztów pozwala na lepsze zarządzanie budżetem projektu oraz podejmowanie świadomych decyzji w zakresie wyboru technologii i wykonawców, co jest zgodne z najlepszymi praktykami w branży energii odnawialnej.

Pytanie 19

Dla zapewnienia maksymalnej rocznej wydajności instalacji c.w.u. w Polsce, kąt nachylenia kolektorów słonecznych powinien znajdować się w zakresie

A. 10° ÷ 30°
B. 50° ÷ 70°
C. 70° ÷ 90°
D. 30° ÷ 50°
Odpowiedź 30° ÷ 50° jest prawidłowa, ponieważ optymalne nachylenie kolektorów słonecznych w Polsce powinno być dostosowane do średniej szerokości geograficznej kraju, co sprzyja maksymalnej efektywności całorocznej instalacji ciepłej wody użytkowej (c.w.u.). W tym zakresie nachylenia kolektory mogą najlepiej zbierać energię słoneczną, przede wszystkim w miesiącach zimowych, kiedy słońce znajduje się nisko na niebie. Praktyczne przykłady zastosowania tego nachylenia można zaobserwować w standardowych instalacjach solarnych, które są projektowane zgodnie z normą PN-EN 12975 dotyczącą kolektorów słonecznych. Przy zastosowaniu nachylenia w tym zakresie, użytkownicy mogą osiągnąć znaczne oszczędności na kosztach energii, co jest zgodne z zasadami zrównoważonego rozwoju oraz efektywności energetycznej, promowanymi przez wiele organizacji zajmujących się odnawialnymi źródłami energii. Warto również zaznaczyć, że eksperci zalecają regularne monitorowanie wydajności instalacji oraz dostosowywanie nachylenia w zależności od lokalnych warunków klimatycznych oraz zmieniających się pór roku.

Pytanie 20

Aby podłączyć wylot zimnego powietrza z parownika monoblokowej pompy ciepła typu powietrze-woda o współczynniku COP = 3,5, która podgrzewa wodę o mocy 7 kW, należy zastosować

A. rury miedzianej o średnicy 25 mm
B. rury PVC o średnicy 20 mm
C. rury stalowej o średnicy 125 mm
D. rury PVC o średnicy 125 mm
Rura PVC o średnicy 125 mm to całkiem dobry wybór do podłączenia wylotu zimnego powietrza z parownika w monoblokowej pompie ciepła powietrze-woda. Gdy projektujemy systemy HVAC, ważne, żeby materiały, które używamy, były zgodne z wymaganiami dotyczącymi przepływu powietrza i odporności na różne warunki atmosferyczne, a rura PVC właśnie takie właściwości ma. Średnica 125 mm powinna zapewnić odpowiedni przepływ powietrza, co jest kluczowe dla efektywności pompy ciepła, szczególnie gdy ma ona współczynnik COP na poziomie 3,5 i moc 7 kW. Warto pamiętać, żeby przy doborze materiałów do instalacji HVAC sprawdzić normy branżowe, jak PN-EN 1452, które precyzują wymagania dla rur w systemach hydraulicznych. Rury PVC są naprawdę niezawodne, łatwe do zamontowania i dobrze znoszą korozję. Przykładem ich zastosowania mogą być instalacje wentylacyjne czy klimatyzacyjne, gdzie odpowiedni przepływ powietrza przekłada się na komfort użytkowników i efektywność energetyczną całego systemu.

Pytanie 21

Pompy obiegowe w systemach solarnych mają funkcję soft-start. Jakie jest jej przeznaczenie?

A. ochrony pompy przed przepięciem
B. redukcji prądu rozruchu pompy
C. kontroli prędkości obrotowej pompy
D. zablokowania pompy, gdy temperatura płynu przekroczy 110°C
Pompy obiegowe w instalacjach solarnych są często wyposażone w funkcję soft-start, która ma na celu obniżenie prądu rozruchu pompy. Ta technologia przyczynia się do wydłużenia żywotności urządzenia oraz redukcji obciążeń elektrycznych w momencie włączenia. W praktyce, podczas rozruchu silnika pompy, prąd może znacznie wzrosnąć, co prowadzi do nadmiernego zużycia energii i stresu mechanicznego na elementy pompy. Dzięki funkcji soft-start, prąd rozruchowy jest limitowany, co pozwala na stopniowe zwiększanie prędkości obrotowej silnika. To z kolei zmniejsza ryzyko uszkodzeń oraz zapewnia stabilną pracę instalacji. W kontekście standardów branżowych, taka funkcjonalność jest zalecana w celu spełnienia norm efektywności energetycznej oraz bezpieczeństwa, co potwierdzają wytyczne wielu organizacji energetycznych. Przykładem zastosowania mogą być systemy grzewcze, w których pompy obiegowe są kluczowe dla efektywności energetycznej, a ich delikatne uruchamianie wpływa na oszczędności oraz komfort użytkowania.

Pytanie 22

Jak powinny być przechowywane rury miedziane?

A. w pomieszczeniach bez dostępu do powietrza
B. pod zadaszeniem na drewnianym podeście
C. w czystych i suchych pomieszczeniach
D. na otwartym terenie budowy bez ochrony
Magazynowanie rur miedzianych w pomieszczeniach czystych i suchych jest kluczowe dla ochrony ich właściwości fizycznych oraz chemicznych. Miedź, jako materiał, jest podatna na korozję, zwłaszcza w obecności wilgoci i zanieczyszczeń. Utrzymywanie rur w suchym środowisku zapobiega osadzaniu się wilgoci na ich powierzchni, co mogłoby prowadzić do korozji pittingowej. Ponadto, czyste pomieszczenia minimalizują ryzyko zanieczyszczenia rur pyłem, brudem czy substancjami chemicznymi, które mogą wpłynąć na ich trwałość i integralność. W praktyce, dla projektów budowlanych, zaleca się stosowanie specjalistycznych magazynek, które zapewniają odpowiednią wentylację i ochronę przed szkodliwymi czynnikami. Dobre praktyki branżowe również sugerują regularne kontrole stanu magazynowanych materiałów, aby w porę zauważyć i eliminować ewentualne zagrożenia dla ich jakości. Tego typu procedury są zgodne z normami ISO 9001, które podkreślają znaczenie zarządzania jakością w przechowywaniu materiałów budowlanych.

Pytanie 23

Jaką jednostkę stosuje się do wyrażania stopnia mineralizacji wody?

A. l/°C
B. °C/l
C. mg/l
D. l/mg
Jednostka "mg/l" (miligramy na litr) jest powszechnie stosowana do pomiaru stopnia mineralizacji wody, co oznacza ilość rozpuszczonych substancji mineralnych w danym litrze wody. W praktyce, pomiar ten jest kluczowy w takich obszarach jak analiza jakości wody, zarządzanie zasobami wodnymi oraz ocena wpływu różnych czynników na ekosystemy wodne. Na przykład, w procesie uzdatniania wody, dokładne określenie jej mineralizacji pozwala na dobranie odpowiednich metod filtracji i oczyszczania, co jest zgodne z normami ustalonymi przez organizacje takie jak WHO czy EPA. Zastosowanie jednostki mg/l jest również istotne w kontekście gospodarki wodnej, gdzie monitorowanie mineralizacji pozwala na ocenę stanu wód gruntowych i powierzchniowych. Dodatkowo, w przemyśle spożywczym, dokładne oznaczanie mineralizacji wody jest niezbędne, aby zapewnić odpowiednią jakość produktów oraz spełnić wymogi regulacyjne. W związku z tym, znajomość i umiejętność posługiwania się jednostką mg/l jest niezbędna w wielu dziedzinach związanych z ochroną środowiska oraz zdrowiem publicznym.

Pytanie 24

W systemie grzewczym jednowalentnym występuje

A. wyłącznie pompa ciepła
B. pompa ciepła, kocioł gazowy oraz grzałka elektryczna
C. pompa ciepła oraz kocioł gazowy
D. pompa ciepła oraz kocioł olejowy
W monowalentnym systemie grzewczym zastosowanie ma tylko jedno źródło ciepła, którym w tym przypadku jest pompa ciepła. Pompy ciepła są nowoczesnym rozwiązaniem, które efektywnie przekształca energię z otoczenia, taką jak powietrze, woda czy grunt, na energię cieplną. Użycie tylko pompy ciepła w systemie grzewczym pozwala na uzyskanie wysokiej efektywności energetycznej, co jest zgodne z aktualnymi standardami dotyczącymi ochrony środowiska. Przykładem zastosowania pompy ciepła jako jedynego źródła ciepła mogą być budynki pasywne, które dzięki odpowiedniej izolacji i zastosowaniu technologii OZE (odnawialnych źródeł energii) mogą być efektywnie ogrzewane wyłącznie przy pomocy pompy ciepła. Takie rozwiązania przyczyniają się do obniżenia emisji CO2 oraz kosztów eksploatacyjnych, co jest kluczowe w kontekście zrównoważonego rozwoju. W dobrych praktykach branżowych zaleca się ocenę potencjału zastosowania pomp ciepła w danym budynku oraz dostosowanie systemu grzewczego do specyfikacji budowlanej i potrzeb użytkowników.

Pytanie 25

Na podstawie danych zawartych w tabeli określ roczny uzysk energii z elektrowni wiatrowej w instalacji o mocy 1500 kW i średniej prędkości wiatru 7 m/s.

Wielkość instalacjiRoczny uzysk energii w MWh
wirnikmocV = 5 m/s6 m/s7 m/s8 m/s9 m/s
30 m200 kW320500670820950
40 m500 kW610970136017302050
55 m1000 kW11501840257032803920
65 m1500 kW15202600375048605860
80 m2500 kW23804030583077009220
120 m5000 kW53009000130001700020000

A. 2 600 MWh
B. 3 750 MWh
C. 4 830 MWh
D. 1 520 MWh
Roczny uzysk energii z elektrowni wiatrowej można obliczyć, uwzględniając moc instalacji oraz średnią prędkość wiatru. W przypadku instalacji o mocy 1500 kW i średniej prędkości wiatru wynoszącej 7 m/s, roczny uzysk energii wynosi 3750 MWh. Obliczenia bazują na standardzie IEC 61400, który określa metody oceny wydajności turbin wiatrowych. Przykładowo, przy takiej prędkości wiatru, turbiny wiatrowe generują znaczną ilość energii, co czyni je efektywnym rozwiązaniem w zakresie odnawialnych źródeł energii. W praktyce, elektrownie wiatrowe są kluczowe w realizacji celów związanych z ograniczeniem emisji CO2 i przejściem na zrównoważone źródła energii. Warto również wspomnieć o roli analizy zasobów wiatrowych, która jest niezbędna do optymalizacji lokalizacji elektrowni oraz ich wydajności.

Pytanie 26

W trakcie transportu samochodowego gruntowej pompy ciepła do klienta, gdy moduł chłodniczy jest umieszczony na dole urządzenia, należy ją przewozić

A. w pozycji leżącej na bocznej ściance
B. w pozycji stojącej pionowo
C. w pozycji leżącej na tylnej ściance
D. w pozycji pochylonej pod kątem 45°
Odpowiedź 'stojącą pionowo' jest faktycznie na miejscu. Kiedy transportujesz gruntową pompę ciepła w tej pozycji, to wszystko działa lepiej – ciśnienie w układzie chłodniczym jest ok, a ryzyko jakichś uszkodzeń się zmniejsza. Jeśli masz moduł chłodniczy na dole, to pionowa pozycja utrzymuje płyny na swoim miejscu, co z kolei jest kluczowe dla działania systemu. W praktyce, dobrze jest przewozić takie urządzenia w sposób, który nie pozwoli na przesuwanie się elementów wewnętrznych i chroni je przed wstrząsami. Przykładem może być transport klimatyzacji, gdzie jak źle je przewieziemy, to po zainstalowaniu mogą się pojawić problemy. Lepiej zawsze trzymać się wytycznych producentów i norm, bo one zazwyczaj mówią, że pionowa pozycja transportowa to najlepszy wybór, żeby sprzęt działał jak należy.

Pytanie 27

Brak diodek blokujących w systemie off-grid może prowadzić do

A. całkowitego wyczerpania akumulatora
B. przeładowania akumulatora
C. przepływu prądu przez ogniwo w czasie zacienienia
D. uszkodzenia ogniwa w przypadku intensywnego zacienienia ogniwa
Brak diody blokującej w instalacji off-grid prowadzi do niekontrolowanego przepływu prądu przez ogniwa fotowoltaiczne w sytuacji, gdy są one zacienione. W momencie, gdy ogniwa są w cieniu, ich wydajność spada, co może skutkować generowaniem ujemnych napięć, co z kolei może prowadzić do sytuacji, w której prąd z akumulatora przepływa z powrotem przez ogniwo. To zjawisko jest szczególnie niebezpieczne, ponieważ może prowadzić do uszkodzenia ogniw w wyniku przegrzewania lub odwrócenia ich działania. Użycie diody blokującej jest standardową praktyką w projektowaniu systemów fotowoltaicznych, aby zapobiec takim sytuacjom. Dobrze zaprojektowany system powinien zatem zawierać diody blokujące w celu zwiększenia trwałości ogniw oraz maksymalizacji ich efektywności, co jest zgodne z wytycznymi branżowymi, takimi jak IEC 61215 dotycząca oceny wydajności modułów fotowoltaicznych. Przykład zastosowania można zobaczyć w systemach off-grid, gdzie każda nieprawidłowość może wpłynąć na cały system zasilania, więc kluczowe jest przestrzeganie najlepszych praktyk, aby uniknąć problemów związanych z zacienieniem.

Pytanie 28

Filtry powietrza w rekuperatorze powinny być wymieniane

A. co 7-8 miesięcy.
B. na podstawie oceny ich stanu.
C. na podstawie wskazówek od instalatora.
D. co 5-6 miesięcy.
Wymiana filtrów powietrza w rekuperatorze powinna być przeprowadzana na podstawie regularnej oceny ich zużycia, co jest zgodne z najlepszymi praktykami w branży HVAC. Filtry są kluczowymi elementami systemu wentylacji, ponieważ ich stan bezpośrednio wpływa na jakość powietrza oraz efektywność energetyczną urządzenia. Zaleca się regularne sprawdzanie filtrów, aby ocenić stopień ich zatykania i zanieczyszczenia. W praktyce można to zrobić poprzez wizualną inspekcję, a także za pomocą manometrów do pomiaru spadku ciśnienia na filtrze. W przypadku, gdy filtr jest zanieczyszczony, jego wymiana jest konieczna, aby zapewnić optymalną wydajność systemu. Niewłaściwe lub zbyt rzadkie wymiany filtrów mogą prowadzić do obniżenia efektywności rekuperatora, a także zwiększonego zużycia energii, co jest niekorzystne zarówno dla budżetu, jak i dla środowiska. Dlatego kluczowe jest, aby osoby zarządzające systemami wentylacyjnymi były odpowiednio przeszkolone i znały zasady oceny stanu filtrów.

Pytanie 29

Aby sprawdzić ciągłość połączeń elektrycznych w systemie fotowoltaicznym, należy przeprowadzić pomiar

A. rezystancji, zakres pomiarowy 100 Ω
B. rezystancji, zakres pomiarowy 100 kΩ
C. napięcia, zakres pomiarowy 50 V
D. prądu, zakres pomiarowy 5 A
Tak, dobrze wybrałeś! Pomiar rezystancji z zakresem 100 Ω to rzeczywiście kluczowa rzecz w instalacjach fotowoltaicznych. Jeżeli połączenia elektryczne mają zbyt dużą rezystancję, może to prowadzić do różnych problemów, jak np. straty energii czy nawet uszkodzenia sprzętu. Z mojego doświadczenia wynika, że warto zawsze robić te pomiary, żeby mieć pewność, że wszystko działa tak jak powinno. Powiedzmy, jeśli izolacja jest uszkodzona albo jest korozja, to rezystancja może naprawdę mocno skoczyć, co potrafi negatywnie wpłynąć na wydajność systemu. Podczas analizowania tych wyników, można zdiagnozować różne problemy, np. luźne złącza czy uziemienie, co jest mega ważne dla długoterminowego działania instalacji.

Pytanie 30

Montaż paneli słonecznych na płaskim dachu został zrealizowany przez jednego instalatora oraz dwóch asystentów. Wartość stawki instalatora wynosi 50,00 zł za każdą godzinę pracy, a stawka asystenta to 20,00 zł. Jaką łączną wartość robocizny można oszacować, jeśli całkowity czas pracy wynosi 8 godzin?

A. 560,00 zł
B. 90,00 zł
C. 960,00 zł
D. 720,00 zł
W przypadku wskazania nieprawidłowej wartości kosztorysowej, warto zrozumieć, jakie błędne założenia mogły prowadzić do takiego wniosku. Wiele osób może pominąć kluczowy element, jakim jest różnica w stawkach roboczych pomiędzy instalatorem a pomocnikami. Wybierając odpowiedź 560,00 zł, można zakładać, że osoba obliczyła jedynie koszty pracy pomocników, co jest dużym uproszczeniem. Koszt samej pracy pomocników wyniósłby 320,00 zł, co nie jest zgodne z całościowym podejściem do wyceny robocizny. Z kolei wybór 90,00 zł może wynikać z mylnego obliczenia, bazującego na niepełnym zestawieniu stawek lub liczby pracowników. Inna możliwość to błędne mnożenie stawki godzinowej przez liczbę godzin bez uwzględnienia faktu, że dwóch pomocników pracowało równocześnie. W przypadku wyboru wartości 960,00 zł można zauważyć, że osoba ta mogła pomylić się w obliczeniach, doliczając za dużo godzin lub stawkę dla każdego z pracowników. Kluczowe jest zrozumienie, że dokładna wycena robocizny wymaga analizy wszystkich elementów składających się na koszt, w tym różnicy w stawkach oraz liczby pracowników zaangażowanych w dany projekt. Przy obliczaniu kosztów robocizny należy kierować się zasadą dokładności, co pozwala na uniknięcie nieporozumień i błędów w przyszłych projektach.

Pytanie 31

W celu określenia liczby godzin pracy zatrudnionych w kosztorysie szczegółowym stosuje się

A. katalog nakładów rzeczowych
B. harmonogram robót
C. dziennik budowy
D. oferta sprzedaży producenta
Katalog nakładów rzeczowych jest kluczowym dokumentem, który służy do precyzyjnego określenia ilości godzin pracy oraz innych zasobów potrzebnych do realizacji danego projektu budowlanego. W kontekście kosztorysowania, katalog ten zawiera szczegółowe informacje o standardowych czasach pracy dla poszczególnych operacji budowlanych, co pozwala na bardziej dokładne oszacowanie kosztów robocizny. Przykładowo, jeśli katalog wskazuje, że wykonanie 1 m2 tynków wymaga 2 godzin pracy, to na podstawie planowanej powierzchni można łatwo obliczyć całkowity czas pracy potrzebny do wykonania tego zadania. Dobre praktyki w kosztorysowaniu opierają się na używaniu aktualnych i szczegółowych katalogów, które są zgodne z normami branżowymi, takimi jak KNR (Katalogi Nakładów Rzeczowych). Dzięki temu możliwe jest nie tylko precyzyjne oszacowanie kosztów, ale również monitorowanie wykonania prac w stosunku do zaplanowanych nakładów czasowych.

Pytanie 32

Przy transporcie kolektora słonecznego na dach, co należy zrobić?

A. zastosować pas transportowy przymocowany do przyłączy kolektora
B. usunąć osłony zabezpieczające
C. skorzystać z drabiny i w dwie osoby wciągnąć kolektor
D. użyć bloczków wyciągowych
Użycie bloczków wyciągowych podczas transportu kolektora słonecznego na dach to podejście, które zapewnia zarówno bezpieczeństwo, jak i efektywność operacyjną. Bloczek wyciągowy pozwala na zastosowanie mechanizmu dźwigni, co znacznie ułatwia podnoszenie ciężkich przedmiotów. W kontekście kolektorów słonecznych, które mogą ważyć od kilkudziesięciu do ponad stu kilogramów, kluczowe jest zminimalizowanie ryzyka urazu zarówno dla osób transportujących, jak i dla samego urządzenia. Przykładem zastosowania bloczków wyciągowych może być praca na budowie, gdzie mechanizmy te są standardem w podnoszeniu i transportowaniu materiałów budowlanych. Dobrą praktyką jest również zapewnienie, że bloczki są zgodne z normami bezpieczeństwa oraz że wszystkie osoby zaangażowane w proces transportu mają odpowiednie przeszkolenie z zakresu obsługi takich urządzeń. Dodatkowo, warto zwrócić uwagę na odpowiednie zabezpieczenie przewodów i przyłączy kolektora, aby uniknąć uszkodzeń podczas transportu.

Pytanie 33

Jakiego elementu należy użyć, aby połączyć dwie stalowe rury o tej samej średnicy z gwintem zewnętrznym?

A. mufy
B. redukcji
C. odpowietrznika
D. nypla
Użycie nypla, redukcji czy odpowietrznika w celu połączenia dwóch stalowych rur o tej samej średnicy z gwintem zewnętrznym jest mylne, gdyż każdy z tych elementów ma zupełnie inne zastosowanie. Nypl, będący prostym gwintowanym elementem, służy do wydłużania istniejącego połączenia, a nie do łączenia rur, co w przypadku rur o tej samej średnicy nie zapewnia ani stabilności, ani szczelności. Redukcja, z kolei, jest przeznaczona do zmiany średnicy rur, co czyni ją nieodpowiednią w sytuacji, gdy obie rury mają tę samą średnicę. Odpowietrznik, mający na celu eliminację powietrza z systemu, nie pełni funkcji łączącej i nie jest zaprojektowany do bezpiecznego połączenia elementów rurowych. Powszechnym błędem jest myślenie, że każdy element łączący może być użyty w dowolnym kontekście; w rzeczywistości każdy z tych elementów ma swoje specyficzne zastosowania i nie można ich stosować zamiennie. Przykładem może być sytuacja, gdy ktoś myśli, że mufa i redukcja pełnią tę samą funkcję, co prowadzi do nieodpowiednich i potencjalnie niebezpiecznych połączeń, które mogą skutkować wyciekami lub awariami systemu. Zrozumienie różnic pomiędzy tymi elementami łączeniowymi jest kluczowe dla zapewnienia bezpieczeństwa i efektywności instalacji rurowej.

Pytanie 34

Aby instalacja solarna osiągnęła maksymalną wydajność cieplną w okresie letnim, kolektor słoneczny powinien być zainstalowany na

A. południowej stronie dachu pod kątem 60°
B. północnej stronie dachu pod kątem 60°
C. południowej stronie dachu pod kątem 30°
D. północnej stronie dachu pod kątem 30°
Usytuowanie kolektora słonecznego na południowej połaci dachu w kącie nachylenia 30° jest optymalne dla maksymalizacji wydajności cieplnej instalacji solarnej w okresie letnim. Południowa ekspozycja zapewnia najlepszy dostęp do promieni słonecznych w ciągu dnia, co jest kluczowe dla generowania energii cieplnej. Kąt nachylenia 30° umożliwia efektywne wychwytywanie promieniowania słonecznego, minimalizując jednocześnie straty spowodowane odbiciem światła. Dodatkowo, taki kąt nachylenia jest zgodny z najlepszymi praktykami inżynieryjnymi, które wskazują, że dla instalacji solarnych montowanych w strefie umiarkowanej, kąt nachylenia powinien wynosić od 30° do 45°, co zwiększa efektywność absorpcji energii słonecznej. W praktyce, zastosowanie tego typu konfiguracji skutkuje wyższą temperaturą czynnika grzewczego i większą produkcją energii, co pozwala na lepsze zaspokojenie potrzeb cieplnych budynków w okresie letnim, a także na oszczędności w kosztach energii.

Pytanie 35

Jak należy przechowywać kolektory słoneczne?

A. pod wiatą, umieszczone szybą do góry
B. w zamkniętych pomieszczeniach, umieszczone szybą do góry
C. pod wiatą, umieszczone szybą w dół
D. w zamkniętych pomieszczeniach, umieszczone szybą w dół
Kolektory słoneczne fajnie jest przechowywać w zamkniętych pomieszczeniach, w pozycji szybą do góry. Dzięki temu są mniej narażone na działanie różnych warunków atmosferycznych i uszkodzenia. Jak się je trzyma w suchym i wentylowanym miejscu, to zmniejsza się ryzyko kondensacji i korozji, co jest bardzo ważne, bo wilgoć może zniszczyć te urządzenia. Ułożenie szybą do góry zapobiega zarysowaniom, co jest super ważne, zwłaszcza, że te kolektory są dosyć drogie. Wiele firm, które zajmują się energią odnawialną, sugeruje używanie specjalnych stojaków, żeby je lepiej zabezpieczyć. Dobrze jest też co jakiś czas sprawdzić ich stan, żeby wcześnie zauważyć ewentualne problemy. Wiedza na temat tego, jak dobrze przechowywać kolektory, jest kluczowa dla ich długiego życia i efektywności.

Pytanie 36

Czym są zrębki?

A. mieszanina trocin i kleju
B. odpady powstałe podczas pielęgnacji drzew
C. rozdrobnione pnie i gałęzie drzew
D. wióry z obróbki drewna
Zrębki to materiał pochodzący z rozdrobnienia pni i gałęzi drzew, co sprawia, że są jednym z istotnych produktów w kontekście zarządzania drewnem. W procesie tym wykorzystuje się rębaki do drewna, które skutecznie rozdrabniają większe fragmenty drzewa na mniejsze kawałki. Zrębki mają szerokie zastosowanie – często używane są jako biomasa do produkcji energii odnawialnej, co przyczynia się do zmniejszenia emisji CO2 w porównaniu do tradycyjnych paliw kopalnych. W ogrodnictwie stanowią doskonały materiał mulczujący, który pomaga w zatrzymywaniu wilgoci w glebie oraz w ograniczeniu wzrostu chwastów. Zrębki są również wykorzystywane do poprawy struktury gleby, co sprzyja wzrostowi roślin. W kontekście branżowym, zrębki mogą być klasyfikowane według ich wielkości i jakości, co wpływa na ich wartość rynkową oraz zastosowania. W Polsce coraz częściej stosuje się zrębki w elektrowniach biomasowych, co pokazuje rosnące zainteresowanie odnawialnymi źródłami energii.

Pytanie 37

Który z typów kolektorów słonecznych, używany w systemie do wspierania ogrzewania wody użytkowej i ogrzewania obiektu, charakteryzuje się najwyższą efektywnością w czasie wspomagania ogrzewania obiektu?

A. Rurowy typu heat-pipe
B. Płaski gazowy
C. Płaski cieczowy
D. Rurowy próżniowy
Rurowe kolektory typu heat-pipe to naprawdę mocny wybór, zwłaszcza zimą. Ich sprawność wtedy jest na najwyższym poziomie, co czyni je świetnym wsparciem dla ogrzewania budynku. Działają tak, że ciecz w rurze paruje, gdy dostaje ciepło ze słońca, a potem skrapla się w wymienniku ciepła. Z mojego doświadczenia wynika, że to super rozwiązanie, bo nawet w niskich temperaturach potrafią skutecznie odbierać ciepło. Warto wspomnieć, że takie kolektory świetnie sprawdzają się w miejscach jak baseny czy hotele, gdzie zapotrzebowanie na ciepło jest spore. Jeśli chodzi o normy branżowe, to przy pomocy takich jak EN 12975 można sprawdzić ich skuteczność w różnych warunkach. No i coraz częściej pojawiają się w projektach ekologicznych, gdzie efektywność energetyczna to podstawa. Czyli, generalnie, bardzo dobry wybór na dziś.

Pytanie 38

Jeśli prędkość wiatru zwiększyła się dwukrotnie, to turbina wiatrowa będzie mogła wygenerować

A. osiem razy więcej energii
B. dwa razy więcej energii
C. cztery razy więcej energii
D. szesnaście razy więcej energii
Odpowiedź "osiem razy więcej energii" jest prawidłowa, ponieważ moc generowana przez turbinę wiatrową jest proporcjonalna do sześcianu prędkości wiatru. Zgodnie z równaniem moc = 1/2 * gęstość powietrza * powierzchnia wirnika * prędkość^3, zauważamy, że podwajając prędkość wiatru (2v), moc staje się (1/2 * gęstość powietrza * powierzchnia wirnika * (2v)^3), co sprowadza się do 8 * (1/2 * gęstość powietrza * powierzchnia wirnika * v^3). W praktyce oznacza to, że nawet niewielkie zmiany w prędkości wiatru mogą znacząco wpłynąć na generowaną moc. To zjawisko jest kluczowe w projektowaniu i eksploatacji turbin wiatrowych, co potwierdzają liczne badania i dane operacyjne, które pokazują, że optymalizacja ustawienia turbin względem kierunku i siły wiatru może przynieść znaczne korzyści w zakresie efektywności energetycznej. Dlatego też, znajomość tych zależności jest istotna dla inżynierów i specjalistów pracujących w branży energetyki odnawialnej.

Pytanie 39

Jaka jest najbardziej korzystna wartość współczynnika efektywności pompy ciepła COP?

A. 0,25
B. 4,35
C. 0,35
D. 3,50
Wartość współczynnika efektywności pompy ciepła (COP) na poziomie 4,35 oznacza, że na każdą jednostkę energii elektrycznej zużytej przez pompę, uzyskuje się 4,35 jednostek energii cieplnej. Tak wysoki wskaźnik COP jest charakterystyczny dla nowoczesnych systemów grzewczych, które są projektowane z myślą o maksymalnej efektywności energetycznej. Przykładem mogą być pompy ciepła typu powietrze-woda lub grunt-woda, które przy odpowiednich warunkach zewnętrznych osiągają bardzo korzystne wartości COP. W kontekście standardów branżowych, warto zauważyć, że pompy ciepła powinny być zgodne z normą EN 14511, która określa metody badań i klasyfikacji tych urządzeń. Dzięki stosowaniu pomp ciepła o wysokim COP można znacząco obniżyć koszty ogrzewania, jednocześnie przyczyniając się do zmniejszenia emisji CO2, co jest zgodne z duchem zrównoważonego rozwoju i polityki ekologicznej wielu krajów.

Pytanie 40

Zasobnik na wodę użytkową w solarnej instalacji powinien być zlokalizowany

A. w połowie drogi pomiędzy kotłem a kolektorem
B. w sąsiedztwie kotła c.o.
C. w pobliżu kolektora słonecznego
D. z dala od kotła c.o.
Zasobnik wody użytkowej w instalacji solarnej powinien znajdować się blisko kotła c.o. z kilku powodów. Przede wszystkim, odpowiednia lokalizacja zasobnika minimalizuje straty ciepła, które mogą wystąpić na drodze między zasobnikiem a kotłem. Im krótsza droga dla wody, tym efektywniejszy jest transfer ciepła, co przekłada się na zmniejszenie kosztów energii oraz poprawę ogólnej wydajności systemu. Ponadto, bliskość zasobnika do kotła c.o. ułatwia również integrację obu urządzeń, co jest kluczowe dla sprawnego zarządzania energetycznego w budynku. W praktyce, instalacje, które umieszczają zasobniki wody użytkowej w pobliżu kotłów, często korzystają z lepszej koordynacji działania obu systemów, co prowadzi do większej oszczędności energii i lepszej dostępności ciepłej wody. Zgodnie z normami branżowymi oraz dobrymi praktykami, takie podejście zapewnia nie tylko optymalne wykorzystanie energii słonecznej, ale również dbałość o efektywność całego układu grzewczego.