Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 8 kwietnia 2025 13:24
  • Data zakończenia: 8 kwietnia 2025 13:39

Egzamin niezdany

Wynik: 15/40 punktów (37,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

W trakcie profesjonalnej wymiany uszkodzonego układu scalonego SMD - kontrolera przetwornicy impulsowej w odbiorniku TV - powinno się zastosować

A. stacji lutowniczej grzałkowej
B. lutownicy transformatorowej
C. stacji na gorące powietrze
D. lutownicy gazowej
Użycie stacji lutowniczej grzałkowej do wymiany układów scalonych SMD niesie ze sobą wiele ryzyk i ograniczeń. Chociaż grzałkowe lutownice mogą być użyteczne do lutowania elementów przewlekanych, nie są one dostosowane do precyzyjnego podgrzewania małych komponentów SMD. W przypadku układów scalonych SMD, które często są montowane na tak zwanych 'padach' oraz mają bardzo małe wymiary, konieczne jest stosowanie narzędzi, które pozwalają na równomierne i kontrolowane rozprowadzenie ciepła. Stacje lutownicze grzałkowe mogą wytwarzać zbyt wysoką temperaturę w jednym miejscu, co prowadzi do deformacji płytki drukowanej lub uszkodzenia samych komponentów. Ponadto, lutownice gazowe, mimo swojej mobilności, nie oferują precyzyjnego podgrzewania, co jest niezbędne w przypadku wrażliwych komponentów SMD. Używanie lutownic transformatorowych również nie jest odpowiednie, ze względu na ich konstrukcję i sposób działania, które opiera się na dostarczaniu dużej ilości ciepła w krótkim czasie. Tego typu narzędzia mogą łatwo przegrzać elementy, co prowadzi do ich uszkodzenia oraz błędów w lutowaniu. W praktyce, podejście to jest niezgodne z nowoczesnymi standardami serwisowymi, które nakładają nacisk na precyzję, delikatność i bezpieczeństwo podczas naprawy układów elektronicznych. Dlatego kluczowe jest zrozumienie, że wybór odpowiednich narzędzi do wymiany komponentów SMD jest fundamentalnym krokiem w procesie naprawy, mającym na celu zapewnienie długotrwałej funkcjonalności urządzeń elektronicznych.

Pytanie 6

W urządzeniu elektronicznym uszkodzeniu uległ warystor MYG 10K-431 o napięciu znamionowym 275 V AC, 350 V DC, energii tłumienia 55 J/2 ms i rastrze 7,5 mm. Wykorzystując tabelę zamienników wskaż oznaczenie warystora, który można zastosować w zamian za uszkodzony?

Tabela zamienników
Oznaczenie warystoraNapięcie znamionoweEnergia tłumieniaRaster
TSV07D471300 V AC
375 V DC
40 J/2 ms5 mm
JVR07N431K275 V AC
350 V DC
33 J/2 ms5 mm
JVR14N431K275 V AC
350 V DC
132 J/2 ms7,5 mm
B72210S0301K101300 V AC
385 V DC
47 J/2 ms7,5 mm

A. JVRO7N431K
B. TSV07D471
C. JVR14N431K
D. B72210S0301K101
Warystor JVR14N431K jest odpowiednim zamiennikiem dla uszkodzonego MYG 10K-431 z kilku powodów. Po pierwsze, oba warystory mają identyczne napięcie znamionowe: 275 V AC oraz 350 V DC, co jest kluczowe dla zapewnienia, że nowy komponent będzie działał w tych samych warunkach. Po drugie, JVR14N431K charakteryzuje się wyższą energią tłumienia wynoszącą 132 J/2 ms, co oznacza, że może skuteczniej absorbować i tłumić przepięcia, co jest istotne w obwodach narażonych na nagłe skoki napięcia. W praktyce, gdy w układzie występują przepięcia, warystory pełnią rolę ochronną, zapobiegając uszkodzeniu innych komponentów. Zastosowanie warystora o wyższej energii tłumienia w tym przypadku zwiększa niezawodność całego systemu elektronicznego. Również wspomniany raster wynoszący 7,5 mm zapewnia, że nowy warystor będzie odpowiednio pasował do istniejącego miejsca w obwodzie, co ułatwia jego wymianę i zabezpiecza przed błędami montażowymi. W branży elektronicznej kluczowe jest przestrzeganie standardów jakości oraz dobrych praktyk w doborze komponentów, dlatego stosowanie zamienników z porównywalnymi parametrami jest niezbędne. Zastosowanie JVR14N431K nie tylko spełnia wymogi techniczne, ale także przyczynia się do długotrwałej eksploatacji urządzenia.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jaką rolę pełni heterodyna w radiu?

A. Generatora sygnału o określonej częstotliwości
B. Układu zmiany zakresów w obwodach wielkiej częstotliwości
C. Filtra aktywnego środkowo przepustowego
D. Wzmacniacza pośredniej częstotliwości
Wszystkie pozostałe odpowiedzi odnoszą się do funkcji, które heterodyna nie pełni w odbiorniku radiowym. Wzmacniacz pośredniej częstotliwości, będący jednym z elementów obwodu odbiorczego, ma za zadanie wzmacniać sygnał pośredniej częstotliwości po jego zdemodulowaniu, ale sam nie generuje nowych sygnałów. Z tego względu nie można go mylić z heterodyną, której głównym celem jest właśnie generowanie sygnałów w procesie konwersji częstotliwości. Filtr aktywny środkowo-przepustowy również nie ma związku z funkcją heterodyny, ponieważ jego zadaniem jest przepuszczanie sygnałów o określonym zakresie częstotliwości, a nie generowanie nowych sygnałów. Przy tym, może on być zastosowany w różnych miejscach obwodu, ale nie ma związku z demodulacją sygnału, co czyni go niewłaściwym odniesieniem w tym kontekście. Kolejna nieprawidłowa odpowiedź, dotycząca układu zmiany zakresów, jest myląca, ponieważ heterodyna nie zmienia zakresu częstotliwości, lecz przekształca sygnał, aby umożliwić jego dalsze przetwarzanie w obrębie tego samego zakresu częstotliwości. Typowe błędy myślowe mogą obejmować mylenie funkcji generowania sygnału z jego wzmacnianiem lub filtrowaniem, co prowadzi do nieporozumień na temat roli poszczególnych komponentów w obwodach radiowych. Zrozumienie różnicy między tymi funkcjami jest kluczowe dla prawidłowego przyswojenia wiedzy na temat działania systemów komunikacji radiowej.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Jakie dwa rezystory połączone w sposób równoległy powinny zostać użyte, aby zastąpić uszkodzony rezystor o parametrach 200 Q / 0,5 W?

A. OMŁT 800 ? / 0,25 W i OMŁT 400 ? / 0,25 W
B. OMŁT 600 ? / 0,5 W i ML 300 ? / 0,5 W
C. OMŁT 600 ? / 0,25 W i ML 400 ? / 0,5 W
D. OMŁT 400 ? / 0,5 W i ML 300 ? / 0,5 W
Wybór rezystorów OMŁT 600 ? / 0,5 W oraz ML 300 ? / 0,5 W jest naprawdę dobry. Jak połączysz je równolegle, to dostajesz całkiem fajną wartość rezystancji, około 200 ?, która ładnie zastępuje uszkodzony rezystor. Z moich doświadczeń, przy połączeniu równoległym, liczy się całkowita rezystancja według wzoru: 1/R_total = 1/R1 + 1/R2. Tutaj to wygląda tak: 1/R_total = 1/600 + 1/300, co po przekształceniu daje R_total = 200 ?. Tak naprawdę, ważne jest też, żeby pamiętać o mocy znamionowej tych rezystorów. Połączenie dwóch z mocą 0,5 W jest wystarczające, bo całkowita moc, jaką będą brały, jest poniżej ich maksymalnych wartości. To, moim zdaniem, jest zgodne z zasadami, które mówią o dobieraniu elementów elektronicznych. Dzięki temu nie tylko zapewniasz bezpieczeństwo, ale i niezawodność układu. Co więcej, takie podejście pozwala lepiej zarządzać ciepłem, a to jest kluczowe w elektronice, żeby uniknąć przegrzewania.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Liczba 364 w systemie dziesiętnym po przekształceniu na kod BCD (ang. Binary-Coded Decimal) przyjmie formę

A. B3C6D4
B. 0011 0110 0100
C. 16C
D. 1101100
Odpowiedzi, które nie przedstawiają prawidłowego kodu BCD dla liczby 364, wskazują na nieporozumienia dotyczące konwersji między systemami liczbowymi. W przypadku BCD, każda cyfra liczbowa jest traktowana osobno, co oznacza, że dla liczby 364 musimy przekształcić każdą z cyfr: 3, 6 i 4. Odpowiedzi takie jak B3C6D4 i 16C sugerują zastosowanie formatu szesnastkowego, co w kontekście BCD jest błędne. W rzeczywistości, w systemie szesnastkowym liczby są reprezentowane innymi zasadami, gdzie wartości są grupowane w systemie bazowym 16, a nie 10. Przy takim podejściu łatwo można pomylić systemy i uzyskać nieprawidłowe wyniki. Ponadto, odpowiedź 1101100 wydaje się być binarną reprezentacją liczby, ale nie jest to zgodne z zasadami kodowania cyfr w systemie BCD. Przykładowo, aby zakodować cyfrę 3, 6 lub 4 w formie binarnej, potrzebujemy 4 bity. Typowymi błędami prowadzącymi do takich nieprawidłowych wniosków są ignorowanie zasad kodowania i pomieszanie różnych systemów liczbowych. Wiedza o tym, jakie zasady rządzą danym systemem liczbowym, jest kluczowa, a stosowanie dobrych praktyk w konwersji jest niezwykle istotne dla zapewnienia poprawności danych w aplikacjach cyfrowych.

Pytanie 19

Określ maksymalny czas realizacji prac związanych z montażem uchwytu ściennego anteny, jeśli wiercenie
4 otworów w ścianie trwa 20 min ±15%, a zamocowanie uchwytu przy użyciu 4 kołków rozporowych
12 min ±10%.

A. 35,0 min
B. 36,2 min
C. 32,0 min
D. 33,2 min
Odpowiedź 36,2 min to wynik poprawnego obliczenia maksymalnego czasu trwania robót posadowienia uchwytu ściennego antenowego. W pierwszym kroku obliczamy czas wiercenia czterech otworów. Czas ten wynosi 20 minut z tolerancją ±15%, co oznacza, że maksymalny czas wiercenia wynosi 20 minut + 3 minut (15% z 20 minut), co daje 23 minuty. W drugim kroku obliczamy czas zamocowania uchwytu z użyciem czterech kołków rozporowych. Czas ten wynosi 12 minut z tolerancją ±10%, co oznacza, że maksymalny czas zamocowania to 12 minut + 1,2 minut (10% z 12 minut), co daje 13,2 minuty. Suma maksymalnego czasu wiercenia i maksymalnego czasu zamocowania wynosi 23 minuty + 13,2 minuty = 36,2 minuty. Praktyczne zastosowanie tej wiedzy jest kluczowe w planowaniu czasu pracy oraz budżetów projektowych, a także pozwala na efektywne zarządzanie zasobami w projekcie budowlanym, co jest zgodne z dobrymi praktykami w zarządzaniu projektami budowlanymi oraz normami branżowymi.

Pytanie 20

Tabela przedstawia ustawienia zworek czujki ruchu. W jakim położeniu należy ustawić zworki w celu włączenia wysokiej ochrony, diody LED i detekcji ruchu pojedynczym sygnałem?

J1
Opcja Digital Shield (ochrony przed zakłóceniami)
Wył = wysoka ochrona
Wł. = niska ochrona
J2
Ustawienia LED
Wył = wyłączony
Wł. = włączony
J3
Pojedyncze lub podwójne sygnały detekcji
Wył = podwójne
Wł. = pojedyncze

A. J1-wyłączona, J2-wyłączona, J3-wyłączona.
B. J1-włączona, J2-wyłączona, J3-wyłączona.
C. J1-wyłączona, J2-włączona, J3-włączona.
D. J1-wyłączona, J2-wyłączona, J3-włączona.
Wybór niewłaściwego ustawienia zworek często wynika z braku znajomości funkcji poszczególnych elementów systemu zabezpieczeń. Ustawienie J1 na włączoną oznacza, że czujka będzie działać w trybie niskiej ochrony, co w praktyce prowadzi do mniejszej czułości na ruch. To może być szczególnie niebezpieczne w miejscach wymagających zaawansowanej ochrony, ponieważ może prowadzić do nieautoryzowanego dostępu. W przypadku ustawienia J2 na wyłączoną, dioda LED nie będzie sygnalizować aktywności czujki, co może prowadzić do złego zarządzania systemem i braku świadomości użytkownika o stanie zabezpieczeń. Dodatkowo, ustawienie J3 na wyłączoną uniemożliwia efektywną detekcję ruchu w trybie pojedynczego sygnału, co jest kluczowe w sytuacjach wymagających natychmiastowej reakcji. Zrozumienie tego, jak poprawne ustawienia zworek wpływają na całość funkcjonowania systemu zabezpieczeń, jest niezbędne dla skutecznej ochrony. W praktyce, ignorowanie instrukcji dotyczących zworek może prowadzić do fałszywego poczucia bezpieczeństwa, a co gorsza, do sytuacji, w których alarm nie zareaguje na rzeczywiste zagrożenie. Dlatego tak ważne jest, aby zawsze stosować się do zaleceń producenta oraz standardów branżowych, do których zalicza się m.in. odpowiednie oznaczenie i zarządzanie ustawieniami zworek.

Pytanie 21

Wykonano pomiary rezystancji Rab czujki ruchu typu NC połączonej w konfiguracji 2EOL/NC z rezystorami R1 = R2 = 1,1 kΩ zgodnie ze schematem. Na podstawie zamieszczonych w tabeli wyników pomiarów oraz schematu połączeń można stwierdzić, że

Stan
styków
naruszeniesabotażnaruszenie
i sabotaż
brak naruszenia
i sabotażu
Rab [kΩ]2,21,1

Ilustracja do pytania
A. uszkodzony jest wyłącznie styk TMP.
B. uszkodzony jest wyłącznie styk NC.
C. czujka ruchu działa poprawnie.
D. uszkodzone są styki NC i TMP.
Niepoprawne odpowiedzi opierają się na błędnym zrozumieniu działania czujek ruchu oraz ich interakcji z systemem. Propozycja, że uszkodzony jest wyłącznie styk NC, ignoruje fakt, że czujka ruchu działa prawidłowo, co potwierdzają wyniki pomiarów rezystancji. W przypadku stanu uszkodzenia styku NC, wartość rezystancji w obwodzie byłaby znacznie odmienna, co powinno być zauważalne podczas testowania. Istotne jest, aby nie mylić stanu normalnej pracy czujnika z sytuacjami awaryjnymi, ponieważ może to prowadzić do fałszywych alarmów lub pominięcia rzeczywistych usterek. Stwierdzenie, że czujka działa poprawnie, jest kluczowe w kontekście bezpieczeństwa, dlatego każda inna interpretacja musi być solidnie uzasadniona. Odpowiedzi sugerujące uszkodzenie obu styków NC i TMP opierają się na przypuszczeniach, które nie mają podstaw w rzeczywistych pomiarach. W praktyce, zarówno styki jak i czujniki powinny być regularnie testowane, a ich wyniki dokumentowane, aby zapobiegać ewentualnym nieprawidłowościom w działaniu systemu. Również myślenie, że uszkodzenie jednego styku może wpływać na działanie całego systemu, nie jest zgodne z zasadami projektowania i diagnostyki systemów alarmowych. Właściwe podejście do konserwacji i diagnostyki czujników pozwala na zachowanie ich funkcjonalności oraz zapewnienie wysokiego poziomu bezpieczeństwa.

Pytanie 22

Stabilność systemu automatycznej regulacji sprawia, że gdy układ zostaje wyprowadzony ze stanu równowagi,

A. sam wraca do tego stanu.
B. nie wraca do tego stanu, oscyluje.
C. resetuje się.
D. wyłącza się automatycznie.
W przypadku nieprawidłowych odpowiedzi można zauważyć pewne powszechne błędy myślowe, które prowadzą do błędnych wniosków o stabilności układów automatycznej regulacji. Przykładowo, sugestia, że układ "resetuje się", wskazuje na niepełne zrozumienie mechanizmów regulacyjnych. Takie podejście może sugerować, że układ przestaje działać w momencie zakłócenia, co jest sprzeczne z ideą ciągłości działania systemu automatyki. Z kolei stwierdzenie, że układ "wyłącza się samoczynnie", implikuje, że w przypadku zakłócenia nie podejmuje on żadnych działań kompensacyjnych, co jest charakterystyczne dla systemów niestabilnych lub awaryjnych, a nie zautomatyzowanych regulacji. Oscylacje, o których mowa w ostatniej nieprawidłowej odpowiedzi, mogą występować w systemach niestabilnych, ale nie są one pożądanym efektem w praktyce inżynieryjnej. W rzeczywistości, dobrym przykładem są systemy, w których odpowiedź na zakłócenie prowadzi do oscylacji, co może wskazywać na niewłaściwe dobranie parametrów regulatora. Zrozumienie tych zasad jest kluczowe w kontekście projektowania układów regulacji, które powinny być zgodne z najlepszymi praktykami w branży, takimi jak dostosowanie parametrów do specyfikacji systemu oraz realnych warunków eksploatacyjnych.

Pytanie 23

Sieć komputerowa obejmująca obszar miasta to sieć

A. LAN
B. WAN
C. MAN
D. PAN
Wybór odpowiedzi WAN, LAN lub PAN jest błędny z kilku powodów. WAN (Wide Area Network) odnosi się do sieci rozległych, które mogą obejmować duże obszary geograficzne, takie jak miasta, kraje czy kontynenty. Chociaż WAN jest kluczowy dla globalnej komunikacji, nie jest odpowiedni do opisu sieci o ograniczonym zasięgu miejskim. Z kolei LAN (Local Area Network) odnosi się do lokalnych sieci komputerowych, które zwykle obejmują niewielkie obszary, takie jak biura czy budynki. Sieci LAN są idealne do łączności w obrębie jednego obiektu, ale z definicji nie obejmują zasięgu miejskiego. PAN (Personal Area Network) dotyczy jeszcze mniejszych sieci, które łączą osobiste urządzenia, jak smartfony czy laptopy, zazwyczaj w odległości kilku metrów, co czyni je zupełnie nieodpowiednimi w kontekście zespołów miejskich. Kluczowym błędem w wyborze tych opcji jest mylenie zasięgów i funkcji poszczególnych typów sieci. Różnorodność zastosowań każdej z tych sieci jest bardzo ważna. Na przykład, sieci LAN są idealne do budowy biurowych środowisk pracy, natomiast WAN może być wykorzystywana do przesyłania danych między miastami. Zrozumienie tych różnic jest kluczowe dla skutecznego projektowania i wdrażania sieci, co podkreśla znaczenie znajomości typologii sieci w praktyce informatycznej.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Aby dwukrotnie zmniejszyć wzmocnienie członu inercyjnego pierwszego rzędu z transmitancją G(s) = k / (1 + sT), konieczne jest

A. podwoić wartość k
B. podwoić wartość T
C. zmniejszyć wartość T dwukrotnie
D. zmniejszyć wartość k dwukrotnie
Aby dwukrotnie zmniejszyć wzmocnienie członu inercyjnego pierwszego rzędu opisanego transmitancją G(s) = k / (1 + sT), należy zmniejszyć wzmocnienie k o połowę. Transmitancja systemu pokazuje, że wzmocnienie k jest kluczowym parametrem wpływającym na odpowiedź systemu. Zmniejszając k, zmniejszamy amplitudę odpowiedzi, co odpowiada zmniejszeniu wzmocnienia systemu. Przykładem zastosowania tej zmiany może być regulacja kontrolera PID w automatyce, gdzie obniżenie wzmocnienia w celu redukcji oscylacji lub przechyłów w odpowiedzi systemu może być konieczne, aby osiągnąć stabilność. W praktyce, zmniejszenie wzmocnienia pozwala na lepsze dopasowanie odpowiedzi systemu do oczekiwanego zachowania, co jest zgodne z zasadami projektowania systemów sterowania, gdzie dąży się do uzyskania stabilnej i precyzyjnej regulacji. Warto również zauważyć, że zmniejszając k, system staje się mniej czuły na zakłócenia, co jest istotne w wielu aplikacjach inżynieryjnych.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jakie urządzenie pozwala na podłączenie wielu urządzeń sieciowych do jednej sieci LAN?

A. Wzmacniak.
B. Modulator.
C. Przełącznik.
D. Serwer.
Wybór innego urządzenia jako rozwiązania problemu podłączenia wielu urządzeń sieciowych do jednej sieci LAN jest niepoprawny, ponieważ każde z tych urządzeń pełni inną rolę w architekturze sieciowej. Modulator, na przykład, jest używany w komunikacji analogowej do przekształcania sygnałów cyfrowych w analogowe, co nie ma związku z bezpośrednim łączeniem urządzeń sieciowych w lokalnej sieci. Takie zamieszanie może prowadzić do mylnego postrzegania funkcji poszczególnych urządzeń i ich zastosowania w praktyce. Wzmacniak, który zwiększa sygnał w sieci, również nie ma możliwości jednoczesnego łączenia wielu urządzeń – jego rola ogranicza się do poprawy jakości sygnału, co jest istotne w przypadku dużych odległości, ale nie wpływa na zarządzanie ruchem danych. Serwer, z drugiej strony, to komputer, który świadczy usługi innym komputerom w sieci, ale nie pełni funkcji łączenia wielu urządzeń w ramach lokalnej sieci. Często błędne wnioski wynikają z niepełnego zrozumienia hierarchii i funkcji poszczególnych komponentów sieciowych. Właściwe zrozumienie roli przełącznika i innych urządzeń w sieci jest kluczowe dla efektywnego projektowania i zarządzania sieciami, co podkreśla znaczenie edukacji w tym zakresie. W kontekście najlepszych praktyk, stosowanie przełączników w sieciach LAN jest standardem, podczas gdy pozostałe urządzenia mają swoje wyspecjalizowane zastosowania.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Jakim rodzajem energii pobieranej przez telewizor LCD w trybie czuwania (tzw. tryb STANDBY) jest wartość 3 VA, podana w jego specyfikacji technicznej?

A. Biernej
B. Skutecznej
C. Pozornej
D. Czynnej
Moc czynna, moc bierna i moc skuteczna to pojęcia, które często mylone są z mocą pozorną. Moc czynna, mierzona w watach (W), odnosi się do energii, która jest rzeczywiście wykorzystywana do wykonywania pracy, na przykład do zasilania telewizora podczas jego normalnej pracy. W przypadku telewizora w trybie czuwania, ich zużycie energii jest zminimalizowane, ale nie oznacza to, że pobierają one moc czynną. Z kolei moc bierna, wyrażana w varach, jest związana z elementami reaktancyjnymi w obwodzie, takimi jak cewki i kondensatory, i nie przyczynia się do wykonania żadnej pracy, co czyni ją nieodpowiednią w kontekście mocy pobieranej przez telewizor w stanie STANDBY. Co więcej, moc skuteczna to pojęcie, które nie jest standardowo używane w kontekście określania poboru energii przez urządzenia elektryczne, co sprawia, że odpowiedzi związane z mocą skuteczną również są błędne w tym kontekście. Kluczowym błędem myślowym jest mylenie tych terminów oraz nieprzywiązywanie uwagi do kontekstu ich zastosowania, co prowadzi do niepoprawnych wniosków dotyczących charakterystyki energetycznej urządzeń elektrycznych. Warto zatem zrozumieć, że podczas analizy dokumentacji technicznej, szczególnie w odniesieniu do poboru mocy przez urządzenia elektroniczne, kluczowe jest umiejętne odróżnianie tych rodzajów mocy oraz znajomość ich praktycznego zastosowania w codziennym użytkowaniu.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

W urządzeniu elektronicznym doszło do uszkodzenia kondensatora ceramicznego o oznaczeniu 104 100 V. Jaki kondensator należy zastosować w jego miejsce?

A. 1000 nF 1000 V
B. 10 nF 100 V
C. 10 nF 1000 V
D. 100 nF 100 V
Podane odpowiedzi, które nie są zgodne z właściwym oznaczeniem kondensatora, zdają się wynikać z niewłaściwego zrozumienia zasad działania kondensatorów ceramicznych i ich oznaczeń. Odpowiedzi takie jak "10 nF 1000 V" oraz "1000 nF 1000 V" sugerują niepoprawne wartości pojemności oraz napięcia, które mogą wprowadzać w błąd. Odpowiedź "10 nF 1000 V" posiada zbyt małą pojemność w porównaniu do wymaganego 100 nF, co oznacza, że nie spełnia parametrów kondensatora, który powinien być inny w kontekście zastosowania. Z kolei "1000 nF 1000 V" oferuje zbyt dużą pojemność oraz napięcie, co może prowadzić do problemów z doborem właściwego komponentu do obwodu. W elektronice, wybór kondensatora wymaga zrozumienia zarówno pojemności, jak i napięcia roboczego, a nieprawidłowy dobór może skutkować awarią obwodu lub uszkodzeniem komponentów. Przykładowo, zastosowanie kondensatora o wyższej pojemności niż wymagana może prowadzić do nieprawidłowego działania układów filtrujących, co jest kluczowe w przypadku aplikacji audio czy zasilających. Należy również pamiętać, że kondensatory mają swoje specyfikacje dotyczące tolerancji, co wpływa na ich praktyczne zastosowanie w różnych układach elektronicznych.

Pytanie 38

Do jakiego celu wykorzystuje się komparator?

A. filtrowania napięć
B. sumowania dwóch sygnałów
C. porównania dwóch napięć
D. wzmacniania sygnału
Wybór niewłaściwej odpowiedzi wskazuje na nieporozumienie dotyczące funkcji komparatora w kontekście urządzeń elektronicznych. Wzmacnianie sygnału odnosi się do roli wzmacniaczy operacyjnych, które zwiększają amplitudę sygnału wejściowego, ale nie wykonują porównania napięć. Wzmacniacze operacyjne są projektowane do pracy w różnych konfiguracjach, takich jak amplifikacja napięcia czy jako sumatory sygnałów, co prowadzi do mylnego przekonania, że komparator pełni podobne funkcje. Powinno się zrozumieć, że komparator nie wzmacnia ani nie manipuluje amplitudą sygnału, a jedynie porównuje dwa napięcia. Podobnie, filtracja napięć jest funkcją dedykowanych układów filtrujących, które eliminują niepożądane częstotliwości, a nie służą do bezpośredniego porównywania poziomów napięcia. Sumowanie sygnałów to z kolei inna operacja, którą wykonują sumatory, a nie komparatory. Typowym błędem myślowym, który prowadzi do takich niepoprawnych wniosków, jest mylenie funkcji urządzeń oraz ich zastosowań w praktyce inżynieryjnej. Warto zatem przyswoić sobie definicje i podstawowe zasady działania poszczególnych komponentów elektronicznych, co pozwoli na lepsze zrozumienie ich roli w systemach elektronicznych.

Pytanie 39

Na który z parametrów fali nośnej oddziałuje sygnał modulujący w modulacji PM?

A. Pulsacji
B. Częstotliwości
C. Amplitudy
D. Fazy
Odpowiedzi, które sugerują, że sygnał modulujący wpływa na pulsację, amplitudę lub częstotliwość fali nośnej, są mylne, ponieważ nie odzwierciedlają zasad działania modulacji fazy. Pulsacja odnosi się do częstotliwości sygnału, a nie do fazy, przez co nie stanowi kluczowego elementu w PM. Amplituda natomiast jest stała w przypadku modulacji fazy, co oznacza, że zmiany amplitudy nie mają miejsca, co wprowadza w błąd użytkowników, sugerując, że modulacja mogłaby wpływać na tę wielkość. Z kolei częstotliwość odnosi się do modulacji częstotliwości (FM), która zmienia częstotliwość fali nośnej w odpowiedzi na sygnał modulujący. Przykładem tego błędnego zrozumienia może być mylenie PM z FM, co jest powszechnym błędem wśród osób, które nie mają doświadczenia w obszarze telekomunikacji. W rzeczywistości, kluczowym aspektem modulacji fazy jest to, że zmiany sygnału modulującego wpływają na kąt, w którym fala nośna jest przesunięta, a nie na jej amplitudę czy częstotliwość. Zrozumienie tego różnicowania jest niezbędne, aby prawidłowo stosować techniki modulacji w praktycznych aplikacjach telekomunikacyjnych.

Pytanie 40

Jakie jest zastosowanie funkcji NTP w urządzeniach elektronicznych, które są połączone z Internetem?

A. Pobrania adresu IP z serwera DHCP
B. Weryfikacji tożsamości użytkownika
C. Zmiany oprogramowania
D. Synchronizacji bieżącego czasu
Wiele osób może myśleć, że NTP jest używane do autoryzacji użytkownika, aktualizacji oprogramowania lub pobierania adresu IP z serwera DHCP, co jest jednak nieprawidłowe. Autoryzacja użytkownika opiera się na mechanizmach zabezpieczeń, które weryfikują tożsamość użytkowników poprzez hasła, klucze dostępu czy certyfikaty, a nie na synchronizacji czasu. Podobnie, aktualizacja oprogramowania wymaga systemów zarządzających, które ściągają nowe wersje oprogramowania z odpowiednich serwerów, co również nie ma związku z protokołem NTP. Ostatnia koncepcja, dotycząca pobierania adresu IP, odnosi się do protokołu DHCP (Dynamic Host Configuration Protocol), który służy do przydzielania dynamicznych adresów IP urządzeniom w sieci lokalnej. NTP z kolei koncentruje się wyłącznie na synchronizacji czasu, co jest kluczowe dla spójności działań w sieci. Niezrozumienie różnicy pomiędzy tymi protokołami może prowadzić do błędnych wniosków i problemów w zarządzaniu siecią. Dlatego istotne jest, aby przy poznawaniu protokołów sieciowych dobrze rozumieć ich indywidualne zastosowania i funkcjonalności, co pozwala uniknąć typowych błędów myślowych i lepiej wykorzystać ich potencjał w praktyce.