Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 23 maja 2025 21:17
  • Data zakończenia: 23 maja 2025 21:18

Egzamin niezdany

Wynik: 11/40 punktów (27,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Aby przeprowadzić konserwację systemu alarmowego, należy

A. zobaczyć reakcję czujników na ruch, sprawdzić datę wyświetlaną na manipulatorze, ocenić napięcie akumulatora
B. zmierzyć omomierzem jakość połączeń kabli, sprawdzić stan izolacji przewodów induktorem
C. przywrócić centralę do ustawień fabrycznych, ponownie zainstalować oprogramowanie centrali alarmowej
D. wyczyścić wnętrze obudowy z centralą, ocenić jakość styku sabotażowego centrali, zabrać akumulator do ładowania
Zresetowanie centrali do ustawień fabrycznych oraz ponowne wgrywanie oprogramowania centrali alarmowej, mimo że może być skuteczne przy rozwiązaniu problemów z oprogramowaniem, nie jest podstawową czynnością konserwacyjną. Takie działania są bardziej odpowiednie w przypadku poważnych usterek systemu lub błędów oprogramowania, a nie w ramach regularnej konserwacji. Ponadto, zbyt częste resetowanie może prowadzić do utraty istotnych danych konfiguracyjnych, co w konsekwencji może wpłynąć na funkcjonalność systemu. Wyczyść wnętrze skrzynki z centralą oraz sprawdź jakość styku sabotażowego centrali to również działania, które powinny być wykonywane, ale w kontekście konserwacji nie są one wystarczające. Właściwe działania konserwacyjne powinny koncentrować się na bieżącej ocenie stanu elementów systemu, takich jak czujki, akumulatory i ogólna reakcja systemu. Sprawdzanie jakości połączeń przewodów oraz stanu izolacji przewodów induktorem również jest ważne, jednakże nie powinno to stanowić priority w ramach regularnej konserwacji, która powinna skupić się na funkcjonalności systemu i jego zabezpieczeniach. Wnioskując, skuteczna konserwacja systemu alarmowego wymaga konkretnego podejścia opartego na sprawdzaniu kluczowych elementów, które wpływają na bezpieczeństwo, zamiast na działaniach, które mogą prowadzić do niepotrzebnych komplikacji.

Pytanie 2

Jednym z komponentów urządzenia elektronicznego jest rezystor o wartości rezystancji 1 kΩ i mocy 1 W. Jeśli brakuje elementu o tych parametrach, można go zastąpić rezystorem

A. o niższej rezystancji i tej samej mocy
B. o identycznej rezystancji i niższej mocy
C. o wyższej rezystancji i tej samej mocy
D. o identycznej rezystancji i wyższej mocy
Wybór rezystora o mniejszej rezystancji i tej samej mocy jest nieprawidłowy, ponieważ zmiana rezystancji w obwodzie wprowadza inne parametry do działania układu. Zmniejszenie rezystancji spowoduje wzrost prądu zgodnie z prawem Ohma, co może prowadzić do przeciążenia pozostałych elementów obwodu, a także spalić nowy rezystor, jeśli nie jest on odpowiednio dobrany do wymagań. Wybór rezystora o takiej samej rezystancji, ale mniejszej mocy, również jest błędny, ponieważ rezystor o mniejszej mocy nie będzie w stanie pracować w warunkach, które byłyby akceptowane dla oryginalnego elementu. Może to prowadzić do przegrzania i uszkodzenia rezystora. Wybór rezystora o większej rezystancji i tej samej mocy jest także niewłaściwy, gdyż zwiększenie rezystancji zmieni całkowity prąd w obwodzie, co z kolei wpłynie na działanie pozostałych komponentów. Takie podejście często wynika z niepełnego zrozumienia zasad działania obwodów elektrycznych oraz mechanizmów odpowiedzialnych za prąd i napięcie. Dlatego ważne jest, aby przy wyborze komponentów zawsze kierować się nie tylko ich rezystancją, ale także mocą, aby zapewnić pełną kompatybilność w obwodzie.

Pytanie 3

Kiedy urządzenie elektroniczne nie wykazuje żadnych oznak funkcjonowania, od czego powinno się zacząć diagnostykę uszkodzenia?

A. obwodów wejściowych
B. obwodów wyjściowych
C. układu zasilania
D. systemu masy
Układ zasilania jest kluczowym elementem w każdym urządzeniu elektronicznym. To właśnie ten układ dostarcza energię niezbędną do działania pozostałych komponentów. W przypadku braku oznak funkcjonowania urządzenia, pierwszym krokiem w diagnostyce powinno być sprawdzenie źródła zasilania. Może to obejmować weryfikację, czy urządzenie jest podłączone do sieci, czy nie ma uszkodzeń w kablu zasilającym oraz czy wtyczka i gniazdo są sprawne. Wykorzystując multimetr, można zmierzyć napięcie na wyjściu zasilacza, aby upewnić się, że dostarczane napięcie jest zgodne z wymaganiami urządzenia. Dobrym standardem jest również ocena, czy w przypadku urządzeń zasilanych bateryjnie nie doszło do rozładowania ogniw. Przykładowo, w przypadku laptopów, często pierwszy objaw problemu z zasilaniem to brak reakcji po naciśnięciu przycisku zasilania, co wymaga sprawdzenia zarówno zasilacza, jak i stanu baterii. Powinno to być zgodne z najlepszymi praktykami diagnostyki, które zalecają systematyczne podejście do analizy problemów zasilania.

Pytanie 4

Jak powinna wyglądać prawidłowa sekwencja działań przy konserwacji systemu automatyki przemysłowej?

A. Przeprowadzenie pomiarów elektrycznych instalacji, kontrola przewodów ciśnieniowych, zapoznanie się z dokumentacją techniczną instalacji, dokręcenie styków zaciskowych
B. Kontrola przewodów ciśnieniowych, przeprowadzenie pomiarów elektrycznych instalacji, zapoznanie się z dokumentacją techniczną instalacji, dokręcenie styków zaciskowych
C. Zapoznanie się z dokumentacją techniczną instalacji, dokręcenie styków zaciskowych, przeprowadzenie pomiarów elektrycznych instalacji, kontrola przewodów ciśnieniowych
D. Dokręcenie styków zaciskowych, kontrola przewodów ciśnieniowych, przeprowadzenie pomiarów elektrycznych instalacji, zapoznanie się z dokumentacją techniczną instalacji
Wybór nieprawidłowej kolejności czynności konserwacyjnych może prowadzić do wielu problemów w pracy instalacji automatyki przemysłowej. Na przykład, rozpoczęcie od sprawdzenia przewodów ciśnieniowych przed zapoznaniem się z dokumentacją techniczną może skutkować błędną interpretacją funkcji tych przewodów oraz ich wpływu na całą instalację. Ponadto, dokręcenie styków zaciskowych jako pierwsza czynność może prowadzić do sytuacji, w której luźne połączenia zostaną naprawione bez pełnego zrozumienia, jakie inne czynniki mogą wpływać na ich stan. Istotne jest, aby najpierw zrozumieć dokumentację techniczną, aby zidentyfikować, które elementy instalacji wymagają szczególnej uwagi. Wykonywanie pomiarów elektrycznych przed odpowiednim przygotowaniem może z kolei prowadzić do nieprawidłowych wyników, które mogą wprowadzić w błąd technika konserwacyjnego. W praktyce, pomiar powinien być ostatnim krokiem przed finalnym sprawdzeniem systemu, aby upewnić się, że wszelkie regulacje zostały wprowadzone, a połączenia są stabilne. Często takie błędne podejście wynika z niewłaściwego zrozumienia hierarchii działań konserwacyjnych, co może prowadzić do poważnych konsekwencji w działaniu systemów automatyki, w tym zakłóceń w procesach produkcyjnych oraz zwiększenia kosztów napraw.

Pytanie 5

Brak uziemiającej opaski na nadgarstku pracownika podczas montażu układów CMOS może prowadzić do

A. uszkodzenia sprzętu lutowniczego
B. porażenia prądem elektrycznym
C. poparzenia gorącym spoiwem
D. uszkodzenia układów scalonych
Nie da się ukryć, że pomysł, że brak opaski uziemiającej może prowadzić do porażenia prądem, poparzenia spoiwem czy uszkodzenia sprzętu lutowniczego, to nieporozumienie. Porażenie prądem jest tu mało prawdopodobne, bo te układy działają na niskim napięciu, więc nie ma ryzyka wysokiego napięcia, które mogłoby zaszkodzić pracownikowi. Co do poparzenia gorącym spoiwem, to raczej dotyczy to lutowania, a nie ESD. Uszkodzenia sprzętu lutowniczego mogą się zdarzyć przez złe użytkowanie lub błędne ustawienia temperatury, a nie przez brak opaski. Często myli się te różne zagrożenia związane z ESD i innymi problemami w procesie lutowania. Ważne jest, żeby dobrze zrozumieć zagrożenia związane z ESD i ich wpływ na elektronikę, bo to klucz do zapewnienia jakości i bezpieczeństwa w laboratoriach czy na liniach produkcyjnych. Warto wprowadzać procedury ochrony przed ESD, żeby zminimalizować ryzyko uszkodzeń, co w efekcie wpływa na wydajność i jakość finalnych produktów.

Pytanie 6

Na jakim zakresie woltomierza należy dokonać pomiaru napięcia AC o wartości skutecznej 90 V?

A. 100 V DC
B. 200 V AC
C. 750 V AC
D. 500 V DC
Wybór niewłaściwego zakresu pomiarowego może prowadzić do niepoprawnych wyników i uszkodzenia sprzętu. Odpowiedzi takie jak 100 V DC i 500 V DC są całkowicie nieodpowiednie do pomiaru napięcia przemiennego, ponieważ są one przeznaczone do pomiarów napięcia stałego. Napięcie stałe i przemienne mają różne właściwości, a użycie woltomierza ustawionego na DC do pomiarów AC może skutkować brakiem odczytu lub, co gorsza, uszkodzeniem urządzenia. Zakres 750 V AC, mimo że technicznie jest wystarczający, jest zbyt wysoki w porównaniu do oczekiwanego wyniku, co może prowadzić do obniżonej dokładności pomiaru. W pomiarach elektronicznych, optymalny dobór zakresu jest kluczowy dla uzyskania wiarygodnych wyników. Idealnym podejściem jest wybieranie zakresu, który jest blisko mierzonych wartości, ale nie mniejszy niż 20% większy od maksymalnego przewidywanego napięcia. To podejście gwarantuje zarówno bezpieczeństwo, jak i precyzję pomiaru, co jest zgodne z najlepszymi praktykami w branży. Prawidłowy wybór zakresu pomiarowego jest zatem fundamentem skutecznych pomiarów w inżynierii elektrycznej.

Pytanie 7

Który układ cyfrowy należy wykorzystać do konwersji kodu BCD na kod dla wyświetlacza siedmiosegmentowego?

A. Enkoder
B. Koder
C. Dekoder
D. Transkoder
Transkoder to taki sprytny układ cyfrowy, który pomaga zamieniać dane z jednego formatu na inny. W naszym przypadku chodzi o konwersję kodu BCD, czyli Binary-Coded Decimal, na kod dla wyświetlacza siedmiosegmentowego. W BCD każda cyfra dziesiętna jest przedstawiona w postaci binarnej, co oznacza, że do jej zapisania potrzebujemy czterech bitów. Wyświetlacze siedmiosegmentowe muszą z kolei wiedzieć, które segmenty zapalić, żeby pokazać odpowiednią cyfrę od 0 do 9. Transkoder robi właśnie to - bierze dane w kodzie BCD i generuje sygnały, które zapalają odpowiednie segmenty od A do G oraz punkt. Można go spotkać w różnych urządzeniach, na przykład w cyfrowych zegarach, gdzie czas musi być wyświetlany tak, żeby każdy mógł go łatwo odczytać. Używanie transkoderów to standard w elektronice, niezależnie czy w przemyśle, czy w produkcie dla konsumenta. Jak widać, są one naprawdę przydatne i często znaleźć je można w układach scalonych, co sprawia, że mniej miejsca zajmują na płytce drukowanej.

Pytanie 8

Jakiego typu konwerter powinien być zastosowany do niezależnego bezpośredniego połączenia czterech tunerów satelitarnych?

A. Quad
B. Quatro
C. Monoblock
D. Twin
Odpowiedź Quad jest prawidłowa, ponieważ konwerter Quad pozwala na podłączenie czterech tunerów satelitarnych do jednego talerza antenowego. Posiada on cztery wyjścia, co umożliwia niezależne odbieranie sygnałów przez każdy z tunerów. Dzięki temu możliwe jest jednoczesne oglądanie różnych programów telewizyjnych lub nagrywanie ich, co jest istotne w przypadku gospodarstw domowych z większą liczbą użytkowników. Stosowanie konwertera Quad jest szczególnie zalecane w przypadku instalacji, gdzie użytkownicy chcą korzystać z różnych tunerów, co zwiększa funkcjonalność systemu satelitarnego. Zgodnie z najlepszymi praktykami branżowymi, takie rozwiązanie powinno być stosowane w instalacjach, gdzie planowane jest wykorzystanie większej liczby urządzeń jednocześnie, co zapewnia wygodę i elastyczność w dostępie do szerokiej gamy programów. Ważne jest również, aby konwerter był podłączony do odpowiedniego uchwytu antenowego, aby zapewnić stabilny odbiór sygnału. Warto również zwrócić uwagę na kompatybilność konwertera z posiadanymi tunerami, co ma kluczowe znaczenie dla prawidłowego działania całego systemu.

Pytanie 9

Dokładne umycie i odtłuszczenie powierzchni płytki przed instalacją elementów elektronicznych jest wykonywane w celu

A. zwiększenia adhezji lutowia do pola lutowniczego
B. zapobiegania utlenianiu lutu
C. zapobiegania pękaniu lutu
D. zwiększenia temperatury topnienia lutu
Zaniechanie starannego mycia i odtłuszczenia powierzchni może prowadzić do szeregu problemów, jednak twierdzenie, że ma to na celu zapobieganie utlenianiu się lutu, jest błędne. Utlenianie lutu to proces chemiczny, który zachodzi niezależnie od czystości powierzchni płytki, zwłaszcza gdy lutowia są narażone na działanie atmosfery. W rzeczywistości, utlenianie może być kontrolowane poprzez odpowiednią manipulację temperaturą lutowania oraz stosowanie odpowiednich topników, a nie przez czystość przygotowanego podłoża. Ponadto, zapobieganie pękaniu lutu jest wynikiem właściwego doboru materiałów lutowniczych i technik lutowania, a nie samego mycia powierzchni. Zastosowanie odpowiednich materiałów o właściwej plastyczności i wytrzymałości pozwala na skuteczne zapobieganie pękaniu połączeń lutowniczych. Warto również zauważyć, że zwiększenie temperatury topnienia lutu nie jest związane z czystością powierzchni, ale z właściwościami chemicznymi i fizycznymi samego lutowia. Prawidłowe przygotowanie powierzchni jest częścią szerszej praktyki inżynieryjnej, która obejmuje nie tylko mycie, ale również kontrolę procesów lutowniczych, co podkreśla znaczenie wieloaspektowego podejścia do problemu jakości w elektronice.

Pytanie 10

Luty miękkie obejmują luty

A. miedziano-fosforowe
B. mosiężne
C. srebrne
D. cynowo-ołowiowe i bezołowiowe
Odpowiedzi dotyczące mosiężnych, srebrnych oraz miedziano-fosforowych lutów są nieprawidłowe, ponieważ te materiały nie są klasyfikowane jako luty miękkie. Luty mosiężne, składające się głównie z miedzi i cynku, charakteryzują się wyższą temperaturą topnienia i są klasyfikowane jako luty twarde, co uniemożliwia ich stosowanie w aplikacjach wymagających niskotemperaturowego lutowania. Srebro, będące metalem szlachetnym, jest stosowane w lutach srebrnych, które również mają wyższą temperaturę topnienia i są bardziej odpowiednie dla połączeń wymagających dużych obciążeń mechanicznych oraz odporności na wysokie temperatury. Luty miedziano-fosforowe z kolei, chociaż są wykorzystywane w niektórych zastosowaniach, również nie mieszczą się w kategorii lutów miękkich, gdyż mają zastosowanie w lutowaniu twardym, szczególnie w instalacjach miedzianych. Wybór lutów powinien być oparty na właściwościach materiałów oraz wymaganiach konkretnej aplikacji. Zrozumienie tych różnic jest kluczowe dla uniknięcia błędów w lutowaniu, które mogą prowadzić do awarii połączeń oraz zmniejszenia trwałości całych układów elektronicznych.

Pytanie 11

Co oznacza skrót DISEqC?

A. protokół komunikacyjny do zarządzania urządzeniami satelitarnymi
B. adapter sieciowy do przesyłania sygnałów satelitarnych
C. modulator jedno wstęgowy używany w zbiorczych systemach telewizyjnych
D. konwerter satelitarny przeznaczony do hybrydowych sieci kablowych
DISEqC, czyli Digital Satellite Equipment Control, to taki protokół, który pozwala na łatwiejsze zarządzanie urządzeniami satelitarnymi, jak konwertery i przełączniki. Dzięki temu, co wymyślono w DISEqC, możemy zdalnie sterować tymi urządzeniami za pomocą sygnałów przez kabel współosiowy, co naprawdę ułatwia życie przy konfigurowaniu i używaniu systemów satelitarnych. to nie jest może coś super skomplikowanego, ale żeby korzystać z różnych sygnałów z wielu satelitów, no to DISEqC staje się mega przydatne, bo pozwala nam przełączać się między różnymi kanałami telewizyjnymi czy radiowymi bez potrzeby manualnego grzebania w konwerterach. Co ciekawe, ten standard jest dość powszechny w branży telekomunikacyjnej, więc warto go znać, jeśli chce się działać w tej dziedzinie. Poza tym, DISEqC działa razem z innymi standardami jak DVB-S, co oznacza, że można go używać z wieloma różnymi urządzeniami. Znajomość DISEqC i tego, jak to działa, zdecydowanie ułatwia projektowanie i korzystanie z systemów satelitarnych, według mnie to naprawdę ważne.

Pytanie 12

Zadaniem systemu jest ochrona przed dostępem osób nieupoważnionych do wyznaczonych stref w obiekcie oraz identyfikacja osób wchodzących i przebywających na terenie tych stref?

A. systemu alarmowego w razie włamania i napadu
B. monitoringu wizyjnego
C. kontroli dostępu
D. przeciwpożarowego
Wybór telewizji dozorowej, systemu pożarowego lub sygnalizacji włamania i napadu jako odpowiedzi na pytanie dotyczące ograniczenia dostępu jest błędny, ponieważ te systemy nie są bezpośrednio odpowiedzialne za kontrolowanie i zarządzanie dostępem do określonych obszarów. Telewizja dozorowa, czyli system kamer monitorujących, służy przede wszystkim do obserwacji i rejestracji zdarzeń, a nie do prewencji dostępu. Mimo że może wspierać systemy bezpieczeństwa, nie ma zdolności do aktywnego kontrolowania, kto ma dostęp do chronionych stref. Z kolei systemy pożarowe są zaprojektowane do wykrywania i alarmowania o zagrożeniu pożarowym, a ich funkcjonalność nie obejmuje monitorowania ani zarządzania dostępem osób. Natomiast sygnalizacja włamania i napadu ma na celu detekcję naruszeń bezpieczeństwa, nie kontroluje jednak, kto może wejść do budynku. Wybór tych systemów może wynikać z mylnego założenia, że wszystkie są równorzędnymi rozwiązaniami w zakresie bezpieczeństwa, co prowadzi do nieprecyzyjnego zrozumienia ich specyficznych funkcji. Dlatego kluczowe jest uwzględnienie, że kontrola dostępu to samodzielny obszar w zarządzaniu bezpieczeństwem, który wymaga dedykowanych technologii i narzędzi do skutecznej identyfikacji oraz autoryzacji osób wchodzących do chronionych obszarów.

Pytanie 13

Aby zakończyć instalację telewizyjną wykonaną przy użyciu kabla koncentrycznego, konieczne jest zastosowanie rezystora o oporności

A. 50 Ω
B. 500 Ω
C. 75 Ω
D. 300 Ω
Właściwa odpowiedź to 75 Ω, ponieważ większość systemów telewizyjnych, w tym anteny i odbiorniki, zostało zaprojektowanych do pracy z impedancją 75 Ω. Stosowanie rezystora o tej wartości na zakończeniu linii koncentrycznej jest kluczowe dla zapewnienia odpowiedniego dopasowania impedancji, co minimalizuje straty sygnału oraz odbicia. W praktyce, jeśli zakończenie linii nie będzie zgodne z impedancją, część sygnału może zostać odbita, co prowadzi do zakłóceń w odbiorze i obniżenia jakości sygnału wideo i audio. W standardach telekomunikacyjnych, takich jak normy DVB-T i DVB-S, impedancja 75 Ω jest powszechnie stosowana, co potwierdza jej znaczenie w branży. Przykładem zastosowania rezystora 75 Ω w praktyce jest montaż gniazdek antenowych oraz zakończeń kabli w instalacjach domowych, gdzie kluczowe jest zachowanie wysokiej jakości sygnału. Dodatkowo, w profesjonalnych aplikacjach telewizyjnych, takich jak systemy telewizji przemysłowej czy transmisje na żywo, wykorzystanie odpowiednich rezystorów końcowych jest niezbędne do utrzymania integralności sygnału.

Pytanie 14

Podczas instalacji kabla krosowego w przyłączach gniazd nie można pozwolić na rozkręcenie par przewodów na odcinku większym niż 13 mm, ponieważ

A. zredukowana zostanie jego impedancja
B. może to prowadzić do obniżenia odporności na zakłócenia
C. nastąpi wzrost jego impedancji
D. kabel stanie się źródłem intensywniejszego pola elektromagnetycznego
Wybór odpowiedzi, że zmniejszenie impedancji byłoby wynikiem rozkręcenia par przewodów, jest niepoprawny, gdyż pojęcie impedancji odnosi się do oporu, który przewód stawia przepływowi prądu przemiennego. W kontekście kabli krosowych, rozkręcenie przewodów na większym odcinku wpływa na charakterystykę sygnału, ale nie w sposób, który prowadziłby do jednoznacznego zmniejszenia impedancji. Również stwierdzenie, że kabel stanie się źródłem większego pola elektromagnetycznego, jest mylące; owszem, większe pole elektromagnetyczne może wystąpić, lecz niekoniecznie w wyniku samego rozkręcenia. Całkowita emisja pola elektromagnetycznego zależy od wielu czynników, w tym od konstrukcji kabla, jego ekranowania oraz otaczających go elementów. Warto zauważyć, że zwiększone pole elektromagnetyczne nie jest bezpośrednio związane z zakłóceniami, które mogą wpływać na sygnał. Ostatecznie, stwierdzenie, że nastąpi zwiększenie impedancji, jest również nieprawdziwe, ponieważ impedancja zależy od długości kabla i jego właściwości, a nie od długości rozkręcenia pary. Dlatego tak ważne jest zwracanie uwagi na parametry techniczne instalacji i przestrzeganie standardów, aby zminimalizować ryzyko zakłóceń w systemach komunikacyjnych.

Pytanie 15

W trakcie serwisowania systemu alarmowego nie kontroluje się

A. faktury zakupu
B. stanu akumulatora
C. linii sabotażowych
D. ustawienia czujek ruchu
Podczas konserwacji systemu alarmowego kluczowe jest zrozumienie, które elementy wymagają regularnego nadzoru i dlaczego. Stan akumulatora jest jednym z najważniejszych aspektów, ponieważ to on zapewnia zasilanie w przypadku przerwy w dostawie energii elektrycznej. Jeśli akumulator nie jest w dobrym stanie, cała instalacja alarmowa może się wyłączyć, co stwarza ryzyko utraty bezpieczeństwa. Linia sabotażowa jest innym krytycznym elementem, który powinien być testowany, aby upewnić się, że nie został usunięty ani uszkodzony. W kontekście ochrony mienia, testowanie tych linii jest istotne, ponieważ ich awaria może prowadzić do nieautoryzowanego dostępu. Ustawienia czujek ruchu również wymagają uwagi, ponieważ ich niewłaściwe skalibrowanie może prowadzić do fałszywych alarmów lub, co gorsza, do braku reakcji na rzeczywiste zagrożenie. Przykładem dobrej praktyki jest przeprowadzanie regularnych przeglądów technicznych, które powinny obejmować analizę wszystkich tych komponentów. Z drugiej strony, sprawdzenie faktury zakupu nie ma znaczenia w kontekście operacyjnym systemu. To dokumentacja administracyjna, która nie wpływa na bieżące funkcjonowanie urządzenia. Warto podkreślić, że choć faktura może być istotna w kontekście gwarancji lub zwrotów, nie jest to czynność związana z konserwacją, co może prowadzić do mylnych wniosków o jej znaczeniu w codziennym utrzymaniu systemu alarmowego.

Pytanie 16

Podczas instalacji którego z elementów elektronicznych nie trzeba zwracać uwagi na jego polaryzację?

A. Diody prostowniczej
B. Fotodiody
C. Kondensatora ceramicznego
D. Kondensatora elektrolitycznego
Fotodiody, diody prostownicze oraz kondensatory elektrolityczne to elementy elektroniczne, które wymagają uwzględnienia polaryzacji podczas ich montażu. Fotodiody działają na zasadzie efektu fotoelektrycznego, gdzie ich struktura jest wrażliwa na kierunek przepływu prądu, co sprawia, że błędne podłączenie może prowadzić do ich uszkodzenia. W przypadku diod prostowniczych, ich funkcja polegająca na przepuszczaniu prądu tylko w jednym kierunku również czyni je wrażliwymi na niewłaściwe podłączenie. Błędne ustawienie diody w obwodzie może skutkować zwarciem lub uszkodzeniem innych komponentów. Natomiast kondensatory elektrolityczne wymagają szczególnej uwagi z uwagi na ich polaryzację, co wynika z budowy ich wewnętrznych elektrod. Niewłaściwe podłączenie kondensatora elektrolitycznego może prowadzić do ich eksplozji, co jest nie tylko niebezpieczne, ale również może zniszczyć pozostałe elementy układu. Typowe błędy myślowe, prowadzące do takich niepoprawnych wniosków, obejmują zrozumienie, że wszystkie kondensatory są niepolaryzowane, co jest błędne. Wiedza na temat polaryzacji komponentów jest kluczowa dla projektowania bezpiecznych i efektywnych układów elektronicznych.

Pytanie 17

Jakie urządzenia należy wykorzystać w systemie monitoringu, aby zwiększyć dystans między kamerą a rejestratorem, jeśli połączenie jest zrealizowane za pomocą kabla UTP?

A. Zwrotnice
B. Filtry wideo
C. Symetryzatory
D. Transformatory wideo
Wybór symetryzatorów może prowadzić do zamieszania, jeśli chodzi o zwiększanie odległości między kamerą a rejestratorem w systemach wideo. Tak naprawdę, symetryzatory mają na celu poprawę jakości sygnału w audio i wideo, ale głównie to chodzi o eliminację zakłóceń i wzmocnienie sygnału. Nie są one zbyt odpowiednie do przesyłania sygnału na długie odległości. Często w monitoringu wideo się ich nie stosuje, bo nie są projektowane pod kątem sygnału wideo, który potrzebuje specyficznych parametrów, jak impedancja czy pasmo przenoszenia. Filtry wideo, które usuwają niepożądane częstotliwości, też nie są idealnym rozwiązaniem, jeśli chodzi o zwiększanie odległości – raczej poprawiają jakość sygnału przy określonej długości kabla. A zwrotnice to inna sprawa, używane są w telekomunikacji do kierowania sygnałami, ale w kontekście monitoringu nie pomagają zwiększyć odległości. Często myśli się, że każde urządzenie, które poprawia sygnał, będzie też dobre do przesyłania na dużą odległość, ale to wcale nie jest takie proste. Wymagania dotyczące przesyłu sygnału wideo są dość szczegółowe i trzeba używać odpowiednich rozwiązań, jak właśnie transformatory wideo, które zapewniają lepszą jakość na długich dystansach.

Pytanie 18

Zerowanie omomierza to proces polegający na

A. dostosowaniu rezystancji bocznika
B. ustawieniu "0 Ohm" przy rozwartych zaciskach pomiarowych
C. ustawieniu "0 Ohm" przy zwartych zaciskach pomiarowych
D. do wyboru odpowiedniego zakresu do przewidywanej wartości pomiarowej
Wybór innych odpowiedzi jest wynikiem nieporozumienia dotyczącego zasady działania omomierzy oraz ich kalibracji. Dobór zakresu pomiaru do przewidywanej wartości pomiaru nie ma nic wspólnego z zerowaniem. Zakres odnosi się do zakresu wartości, które omomierz może zmierzyć, a nie do kalibracji samego urządzenia. Niezrozumienie tego faktu może prowadzić do błędów w pomiarach, zwłaszcza w sytuacjach, gdy użytkownik nie jest pewien, jakie wartości powinien się spodziewać. Ustawienie '0 Ohm' przy rozwartych zaciskach również jest błędne, ponieważ w takim przypadku nie ma zamkniętego obwodu i omomierz nie ma możliwości zarejestrowania rezystancji. Warto zauważyć, że brak zrozumienia procesu kalibracji omomierza może prowadzić do jego niewłaściwego użycia, co w konsekwencji może wpłynąć na jakość i wiarygodność przeprowadzanych pomiarów. Dopasowanie rezystancji bocznika również nie jest związane z zerowaniem omomierza, ponieważ bocznik służy do pomiaru prądu, a nie do kalibracji omomierza. W sytuacjach, gdy użytkownik nie jest świadomy podstawowych zasad kalibracji, istnieje ryzyko, że pomiary rezystancji będą zafałszowane, co może prowadzić do niepoprawnych diagnoz i decyzji w zakresie napraw i konserwacji urządzeń elektrycznych.

Pytanie 19

Jakie urządzenie jest odpowiedzialne za rozdzielanie tonów niskich, średnich i wysokich do głośników?

A. limiter
B. equalizer
C. zwrotnica głośnikowa
D. komparator głośnikowy
Komparator głośnikowy, equalizer oraz limiter pełnią inne role w systemach audio i nie są odpowiednie do rozdzielania tonów niskich, średnich i wysokich. Komparator głośnikowy jest urządzeniem, które zazwyczaj służy do porównywania sygnałów audio, jednak nie jest zaprojektowany do efektywnego zarządzania częstotliwościami w systemach głośnikowych. Jego zastosowanie w kontekście rozdzielania tonów jest mylące, ponieważ nie oferuje funkcji filtracji i nie wpływa na kierowanie sygnału do odpowiednich głośników. Również equalizer, mimo że dostosowuje poziomy częstotliwości, nie dzieli sygnału na różne pasma w sposób, który jest wymagany do efektywnego używania głośników tonów niskich, średnich i wysokich. Equalizer jedynie pozwala na regulację głośności poszczególnych częstotliwości, co może poprawić brzmienie, ale nie rozdziela sygnału. Z kolei limiter służy do ograniczania maksymalnego poziomu sygnału audio, co ma na celu zapobieganie przesterowaniom. Ograniczanie sygnału nie jest związane z filtrowaniem częstotliwości i nie ma zastosowania w kontekście kierowania sygnałów do odpowiednich głośników. Zrozumienie tych różnic jest kluczowe, aby nie wprowadzać się w błąd podczas projektowania lub optymalizacji systemów audio. Fikcyjne przypisanie tych funkcji do zwrotnic prowadzi do niewłaściwego wykorzystania sprzętu, co negatywnie wpływa na jakość dźwięku oraz efektywność nagłośnienia.

Pytanie 20

Jakie urządzenie jest wykorzystywane do łączenia włókien w komunikacyjnym kablu światłowodowym?

A. który służy do lutowania
B. spawarka
C. zaciśniacz
D. zgrzewarka
Wybór narzędzi do łączenia włókien optycznych może być mylący, szczególnie gdy rozważa się zastosowanie zaciskarki, lutownicy czy zgrzewarki. Zaciskarka jest narzędziem używanym do łączenia kabli elektrycznych i nie ma zastosowania w kontekście włókien optycznych. Jej mechanizm opiera się na zgrzewaniu metalowych przewodów, co jest całkowicie nieodpowiednie dla delikatnych włókien optycznych, które wymagają precyzyjnego połączenia bez narażania ich na uszkodzenia. Lutownica, natomiast, jest narzędziem stosowanym w elektronice do łączenia komponentów elektronicznych, a jej zasada działania polega na topnieniu cyny, co w przypadku włókien optycznych jest niewłaściwe, ponieważ nie ma możliwości skutecznego lutowania materiałów optycznych. Zgrzewarka także nie znajduje zastosowania w tej dziedzinie, ponieważ jej działanie opiera się na łączeniu materiałów przez wysokotemperaturowe zgrzewanie, co w przypadku włókien może prowadzić do ich zniszczenia. Aby połączyć włókna optyczne w sposób efektywny i bezpieczny, niezbędne jest zrozumienie różnic pomiędzy tymi technologiami oraz ich zastosowań w praktyce. Właściwe podejście do łączenia włókien optycznych, które zapewnia minimalizację strat sygnału i wysoką jakość połączenia, opiera się na wiedzy o technicznych aspektach używania spawarek światłowodowych, co podkreśla znaczenie właściwego wyboru narzędzi w branży telekomunikacyjnej.

Pytanie 21

Użycie akumulatora żelowego w ekstremalnie niskich temperaturach prowadzi do

A. obniżenia pojemności akumulatora
B. wzrostu pojemności akumulatora
C. konieczności podwyższenia prądu ładowania
D. konieczności obniżenia napięcia ładowania
Zwiększenie pojemności akumulatora w niskich temperaturach to powszechny mit, który wynika z niepełnego zrozumienia mechanizmów działania akumulatorów. W rzeczywistości, niskie temperatury wpływają negatywnie na procesy elektrochemiczne wewnątrz akumulatora. Wraz z obniżeniem temperatury, ruchliwość jonów w elektrolitach maleje, co prowadzi do ograniczenia ich dostępności do reakcji chemicznych. W efekcie tego, akumulator nie jest w stanie dostarczyć pełnej ilości energii, co objawia się spadkiem pojemności. Warto również zauważyć, że konieczność zmniejszenia napięcia lub zwiększenia prądu ładowania w niskich temperaturach jest również mylnym podejściem. Zmiana napięcia ładowania może prowadzić do nadmiernego ładowania akumulatora, co w konsekwencji skutkuje uszkodzeniem ogniw. Z kolei zwiększenie prądu ładowania w niskich temperaturach może prowadzić do niebezpiecznych sytuacji, takich jak przegrzanie czy nawet eksplozja akumulatora. W praktyce, akumulatory żelowe powinny być ładowane zgodnie z zaleceniami producenta, co ma na celu zapewnienie ich długowieczności i efektywności działania. Dlatego kluczowe jest unikanie błędnych założeń dotyczących działania akumulatorów w ekstremalnych warunkach temperaturowych oraz stosowanie się do najlepszych praktyk branżowych.

Pytanie 22

Aby połączyć segmenty sieci LAN za pomocą kabla Ethernet w jedną większą sieć, należy wykorzystać

A. router.
B. modem.
C. switch.
D. bramkę.
Switch, czyli przełącznik, jest urządzeniem sieciowym, które umożliwia łączenie segmentów sieci LAN w jedną większą sieć. Działa na warstwie drugiej modelu OSI, co oznacza, że przesyła dane na podstawie adresów MAC. Głównym zadaniem switcha jest inteligentne kierowanie ruchu sieciowego, co pozwala na efektywne zarządzanie pasmem i minimalizację kolizji. Dzięki temu każdy podłączony do switcha komputer może komunikować się z innymi urządzeniami w sieci w sposób bezpieczny i szybki. Przykładem zastosowania switcha jest mała firma, w której kilka komputerów, drukarek i serwerów jest połączonych w jedną sieć. Switch umożliwia im współdzielenie zasobów oraz komunikację bez potrzeby wysyłania niepotrzebnych danych do wszystkich urządzeń. W branży standardem jest stosowanie switchy zarządzanych, które oferują zaawansowane funkcje, takie jak VLAN, QoS i monitorowanie ruchu, co pozwala administratorom na lepsze zarządzanie siecią.

Pytanie 23

Całkowity koszt materiałów potrzebnych do zamontowania systemu alarmowego w lokum to 2 000 zł. Wydatki na montaż wynoszą 50% wartości materiałów. Zarówno materiały, jak i montaż są obciążone stawką VAT w wysokości 22%. Jaka będzie całkowita kwota wydatków na instalację?

A. 2 000 zł
B. 3 000 zł
C. 3 660 zł
D. 2 440 zł
Całkowity koszt wykonania instalacji alarmowej można obliczyć poprzez zsumowanie kosztów materiałów oraz wykonania, a następnie dodanie podatku VAT. Koszt materiałów wynosi 2000 zł, a koszt wykonania to 50% ceny materiałów, czyli 1000 zł (2000 zł * 0,5). Łączny koszt przed opodatkowaniem wynosi więc 3000 zł (2000 zł + 1000 zł). Aby obliczyć kwotę z VAT, należy pomnożyć łączny koszt przez stawkę VAT, co daje 660 zł (3000 zł * 0,22). Całkowity koszt po uwzględnieniu VAT wynosi zatem 3660 zł (3000 zł + 660 zł). Zrozumienie tego procesu jest kluczowe dla właściwego planowania budżetu. W praktyce, dokładne obliczenia kosztów są niezwykle ważne w branży budowlanej i instalacyjnej, gdzie nieprecyzyjne oszacowanie wydatków może prowadzić do znaczących przekroczeń budżetowych. Prawidłowe podejście do kalkulacji kosztów materiałów i robocizny pozwala na efektywne zarządzanie projektami budowlanymi oraz utrzymanie zgodności z regulacjami dotyczącymi VAT.

Pytanie 24

Jaką rolę w systemie antenowym TV-SAT odgrywa konwerter?

A. Dostarcza antenie napięcie przemienne.
B. Zwiększa i przekształca częstotliwość sygnału z anteny.
C. Tłumi i zmienia częstotliwość sygnału antenowego.
D. Dostarcza antenie napięcie stałe.
Wybór innych odpowiedzi może wynikać z nieporozumienia dotyczącego funkcji konwertera w instalacji antenowej. Przykładowo, zasilać antenę napięciem przemiennym jest niepoprawne, ponieważ konwerter zasilany jest napięciem stałym, co jest typowe dla technologii satelitarnych. Zasila go odbiornik, który przesyła odpowiednie napięcie zasilające przez kabel koncentryczny. Odpowiedzi dotyczące tłumienia sygnału są również mylące; konwerter nie tłumi sygnału, ale go wzmacnia. Tłumienie sygnału jest zjawiskiem negatywnym, które objawia się spadkiem jakości sygnału, co jest przeciwieństwem działania konwertera. W rzeczywistości konwerter powinien maksymalizować jakość sygnału, aby zapewnić wydajność odbioru. Właściwe zrozumienie funkcji konwertera jest ważne dla efektywnego zaprojektowania systemu antenowego. W praktyce, nieprawidłowe wybory komponentów lub ich nieodpowiednie instalacje mogą prowadzić do znacznego obniżenia jakości odbioru telewizji satelitarnej. Kluczowe jest zatem zaznajomienie się z zasadami działania konwertera oraz jego właściwościami, aby uniknąć typowych błędów w instalacjach satelitarnych.

Pytanie 25

Jaką czynność należy wykonać najpierw, gdy podczas serwisowania instalacji antenowej telewizji naziemnej zauważono obniżenie poziomu sygnału antenowego?

A. Wyregulować odbiornik
B. Zamienić przewód antenowy
C. Oczyścić wszystkie złącza
D. Wyregulować ustawienie anteny
Podjęcie działań w zakresie czyszczenia złącz, wymiany przewodu antenowego czy regulacji odbiornika, mimo że mogą być istotne w procesie konserwacji instalacji antenowej, nie są to pierwsze kroki, jakie należy podjąć w sytuacji zauważenia spadku poziomu sygnału. Często myślenie, że wyczyszczenie złączy lub wymiana przewodów jest najważniejsza, wynika z błędnego założenia, że problemy z jakością sygnału są bezpośrednio związane z ich stanem. Jednak w praktyce, zanim przejdziemy do bardziej skomplikowanych działań, takich jak wymiana komponentów, priorytetem powinna być ocena i ewentualna regulacja pozycji anteny. Wiele osób sądzi, że jeżeli sygnał jest słabszy, to znaczy, że komponenty muszą być uszkodzone, co nie zawsze jest prawdą. Często problemy te można rozwiązać prostą regulacją anteny, co jest zgodne z zasadami diagnostyki i naprawy systemów telewizyjnych. Ostatecznie, jeżeli po regulacji anteny sygnał nadal będzie słaby, można rozważyć inne opcje, takie jak czyszczenie złączy lub wymiana przewodu, ale te czynności powinny być przeprowadzane w odpowiedniej kolejności, aby uniknąć niepotrzebnych kosztów i problemów.

Pytanie 26

Jakie znaczenie ma oznaczenie CE umieszczone w dokumentacji technicznej produktu?

A. To oznacza, że wyrób uzyskał zgodę na użytkowanie w krajach Europy Środkowej (ang. CE - Central Europe)
B. To oznacza, że producent zadeklarował, iż oznakowany wyrób powstał w krajach Europy Środkowej (ang. CE - Central Europe)
C. To sugeruje, że wyrób został tymczasowo dopuszczony do użytku (CE - Czasowa Eksploatacja)
D. To jest deklaracją producenta, że wyrób spełnia normy opisane w odpowiednich dyrektywach Unii Europejskiej dotyczących kwestii związanych w szczególności z bezpieczeństwem użytkowania
Podane odpowiedzi sugerują różne nieprawidłowe interpretacje oznaczenia CE, które mogą prowadzić do mylnych wniosków dotyczących jego znaczenia. Pierwsza z nich wskazuje, że CE oznacza Central Europe, co jest całkowicie błędne. Oznaczenie CE nie jest związane z geograficznym pochodzeniem produktu, lecz z jego zgodnością z unijnymi standardami. Podobnie, stwierdzenie, że CE oznacza czasowe dopuszczenie do eksploatacji, ignoruje istotę tego symbolu, który jest traktowany jako trwałe potwierdzenie spełnienia wymogów prawnych. Oznaczenie CE jest związane z formalnym procesem oceny zgodności, który wymaga szczegółowych testów i certyfikacji. Dodatkowo, twierdzenie, że oznaczenie to odnosi się jedynie do krajów Europy Środkowej, jest również mylne, ponieważ CE jest uznawane w całej Unii Europejskiej oraz w krajach EFTA. Zrozumienie znaczenia oznaczenia CE jest kluczowe dla każdego producenta w celu zapewnienia bezpieczeństwa produktów oraz ich legalnego wprowadzenia na rynek, a także dla konsumentów, którzy powinni być świadomi, co oznacza to oznaczenie w kontekście jakości i bezpieczeństwa produktów, które nabywają.

Pytanie 27

Jednym z technicznych parametrów charakteryzujących wzmacniacze o niskiej częstotliwości jest

A. zmiana częstotliwości
B. współczynnik zawartości harmonicznych
C. napięcie detektora
D. typ modulacji
Wybór innych parametrów jako charakterystyki wzmacniaczy małej częstotliwości może prowadzić do nieporozumień co do kluczowych aspektów ich działania. Napięcie detektora odnosi się do zastosowań detekcji sygnału w systemach radiowych i nie jest bezpośrednio związane z właściwościami wzmacniaczy. Przemiana częstotliwości dotyczy procesów modulacji sygnału i jest stosowana głównie w komunikacji, a nie w ocenie wydajności wzmacniaczy audio. Z kolei rodzaj modulacji, choć istotny w kontekście transmisji sygnału, nie jest parametrem technicznym, który bezpośrednio opisuje charakterystyki wzmacniaczy małej częstotliwości. Takie pomyłki mogą wynikać z braku zrozumienia podstawowych zasad działania wzmacniaczy i ich zastosowania w różnych dziedzinach elektroniki. Kluczowe jest, aby zrozumieć, że każdy z wymienionych parametrów ma swoje miejsce w inżynierii, ale nie jest specyficzny dla wzmacniaczy małej częstotliwości, co może zniekształcać zrozumienie ich funkcji i zastosowania. Rzeczywiste podejście do analizy wzmacniaczy wymaga znajomości specyfikacji technicznych oraz umiejętności odróżnienia pomiędzy różnymi kategoriami parametrów, co jest niezbędne dla uzyskania optymalnych wyników w praktyce inżynieryjnej.

Pytanie 28

Czego można dokonać za pomocą cęgów bocznych?

A. ciąć żyły przewodów elektrycznych
B. skręcać żyły przewodów elektrycznych
C. formować końcówki żył przewodów elektrycznych
D. usuwać izolację z żył przewodów elektrycznych
Cęgi boczne to specjalistyczne narzędzia stosowane w elektrotechnice do cięcia przewodów, w tym żył przewodów elektrycznych. Dzięki ich konstrukcji, która posiada ostre krawędzie, umożliwiają one precyzyjne i efektywne cięcie różnych typów materiałów, co jest kluczowe w pracy z instalacjami elektrycznymi. Przykładowo, podczas montażu urządzeń elektrycznych, technicy często muszą dostosować długość przewodów, co wymaga ich cięcia. Ponadto, cęgi boczne są nieocenione w sytuacjach, gdy konieczne jest przycinanie przewodów w ograniczonej przestrzeni, gdzie tradycyjne narzędzia mogą być zbyt duże. W kontekście standardów branżowych, cięcie przewodów powinno być przeprowadzane zgodnie z normami IEC 60204-1, które nakładają obowiązek zapewnienia bezpieczeństwa operacji elektrycznych. Używanie cęgów bocznych zapewnia nie tylko dokładność, ale także minimalizuje ryzyko uszkodzenia izolacji przewodu, co mogłoby prowadzić do awarii instalacji elektrycznej.

Pytanie 29

Jaką rolę odgrywa urządzenie kontrolno-pomiarowe w systemie automatyki przemysłowej?

A. kontroler
B. zawór elektromagnetyczny
C. zawór regulacyjny
D. przetwornik
Przepustnica, będąca urządzeniem stosowanym w systemach wentylacyjnych i cieplnych, pełni funkcję regulacji przepływu powietrza lub cieczy. Choć istotna w kontekście zarządzania mediami, nie ma ona zdolności pomiarowych, co czyni ją niewłaściwym wyborem w kontekście funkcji kontrolno-pomiarowych. Sterownik, będący centralnym elementem systemów automatyki, działa na podstawie dostarczanych mu sygnałów, jednak jego rola nie polega na bezpośrednim pomiarze parametrów fizycznych. Zamiast tego, sterownik interpretuje dane z przetworników i podejmuje decyzje operacyjne w oparciu o algorytmy. Elektrozawór, z drugiej strony, steruje przepływem cieczy lub gazów w systemach, ale również nie zajmuje się bezpośrednim pomiarem. Typowym błędem myślowym jest mylenie funkcji urządzeń pomiarowych z urządzeniami wykonawczymi i regulacyjnymi. W kontekście automatyki przemysłowej kluczowe jest rozróżnienie pomiędzy pomiarem a kontrolą, ponieważ każde z tych urządzeń pełni odmienną rolę w systemie. Aby systemy były efektywne, konieczne jest zastosowanie przetworników, które dostarczają dokładne dane, niezbędne dla prawidłowego funkcjonowania sterowników oraz elementów wykonawczych.

Pytanie 30

Jednokanałowy oscyloskop analogowy pozwala na pomiar

A. przesunięcia fazy między dwoma sygnałami sinusoidalnymi
B. współczynnika zniekształceń nieliniowych
C. czasów narastania i opadania impulsów
D. bitowej stopy błędów
Kiedy analizujesz funkcje oscyloskopu, to trochę błędne jest myślenie, że może on mierzyć przesunięcie fazowe między sygnałami sinusoidalnymi czy jakość transmisji danych. Oscyloskop w swojej podstawowej wersji jest tak naprawdę stworzony do wizualizacji sygnałów w czasie, a nie do badania ich fazy czy jakości. Przesunięcie fazowe to sprawa, która potrzebuje bardziej zaawansowanego sprzętu, jak analizatory widma, które mogą analizować różnice fazowe między sygnałami. Jeśli chodzi o bitową stopę błędów, oscyloskop sam w sobie nie oceni jakości przesyłania danych cyfrowych, bo to wymaga analizy statystycznej błędów, niestety jego to nie obejmuje. Z kolei współczynnik zniekształceń nieliniowych także wymaga lepszej analizy, co zwykle robią analizatory sygnałów, które mogą się skupić na analizie harmonicznych. Zrozumienie, co dany sprzęt potrafi zmierzyć, jest kluczowe, żeby nie popełniać błędów przy diagnostyce problemów i odpowiednim doborze narzędzi.

Pytanie 31

Jakiego środka używa się do oczyszczania płytek drukowanych po zamontowaniu elementów elektronicznych?

A. Wody
B. Kwasu
C. Alkoholu
D. Benzyny
Benzyna na pewno nie nadaje się do czyszczenia płytek drukowanych. Jest strasznie lepką substancją i wolno odparowuje, więc może zostawiać zanieczyszczenia na układach. Poza tym, jest mega toksyczna i ma ryzyko wybuchu – to niebezpieczne w pracy. Kwas też odpada, bo jest bardzo korozyjny i może zniszczyć metalowe części czy płytki PCB. A woda, chociaż jest naturalna, to wcale nie jest dobra do czyszczenia elektroniki, bo może powodować korozję i inne uszkodzenia. Jest jeszcze ryzyko, że pozostaną resztki minerałów, które mogą spowodować zwarcia. Tak więc, dobrze jest wybierać odpowiednie środki czyszczące, żeby zapewnić, że podzespoły będą działać długo i niezawodnie. Warto zawsze trzymać się branżowych standardów i sprawdzonych praktyk, to ważna sprawa.

Pytanie 32

Jakie urządzenia pomiarowe powinny być użyte do określenia charakterystyki przenoszenia wzmacniacza selektywnego LC zasilanego napięciem ±12 V?

A. Generator funkcyjny oraz cyfrowy multimetr
B. Zasilacz napięcia stałego, generator funkcyjny oraz oscyloskop
C. Zasilacz symetryczny, generator funkcyjny oraz oscyloskop
D. Zasilacz symetryczny oraz cyfrowy multimetr
Wybór przyrządów pomiarowych jest kluczowy dla uzyskania prawidłowych wyników w testach wzmacniaczy. Odpowiedzi, które nie uwzględniają zasilacza symetrycznego, generatora funkcyjnego oraz oscyloskopu, pomijają istotne elementy wymagane do przeprowadzenia analizy charakterystyki przenoszenia. Zasilacz symetryczny jest niezbędny, aby zapewnić wzmacniaczowi stabilne napięcie zasilające, co jest kluczowe w kontekście pomiaru jego wydajności. Generator funkcyjny jest także istotny, ponieważ pozwala na wytwarzanie sygnałów o różnych kształtach i częstotliwościach, co umożliwia ocenę, jak wzmacniacz odpowiada na zmiany parametrów sygnału. Pominięcie oscyloskopu, który jest narzędziem do wizualizacji sygnałów, prowadzi do utraty możliwości obserwacji i analizy dynamiki wzmacniacza. Dodatkowo, wybór multimetru cyfrowego czy zasilacza napięcia stałego nie dostarcza wymaganych możliwości do kompleksowej analizy. Multimetr cyfrowy, choć przydatny w pomiarach napięcia i prądu, nie jest wystarczający do oceny charakterystyki przenoszenia, gdyż nie pozwala na analizę sygnałów w funkcji czasu, co jest istotne w przypadku wzmacniaczy operacyjnych, które reagują na zmiany sygnałów w czasie. Dlatego kluczowe jest zastosowanie pełnego zestawu odpowiednich narzędzi do przeprowadzenia rzetelnych badań.

Pytanie 33

Aby przesłać sygnał telewizyjny z anteny zbiorczej w budynku wielorodzinnym, należy zastosować kabel

A. koncentryczny o impedancji falowej 75 Ω
B. koncentryczny o impedancji falowej 300 Ω
C. symetryczny o impedancji falowej 300 Ω
D. symetryczny o impedancji falowej 75 Ω
Wybór innych rodzajów kabli, takich jak kabel symetryczny o impedancji falowej 300 Ω, jest nieprawidłowy w kontekście transmisji sygnałów telewizyjnych. Kable te, chociaż mogą być stosowane w innych zastosowaniach, takich jak w telekomunikacji czy w systemach audio, nie odpowiadają wymaganiom dla sygnałów telewizyjnych. Impedancja 300 Ω jest typowa dla kabli symetrycznych, używanych w aplikacjach, gdzie ważna jest ich zdolność do eliminacji zakłóceń, ale nie jest to właściwy wybór dla sygnałów telewizyjnych, które wymagają kabla o impedancji 75 Ω. Użycie kabli koncentrycznych o impedancji 300 Ω mogłoby prowadzić do znacznych strat sygnału oraz problemów z odbiorem z powodu niewłaściwego dopasowania impedancji. Ponadto, kable koncentryczne o impedancji 75 Ω charakteryzują się wyższą odpornością na zakłócenia i lepszym tłumieniem, co jest niezbędne w gęsto zabudowanych obszarach, gdzie sygnał telewizyjny musi być przesyłany na dużą odległość. Wybór niewłaściwego typu kabla może prowadzić do poważnych problemów z jakością obrazu oraz stabilnością sygnału, co jest krytyczne w systemach telewizyjnych, zwłaszcza w kontekście rosnącej liczby transmisji w wysokiej rozdzielczości.

Pytanie 34

Akumulator o pojemności 5 Ah zapewnia podtrzymanie zasilania jednej kamery przez czas około 10 minut. W instalacji monitoringu należy wykonać układ podtrzymania zasilania awaryjnego dziesięciu kamer przez 10 minut. Która z zapisanych w tabeli propozycji doboru akumulatorów zapewnia najniższe koszty wykonania układu?

Pojemność akumulatora
Ah
Cena jednostkowa
Ilość
szt.
A.55010
B.7657
C.602451
D.301402

A. A.
B. B.
C. C.
D. D.
W przypadku rozważania innych opcji, kluczowe jest zrozumienie, dlaczego ich wybór może być błędny. Opcje A, B i D prawdopodobnie nie spełniają wymagań dotyczących pojemności lub są nieoptymalne pod względem kosztów. Na przykład, wybór akumulatorów o zbyt małej pojemności nie zapewni wymaganych 50 Ah. Jeśli akumulatory oferowane w tych opcjach mają mniejszą pojemność, użytkownik naraża się na ryzyko niedoboru energii, co może prowadzić do przerwy w zasilaniu kamer. Kolejnym typowym błędem jest skupienie się wyłącznie na kosztach, a nie na całkowitym koszcie użytkowania. Wybór najtańszych akumulatorów może prowadzić do zwiększonej częstotliwości wymiany, co w końcu podnosi koszty eksploatacji. W praktyce lepiej jest inwestować w akumulatory o wyższej pojemności, które zapewnią stabilność systemu, a także zmniejszą ryzyko awarii. Zgodnie z tymi zasadami, analiza kosztów i korzyści powinna być kluczowym elementem decyzji o wyborze akumulatorów w systemach monitoringu.

Pytanie 35

Mostek Graetza stanowi przykład

A. generatora
B. stabilizatora
C. prostownika
D. zasilacza
Wybór odpowiedzi sugerującej, że Mostek Graetza jest generatorem, prostownikiem, zasilaczem lub stabilizatorem, wynika z nieprecyzyjnego zrozumienia funkcji i zastosowań tych układów elektronicznych. Generator to układ, który przekształca energię elektryczną w sygnały elektryczne, często o określonych parametrach. W kontekście Mostka Graetza, nie ma on na celu generowania sygnałów, lecz prostowanie prądu, co jest kluczowym rozróżnieniem. Zasilacz z kolei jest urządzeniem, które dostarcza energię elektryczną o określonych parametrach, a Mostek Graetza jest jednym z jego elementów; wykonuje jedynie prostowanie, a nie pełni funkcji zasilania jako całość. Stabilizatory, najczęściej używane w kontekście stabilizacji napięcia, również nie są tożsame z Mostkiem Graetza, ponieważ nie regulują oni napięcia, a jedynie przekształcają prąd zmienny na stały. Typowe błędy w myśleniu o tych układach polegają na myleniu ich funkcji oraz nieprawidłowym interpretowaniu ról, które pełnią w szerszym kontekście systemów elektronicznych. Ważne jest, aby zrozumieć, że każdy z tych komponentów ma swoją unikalną rolę i charakterystyki, co podkreśla znaczenie precyzyjnego doboru na etapie projektowania układów elektronicznych.

Pytanie 36

Jaką wartość napięcia sinusoidalnego mierzy woltomierz cyfrowy w trybie AC?

A. Średnią
B. Chwilową
C. Skuteczną
D. Maksymalną
Woltomierz cyfrowy w trybie AC wskazuje wartość skuteczną napięcia sinusoidalnego, która jest miarą równoważną wartości stałej, powodującą takie samo wydzielanie ciepła w rezystorze. Wartość skuteczna (rms) jest obliczana jako pierwiastek kwadratowy średniej arytmetycznej kwadratów chwilowych wartości napięcia w czasie, co pozwala na właściwe oszacowanie energii, jaka jest dostarczana do obciążenia. W zastosowaniach praktycznych, takich jak instalacje elektryczne, projektowanie układów zasilania czy analiza jakości energii, wartość skuteczna jest kluczowa, ponieważ pozwala określić, jaki prąd lub napięcie będą działać w danym obwodzie. Dobrą praktyką jest również zrozumienie różnicy między wartościami skutecznymi a maksymalnymi, ponieważ napięcie maksymalne (szczytowe) jest zazwyczaj wyższe niż wartość skuteczna o czynnik pierwiastek z dwóch (około 1,41 razy). Wartości skuteczne są szeroko stosowane w normach i przepisach dotyczących bezpieczeństwa i efektywności energetycznej, w tym w normach IEC oraz w wytycznych dotyczących projektowania systemów elektrycznych.

Pytanie 37

Zasady zabraniają przeprowadzania prac serwisowych na instalacjach antenowych w warunkach

A. wietrznej pogody
B. niskiej temperatury
C. ograniczonej widoczności
D. wyładowań atmosferycznych
Podejście do prac serwisowych instalacji antenowych w warunkach zmniejszonej widoczności, wietrznej pogody czy niskiej temperatury może być mylne, jeśli nie uwzględnia się najważniejszych aspektów bezpieczeństwa. Zmniejszona widoczność, na przykład podczas mgły lub intensywnego deszczu, może ograniczać zdolność pracownika do dostrzegania przeszkód oraz oceny stanu instalacji, co zwiększa ryzyko wypadków. Pracownicy mogą łatwiej zgubić orientację na wysokości, a także mogą nie dostrzegać nadchodzących zagrożeń. Wietrzna pogoda, mimo że nie jest bezpośrednio zakazana, osłabia stabilność pracownika na rusztowaniach czy innych platformach roboczych, co może prowadzić do upadków. Niska temperatura z kolei może powodować problemy zdrowotne, takie jak hipotermia, a także wpływać na przyczepność materiałów, co z kolei może wpływać na bezpieczeństwo montażu. Warto pamiętać, że każda z tych sytuacji stwarza warunki, które mogą negatywnie wpływać na skuteczność i bezpieczeństwo pracy, jednak najważniejszym czynnikiem, który zawsze należy uwzględnić, są wyładowania atmosferyczne, które niosą ze sobą bezpośrednie zagrożenie życia i zdrowia pracowników. Dlatego odpowiednie przygotowanie oraz znajomość zasad BHP są niezbędne, by unikać pracy w niebezpiecznych warunkach, które mogą prowadzić do poważnych konsekwencji.

Pytanie 38

Generator funkcyjny został skonfigurowany na sygnał o częstotliwości 1 kHz oraz maksymalnej wartości szczytowej wynoszącej 1 V. Po podłączeniu woltomierza AC, jego wskazanie wyniosło 0,707 V. Jaki kształt ma badany sygnał?

A. trójkątny
B. sinusoidalny
C. impulsowy
D. prostokątny
Odpowiedź 'sinusoidalny' jest prawidłowa, ponieważ przebieg sinusoidalny charakteryzuje się tym, że jego wartość szczytowa wynosi 1 V, co jest zgodne z ustawieniami generatora. Woltomierz AC wskazał 0,707 V, co odpowiada wartości skutecznej (RMS) dla sygnału sinusoidalnego. Wartość skuteczna sygnału sinusoidalnego można obliczyć jako wartość szczytowa podzieloną przez pierwiastek z dwóch, co potwierdza, że dla 1 V wartości szczytowej wartość skuteczna wynosi 1 V / √2 ≈ 0,707 V. Przebiegi sinusoidalne są powszechnie stosowane w zastosowaniach audio oraz w systemach zasilania AC. W inżynierii elektronicznej, zrozumienie charakterystyki sygnałów sinusoidalnych jest kluczowe dla projektowania układów oraz analizy ich działania zgodnie z normami IEC. Ponadto, w zastosowaniach praktycznych, takich jak telekomunikacja, sygnały sinusoidalny są wykorzystywane do modulacji, co wpływa na jakość przesyłanych informacji.

Pytanie 39

Kiedy po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać pisk lub rozmowa jest niewyraźna, powinno się

A. dostosować napięcie w kasecie rozmownej
B. zwiększyć poziom głośności w unifonie
C. dostosować poziom głośności w zasilaczu
D. zwiększyć napięcie zasilania elektrozaczepu
Regulacja głośności w zasilaczu to bardzo ważny krok, jeśli chcesz, żeby domofon działał prawidłowo. Zasilacz nie tylko daje prąd do urządzenia, ale też wpływa na to, jak dźwięk brzmi. Jak w słuchawce słychać pisk albo rozmowa jest niewyraźna, to znaczy, że coś nie tak z ustawieniem głośności. W praktyce, zasilacze domofonowe często mają potencjometr, który pozwala na dostosowanie dźwięku. Jak zasilacz jest dobrze ustawiony, to powinno być wszystko ładnie słychać. Warto też pamiętać, żeby czasami sprawdzić te ustawienia, bo to wpływa na komfort użytkowania. Jeśli głośność jest za niska, to rzeczywiście można mieć problemy z odbiorem, a to psuje całą zabawę z domofonu.

Pytanie 40

Jakie jest przybliżone wartości rezystancji trzech rezystorów połączonych równolegle, jeżeli rezystancja każdego z nich wynosi 30 kΩ?

A. 10 kΩ
B. 60 kΩ
C. 15 kΩ
D. 90 kΩ
Twoje błędne odpowiedzi pokazują, że rozumiesz temat, ale coś poszło nie tak przy interpretacji zasad dotyczących połączeń równoległych. Rezystory, które są połączone równolegle, nie sumują się jak te w połączeniu szeregowy, co może prowadzić do mylnych wniosków. Przykładowo odpowiedzi takie jak 15 kΩ, 60 kΩ czy 90 kΩ sugerują, że mogłeś myśleć, że te wartości dodajemy bezpośrednio, co jest dość typowym błędem. Przy równoległym połączeniu rezystorów całkowita rezystancja się zmniejsza, bo każdy nowy rezystor daje dodatkową drogę dla prądu. Natomiast w połączeniu szeregowym całkowita rezystancja rośnie. Zrozumienie tych podstawowych różnic między połączeniami jest naprawdę ważne dla analizy obwodów elektrycznych. W praktyce, złe obliczenia rezystancji mogą spowodować, że urządzenia będą działać nieprawidłowo, na przykład w zasilaczach, gdzie złe wartości rezystancji mogą prowadzić do przegrzewania się komponentów. Dobrze jest wrócić do zasad obliczania rezystancji w połączeniach równoległych, żeby unikać podobnych pomyłek w przyszłości.