Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 28 marca 2025 18:55
  • Data zakończenia: 28 marca 2025 19:04

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Gdzie w systemie Linux umieszczane są pliki specjalne urządzeń, które są tworzone podczas instalacji sterowników?

A. /proc
B. /var
C. /sbin
D. /dev
Katalog /dev w Linuxie to takie miejsce, gdzie trzymamy pliki specjalne, które reprezentują różne urządzenia w systemie. Jak się instaluje sterowniki, to te pliki się tworzą, żeby system mógł rozmawiać z hardware'em. Na przykład, plik /dev/sda to pierwszy dysk twardy w systemie. To dość ciekawe, jak w Unixie wszystko traktuje się jak plik - nawet urządzenia. Warto regularnie sprawdzać, co w /dev siedzi, żeby być pewnym, że wszystko działa jak należy. A w systemach takich jak systemd pliki w tym katalogu mogą się tworzyć lub znikać samoczynnie, więc warto mieć to na oku.

Pytanie 2

Jakim protokołem łączności, który gwarantuje pewne dostarczenie informacji, jest protokół

A. TCP
B. UDP
C. ARP
D. IPX
Protokół TCP (Transmission Control Protocol) jest kluczowym protokołem w modelu OSI, który zapewnia niezawodne dostarczenie danych w sieciach komputerowych. Jego główną cechą jest to, że stosuje mechanizmy kontroli błędów oraz potwierdzania odbioru danych. TCP dzieli dane na pakiety, które są numerowane, co umożliwia ich prawidłowe odtworzenie w odpowiedniej kolejności na odbiorcy. W przypadku, gdy pakiety nie dotrą lub dotrą uszkodzone, protokół TCP podejmuje działania naprawcze, takie jak retransmisja brakujących pakietów. Przykładem zastosowania TCP jest przesyłanie stron internetowych, podczas gdy protokoły takie jak HTTP czy HTTPS, które działają na bazie TCP, zapewniają, że dane są dostarczane poprawnie i w odpowiedniej kolejności. Standardy branżowe, takie jak RFC 793, definiują funkcjonalność i działanie TCP, co sprawia, że jest on uznawany za jeden z najważniejszych protokołów w komunikacji internetowej, szczególnie tam, gdzie niezawodność przesyłania informacji jest kluczowa.

Pytanie 3

Aby uzyskać więcej wolnego miejsca na dysku bez tracenia danych, co należy zrobić?

A. weryfikację dysku
B. oczyszczanie dysku
C. kopię zapasową dysku
D. defragmentację dysku
Oczyszczanie dysku to proces, który pozwala na zwolnienie miejsca na nośniku danych, eliminując zbędne pliki, takie jak tymczasowe pliki systemowe, pliki dziennika, a także inne elementy, które nie są już potrzebne. Używając narzędzi takich jak 'Oczyszczanie dysku' w systemie Windows, użytkownicy mogą szybko zidentyfikować pliki, które można usunąć, co skutkuje poprawą wydajności systemu oraz większą ilością dostępnego miejsca. Przykładem zastosowania oczyszczania dysku może być sytuacja, gdy system operacyjny zaczyna zgłaszać niedobór miejsca na dysku, co może powodować spowolnienie działania aplikacji. Regularne oczyszczanie dysku jest zgodne z najlepszymi praktykami zarządzania systemami, które zalecają utrzymywanie porządku na dysku i usuwanie zbędnych danych, co nie tylko zwiększa wydajność, ale także wpływa na długowieczność sprzętu. Dodatkowo, oczyszczanie dysku przyczynia się do lepszej organizacji danych, co jest niezbędne w kontekście złożonych operacji IT.

Pytanie 4

Jakie polecenie w systemie Windows pozwala na zmianę zarówno nazwy pliku, jak i jego lokalizacji?

A. set
B. rename
C. move
D. mkdir
Polecenia 'set', 'mkdir' oraz 'rename' nie są odpowiednie do zmiany zarówno nazwy, jak i lokalizacji pliku. Polecenie 'set' jest używane w systemie Windows do definiowania zmiennych środowiskowych i nie ma zastosowania w kontekście pracy z plikami. Często mylnie uważa się, że można go użyć do zmiany nazw plików, jednak jego funkcjonalność jest całkowicie inna i ogranicza się do operacji na zmiennych. 'Mkdir' służy do tworzenia nowych katalogów, a nie do przenoszenia plików, co również może prowadzić do nieporozumień. Użytkownicy mogą błędnie zakładać, że jedynie utworzenie nowego folderu jest wystarczające do zorganizowania plików. Z kolei polecenie 'rename' jest używane tylko do zmiany nazwy pliku w tej samej lokalizacji i nie może być użyte do przenoszenia go w inne miejsce. Często w praktyce użytkownicy błędnie interpretują te polecenia, co prowadzi do frustracji, gdyż nie osiągają zamierzonego celu. Kluczowe jest zrozumienie właściwego kontekstu i zastosowania każdego polecenia, aby efektywnie zarządzać plikami w systemie operacyjnym.

Pytanie 5

Który z poniższych adresów stanowi adres rozgłoszeniowy dla sieci 172.16.64.0/26?

A. 172.16.64.63
B. 172.16.64.192
C. 172.16.64.0
D. 172.16.64.255
Adres rozgłoszeniowy dla sieci 172.16.64.0/26 to 172.16.64.63. W tej sieci, przy masce /26, mamy 64 adresy IP, zaczynając od 172.16.64.0, co oznacza, że adresy od 172.16.64.0 do 172.16.64.63 są wykorzystywane w tej podsieci. Adres rozgłoszeniowy jest najwyższym adresem w danej podsieci, co oznacza, że wszystkie bity hosta są ustawione na 1. W tym przypadku, przy masce 255.255.255.192, ostatnie 6 bitów w adresie IP jest przeznaczonych na identyfikację hostów, co daje nam 2^6 = 64 adresy. W praktyce, adres rozgłoszeniowy jest używany do wysyłania pakietów do wszystkich urządzeń w danej sieci lokalnej. Na przykład, w protokole ARP (Address Resolution Protocol) używa się adresu rozgłoszeniowego do rozgłaszania zapytań, co pozwala urządzeniom w sieci na wzajemne odnajdywanie się. W kontekście IPv4, znajomość adresu rozgłoszeniowego jest kluczowa dla efektywnego zarządzania sieciami oraz rozwiązywania problemów związanych z komunikacją w sieci lokalnej.

Pytanie 6

Który zakres adresów IPv4 jest poprawnie przypisany do danej klasy?

Zakres adresów IPv4Klasa adresu IPv4
A.1.0.0.0 ÷ 127.255.255.255A
B.128.0.0.0 ÷ 191.255.255.255B
C.192.0.0.0 ÷ 232.255.255.255C
D.233.0.0.0 ÷ 239.255.255.255D

A. C
B. A
C. B
D. D
Klasa B adresów IPv4 obejmuje zakres od 128.0.0.0 do 191.255.255.255. Adresy w tej klasie są często używane w średnich i dużych sieciach, ponieważ oferują większą liczbę dostępnych adresów hostów w porównaniu z klasą C. Każdy adres klasy B ma pierwszy oktet w zakresie od 128 do 191, a następne dwa oktety są używane do identyfikacji sieci, co daje możliwość utworzenia 16 384 sieci, każda z maksymalnie 65 534 hostami. W praktyce, oznacza to, że klasa B jest idealna dla organizacji z dużym zapotrzebowaniem na liczby hostów. Współczesne sieci korzystają z maski podsieci, aby elastyczniej zarządzać adresacją, jednak klasyczne podejście jest nadal istotne w kontekście zrozumienia podstaw działania protokołu IPv4. Standardy takie jak RFC 791 i późniejsze uaktualnienia precyzują sposób użycia tej klasy adresów, co jest ważne dla administratorów sieciowych, którzy muszą projektować wydajne i niezawodne struktury sieciowe.

Pytanie 7

Toner stanowi materiał eksploatacyjny w drukarce

A. laserowej
B. igłowej
C. sublimacyjnej
D. atramentowej
No dobra, trafiłeś z odpowiedzią, że toner to materiał eksploatacyjny w drukarkach laserowych. To naprawdę kluczowy element ich działania. Toner to taki proszek, który składa się z różnych chemikaliów, jak barwniki i polimery, które działają w trakcie drukowania. Laser nagrzewa ten proszek i przenosi go na bęben, co sprawia, że mamy świetnej jakości wydruki - ostre detale i wyraźne litery. Co ciekawe, tonery są bardziej wydajne i trwalsze od atramentów, więc jeśli drukujesz dużo, to się opłaca. Wiele biur wybiera drukarki laserowe, bo to lepszy sposób na zminimalizowanie kosztów i przyspieszenie pracy, zwłaszcza przy dużej ilości dokumentów. Warto też wspomnieć, że tonery według norm ISO są często bardziej wydajne, co oznacza mniejsze zużycie materiałów eksploatacyjnych i mniej wpływu na środowisko.

Pytanie 8

W komputerowych stacjach roboczych zainstalowane są karty sieciowe Ethernet 10/100/1000 z interfejsem RJ45. Jakie medium transmisyjne powinno być zastosowane do budowy sieci komputerowej, aby osiągnąć maksymalną przepustowość?

A. Światłowód jednomodowy
B. Kabel UTP kategorii 5e
C. Światłowód wielomodowy
D. Kabel UTP kategorii 5
Kabel UTP kategorii 5e jest właściwym wyborem do budowy sieci komputerowej, gdyż oferuje poprawioną wydajność w porównaniu do kategorii 5. Standard ten jest zaprojektowany do obsługi prędkości do 1 Gbit/s na odległości do 100 metrów, co idealnie odpowiada wymaganiom kart sieciowych Ethernet 10/100/1000. W praktyce, kable UTP kategorii 5e zawierają ulepszony system ekranowania, co minimalizuje zakłócenia elektromagnetyczne oraz przesłuchy, co jest kluczowe w gęsto zaludnionych środowiskach biurowych. Warto również zauważyć, że standardy IEEE 802.3ab dla Ethernetu 1000BASE-T wymagają użycia co najmniej kabla kategorii 5e, aby zapewnić pełną funkcjonalność. Dzięki temu, w zastosowaniach takich jak systemy VoIP, transmisja danych oraz multimedia, kabel UTP kategorii 5e dostarcza nie tylko wysoką przepustowość, ale również stabilność i niezawodność połączeń sieciowych.

Pytanie 9

Jaki typ złącza powinien być zastosowany w przewodzie UTP Cat 5e, aby połączyć komputer z siecią?

A. RJ45
B. RJ11
C. MT-RJ
D. BNC
RJ45 to standardowy złącze używane w sieciach Ethernet, które jest odpowiednie dla przewodów UTP Cat 5e. Użycie RJ45 zapewnia optymalne połączenie komputerów i innych urządzeń sieciowych, umożliwiając transfer danych z prędkościami do 1 Gb/s w środowiskach lokalnych. Złącze to zostało zaprojektowane z myślą o obsłudze czterech par skręconych przewodów, co pozwala na zwiększenie wydajności komunikacji w sieciach komputerowych. Przykładowo, w biurach i domach, RJ45 jest stosowane do podłączania komputerów do routerów, przełączników oraz innych urządzeń sieciowych, co jest zgodne z normami TIA/EIA-568. Poprawne podłączenie złącza RJ45 jest kluczowe dla stabilności i prędkości sieci. Na rynku dostępne są różne typy złącz RJ45, w tym złącza w wersji 'shielded' (ekranowane), które oferują dodatkową ochronę przed zakłóceniami elektromagnetycznymi, co jest istotne w środowiskach o wysokim poziomie zakłóceń elektronicznych.

Pytanie 10

Jaki protokół stosują komputery, aby informować router o zamiarze dołączenia do lub opuszczenia konkretnej grupy multicastowej?

A. DHCP
B. IGMP
C. TCP/IP
D. UDP
IGMP (Internet Group Management Protocol) jest protokołem, który umożliwia komputerom informowanie routerów o chęci dołączenia do lub opuszczenia określonej grupy rozgłoszeniowej. Protokół ten odgrywa kluczową rolę w zarządzaniu grupami multicastowymi, co jest istotne dla aplikacji wymagających efektywnego przesyłania danych do wielu odbiorców jednocześnie, takich jak transmisje wideo na żywo czy telekonferencje. Dzięki IGMP, router może optymalnie zarządzać ruchem multicastowym, przesyłając dane tylko do tych odbiorców, którzy wyrazili zainteresowanie danym strumieniem. Zastosowanie IGMP jest szczególnie widoczne w sieciach lokalnych oraz w środowiskach, w których wykorzystuje się usługi multicastowe, co pozwala na oszczędność pasma oraz zasobów sieciowych. W praktyce, IGMP pozwala na dynamiczne zarządzanie członkostwem w grupach, co jest niezbędne w zmieniających się warunkach sieciowych. Jest to zgodne z dobrą praktyką w projektowaniu sieci, gdzie wydajność i efektywność są kluczowymi czynnikami.

Pytanie 11

Kiedy adres IP komputera ma formę 176.16.50.10/26, to jakie będą adres rozgłoszeniowy oraz maksymalna liczba hostów w danej sieci?

A. 176.16.50.1; 26 hostów
B. 176.16.50.63; 62 hosty
C. 176.16.50.36; 6 hostów
D. 176.16.50.62; 63 hosty
Odpowiedź 176.16.50.63; 62 hosty jest jak najbardziej trafna. Żeby ogarnąć adres rozgłoszeniowy i maksymalną liczbę hostów w sieci, trzeba się przyjrzeć masce podsieci. W tym przypadku mamy maskę /26, co znaczy, że 26 bitów jest zajętych na identyfikację sieci, a 6 bitów zostaje dla hostów. Można to obliczyć tak: 2 do potęgi n, minus 2, gdzie n to liczba bitów dla hostów. Dla 6 bitów wychodzi 2^6 - 2, czyli 64 - 2, co daje nam 62 hosty. Adres rozgłoszeniowy uzyskujemy ustawiając wszystkie bity hostów na 1. Więc w naszej sieci, z adresem IP 176.16.50.10 i maską /26, mamy zakres od 176.16.50.0 do 176.16.50.63, co wskazuje, że adres rozgłoszeniowy to 176.16.50.63. Te obliczenia to podstawa w projektowaniu sieci komputerowych, więc dobrze, że się z tym zapoznałeś!

Pytanie 12

ARP (Address Resolution Protocol) to protokół, który pozwala na konwersję

A. nazw domenowych na 32-bitowe adresy IP
B. nazw domenowych na 48-bitowe adresy sprzętowe
C. adresów sprzętowych na 32-bitowe adresy IP
D. adresów IP na 48-bitowe adresy sprzętowe
Adres rozwiązywania (ARP) jest kluczowym protokołem w warstwie sieciowej modelu OSI, który odpowiada za mapowanie adresów IP na 48-bitowe adresy fizyczne (MAC). Dzięki temu, urządzenia w sieci lokalnej mogą komunikować się ze sobą, gdy znają tylko adresy IP, a nie fizyczne adresy sprzętowe. Na przykład, gdy komputer chce wysłać ramkę do innego urządzenia w tej samej sieci, najpierw wykorzystuje ARP, aby zidentyfikować odpowiedni adres MAC na podstawie znanego adresu IP. Przykładowo, gdy komputer A wysyła dane do komputera B, który ma adres IP 192.168.1.2, komputer A najpierw wysyła zapytanie ARP, aby dowiedzieć się, jaki jest adres MAC odpowiadający temu adresowi IP. Protokół ARP jest niezwykle ważny w kontekście sieci Ethernet i jest stosowany w większości współczesnych sieci lokalnych. Znajomość działania ARP jest kluczowa dla administratorów sieci, ponieważ pozwala identyfikować i rozwiązywać problemy związane z komunikacją w sieci. Warto również zauważyć, że ARP operuje na zasadzie lokalnych broadcastów, co oznacza, że zapytanie ARP jest wysyłane do wszystkich urządzeń w sieci, a odpowiedź jest przyjmowana przez urządzenie z odpowiednim adresem IP.

Pytanie 13

Strategia przedstawiona w diagramie dla tworzenia kopii zapasowych na nośnikach jest znana jako

Ilustracja do pytania
A. round-robin
B. uproszczony GFS
C. wieża Hanoi
D. dziadek-ojciec-syn
Strategia wieża Hanoi jest unikalnym podejściem do tworzenia kopii zapasowych, które opiera się na koncepcji znanej z matematycznej łamigłówki. Kluczowym elementem tej metody jest cykliczny harmonogram, który pozwala na długoterminowe przechowywanie danych przy jednoczesnym minimalizowaniu liczby wymaganych nośników. W typowej implementacji tego systemu stosuje się trzy nośniki, które są nazwane według poziomów wieży, np. A, B i C. Każdego dnia wykonywana jest kopia na jednym z nośników zgodnie z ustaloną sekwencją, która jest podobna do przesuwania dysków w łamigłówce. Dzięki temu, przy stosunkowo małej liczbie nośników, można osiągnąć dużą różnorodność punktów przywracania danych. Praktyczne zastosowanie tej strategii polega na umożliwieniu odzyskiwania danych z różnych punktów w czasie, co jest szczególnie przydatne w sytuacjach wymagających dostępu do starszych wersji plików. Dodatkowo, wieża Hanoi jest uważana za dobry kompromis między kosztami a zdolnością do odzyskiwania danych, co czyni ją popularnym wyborem w wielu organizacjach. Standardy branżowe, takie jak ITIL, podkreślają znaczenie strategii kopii zapasowych, które są zrównoważone i efektywne, a wieża Hanoi jest jednym z takich podejść.

Pytanie 14

Ile podsieci obejmują komputery z adresami: 192.168.5.12/25, 192.168.5.200/25 oraz 192.158.5.250/25?

A. 1
B. 4
C. 2
D. 3
Wielu użytkowników może mieć trudności z prawidłowym przypisaniem adresów IP do podsieci, co jest kluczowym aspektem w zarządzaniu sieciami komputerowymi. W przypadku podanej sytuacji, niektórzy mogą pomyśleć, że wszystkie trzy adresy IP mogą znajdować się w jednej podsieci. Takie myślenie może wynikać z nadmiernego uproszczenia zasad dotyczących maski podsieci. Nie uwzględniając maski /25, można błędnie wnioskować, że adresy 192.168.5.12 i 192.168.5.200 są w tej samej podsieci, ponieważ są blisko siebie w zakresie adresów. Jest to jednak mylące, ponieważ ich maski podsieci wskazują, że są w różnych podsieciach. Dodatkowo, mylenie podsieci z adresami IP, które różnią się tylko ostatnim oktetem, jest powszechnym błędem. Podobnie, przyznanie, że adres 192.158.5.250 może znajdować się w tej samej podsieci co dwa pozostałe adresy, jest błędne, ponieważ pierwszy oktet w tym adresie jest różny i wskazuje na zupełnie inną sieć. Każdy adres IP w sieci musi być oceniany w kontekście jego maski podsieci, aby właściwie określić, do której podsieci przynależy. Rozumienie tego zagadnienia jest niezbędne do skutecznego planowania i zarządzania infrastrukturą sieciową.

Pytanie 15

Jaki protokół sieciowy używa portu 53?

A. HTTP
B. FTP
C. DNS
D. SMTP
Odpowiedź "DNS" jest poprawna, ponieważ to właśnie protokół DNS (Domain Name System) wykorzystuje port 53 do komunikacji. DNS jest kluczowym elementem funkcjonowania internetu, odpowiadając za tłumaczenie nazw domen na adresy IP, co umożliwia przeglądarkom internetowym odnalezienie odpowiednich serwerów. Gdy wpisujesz adres URL, na przykład www.example.com, zapytanie DNS jest wysyłane na port 53, aby znaleźć odpowiadający mu adres IP. Protokół ten nie tylko wspiera podstawową funkcjonalność internetu, ale także jest używany w różnych aplikacjach, takich jak usługi hostingowe, e-maile czy systemy do zarządzania treścią (CMS). Ważnym standardem związanym z DNS jest RFC 1035, który definiuje sposób przesyłania zapytań i odpowiedzi. Dzięki stosowaniu DNS, użytkownicy mogą korzystać z łatwych do zapamiętania nazw zamiast skomplikowanych numerów IP, co znacznie ułatwia nawigację w sieci.

Pytanie 16

Liczba FAFC w systemie heksadecymalnym odpowiada wartości liczbowej

A. 64256(10)
B. 175376 (8)
C. 1111101011111100 (2)
D. 1111101011011101 (2)
Odpowiedzi niepoprawne wynikają z błędnego rozumienia konwersji między systemami liczbowymi. W przypadku pierwszej z błędnych odpowiedzi, 64256(10), konwersja z systemu heksadecymalnego na dziesiętny jest niepoprawna, ponieważ liczba FAFC w systemie heksadecymalnym to 64268 w systemie dziesiętnym, a nie 64256. Druga odpowiedź, 175376(8), wskazuje na system ósemkowy, co wprowadza jeszcze większe zamieszanie. Heksadecymalna liczba FAFC nie ma swojej reprezentacji w systemie ósemkowym, ponieważ systemy te są oparte na różnych podstawach. Z kolei liczby podane w systemie binarnym (1111101011011101 i 1111101011111100) również mogą wprowadzać w błąd. Chociaż jedna z nich jest bliska, to nie jest poprawna reprezentacja liczby FAFC. Głównym błędem w tych odpowiedziach jest nieuwzględnienie, jak różne systemy liczbowe konwertują się nawzajem. Często mylący jest również proces przeliczania między systemami, gdzie zapomnienie o odpowiednich podstawach (szesnastkowej, dziesiętnej, ósemkowej czy binarnej) prowadzi do niepoprawnych wniosków. Zrozumienie tych koncepcji jest kluczowe, aby uniknąć podobnych pomyłek w przyszłości.

Pytanie 17

Użycie polecenia net accounts w Wierszu poleceń systemu Windows, które ustawia maksymalny czas ważności hasła, wymaga zastosowania opcji

A. /FORCELOGOFF
B. /MAXPWAGE
C. /EXPIRES
D. /TIMES
Opcja /MAXPWAGE polecenia net accounts służy do ustawienia maksymalnego okresu ważności hasła w systemie Windows. Gdy administrator systemu ustala tę wartość, użytkownicy będą zmuszeni do zmiany swojego hasła po upływie określonej liczby dni, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa. Utrzymanie haseł w cyklu wymiany minimalizuje ryzyko nieautoryzowanego dostępu do konta, szczególnie w środowiskach, gdzie przechowywane są wrażliwe dane. Przykładowo, w organizacjach finansowych, gdzie ochrona danych jest kluczowa, administratorzy mogą ustawić wartość MAXPWAGE na 90 dni. Warto pamiętać, że wdrożenie polityki dotyczącej wymiany haseł powinno być częścią szerszej strategii ochrony danych, która obejmuje także inne elementy, takie jak edukacja użytkowników o silnych praktykach hasłowych oraz wdrożenie dwuskładnikowego uwierzytelniania. Zgodność z politykami bezpieczeństwa, takimi jak NIST SP 800-53, podkreśla znaczenie regularnej zmiany haseł jako kluczowego aspektu ochrony systemów informatycznych.

Pytanie 18

Rejestry procesora są resetowane poprzez

A. konfigurację parametru w BIOS-ie
B. ustawienie licznika rozkazów na adres zerowy
C. wyzerowanie bitów rejestru flag
D. użycie sygnału RESET
Użycie sygnału RESET jest kluczowym procesem w architekturze komputerowej, który pozwala na zainicjowanie stanu początkowego rejestrów procesora. Sygnał ten uruchamia rutynę resetującą, która ustawia wszystkie rejestry w procesorze na wartości domyślne, co najczęściej oznacza zera. Reset procesora jest niezwykle istotny w kontekście uruchamiania systemu operacyjnego, ponieważ zapewnia, że nie będą one zawierały przypadkowych danych, które mogłyby wpłynąć na działanie systemu. Na przykład, w komputerach osobistych, proces resetowania może być wywoływany poprzez przyciśnięcie przycisku reset, co skutkuje ponownym uruchomieniem systemu oraz wyczyszczeniem stanu rejestrów. W zastosowaniach wbudowanych, takich jak mikrokontrolery, sygnał RESET może być używany do restartowania urządzenia w przypadku wystąpienia błędu. Kluczowym standardem dotyczącym tego procesu jest architektura von Neumanna, która podkreśla znaczenie resetowania w kontekście organizacji pamięci i przetwarzania instrukcji. Właściwe użycie sygnału RESET jest zgodne z najlepszymi praktykami inżynieryjnymi, zapewniającymi niezawodność i stabilność systemów komputerowych.

Pytanie 19

Z analizy danych przedstawionych w tabeli wynika, że efektywna częstotliwość pamięci DDR SDRAM wynosi 184 styki 64-bitowa magistrala danych Pojemność 1024 MB Przepustowość 3200 MB/s

A. 266 MHz
B. 333 MHz
C. 200 MHz
D. 400 MHz
Prawidłowa odpowiedź to 400 MHz, co wynika z architektury pamięci DDR SDRAM oraz sposobu, w jaki oblicza się jej efektywną częstotliwość. DDR SDRAM, czyli Double Data Rate Synchronous Dynamic Random Access Memory, zyskuje na efektywności poprzez przesyłanie danych zarówno na zboczu narastającym, jak i opadającym sygnału zegarowego. W praktyce, oznacza to, że dla standardowej częstotliwości zegara wynoszącej 200 MHz, pamięć ta może przetwarzać dane z efektywnością równą 400 MT/s (megatransferów na sekundę). Przy szynie danych 64-bitowej oraz przepustowości 3200 MB/s, zastosowanie pamięci DDR4 przy takiej częstotliwości jest szerokie, obejmując zarówno komputery stacjonarne, jak i laptopy oraz serwery. Przy wyborze pamięci do systemów komputerowych, warto kierować się standardami, które zapewniają optymalizację wydajności, a DDR SDRAM z efektywną częstotliwością 400 MHz jest jednym z powszechnie uznawanych wyborów dla użytkowników potrzebujących wysokiej wydajności aplikacji, takich jak gry, obróbka wideo czy obliczenia naukowe.

Pytanie 20

Aby przywrócić dane z sformatowanego dysku twardego, konieczne jest zastosowanie programu

A. CD Recovery Toolbox Free
B. CDTrack Rescue
C. RECUVA
D. Acronis True Image
RECUVA to popularny program do odzyskiwania danych, który jest szczególnie skuteczny w przypadku sformatowanych dysków twardych. Działa na zasadzie skanowania wolnych przestrzeni na dysku, gdzie mogą znajdować się nieusunięte dane. Zastosowanie RECUVA jest uzasadnione w sytuacjach, gdy dane zostały przypadkowo usunięte lub po formatowaniu, podczas gdy inne programy mogą nie radzić sobie z takimi przypadkami. Warto również zauważyć, że RECUVA oferuje różne tryby skanowania, co umożliwia użytkownikom dostosowanie procesu do swoich potrzeb. Program pozwala także na podgląd plików przed ich przywróceniem, co zwiększa pewność wyboru. W zgodzie z dobrymi praktykami branżowymi, zawsze zaleca się przechowywanie odzyskanych danych na innym nośniku, aby uniknąć nadpisywania danych, które mogą jeszcze być dostępne. Dodatkowo, regularne tworzenie kopii zapasowych jest kluczowym elementem zarządzania danymi, co może zapobiegać wielu problemom z utratą danych w przyszłości.

Pytanie 21

Jakim symbolem jest oznaczona skrętka bez ekranowania?

A. U/FTP
B. S/FTP
C. U/UTP
D. F/UTP
Symbol U/UTP oznacza skrętki nieekranowane, które są szeroko stosowane w sieciach komputerowych, szczególnie w aplikacjach Ethernet. U/UTP to standard, który nie zawiera żadnego dodatkowego ekranowania poszczególnych par przewodów. Skrętki nieekranowane charakteryzują się niższym kosztem w porównaniu do ekranowanych odpowiedników, co czyni je popularnym wyborem w środowiskach, gdzie nie występują duże zakłócenia elektromagnetyczne. Przykładem zastosowania U/UTP są sieci lokalne (LAN), w których przewody te skutecznie przesyłają dane na krótsze odległości bez wpływu na jakość sygnału. Warto zaznaczyć, że dla optymalizacji sygnału w bardziej wymagających warunkach, takich jak bliskość urządzeń elektronicznych generujących zakłócenia, preferowane mogą być skrętki ekranowane, takie jak S/FTP. Jednak w standardowych instalacjach, U/UTP spełnia wymagania transmisji danych zgodnie z normami IEEE 802.3.

Pytanie 22

Wskaż komponent, który nie jest zgodny z płytą główną o parametrach przedstawionych w tabeli.

A. Procesor: INTEL CORE i3-4350, 3.60 GHz, x2/4, 4 MB, 54W, HD 4600, BOX, s-1150
B. Monitor: Dell, 34”, 1x DisplayPort, 1x miniDP, 2x USB 3.0 Upstream, 4x USB 3.0 Downstream
C. Pamięć RAM: Corsair Vengeance LPX, DDR4, 2x16GB, 3000MHz, CL15 Black
D. Karta graficzna: Gigabyte GeForce GTX 1050 OC, 2GB, GDDR5, 128 bit, PCI-Express 3.0 x16
Procesor INTEL CORE i3-4350 nie jest kompatybilny z płytą główną GIGABYTE o oznaczeniu S-AM3+, ponieważ posiada złącze socket LGA 1150. W kontekście budowy komputera, wybór odpowiedniego procesora jest kluczowy, gdyż każda płyta główna obsługuje określone modele procesorów, które muszą pasować do jej gniazda. Zastosowanie procesora niezgodnego ze standardem płyty głównej skutkuje brakiem możliwości jego zainstalowania i funkcjonowania. W branży IT przyjęto, że dobrą praktyką jest zawsze sprawdzanie tabeli zgodności komponentów przed zakupem. Na przykład, użycie procesora AMD na płycie głównej zaprojektowanej dla procesorów Intel jest niemożliwe bez względu na inne parametry. Dlatego zawsze należy zwracać uwagę na specyfikacje techniczne i upewnić się, że wszystkie komponenty są ze sobą kompatybilne, co zapewnia prawidłowe działanie systemu oraz optymalną wydajność.

Pytanie 23

Czytnik w napędzie optycznym, który jest zanieczyszczony, należy oczyścić

A. spirytusem
B. izopropanolem
C. rozpuszczalnikiem ftalowym
D. benzyną ekstrakcyjną
Izopropanol to naprawdę jeden z najlepszych wyborów do czyszczenia soczewek i różnych powierzchni optycznych. Jego działanie jest super efektywne, bo fajnie rozpuszcza brud, a przy tym nie szkodzi delikatnym elementom w sprzęcie. Co ważne, bardzo szybko paruje, więc po czyszczeniu nie ma problemu z zostawianiem jakichś śladów. W praktyce można używać wacików nasączonych izopropanolem, co sprawia, że łatwo dotrzeć do tych trudniej dostępnych miejsc. Zresztą, standardy takie jak ISO 9001 mówią, że izopropanol to dobry wybór do konserwacji elektronicznego sprzętu, więc warto się tego trzymać. Pamiętaj, żeby unikać silnych rozpuszczalników, bo mogą one nieźle namieszać i zniszczyć materiały, z jakich zbudowany jest sprzęt.

Pytanie 24

Na przedstawionym zdjęciu złącza pozwalają na

Ilustracja do pytania
A. zapewnienie dodatkowego zasilania dla kart graficznych
B. zapewnienie zasilania dla urządzeń PATA
C. zapewnienie zasilania dla urządzeń ATA
D. zapewnienie zasilania dla urządzeń SATA
Złącza przedstawione na fotografii to standardowe złącza zasilania SATA. SATA (Serial ATA) to popularny interfejs używany do podłączania dysków twardych i napędów optycznych w komputerach. Złącza zasilania SATA charakteryzują się trzema napięciami: 3,3 V 5 V i 12 V co umożliwia zasilanie różnorodnych urządzeń. Standard SATA jest używany w większości nowoczesnych komputerów ze względu na szybki transfer danych oraz łatwość instalacji i konserwacji. Zasilanie SATA zapewnia stabilną i efektywną dystrybucję energii do dysków co jest kluczowe dla ich niezawodnej pracy. Dodatkowym atutem jest kompaktowy design złącza które ułatwia zarządzanie przewodami w obudowie komputera co jest istotne dla przepływu powietrza i chłodzenia. Przy projektowaniu systemów komputerowych zaleca się zwracanie uwagi na jakość kabli zasilających aby zapewnić długowieczność i stabilność podłączonych urządzeń. Wybierając zasilacz komputerowy warto upewnić się że posiada on wystarczającą ilość złącz SATA co pozwoli na przyszłą rozbudowę systemu o dodatkowe napędy czy dyski.

Pytanie 25

Urządzenie pokazane na ilustracji służy do

Ilustracja do pytania
A. regeneracji sygnału
B. dostarczenia zasilania po kablu U/UTP
C. monitorowania ruchu na porcie LAN
D. rozdziału domen kolizji
Urządzenie przedstawione na rysunku to tzw. injector PoE (Power over Ethernet). Jego główną funkcją jest dostarczanie zasilania do urządzeń sieciowych przez standardowy kabel Ethernet typu U/UTP. Technologia PoE jest szeroko stosowana w sieciach komputerowych, umożliwiając jednoczesne przesyłanie danych i energii elektrycznej do urządzeń takich jak punkty dostępowe WiFi kamery IP telefony VoIP czy urządzenia IoT. Standardy PoE definiują maksymalną moc, którą można przesłać kablem, co eliminuje potrzebę dodatkowych zasilaczy i kabli zasilających, upraszczając instalację i obniżając jej koszty. Istnieją różne standardy PoE takie jak 802.3af 802.3at (PoE+) oraz 802.3bt, które określają różne poziomy mocy. Zastosowanie PoE jest nie tylko praktyczne, ale także zwiększa elastyczność w rozmieszczaniu urządzeń sieciowych, ponieważ nie muszą one być zlokalizowane w pobliżu źródła zasilania. Injector PoE jest kluczowym elementem w wielu nowoczesnych infrastrukturach sieciowych, wspierając efektywność i skalowalność.

Pytanie 26

Jaki pakiet powinien zostać zainstalowany na serwerze Linux, aby umożliwić stacjom roboczym z systemem Windows dostęp do plików i drukarek udostępnianych przez ten serwer?

A. Samba
B. Proftpd
C. Wine
D. Vsftpd
Samba jest otwartoźródłowym oprogramowaniem, które implementuje protokoły SMB/CIFS, umożliwiając stacjom roboczym z systemem Windows dostęp do plików i drukarek udostępnianych na serwerach Linux. Dzięki Samba, użytkownicy mogą łatwo integrować środowiska Linux i Windows, co jest szczególnie istotne w heterogenicznych sieciach. Przykładowo, poprzez odpowiednią konfigurację Samby, organizacje mogą stworzyć centralne repozytoria plików, które będą dostępne zarówno dla użytkowników Windows, jak i Linux, co znacznie ułatwia współpracę oraz zapewnia efektywność zarządzania danymi. Dodatkowo, Samba wspiera autoryzację użytkowników i grup, co pozwala na precyzyjne kontrolowanie dostępu do zasobów. W branży IT, powszechną praktyką jest używanie Samby jako standardowego rozwiązania do integracji systemów operacyjnych, co zapewnia nie tylko łatwość w konfiguracji, ale również wysoką wydajność transferu plików i zabezpieczeń. Inwestycja w zrozumienie i wdrożenie Samby w infrastruktury IT przynosi długofalowe korzyści.

Pytanie 27

Poprawę jakości skanowania można osiągnąć poprzez zmianę

A. formatu pliku źródłowego
B. rozdzielczości
C. rozmiaru skanowanego dokumentu
D. wielkości wydruku
Poprawa jakości skanowania poprzez zwiększenie rozdzielczości jest kluczowym aspektem, który wpływa na szczegółowość obrazu. Rozdzielczość skanera, mierzona w dpi (dots per inch), określa, ile punktów obrazu jest rejestrowanych na cal. Wyższa rozdzielczość pozwala na uchwycenie większej ilości detali, co jest szczególnie istotne przy skanowaniu dokumentów tekstowych, grafik czy zdjęć. Na przykład, dla dokumentów tekstowych zaleca się ustawienie rozdzielczości na co najmniej 300 dpi, aby zapewnić czytelność i dokładność. Dla zdjęć lub materiałów graficznych warto rozważyć jeszcze wyższą rozdzielczość, na przykład 600 dpi lub więcej. Dobrą praktyką jest również przemyślenie wyboru rozdzielczości w kontekście przechowywania i edytowania obrazów; wyższa rozdzielczość generuje większe pliki, co może być problematyczne przy dużych ilościach danych. Standardy branżowe, takie jak ISO 12647, podkreślają znaczenie jakości obrazu w procesach druku i reprodukcji, co czyni umiejętność dostosowywania rozdzielczości niezbędną w pracy z dokumentami cyfrowymi.

Pytanie 28

Aby określić długość prefiksu w adresie IPv4, należy ustalić

A. liczbę bitów o wartości 0 w pierwszych dwóch oktetach adresu IPv4
B. liczbę bitów o wartości 1 w części hosta adresu IPv4
C. liczbę początkowych bitów o wartości 1 w masce adresu IPv4
D. liczbę bitów o wartości 0 w trzech pierwszych oktetach adresu IPv4
Poprawna odpowiedź opiera się na zasadach klasyfikacji adresów IPv4 oraz maski podsieci. Długość prefiksu adresu sieci w IPv4 określa się poprzez liczenie liczby początkowych bitów mających wartość 1 w masce adresu. Maska podsieci dzieli adres IP na dwie części: część sieciową i część hosta. Przykładowo, dla adresu IP 192.168.1.1 z maską 255.255.255.0, maska w postaci binarnej to 11111111.11111111.11111111.00000000. W tym przypadku liczba początkowych bitów 1 wynosi 24, co oznacza, że długość prefiksu wynosi /24. Te informacje są kluczowe dla routingu oraz segmentacji sieci, ponieważ dobrze skonfigurowane maski wpływają na efektywność komunikacji w sieci. W praktyce, gdy administratorzy sieci definiują podsieci, muszą precyzyjnie określić zakresy adresowe, co jest realizowane właśnie poprzez maski i ich prefiksy. Ponadto, zgodnie z zaleceniami IETF, prawidłowe przypisanie adresów IP i masek jest istotne dla zapewnienia optymalnej wydajności oraz bezpieczeństwa w sieciach komputerowych.

Pytanie 29

Jaka usługa, opracowana przez firmę Microsoft, pozwala na konwersję nazw komputerów na adresy URL?

A. WINS
B. ARP
C. IMAP
D. DHCP
WINS, czyli Windows Internet Name Service, to usługa stworzona przez firmę Microsoft, która umożliwia tłumaczenie nazw komputerów na adresy IP w sieciach lokalnych. WINS jest szczególnie istotny w środowiskach, w których wykorzystywane są protokoły NetBIOS, ponieważ umożliwia współpracę różnych urządzeń w sieci, odwołując się do ich nazw, zamiast do adresów IP. Przykładowo, gdy użytkownik wpisuje nazwę komputera, WINS przeszukuje swoją bazę danych, aby znaleźć odpowiedni adres IP, co upraszcza dostęp do zasobów sieciowych. W praktyce, WINS jest często wykorzystywany w dużych sieciach korporacyjnych, które muszą zarządzać wieloma komputerami i serwerami. W kontekście dobrych praktyk sieciowych, WINS bywa łączony z innymi protokołami, takimi jak DNS, co pozwala na lepszą integrację i zarządzanie siecią. Warto również zaznaczyć, że WINS jest zazwyczaj używany w środowiskach, które są wciąż oparte na systemach Windows, mimo że z biegiem lat popularność tej usługi spadła na rzecz bardziej nowoczesnych rozwiązań, takich jak DNS.

Pytanie 30

Brak zabezpieczeń przed utratą danych w wyniku fizycznej awarii jednego z dysków to właściwość

A. RAID 1
B. RAID 2
C. RAID 3
D. RAID 0
RAID 0, znany również jako striping, to konfiguracja, która dzieli dane na bloki i rozkłada je równomiernie na wiele dysków. Główną zaletą RAID 0 jest zwiększenie wydajności, ponieważ operacje odczytu i zapisu mogą być wykonywane równolegle na wielu dyskach. Jednak ta konfiguracja nie oferuje żadnej redundancji ani ochrony danych. W przypadku awarii jednego z dysków, wszystkie dane przechowywane w macierzy RAID 0 są tracone. Przykładami zastosowania RAID 0 są systemy, w których priorytetem jest szybkość, takie jak edycja wideo czy graficzne operacje, gdzie czas dostępu do danych ma kluczowe znaczenie. W kontekście standardów branżowych, RAID 0 jest często używany w środowiskach, gdzie dane mogą być regularnie kopiowane lub gdzie ważna jest ich wydajność, ale niekoniecznie ich trwałość. Warto pamiętać, że mimo wysokiej wydajności, RAID 0 nie jest rozwiązaniem do przechowywania krytycznych danych bez dodatkowych zabezpieczeń.

Pytanie 31

Aby w systemie Windows, przy użyciu wiersza poleceń, zmienić partycję FAT na NTFS bez utraty danych, powinno się zastosować polecenie

A. format
B. recover
C. convert
D. change
Polecenie 'convert' jest odpowiednie do zmiany systemu plików z FAT na NTFS bez utraty danych, co czyni je idealnym rozwiązaniem w sytuacjach, gdy potrzebujemy aktualizacji systemu plików w istniejącej partycji. Używając polecenia 'convert', system Windows skanuje partycję i zmienia jej struktury wewnętrzne na takie, które są zgodne z NTFS, a jednocześnie zachowuje wszystkie pliki i foldery znajdujące się na tej partycji. Przykład zastosowania może obejmować sytuację, w której użytkownik chce zyskać dodatkowe funkcje oferowane przez NTFS, takie jak lepsze zarządzanie uprawnieniami, kompresja plików czy możliwość wykorzystania dużych plików powyżej 4 GB. Dobre praktyki w zakresie zarządzania systemami operacyjnymi zalecają użycie tego polecenia z odpowiednimi uprawnieniami administratora, aby uniknąć problemów związanych z autoryzacją. Ponadto, przed dokonaniem jakichkolwiek zmian na partycji, zaleca się wykonanie kopii zapasowej danych, aby zminimalizować ryzyko ich utraty.

Pytanie 32

Zidentyfikowanie głównego rekordu rozruchowego, który uruchamia system z aktywnej partycji, jest możliwe dzięki

A. GUID Partition Table
B. BootstrapLoader
C. POST
D. CDDL
Bootstrap Loader to specjalny program, który jest odpowiedzialny za wczytywanie systemu operacyjnego z aktywnej partycji. Po zakończeniu procesu POST (Power-On Self Test), system BIOS lub UEFI przystępuje do uruchomienia bootloadera. Bootloader znajduje się zazwyczaj w pierwszym sektorze aktywnej partycji i jego zadaniem jest załadowanie rdzenia systemu operacyjnego do pamięci. W praktyce, jest to kluczowy element procesu uruchamiania komputera, który pozwala na zainicjowanie i wczytanie systemu operacyjnego, co jest podstawą do dalszej pracy użytkownika. W przypadku systemów operacyjnych Linux, popularnym bootloaderem jest GRUB (Grand Unified Bootloader), a w Windows jest to Windows Boot Manager. Zastosowanie bootloadera jest zgodne z dobrymi praktykami w branży IT, które zalecają wyraźne oddzielenie procesu rozruchu od samego systemu operacyjnego, co ułatwia diagnozowanie problemów związanych z uruchamianiem oraz modyfikację konfiguracji. Ponadto, bootloader może obsługiwać różne systemy plików i pozwala na wybór pomiędzy różnymi systemami operacyjnymi, co jest istotne w środowiskach z dual-boot.

Pytanie 33

Co wskazuje oznaczenie danego procesora?

Ilustracja do pytania
A. wersji mobilnej procesora
B. niskim poborze energii przez procesor
C. jego niewielkich rozmiarach obudowy
D. braku blokady mnożnika (unlocked)
Procesor z literką 'K' to świetna sprawa, bo oznacza, że nie ma blokady mnożnika. To znaczy, że można go podkręcać, co jest super dla tych, którzy chcą uzyskać z niego więcej mocy. Fajnie jest mieć możliwość zwiększenia częstotliwości taktowania, bo w grach czy przy obrabianiu wideo to naprawdę się przydaje. Takie procesory są trochę droższe, ale można je dostosować do swoich potrzeb, co jest dużą zaletą. Oczywiście, żeby podkręcanie działało, trzeba mieć też odpowiednie chłodzenie i płytę główną. Procesor i7-6700K to przykład takiego modelu, który daje pełną kontrolę nad wydajnością. Ważne, żeby przy podkręcaniu monitorować temperatury, bo to standard w branży IT. To wszystko sprawia, że taki procesor naprawdę może zdziałać cuda, jeśli się go dobrze ustawi.

Pytanie 34

Wskaż właściwą formę maski podsieci?

A. 255.252.252.255
B. 0.0.0.0
C. 255.255.0.128
D. 255.255.255.255
Odpowiedź 255.255.255.255 to maska podsieci, która jest używana do wskazania adresu broadcast w danej sieci. Jest to maksymalna wartość dla maski podsieci, co oznacza, że wszystkie bity są ustawione na 1, a więc wszystkie adresy IP w danej podsieci są dostępne dla komunikacji. W praktyce oznacza to, że każda maszyna w sieci może komunikować się z innymi maszynami, a także wysyłać dane do wszystkich urządzeń jednocześnie. Maska 255.255.255.255 jest często używana w konfiguracjach sieciowych, aby zdefiniować adresy rozgłoszeniowe, co jest kluczowe w protokołach takich jak ARP (Address Resolution Protocol) i DHCP (Dynamic Host Configuration Protocol), gdzie urządzenia muszą wysyłać pakiety do wszystkich innych urządzeń w sieci lokalnej. W przypadku sieci IPv4, stosowanie takich masek jest zgodne z zaleceniami organizacji IETF, która standardyzuje wiele aspektów działania sieci. W związku z tym, zrozumienie użycia maski 255.255.255.255 jest podstawowym elementem wiedzy o sieciach komputerowych.

Pytanie 35

Który z elementów przedstawionych na diagramie karty dźwiękowej na rysunku jest odpowiedzialny za cyfrowe przetwarzanie sygnałów?

Ilustracja do pytania
A. Mikser
B. Przetwornik A/D
C. Syntezator
D. Procesor DSP
Procesor DSP, czyli Digital Signal Processor, to kluczowy element w cyfrowym przetwarzaniu sygnałów na karcie dźwiękowej. Jego zadaniem jest wykonywanie złożonych obliczeń matematycznych w czasie rzeczywistym, co umożliwia skuteczne przetwarzanie sygnałów audio. DSP jest w stanie realizować zadania takie jak filtrowanie sygnałów, kompresja, redukcja szumów oraz efektów dźwiękowych. Jego architektura jest zoptymalizowana do szybkiego przetwarzania danych, co czyni go niezastąpionym w systemach audio nowoczesnych rozwiązań multimedialnych. Dzięki zastosowaniu procesora DSP karty dźwiękowe mogą oferować zaawansowane funkcje takie jak przestrzenny dźwięk surround czy dynamiczna korekcja dźwięku. W standardach branżowych DSP jest powszechnie uznawany za fundament efektywnego przetwarzania sygnałów cyfrowych, co pozwala na osiągnięcie wysokiej jakości dźwięku w aplikacjach profesjonalnych oraz konsumenckich. Jego wykorzystanie w aplikacjach muzycznych, nadawczo-odbiorczych czy systemach komunikacji cyfrowej podkreśla jego uniwersalność i skuteczność. Procesory DSP są stosowane także w systemach redukcji echa oraz w diagnostyce medycznej, co pokazuje ich szerokie zastosowanie w różnych dziedzinach technologicznych.

Pytanie 36

Jaką cechę posiada przełącznik w sieci?

A. Działa na fragmentach danych określanych jako segmenty
B. Korzysta z protokołu EIGRP
C. Z przesyłanych pakietów pobiera docelowe adresy IP
D. Z odebranych ramek wydobywa adresy MAC
Przełącznik sieciowy to urządzenie, które odgrywa kluczową rolę w zarządzaniu komunikacją w sieciach lokalnych. Jego podstawową funkcją jest odczytywanie adresów MAC z ramek sieciowych, co umożliwia efektywne przekazywanie danych pomiędzy urządzeniami w tej samej sieci. Dzięki mechanizmowi przechowywania adresów MAC w tablicy, przełącznik jest w stanie podejmować decyzje dotyczące przesyłania danych tylko do tych portów, które są rzeczywiście połączone z docelowymi urządzeniami. Taka operacja zwiększa wydajność sieci oraz minimalizuje niepotrzebny ruch, co jest zgodne z najlepszymi praktykami w projektowaniu sieci lokalnych. Na przykład, w dużych biurach, gdzie wiele komputerów jest podłączonych do jednego przełącznika, jego zdolność do prawidłowego kierowania ruchu bazując na adresach MAC jest kluczowa dla zapewnienia płynnej komunikacji. Przełączniki są niezbędnymi elementami w nowoczesnych sieciach Ethernet, a ich odpowiednia konfiguracja zgodna z protokołami IEEE 802.1D (Spanning Tree Protocol) i IEEE 802.1Q (VLAN) może znacząco poprawić zarządzanie ruchem sieciowym oraz zwiększyć bezpieczeństwo.

Pytanie 37

Zanim przystąpisz do modernizacji komputerów osobistych oraz serwerów, polegającej na dodaniu nowych modułów pamięci RAM, powinieneś zweryfikować

A. typ pamięci RAM, maksymalną pojemność oraz ilość modułów, które obsługuje płyta główna
B. markę pamięci RAM oraz zewnętrzne interfejsy zamontowane na płycie głównej
C. pojemność i typ interfejsu twardego dysku oraz rodzaj gniazda zainstalowanej pamięci RAM
D. gniazdo interfejsu karty graficznej oraz moc zainstalowanego źródła zasilania
Wybór właściwej odpowiedzi jest kluczowy, ponieważ przed modernizacją komputerów osobistych oraz serwerów ważne jest, aby upewnić się, że nowa pamięć RAM jest kompatybilna z płytą główną. Należy zwrócić uwagę na model pamięci RAM, maksymalną pojemność, jaką płyta główna może obsłużyć oraz liczbę modułów pamięci, które mogą być zainstalowane jednocześnie. Na przykład, jeśli płyta główna obsługuje maksymalnie 32 GB pamięci RAM w czterech gniazdach, a my chcemy zainstalować cztery moduły po 16 GB, to taka modyfikacja nie będzie możliwa. Niektóre płyty główne mogą również wspierać różne typy pamięci, takie jak DDR3, DDR4 lub DDR5, co dodatkowo wpływa na wybór odpowiednich modułów. Przykładowo, wprowadzając nowe moduły pamięci, które są niekompatybilne z istniejącymi, można napotkać problemy z bootowaniem systemu, błędy pamięci, a nawet uszkodzenie komponentów. Dlatego ważne jest, aby przed zakupem nowych modułów dokładnie sprawdzić specyfikacje płyty głównej, co jest zgodne z dobrymi praktykami w branży komputerowej.

Pytanie 38

Jakie urządzenia wyznaczają granice domeny rozgłoszeniowej?

A. wzmacniacze sygnału
B. huby
C. przełączniki
D. rutery
Rutery są mega ważne, jeśli chodzi o granice domeny rozgłoszeniowej w sieciach komputerowych. Ich główne zadanie to przepychanie pakietów danych między różnymi sieciami, co jest niezbędne, żeby dobrze segregować ruch rozgłoszeniowy. Gdy pakiety rozgłoszeniowe trafiają do rutera, to on nie puszcza ich dalej do innych sieci. Dzięki temu zasięg rozgłosu ogranicza się tylko do danej domeny. Rutery działają według różnych protokołów IP, które mówią, jak te dane mają być przesyłane w sieci. Dzięki ruterom można nie tylko lepiej zarządzać ruchem, ale też podnieść bezpieczeństwo sieci przez segmentację. Na przykład w dużych firmach różne działy mogą mieć swoje własne sieci, a ruter pomoże, żeby info nie szło gdzie nie trzeba. Takie rozdzielenie poprawia też wydajność sieci, bo eliminuje zbędny ruch rozgłoszeniowy, co jest całkiem zgodne z najlepszymi praktykami w projektowaniu i zarządzaniu sieciami.

Pytanie 39

Wskaż program do składu publikacji

A. MS Excel
B. MS Visio
C. MS Publisher
D. MS Word
MS Publisher jest specjalistycznym programem do publikacji i projektowania materiałów graficznych, który jest powszechnie używany w branży DTP (Desktop Publishing). Jego główną funkcją jest umożliwienie użytkownikom łatwego tworzenia profesjonalnych publikacji, takich jak ulotki, broszury, plakaty czy newslettery. Dzięki intuicyjnemu interfejsowi i rozbudowanej bibliotece szablonów, MS Publisher pozwala na szybkie projektowanie graficzne, co czyni go idealnym narzędziem dla małych firm oraz osób zajmujących się marketingiem. Program obsługuje różnorodne formaty plików graficznych i tekstowych, co zwiększa jego wszechstronność. W praktyce, MS Publisher wspiera standardy branżowe, takie jak PDF/X, co zapewnia wysoką jakość druku. Użytkownicy mogą także łatwo integrować dane z innych aplikacji Microsoft Office, co pozwala na efektywne zarządzanie treściami. Dodatkowo, MS Publisher oferuje zaawansowane opcje typografii oraz układu, co pozwala na dostosowywanie projektów do indywidualnych potrzeb. Znajomość MS Publisher jest zatem nie tylko przydatna, ale wręcz niezbędna dla wszystkich, którzy pragną tworzyć profesjonalnie wyglądające materiały drukowane.

Pytanie 40

W systemie Windows zastosowanie zaprezentowanego polecenia spowoduje chwilową modyfikację koloru

Ilustracja do pytania
A. tła oraz tekstu okna Windows
B. paska tytułowego okna Windows
C. czcionki wiersza poleceń, która była uruchomiona z ustawieniami domyślnymi
D. tła okna wiersza poleceń, które zostało uruchomione z domyślnymi ustawieniami
Polecenie color w wierszu poleceń systemu Windows służy do zmiany koloru czcionki oraz tła w oknie konsoli. W formacie color X, gdzie X to cyfry lub litery reprezentujące kolory, zmiana ta dotyczy aktualnie otwartego okna wiersza poleceń i nie wpływa na inne części systemu Windows. Przykładowo polecenie color 1 ustawi kolor czcionki na niebieski z domyślnym czarnym tłem. Zrozumienie tego mechanizmu jest istotne dla administratorów systemów i programistów, gdyż pozwala na szybkie dostosowywanie środowiska pracy w celach testowych czy diagnostycznych. Warto również znać inne opcje, takie jak color 0A, które mogą służyć do bardziej zaawansowanych konfiguracji. Dobre praktyki w administracji systemem Windows uwzględniają umiejętność korzystania z poleceń wiersza poleceń w celu automatyzacji zadań oraz dostosowywania środowiska. W przypadku ustawienia domyślnych parametrów polecenie color resetuje zmiany na standardowe ustawienia, co jest przydatne w przypadku skryptowania i powtarzalnych zadań.