Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 30 maja 2025 16:35
  • Data zakończenia: 30 maja 2025 16:59

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W której fizycznej topologii awaria jednego komputera powoduje przerwanie pracy całej sieci?

A. Drzewa
B. Pierścienia
C. Siatki
D. Magistrali
Fizyczna topologia pierścienia charakteryzuje się tym, że urządzenia sieciowe są połączone w zamknięty obwód, co oznacza, że dane przesyłane są w jednym kierunku z jednego węzła do drugiego. Kluczowym aspektem tej topologii jest to, że każde urządzenie jest bezpośrednio połączone z dwoma innymi, tworząc zamknięty krąg. W przypadku uszkodzenia jednego z węzłów, sygnał nie ma możliwości dotarcia do pozostałych urządzeń, co prowadzi do zatrzymania całej sieci. W praktyce, aby zminimalizować ryzyko awarii, w systemach opartych na topologii pierścienia często stosuje się mechanizmy redundancji, takie jak podwójny pierścień lub inne technologie, które pozwalają na zrealizowanie alternatywnych tras przesyłania danych. Przykładowo, w sieciach token ring stosuje się token do zarządzania dostępem do medium, co dodatkowo zwiększa niezawodność tej topologii. Topologia pierścienia może być korzystna w zastosowaniach, gdzie stabilność i przewidywalność komunikacji są kluczowe, np. w sieciach lokalnych dla dużych organizacji.

Pytanie 2

Jakie polecenie w systemie Linux prawidłowo ustawia kartę sieciową, przypisując adres IP oraz maskę sieci dla interfejsu eth1?

A. ifconfig eth1 192.168.1.0 netmask 0.255.255.255.255
B. ifconfig eth1 192.168.1.255 netmask 255.255.255.0
C. ifconfig eth1 192.168.1.1 netmask 255.255.255.0
D. ifconfig eth1 192.168.1.0 netmask 255.255.255.0
Polecenie 'ifconfig eth1 192.168.1.1 netmask 255.255.255.0' jest poprawne, ponieważ umożliwia skonfigurowanie interfejsu sieciowego eth1 z odpowiednim adresem IP oraz maską sieci. Adres IP 192.168.1.1 jest typowym adresem dla prywatnych sieci lokalnych, a maska 255.255.255.0 definiuje podsieć, w której urządzenia mogą się komunikować. Zastosowanie maski 255.255.255.0 oznacza, że pierwsze trzy oktety adresu IP (192.168.1) są częścią adresu sieci, co pozwala na przypisanie do 254 różnych adresów IP w tej podsieci (od 192.168.1.1 do 192.168.1.254). To podejście jest zgodne z praktykami stosowanymi w administracji sieci, które zakładają przydzielanie adresów IP w obrębie ustalonych podsieci, co ułatwia zarządzanie i bezpieczeństwo sieci. W kontekście rzeczywistych zastosowań, odpowiednia konfiguracja adresu IP i maski sieci jest kluczowa dla zapewnienia komunikacji między urządzeniami w sieci lokalnej oraz ich dostępności z zewnątrz.

Pytanie 3

Na rysunku ukazany jest diagram blokowy zasilacza

Ilustracja do pytania
A. impulsowego komputera
B. awaryjnego (UPS)
C. impulsowego matrycy RAID
D. analogowego komputera
Schemat blokowy przedstawiony na rysunku ilustruje budowę zasilacza awaryjnego, czyli systemu UPS (Uninterruptible Power Supply). UPS jest kluczowym urządzeniem w infrastrukturze IT, ponieważ zapewnia ciągłość zasilania w przypadku zaniku napięcia sieciowego. Główne komponenty UPS to ładowarka akumulatorów, zestaw akumulatorów, falownik oraz tłumik przepięć. Ładowarka odpowiada za utrzymanie akumulatorów w stanie pełnego naładowania, co jest kluczowe dla zapewnienia gotowości do pracy. W momencie zaniku zasilania sieciowego energia z akumulatorów jest przekształcana za pomocą falownika z prądu stałego na przemienny, dostarczając zasilanie do podłączonych urządzeń. Tłumik przepięć chroni przed nagłymi skokami napięcia, co jest zgodne ze standardami bezpieczeństwa IEC. Praktyczne zastosowanie UPS obejmuje ochronę sprzętu komputerowego, serwerów oraz aparatury medycznej, gdzie nawet krótkotrwała przerwa w zasilaniu może prowadzić do utraty danych lub uszkodzenia sprzętu. UPSy są powszechnie stosowane w centrach danych, szpitalach i przedsiębiorstwach wymagających niezawodności zasilania.

Pytanie 4

W którym typie macierzy, wszystkie fizyczne dyski są postrzegane jako jeden dysk logiczny?

A. RAID 1
B. RAID 2
C. RAID 5
D. RAID 0
Chociaż RAID 1, RAID 2 i RAID 5 są popularnymi typami rozwiązań dla macierzy dyskowych, różnią się one zasadniczo od RAID 0 w sposobie organizacji i zarządzania danymi. RAID 1 zakłada mirroring, co oznacza, że dane są duplikowane na dwóch lub więcej dyskach. Ta konfiguracja zapewnia wysoką redundancję, więc w razie awarii jednego z dysków, dane pozostają dostępne na pozostałych. W praktyce jest to rozwiązanie stosowane w serwerach, gdzie kluczowe jest bezpieczeństwo danych, ale niekoniecznie ich szybkość. RAID 2, który polega na użyciu wielu dysków do zapisywania danych oraz dodatkowych dysków do przechowywania informacji o błędach, jest teraz rzadkością ze względu na swoją złożoność oraz niewielkie korzyści w porównaniu do nowszych rozwiązań. RAID 5 natomiast łączy striping z parzystością, co zapewnia zarówno wydajność, jak i pewien poziom ochrony danych. W przypadku utraty jednego dysku, dane mogą być odtworzone z informacji parzystości przechowywanych na pozostałych dyskach. W kontekście RAID 0, kluczowym błędem myślowym jest założenie, że wszystkie typy RAID oferują analogiczne korzyści, podczas gdy każdy typ ma swoje specyficzne zastosowania i ograniczenia. Wybór odpowiedniego typu macierzy powinien opierać się na analizie wymagań dotyczących wydajności, redundancji oraz bezpieczeństwa danych.

Pytanie 5

W jakiej technologii produkcji projektorów stosowany jest system mikroskopijnych luster, przy czym każde z nich odpowiada jednemu pikselowi wyświetlanego obrazu?

A. LCOS
B. LED
C. DLP
D. LCD
Technologie LCD, LED oraz LCOS różnią się zasadniczo od DLP w sposobie wyświetlania obrazów, co może prowadzić do mylnych wniosków na temat ich zastosowania. LCD (Liquid Crystal Display) wykorzystuje ciekłe kryształy do modulacji światła, które jest podświetlane z tyłu przez źródło światła. W przypadku tej technologii, nie ma mikroskopijnych luster odpowiadających za wyświetlanie poszczególnych pikseli, co skutkuje innym podejściem do tworzenia obrazu. Z kolei technologia LED, będąca połączeniem podświetlenia LED i LCD, również nie korzysta z mikroluster. LED odnosi się głównie do źródła światła, które może być stosowane w różnych projektorach, ale nie definiuje samej technologii wyświetlania. Natomiast LCOS (Liquid Crystal on Silicon) polega na umieszczeniu ciekłych kryształów na podłożu silikonowym, co również nie wykorzystuje mikroskopijnych luster. Każda z tych technologii ma swoje unikalne właściwości, jednak kluczowe jest zrozumienie, że DLP wyróżnia się właśnie zastosowaniem mikroskopijnych luster do zarządzania obrazem. Mylenie tych technologii może prowadzić do nieprawidłowych wyborów przy zakupie sprzętu, w szczególności jeśli celem jest osiągnięcie wysokiej jakości obrazu w konkretnych zastosowaniach, takich jak prezentacje czy kino domowe.

Pytanie 6

Proces zapisu na nośnikach BD-R realizowany jest przy użyciu

A. promieniowania UV
B. lasera czerwonego
C. głowicy magnetycznej
D. lasera niebieskiego
Zapis na dyskach BD-R (Blu-ray Disc Recordable) odbywa się za pomocą lasera niebieskiego, który wykorzystuje wąskie promieniowanie o długości fali około 405 nm. Ta krótka długość fali pozwala na zapis danych z większą gęstością niż w przypadku tradycyjnych dysków DVD, które używają lasera czerwonego o długości fali 650 nm. Dzięki zastosowaniu lasera niebieskiego możliwe jest umieszczenie na dysku Blu-ray znacznie większej ilości danych, co czyni go bardziej wydajnym nośnikiem. Przykładowo, standardowy dysk BD-R o pojemności 25 GB pozwala na zapis do 2 godzin materiału w jakości 1080p, co jest istotne w kontekście produkcji filmów i gier wideo. W branży rozrywkowej, gdzie jakość i pojemność nośników mają kluczowe znaczenie, zastosowanie lasera niebieskiego w procesie zapisu jest zgodne z najlepszymi praktykami technologicznymi, które dążą do ciągłego zwiększania efektywności przechowywania danych.

Pytanie 7

Jakie jest odpowiednik maski 255.255.252.0 w postaci prefiksu?

A. /24
B. /22
C. /25
D. /23
Odpowiednik maski 255.255.252.0 to prefiks /22, co oznacza, że pierwsze 22 bity adresów IP są używane do identyfikacji sieci, a pozostałe bity są przeznaczone dla hostów w tej sieci. Maskę sieciową można zrozumieć jako sposób na podział większej przestrzeni adresowej na mniejsze podsieci, co jest kluczowe w zarządzaniu adresowaniem IP i efektywnym wykorzystaniu dostępnych adresów. Maska 255.255.252.0 pozwala na utworzenie 4 096 adresów IP w danej podsieci (2^(32-22)), z czego 4 094 mogą być używane dla hostów, co czyni ją bardzo użyteczną w dużych sieciach. W praktyce, taka maska może być stosowana w organizacjach, które potrzebują większej liczby adresów w ramach jednej sieci, na przykład w firmach z dużymi działami IT. Standardy, takie jak RFC 4632, podkreślają znaczenie używania odpowiednich masek podsieci dla optymalizacji routingu oraz zarządzania adresami w sieci. Zrozumienie tego zagadnienia jest kluczowe dla każdego specjalisty zajmującego się sieciami komputerowymi.

Pytanie 8

Który z komponentów nie jest zgodny z płytą główną MSI A320M Pro-VD-S socket AM4, 1 x PCI-Ex16, 2 x PCI-Ex1, 4 x SATA III, 2 x DDR4- maks. 32 GB, 1 x D-SUB, 1x DVI-D, ATX?

A. Dysk twardy 500GB M.2 SSD S700 3D NAND
B. Pamięć RAM Crucial 8GB DDR4 2400MHz Ballistix Sport LT CL16
C. Procesor AMD Ryzen 5 1600, 3.2GHz, s-AM4, 16MB
D. Karta graficzna Radeon RX 570 PCI-Ex16 4GB 256-bit 1310MHz HDMI, DVI, DP
Dysk twardy 500GB M.2 SSD S700 3D NAND nie jest kompatybilny z płytą główną MSI A320M Pro-VD, ponieważ ta płyta nie obsługuje złączy M.2 dla dysków SSD. Płyta główna MSI A320M Pro-VD posiada jedynie złącza SATA III, które są używane dla tradycyjnych dysków twardych i SSD w formacie 2.5 cala. W przypadku chęci użycia dysku SSD, należy skorzystać z dysków SATA, które są zgodne z tym standardem. Warto zwrócić uwagę, że kompatybilność z płytą główną jest kluczowym aspektem w budowie komputera, dlatego przed zakupem komponentów dobrze jest zapoznać się z dokumentacją techniczną płyty głównej oraz specyfikacjami poszczególnych podzespołów. W praktyce, korzystanie z dysków SSD SATA III może znacznie przyspieszyć czas ładowania systemu operacyjnego oraz aplikacji w porównaniu do tradycyjnych dysków HDD. Użytkownicy mają do dyspozycji wiele modeli SSD, które są zgodne z tym standardem, co pozwala na elastyczność w wyborze odpowiadającego im podzespołu.

Pytanie 9

Jakiego systemu plików powinno się użyć podczas instalacji dystrybucji Linux?

A. FAT32
B. EXT4
C. NTFS
D. FAT
EXT4, czyli czterogeneracyjny system plików, jest obecnie jednym z najczęściej wybieranych systemów plików dla instalacji systemu Linux. Jego przewaga nad innymi systemami, takimi jak NTFS czy FAT, polega na lepszej wydajności, obsłudze większych plików oraz bardziej zaawansowanych funkcji, takich jak journaling, co minimalizuje ryzyko utraty danych przy awariach. EXT4 wspiera również większe rozmiary partycji, co jest istotne w przypadku nowoczesnych aplikacji i dużych baz danych. Dzięki tym cechom, EXT4 stał się standardem w dystrybucjach Linuxa, w tym Ubuntu, Fedora czy Debian. W praktyce, stosowanie EXT4 zapewnia lepszą stabilność i wydajność operacji odczytu/zapisu, a także umożliwia skorzystanie z takich funkcji jak defragmentacja czy dynamiczne przydzielanie miejsca. Warto również zaznaczyć, że EXT4 jest kompatybilny z wcześniejszymi wersjami EXT3, co ułatwia migrację danych. W branży IT, wybór odpowiedniego systemu plików jest kluczowy dla efektywności zarządzania danymi, co czyni EXT4 doskonałym rozwiązaniem dla serwerów oraz stacji roboczych.

Pytanie 10

Jak nazywa się złącze wykorzystywane w sieciach komputerowych, pokazane na zamieszczonym obrazie?

Ilustracja do pytania
A. LC
B. ST
C. BNC
D. FC
Złącze BNC (Bayonet Neill-Concelman) jest powszechnie stosowane w sieciach komputerowych oraz systemach telekomunikacyjnych. Jego charakterystyczna budowa z mechanizmem bagnetowym umożliwia szybkie i pewne połączenie, co jest szczególnie ważne w zastosowaniach wymagających częstych podłączeń i odłączeń. Złącza BNC używane są głównie w starszych sieciach opartych na kablach koncentrycznych w standardzie 10BASE2, znanych jako Ethernet cienki. Zapewniają one stosunkowo niskie straty sygnału, co sprawia, że są także popularne w systemach monitoringu wideo i transmisji sygnałów analogowych. W zastosowaniach profesjonalnych złącza BNC są zgodne z normami branżowymi dotyczącymi impedancji 50 omów dla transmisji danych oraz 75 omów w systemach wideo. Ich prostota i niezawodność czynią je wyborem preferowanym w wielu scenariuszach wymagających szybkiej instalacji i minimalnej obsługi technicznej. Dzięki trwałemu materiałowi złącza te charakteryzują się długowiecznością oraz odpornością na uszkodzenia mechaniczne, co jest istotne w środowiskach przemysłowych oraz zewnętrznych.

Pytanie 11

Jaką komendę należy wykorzystać, aby uzyskać informację o rekordzie MX dla podanej domeny?

A. Sieć nie ogłasza identyfikatora SSID
B. Karta sieciowa korzysta z DHCP
C. Sieć jest zabezpieczona hasłem
D. Karta sieciowa jest aktywna
Pytanie dotyczy sposobu sprawdzenia wartości rekordu MX dla domeny, a odpowiedzi sugerują różne aspekty konfiguracji sieci, które nie są powiązane z tą konkretną funkcjonalnością. Sieć nie rozgłaszająca identyfikatora SSID dotyczy przede wszystkim kwestii widoczności sieci bezprzewodowej, co nie ma wpływu na konfigurację rekordów MX. Rekordy te są częścią systemu DNS (Domain Name System) i są zdefiniowane w strefach DNS, co oznacza, że muszą być odpowiednio skonfigurowane na serwerach DNS, a nie mają związku z identyfikatorem SSID. Z kolei włączenie DHCP na karcie sieciowej dotyczy przypisywania adresów IP w lokalnej sieci, co także nie ma wpływu na konfigurację DNS i rekordy MX. Podobnie, hasło zabezpieczające sieć bezprzewodową odnosi się do autoryzacji dostępu do sieci, ale nie wpływa na to, jak rekordy MX są przechowywane i udostępniane. Właściwe podejście do analizy wartości rekordu MX wymaga umiejętności korzystania z narzędzi takich jak 'nslookup' czy 'dig', które są zaprojektowane specjalnie w celu interakcji z systemem DNS, a nie zajmowania się aspektami bezpieczeństwa czy dostępu do sieci. Typowe błędy myślowe prowadzące do takich niepoprawnych odpowiedzi obejmują mylenie różnych warstw infrastruktury sieciowej oraz brak zrozumienia funkcji, jakie pełnią poszczególne elementy w kontekście zarządzania domenami i pocztą elektroniczną.

Pytanie 12

Zgodnie z normą 802.3u w sieciach FastEthernet 100Base-FX stosuje się

A. światłowód jednomodowy
B. przewód UTP kat. 5
C. przewód UTP kat. 6
D. światłowód wielomodowy
Światłowód jednomodowy, przewód UTP kat. 6 oraz przewód UTP kat. 5 to media transmisyjne, które nie są odpowiednie dla technologii 100Base-FX zgodnie z normą 802.3u. W przypadku światłowodu jednomodowego, chociaż jest on używany w innych standardach sieciowych, 100Base-FX wymaga zastosowania światłowodu wielomodowego, który charakteryzuje się szerszym rdzeniem. Użycie przewodów UTP, takich jak kat. 5 czy kat. 6, odnosi się do technologii Ethernet, ale nie są one przeznaczone do FastEthernet w technologii 100Base-FX. Wybór niewłaściwego medium może prowadzić do problemów z przepustowością i zasięgiem, co jest szczególnie istotne w systemach komunikacyjnych. Często popełnianym błędem jest mylenie różnych standardów i mediów transmisyjnych, co może wynikać z braku precyzyjnego zrozumienia charakterystyki transmisji optycznej i miedzianej. Ważne jest, aby przy projektowaniu sieci brać pod uwagę specyfikacje i ograniczenia każdego z mediów, aby zapewnić optymalną wydajność i niezawodność sieci. Zastosowanie niewłaściwej technologii może prowadzić do nieefektywnego działania oraz dodatkowych kosztów związanych z naprawami i modernizacjami sieci.

Pytanie 13

Jakie urządzenie stosuje się do pomiaru rezystancji?

A. woltomierz
B. watomierz
C. amperomierz
D. omomierz
Wybór nieodpowiednich przyrządów do pomiaru rezystancji często wynika z nieporozumienia dotyczącego ich funkcji. Watomierz jest narzędziem przeznaczonym do pomiaru mocy elektrycznej, a nie rezystancji. Jego działanie opiera się na pomiarze zarówno napięcia, jak i prądu w obwodzie, co pozwala na obliczenie zużywanej energii. W praktyce nie można użyć watomierza do oceny rezystancji, ponieważ nie dostarcza on informacji o oporze elektrycznym elementów. Amperomierz z kolei służy do pomiaru natężenia prądu w obwodzie. W celu pomiaru rezystancji, trzeba znać wartość prądu i napięcia, co wymaga użycia dodatkowych wzorów matematycznych i może prowadzić do błędów pomiarowych. Użycie amperomierza do pomiaru rezystancji jest niepraktyczne i złożone. Woltomierz jest urządzeniem do pomiaru napięcia w obwodzie elektrycznym, a jego zastosowanie do mierzenia rezystancji wymaga dodatkowych obliczeń, co w praktyce czyni go mniej efektywnym niż omomierz. Typowym błędem w myśleniu jest założenie, że każdy przyrząd pomiarowy można wykorzystać w dowolnym celu. Kluczowe jest zrozumienie specyfiki urządzeń pomiarowych oraz ich właściwego zastosowania, co jest fundamentem dla prawidłowego przeprowadzania pomiarów i analizy obwodów elektrycznych.

Pytanie 14

Która z usług musi być aktywna na ruterze, aby mógł on modyfikować adresy IP źródłowe oraz docelowe podczas przekazywania pakietów pomiędzy różnymi sieciami?

A. FTP
B. UDP
C. NAT
D. TCP
NAT, czyli Network Address Translation, to kluczowa usługa używana w ruterach, która umożliwia zmianę adresów IP źródłowych i docelowych przy przekazywaniu pakietów pomiędzy różnymi sieciami. Jej głównym celem jest umożliwienie wielu urządzeniom w sieci lokalnej korzystania z jednego publicznego adresu IP, co jest szczególnie istotne w kontekście ograniczonej liczby dostępnych adresów IPv4. Dzięki NAT, ruter przypisuje unikalne numery portów do połączeń wychodzących, co pozwala na śledzenie, które pakiety należą do których urządzeń w sieci lokalnej. Przykładowo, w typowej sieci domowej kilka urządzeń, takich jak telefony, komputery i telewizory, może korzystać z jednego adresu IP przypisanego przez ISP, a NAT będzie odpowiedzialny za odpowiednią translację adresów. Zastosowanie NAT pozwala również na zwiększenie bezpieczeństwa sieci, ponieważ adresy IP urządzeń wewnętrznych są ukryte przed bezpośrednim dostępem z zewnątrz. W branży telekomunikacyjnej i informatycznej NAT jest standardem, który wspiera efektywne zarządzanie adresami IP oraz zwiększa prywatność użytkowników.

Pytanie 15

Jakie narzędzie będzie najbardziej odpowiednie do delikatnego wygięcia blachy obudowy komputera oraz przykręcenia śruby montażowej w trudno dostępnej lokalizacji?

Ilustracja do pytania
A. D
B. C
C. B
D. A
Narzędzie oznaczone jako D to popularne szczypce wydłużone zwane również szczypcami spiczastymi lub szczypcami precyzyjnymi. Są one idealne do pracy w trudno dostępnych miejscach ze względu na swoją wydłużoną konstrukcję oraz wąskie końcówki. Są powszechnie używane w montażu komputerów i innych urządzeń elektronicznych ponieważ umożliwiają manipulowanie małymi elementami takimi jak przewody czy śruby w ciasnych przestrzeniach. Dzięki swojej precyzji pozwalają na lekkie odgięcie blachy bez ryzyka jej uszkodzenia oraz na precyzyjne zamocowanie śrub w miejscach gdzie dostęp jest ograniczony. Ich konstrukcja umożliwia także kontrolowanie siły nacisku co jest istotne podczas pracy z delikatnymi elementami. Szczypce tego typu są standardowym narzędziem w zestawach serwisowych techników komputerowych i elektroników ze względu na ich wszechstronność i niezawodność. Właściwe użycie takich narzędzi minimalizuje ryzyko uszkodzeń mechanicznych oraz ułatwia pracę w ograniczonej przestrzeni co jest kluczowe w profesjonalnym serwisowaniu urządzeń elektronicznych. To właśnie ich specyficzna budowa umożliwia skuteczne i bezpieczne wykonanie zadań wymagających precyzji i delikatności.

Pytanie 16

Jaką pamięć RAM można użyć z płytą główną GIGABYTE GA-X99-ULTRA GAMING/ X99/ 8x DDR4 2133, ECC, obsługującą maksymalnie 128GB, 4x PCI-E 16x, RAID, USB 3.1, S-2011-V3/ATX?

A. HPE 16GB (1x16GB) Dual Rank x4 PC3-14900R (DDR3-1866) Registered CAS-13 Memory Kit
B. HPE 32GB (1x16GB) Dual Rank x4 PC3L-10600R (DDR3-1333) Registered CAS-9 , Non-ECC
C. HPE 32GB (1x32GB) Quad Rank x4 PC3-14900L (DDR3-1866) Load Reduced CAS-13 Memory Kit
D. HPE 32GB (1x32GB) Quad Rank x4 DDR4-2133 CAS-15-15-15 Load Reduced Memory Kit, ECC
Odpowiedź HPE 32GB (1x32GB) Quad Rank x4 DDR4-2133 CAS-15-15-15 Load Reduced Memory Kit, ECC jest poprawna, ponieważ spełnia wszystkie wymagania techniczne płyty głównej GIGABYTE GA-X99-ULTRA GAMING. Ta płyta obsługuje pamięci DDR4, a wybrany moduł ma specyfikacje DDR4-2133, co oznacza, że działa z odpowiednią prędkością. Dodatkowo, pamięć ta obsługuje technologię ECC (Error-Correcting Code), która jest istotna w aplikacjach wymagających wysokiej niezawodności, takich jak serwery czy stacje robocze. Dzięki pamięci z technologią ECC, system jest w stanie wykrywać i korygować błędy w danych, co znacząco zwiększa stabilność i bezpieczeństwo operacji. Warto również zauważyć, że maksymalna pojemność, jaką można zainstalować na tej płycie, wynosi 128 GB, a wybrany moduł ma 32 GB, co pozwala na wykorzystanie pełnego potencjału płyty. W praktyce, takie rozwiązanie jest idealne dla zaawansowanych użytkowników, którzy potrzebują dużej pojemności RAM do obliczeń, renderowania lub pracy z dużymi zbiorami danych.

Pytanie 17

Podaj nazwę funkcji przełącznika, która pozwala na przypisanie wyższego priorytetu dla przesyłania VoIP?

A. VNC
B. STP
C. SNMP
D. QoS
QoS, czyli Quality of Service, to technologia, która umożliwia priorytetyzację różnych typów ruchu sieciowego w celu zapewnienia optymalnej jakości usług, szczególnie w przypadku aplikacji wrażliwych na opóźnienia, takich jak VoIP (Voice over Internet Protocol). Dzięki QoS można skonfigurować routery i przełączniki tak, aby przeznaczały więcej zasobów dla ruchu VoIP, co minimalizuje opóźnienia, utratę pakietów i jitter, co jest kluczowe w zapewnieniu płynności rozmów telefonicznych przez Internet. Przykładem zastosowania QoS w praktyce może być konfiguracja w sieci firmowej, gdzie pracownicy często korzystają z komunikacji głosowej. Administrator sieci może ustawić reguły QoS, które przydzielą wyższy priorytet pakietom VoIP w porównaniu do ruchu generowanego przez aplikacje do przesyłania danych, co poprawi jakość rozmów i zminimalizuje problemy z utratą połączenia. W kontekście standardów, QoS opiera się na protokołach takich jak Differentiated Services (DiffServ) i Integrated Services (IntServ), które definiują, jak różne typy ruchu powinny być traktowane w zestawach reguł priorytetyzacji. Dobrze skonfigurowany QoS jest kluczowym elementem każdej nowoczesnej infrastruktury sieciowej, szczególnie w środowiskach, gdzie korzysta się z telefonii IP.

Pytanie 18

Najefektywniejszym sposobem dodania skrótu do aplikacji na pulpitach wszystkich użytkowników w domenie będzie

A. ponowna instalacja programu
B. użycie zasad grupy
C. mapowanie dysku
D. pobranie aktualizacji Windows
Użycie zasad grupy (Group Policy) to najefektywniejszy sposób na wdrożenie skrótów do programów na pulpitach wszystkich użytkowników w obrębie domeny. Zasady grupy umożliwiają centralne zarządzanie konfiguracją systemu operacyjnego oraz aplikacji, co pozwala na łatwe i szybkie wprowadzanie zmian na wielu maszynach jednocześnie. Dzięki tej metodzie, administratorzy mogą skonfigurować skróty do aplikacji, które będą automatycznie dostępne dla wszystkich użytkowników, co znacząco oszczędza czas oraz minimalizuje ryzyko błędów ludzkich. Zasady grupy pozwalają również na dostosowywanie ustawień w zależności od potrzeb poszczególnych grup użytkowników. Na przykład, administrator może stworzyć różne skróty dla działu IT i działu sprzedaży, co zapewnia większą elastyczność zarządzania. W kontekście standardów branżowych, korzystanie z zasad grupy jest uznawane za najlepszą praktykę w zakresie administracji systemami Windows w sieciach korporacyjnych, co potwierdzają liczne dokumentacje oraz wytyczne Microsoftu.

Pytanie 19

Jaką rolę pełnią elementy Tr1 i Tr2, które są widoczne na schemacie ilustrującym kartę sieciową Ethernet?

Ilustracja do pytania
A. Wskazują szybkość pracy karty sieciowej poprzez świecenie na zielono
B. Oferują szyfrowanie oraz deszyfrowanie danych przesyłanych przez sieć
C. Informują o aktywności karty sieciowej za pomocą dźwięków
D. Zapewniają separację obwodu elektrycznego sieci LAN od obwodu elektrycznego komputera
Nie wszystkie wymienione funkcje mają związek z rzeczywistym zastosowaniem transformatorów Tr1 i Tr2 na kartach sieciowych Ethernet. Funkcje takie jak szyfrowanie i deszyfrowanie danych są realizowane na poziomie protokołów sieciowych i specjalistycznych układów scalonych, które odpowiadają za bezpieczeństwo przesyłania danych. Transformator Ethernet nie ma bezpośredniego wpływu na szyfrowanie danych, ponieważ jego główną rolą jest izolacja galwaniczna. Sygnalizacja dźwiękowa nie jest typową funkcjonalnością kart sieciowych Ethernet, zwłaszcza w kontekście transformatorów, które są pasywnymi komponentami elektronicznymi i nie mają możliwości generowania dźwięku. Takie funkcje mogą być realizowane przez oprogramowanie lub dodatkowe moduły akustyczne, ale nie przez same transformatory. Z kolei sygnalizacja świetlna używana jest często do wskazywania stanu połączenia sieciowego i jego prędkości, ale odbywa się to poprzez diody LED kontrolowane przez inny układ scalony, a nie przez transformatory. Typowe błędy myślowe związane z tymi funkcjami wynikają z przypisywania pasywnym komponentom elektronicznym aktywnych ról, które wymagają przetwarzania sygnałów w sposób nienależący do ich specyfikacji technicznej. Transformator Ethernet jest fundamentalnym elementem zapewniającym bezpieczeństwo sprzętowe i ochronę przed zakłóceniami, a jego rola w układach sieciowych sprowadza się do realizacji izolacji galwanicznej zgodnie ze standardami takimi jak IEEE 802.3, co nie obejmuje funkcji aktywnego monitorowania działania karty sieciowej.

Pytanie 20

Aby powiększyć lub zmniejszyć rozmiar ikony na pulpicie, trzeba obracać rolką myszki, trzymając jednocześnie klawisz

A. SHIFT
B. TAB
C. ALT
D. CTRL
Odpowiedź 'CTRL' jest poprawna, ponieważ przy użyciu klawisza CTRL w połączeniu z rolką myszki można efektywnie zmieniać rozmiar ikon na pulpicie systemu operacyjnego Windows. Działa to w sposób bardzo intuicyjny: przytrzymując klawisz CTRL i jednocześnie przewijając rolkę myszki w górę, ikony stają się większe, natomiast przewijanie w dół powoduje ich zmniejszenie. Ta funkcjonalność jest szczególnie przydatna dla użytkowników, którzy preferują dostosowanie wyglądu pulpitu do własnych potrzeb, co może poprawić zarówno estetykę, jak i użyteczność interfejsu. Warto również zauważyć, że ta technika jest zgodna z ogólnymi zasadami dostosowywania interfejsów użytkownika, które zakładają, że użytkownicy powinni mieć możliwość wpływania na prezentację i organizację danych w sposób, który im odpowiada. W praktyce, jeśli na przykład masz wiele ikon na pulpicie i chcesz, aby były bardziej czytelne, użycie tej kombinacji klawiszy sprawi, że szybko dostosujesz ich rozmiar, co może znacząco ułatwić codzienną pracę na komputerze.

Pytanie 21

W schemacie logicznym struktury okablowania, zgodnie z polską terminologią zawartą w normie PN-EN 50174, cechą kondygnacyjnego punktu dystrybucyjnego jest to, że

A. obejmuje zasięgiem całe piętro obiektu.
B. obejmuje zasięgiem cały obiekt.
C. łączy okablowanie pionowe i międzylokalowe.
D. łączy okablowanie obiektu i centralny punkt dystrybucji.
Kondygnacyjny punkt dystrybucyjny to naprawdę ważny element w systemie okablowania strukturalnego. Mówiąc prosto, to coś, co obsługuje całe piętro w budynku. Jego główna funkcja to rozdzielanie sygnałów i zasilania na danym poziomie, co pomaga nam zarządzać urządzeniami podłączonymi do sieci. W biurowcach, na każdym piętrze znajdziesz różne urządzenia, jak komputery czy drukarki, a te punkty dystrybucyjne sprawiają, że można je łatwo podłączyć do głównego systemu. Dzięki temu mamy lepszą organizację i więcej miejsca w pomieszczeniach technicznych. Dobrze jest też od czasu do czasu zrobić audyt całej infrastruktury, żeby upewnić się, że wszystko działa jak należy i żeby dostosować system do zmieniających się potrzeb użytkowników. Jak dobrze zaplanujemy te punkty, to nasza sieć będzie wydajniejsza i bardziej elastyczna, co jest super ważne w takich dynamicznych warunkach pracy.

Pytanie 22

Na rysunku ukazano rezultat testu okablowania. Jakie jest znaczenie uzyskanego wyniku pomiaru?

Ilustracja do pytania
A. Odwrócenie pary
B. Błąd rozwarcia
C. Błąd zwarcia
D. Rozdzielenie pary
Błąd rozwarcia odnosi się do sytuacji w której ciągłość przewodnika jest przerwana co skutkuje brakiem przepływu sygnału przez daną parę lub przewód. Przyczyną mogą być uszkodzone wtyczki lub fizyczne uszkodzenia kabla. Odwrócenie pary to problem wynikający z nieprawidłowego przyporządkowania żył w parze co może prowadzić do trudności w transmisji danych zwłaszcza w przypadku kabli Ethernet gdzie pary muszą być odpowiednio dobrane. Rozdzielenie pary to sytuacja w której żyły które powinny tworzyć jedną parę są rozdzielone i przyporządkowane do różnych par co może skutkować znacznym pogorszeniem jakości sygnału i zakłóceniami. Każdy z tych błędów ma inne przyczyny i skutki dlatego istotne jest zrozumienie różnic między nimi. Często błędne zrozumienie sytuacji wynika z braku doświadczenia z narzędziami testującymi oraz nieznajomości standardów okablowania takich jak TIA/EIA-568-B które wyznaczają zasady prawidłowego układania i testowania przewodów. Rozpoznanie konkretnego typu błędu wymaga dokładnej analizy wyników testów i zrozumienia jak poszczególne błędy wpływają na funkcjonowanie sieci. Testery okablowania pokazują różne typy błędów co pozwala technikom na szybką diagnozę i eliminację problemów zapewniając niezawodność i wydajność systemu sieciowego.

Pytanie 23

Nośniki danych, które są odporne na zakłócenia elektromagnetyczne oraz atmosferyczne, to

A. skrętka typu UTP
B. cienki kabel koncentryczny
C. gruby kabel koncentryczny
D. światłowód
Światłowód to medium transmisyjne, które charakteryzuje się wysoką odpornością na zakłócenia elektromagnetyczne oraz atmosferyczne. W przeciwieństwie do tradycyjnych kabli miedzianych, światłowody transmitują sygnał w postaci impulsów świetlnych, co eliminuje wpływ zakłóceń elektrycznych. Dzięki temu światłowody są idealnym rozwiązaniem dla systemów telekomunikacyjnych, gdzie wymagana jest wysoka jakość sygnału oraz duża przepustowość. Zastosowania światłowodów obejmują połączenia internetowe o dużej prędkości, sieci LAN, a także transmisję danych na dużą odległość, gdzie tradycyjne metody mogą prowadzić do znacznych strat sygnału. Przy projektowaniu systemów komunikacyjnych zaleca się korzystanie ze światłowodów, aby zapewnić niezawodność połączeń i wysoką jakość usług. W praktyce, zgodnie z normami IEEE 802.3, użycie światłowodów w sieciach Ethernet jest powszechnie akceptowane, co dodatkowo podkreśla ich znaczenie w nowoczesnych infrastrukturach telekomunikacyjnych.

Pytanie 24

Liczbie 16 bitowej 0011110010101110 wyrażonej w systemie binarnym odpowiada w systemie szesnastkowym liczba

A. 3DFE
B. 3DAE
C. 3CAE
D. 3CBE
Liczba 16-bitowa 0011110010101110 zapisana w systemie dwójkowym odpowiada liczbie szesnastkowej 3CAE. Aby przeliczyć liczbę z systemu binarnego na szesnastkowy, możemy podzielić dane na grupy po cztery bity, co jest standardową praktyką, ponieważ każda cyfra szesnastkowa odpowiada czterem bitom. W tym przypadku mamy: 0011 (3), 1100 (C), 1010 (A), 1110 (E). Tak więc 0011 1100 1010 1110 daje nam 3CAE w systemie szesnastkowym. Umiejętność konwersji liczb między systemami liczbowymi jest niezwykle ważna w dziedzinie informatyki i programowania, szczególnie w kontekście niskopoziomowego programowania, obliczeń w systemach wbudowanych oraz przy pracy z protokołami sieciowymi. Przykładowo, w programowaniu w języku C, często korzysta się z konwersji między tymi systemami przy manipulacji danymi w pamięci. Wiedza na temat systemów liczbowych jest również istotna w zakresie kryptografii oraz analizy danych, gdzie precyzyjna reprezentacja wartości jest kluczowa.

Pytanie 25

W terminalu systemu operacyjnego wydano komendę nslookup. Jakie dane zostały uzyskane?

Ilustracja do pytania
A. Domyślną bramę sieciową
B. Numer IP hosta
C. Adres serwera DNS
D. Adres serwera DHCP
Polecenie nslookup jest narzędziem używanym w systemach operacyjnych do uzyskiwania informacji o serwerach DNS które są kluczowe dla procesu rozwiązywania nazw domenowych na adresy IP. Kiedy użytkownik wydaje polecenie nslookup w wierszu poleceń systemu operacyjnego narzędzie to łączy się z domyślnym serwerem DNS skonfigurowanym w systemie. Użytkownik dzięki temu otrzymuje informację o tym jaki serwer DNS jest wykorzystywany do przetwarzania zapytań DNS w sieci lokalnej. W praktyce wiedza o adresie serwera DNS jest użyteczna przy rozwiązywaniu problemów z połączeniem internetowym takich jak brak możliwości uzyskania dostępu do określonych stron internetowych czy opóźnienia w ładowaniu stron. Wiele firm stosuje własne serwery DNS aby poprawić bezpieczeństwo i wydajność operacji sieciowych. Zrozumienie i właściwe konfigurowanie serwerów DNS zgodnie z dobrymi praktykami takimi jak stosowanie bezpiecznych i szybkich serwerów zapasowych jest kluczowe dla zapewnienia stabilności i bezpieczeństwa infrastruktury IT. Dlatego posługiwanie się narzędziem nslookup i jego wynikami jest istotną umiejętnością w zarządzaniu sieciami komputerowymi.

Pytanie 26

Jakie polecenie należy zastosować, aby zamontować pierwszą partycję logiczną dysku primary slave w systemie Linux?

A. mount /dev/hda2 /mnt/hdd
B. mount /dev/hdb5 /mnt/hdd
C. mount /dev/hdb3 /mnt/hdd
D. mount /dev/hda4 /mnt/hdd
Wybór jakiejkolwiek innej odpowiedzi prowadzi do błędnego wskazania partycji, co jest kluczowe w kontekście zarządzania systemem plików w Linuxie. Odpowiedź 'mount /dev/hdb3 /mnt/hdd' sugeruje, że użytkownik próbowałby zamontować trzecią partycję na tym samym dysku, co nie byłoby odpowiednie w kontekście pytania o pierwszą partycję logiczną. Podobnie, 'mount /dev/hda2 /mnt/hdd' odnosi się do drugiej partycji na pierwszym dysku 'primary master', co także nie jest zgodne z kontekstem pytania. Odpowiedź 'mount /dev/hda4 /mnt/hdd' również nie jest prawidłowa, ponieważ wskazuje na czwartą partycję na tym samym dysku, co może prowadzić do nieporozumień przy organizowaniu przestrzeni dyskowej. Typowe błędy to mylenie partycji fizycznych z logicznymi oraz nieznajomość konwencji nazewnictwa w systemach Linux. Ważne jest, aby przed montowaniem partycji zapoznać się z ich strukturą oraz zrozumieć, jak system plików jest zorganizowany. W praktyce, niepoprawny wybór partycji może prowadzić do utraty danych lub problemów z dostępem do plików, dlatego kluczowe jest stosowanie się do zasad i norm dotyczących zarządzania dyskami oraz partycjami w systemie Linux. Zrozumienie tych zasad jest niezbędne dla efektywnego administrowania systemem operacyjnym.

Pytanie 27

Udostępniono w sieci lokalnej jako udział specjalny folder o nazwie egzamin znajdujący się na komputerze o nazwie SERWER_2 w katalogu głównym dysku C:. Jak powinna wyglądać ścieżka dostępu do katalogu egzamin, w którym przechowywany jest folder macierzysty dla konta użytkownika o określonym loginie?

A. SERWER_2egzamin$\%$USERNAME%
B. SERWER_2$egzamin\%USERNAME%
C. SERWER_2$egzamin$\%USERNAME%
D. SERWER_2egzamin$\%USERNAME%
Niepoprawne odpowiedzi bazują na błędnych założeniach dotyczących składni ścieżek dostępu i sposobu, w jaki zasoby są udostępniane w sieciach lokalnych. Poprzednie propozycje nie uwzględniają faktu, że w systemie Windows użycie znaku dolara ($) w nazwie folderu udostępnionego wzmacnia jego ukrytość, co jest kluczowe w kontekście bezpieczeństwa danych. W odpowiedziach, które nie zawierają znaku dolara, brakuje istotnego elementu, który informuje system o tym, że folder jest dostępny tylko dla wybranych użytkowników. Ponadto, w przypadku użycia znaku „\” przed zmienną środowiskową, jak w odpowiedziach błędnych, nie jest to akceptowalna praktyka. Zmienne środowiskowe w systemie Windows są interpretowane w kontekście komend i muszą być używane zgodnie z określoną składnią, aby działały poprawnie. Błędne użycie ścieżki, jak na przykład 'SERWER_2egzamin$\%$USERNAME%', świadczy o nieporozumieniu związanym z umiejscowieniem znaku dolara i procentów, co prowadzi do błędnych interpretacji przez system operacyjny. W kontekście udostępniania folderów, kluczowe jest zrozumienie, że każda zmiana w składni ścieżki może skutkować brakiem dostępu do danych lub ich niewłaściwą lokalizacją, co jest typowym błędem w konfiguracji zasobów sieciowych.

Pytanie 28

Które urządzenie poprawi zasięg sieci bezprzewodowej?

A. Przełącznik zarządzalny
B. Modem VDSL
C. Konwerter mediów
D. Wzmacniacz sygnału
Wzmacniacz sygnału to urządzenie zaprojektowane specjalnie w celu zwiększenia zasięgu sieci bezprzewodowej, co czyni go kluczowym elementem w infrastrukturze sieciowej. Działa poprzez odbieranie sygnału z routera lub punktu dostępu, a następnie jego amplifikację, co pozwala na szersze pokrycie obszaru sygnałem Wi-Fi. Wzmacniacze sygnału są szczególnie przydatne w domach i biurach o dużej powierzchni, gdzie standardowy zasięg routera może nie wystarczyć. Przykładem ich zastosowania może być sytuacja, gdy użytkownik znajduje się w oddalonym pomieszczeniu, gdzie sygnał jest słaby, co wpływa na jakość połączenia internetowego. Stosując wzmacniacz, można poprawić jakość sygnału i umożliwić płynniejsze korzystanie z internetu. Zgodnie z najlepszymi praktykami, ważne jest, aby dobrać odpowiedni wzmacniacz do specyfiki sieci, a także unikać umieszczania go w miejscach, gdzie mogą występować przeszkody, takie jak grube ściany, które mogą wpływać na jego efektywność. W ten sposób można skutecznie rozwiązać problemy z zasięgiem i poprawić ogólną jakość usług sieciowych.

Pytanie 29

W tabeli przedstawiono dane katalogowe procesora AMD Athlon 1333 Model 4 Thunderbird. Jaka jest częstotliwość przesyłania danych między rejestrami?

General information
TypeCPU / Microprocessor
Market segmentDesktop
FamilyAMD Athlon
CPU part numberA1333AMS3C
Stepping codesAYHJA AYHJAR
Frequency (MHz)1333
Bus speed (MHz)266
Clock multiplier10
GniazdoSocket A (Socket 462)
Notes on AMD A1333AMS3C
○ Actual bus frequency is 133 MHz. Because the processor uses Double Data Rate bus the effective bus speed is 266 MHz.

A. 133 MHz
B. 266 MHz
C. 2666 MHz
D. 1333 MHz
Procesor AMD Athlon 1333 Model 4 Thunderbird działa z częstotliwością 1333 MHz co oznacza że wewnętrzna częstotliwość zegara wynosi 1333 MHz. Częstotliwość ta determinuje szybkość z jaką procesor może wykonywać operacje i przetwarzać dane. W praktyce oznacza to że procesor może wykonywać 1333 milionów cykli na sekundę co przekłada się na wysoką wydajność obliczeniową szczególnie przy pracy z wymagającymi aplikacjami. Procesory z serii Athlon wykorzystywały architekturę K7 która była znana ze swojej efektywności i wydajności w porównaniu do konkurencji w tamtym czasie. Wybór procesora o wyższej częstotliwości zegara jest kluczowy dla użytkowników wymagających dużej mocy obliczeniowej np. dla grafików projektantów czy graczy komputerowych. Ważnym aspektem jest również stosowanie odpowiedniego chłodzenia i zasilania aby procesor mógł pracować z maksymalną wydajnością bez ryzyka przegrzania. Standardowe praktyki w branży obejmują również regularne aktualizacje BIOS aby zapewnić pełną kompatybilność i optymalną pracę z innymi komponentami komputera.

Pytanie 30

Który protokół jest odpowiedzialny za przekształcanie adresów IP na adresy MAC w kontroli dostępu do nośnika?

A. RARP
B. SNMP
C. SMTP
D. ARP
Poprawna odpowiedź to ARP, czyli Address Resolution Protocol, który jest kluczowym protokołem w warstwie sieciowej modelu OSI. ARP umożliwia przekształcanie adresów IP, używanych do komunikacji w sieciach IP, na odpowiadające im adresy MAC, które są wymagane do przesyłania danych w ramach lokalnej sieci Ethernet. Umożliwia to urządzeniom w sieci zidentyfikowanie, do którego interfejsu sieciowego należy dany adres IP, co jest kluczowe dla efektywnej komunikacji. Przykładowo, gdy komputer A chce wysłać pakiet danych do komputera B w tej samej sieci lokalnej, najpierw wysyła zapytanie ARP, aby ustalić adres MAC komputera B na podstawie jego adresu IP. W praktyce, protokół ARP jest niezbędny w każdej sieci lokalnej i jest często używany w różnych aplikacjach, takich jak DHCP oraz w konfiguracjach routerów. Zrozumienie działania ARP jest kluczowe dla administratorów sieci, ponieważ pozwala na diagnozowanie problemów z komunikacją oraz optymalizację wydajności lokalnych sieci komputerowych.

Pytanie 31

Która z opcji konfiguracji ustawień konta użytkownika o ograniczonych uprawnieniach w systemie Windows jest dostępna dzięki narzędziu secpol?

A. Zezwolenie na zmianę czasu systemowego
B. Czyszczenie historii ostatnio otwieranych dokumentów
C. Blokadę wybranych elementów w panelu sterowania
D. Odebranie możliwości zapisu na płytach CD
Odpowiedź 'Zezwolenie na zmianę czasu systemowego' jest prawidłowa, ponieważ przystawka secpol (Local Security Policy) w systemie Windows pozwala na zarządzanie i konfigurowanie wielu polityk bezpieczeństwa, w tym uprawnień użytkowników. W kontekście zmiany czasu systemowego, ta opcja jest kluczowa, ponieważ pozwala administratorom na kontrolowanie, którzy użytkownicy mają prawo do modyfikacji czasu i daty systemowej. Może to mieć znaczenie w kontekście synchronizacji z serwerami czasu czy w sytuacjach, gdy zmiana czasu mogłaby wpłynąć na logikę aplikacji czy systemów zabezpieczeń. W rzeczywistych zastosowaniach, ograniczenie tego uprawnienia dla użytkowników z ograniczonymi prawami może pomóc w utrzymaniu spójności operacyjnej oraz zapobieganiu potencjalnym nadużyciom, co jest zgodne z najlepszymi praktykami w zakresie zarządzania bezpieczeństwem systemów IT.

Pytanie 32

Komunikat tekstowy BIOS POST od firmy Award o treści "Display switch is set incorrectly" sugeruje

A. usterkę podczas inicjalizacji dysku twardego
B. problem z pamięcią operacyjną
C. nieprawidłowy tryb wyświetlania obrazu
D. brak urządzenia do bootowania
Komunikat BIOS POST 'Display switch is set incorrectly' wskazuje na problem z konfiguracją trybu wyświetlania obrazu. Zazwyczaj oznacza to, że system operacyjny nie jest w stanie prawidłowo zainicjować karty graficznej, co może być spowodowane błędną konfiguracją w BIOS-ie. Użytkownicy często mogą napotkać ten problem po zmianie karty graficznej lub po aktualizacji sterowników. Aby rozwiązać ten problem, warto upewnić się, że ustawienia dotyczące wyjścia wideo w BIOS-ie są zgodne z posiadanym sprzętem, na przykład, czy wybrany jest odpowiedni port wyjściowy (HDMI, DVI, VGA). Można również przeprowadzić reset ustawień BIOS do wartości domyślnych, co może pomóc w przywróceniu prawidłowej konfiguracji. Dobrą praktyką jest również aktualizacja BIOS-u, co może rozwiązać problemy z kompatybilnością sprzętu. Warto pamiętać, że prawidłowe ustawienia wyświetlania są kluczowe dla stabilności działania systemu oraz jego wydajności.

Pytanie 33

Podczas próby zapisania danych na karcie SD wyświetla się komunikat "usuń ochronę przed zapisem lub użyj innego dysku". Zwykle przyczyną tego komunikatu jest

A. posiadanie uprawnień "tylko do odczytu" do plików na karcie SD
B. brak wolnego miejsca na karcie pamięci
C. ustawienie mechanicznego przełącznika blokady zapisu na karcie w pozycji ON
D. zbyt duża wielkość pliku, który ma być zapisany
Odpowiedź dotycząca mechanicznego przełącznika blokady zapisu na karcie SD w pozycji ON jest prawidłowa, ponieważ wiele kart pamięci jest wyposażonych w taki przełącznik, który umożliwia zabezpieczenie danych przed przypadkowym usunięciem lub zapisaniem. Mechanizm ten jest prostym, ale skutecznym sposobem na ochronę zawartości karty. Kiedy przełącznik jest ustawiony w pozycji ON, karta SD przechodzi w tryb tylko do odczytu, co uniemożliwia użytkownikowi zapis nowych danych. Ważne jest, aby przed przystąpieniem do zapisu na karcie pamięci sprawdzić, czy przełącznik nie znajduje się w tym stanie. Dobre praktyki zarządzania danymi na kartach SD obejmują regularne sprawdzanie stanu przełącznika oraz dbanie o to, aby nie usunąć przypadkowo danych, co może prowadzić do ich utraty. Użytkownicy powinni być świadomi, że zmiana pozycji przełącznika na OFF umożliwi zapis danych, co jest szczególnie istotne podczas pracy z istotnymi plikami.

Pytanie 34

Jakie rozwiązanie należy wdrożyć i prawidłowo ustawić, aby chronić lokalną sieć komputerową przed atakami typu Smurf pochodzącymi z Internetu?

A. zapora ogniowa
B. oprogramowanie antyspamowe
C. skaner antywirusowy
D. bezpieczna przeglądarka stron WWW
Odpowiedzi sugerujące instalację oprogramowania antyspamowego, bezpiecznej przeglądarki lub skanera antywirusowego jako środków ochrony przed atakami typu Smurf są nieprawidłowe, ponieważ nie adresują one bezpośrednio charakterystyki tego typu ataku. Oprogramowanie antyspamowe jest przeznaczone głównie do filtrowania niechcianych wiadomości e-mail i nie ma wpływu na ataki skierowane na infrastrukturę sieciową. Bezpieczna przeglądarka stron WWW, mimo że może chronić przed złośliwym oprogramowaniem lub phishingiem, nie zabezpiecza sieci przed atakami DDoS, takimi jak Smurf, które polegają na nadużywaniu komunikacji sieciowej. Skanery antywirusowe również nie mają na celu obrony przed tego typu atakami, gdyż są wykorzystywane do wykrywania i usuwania wirusów oraz złośliwego oprogramowania na lokalnych maszynach, a nie do monitorowania i kontrolowania ruchu sieciowego. Wybór niewłaściwych narzędzi zabezpieczających prowadzi do mylnego przekonania, że system jest odpowiednio chroniony, podczas gdy rzeczywiste zagrożenia pozostają na wolności. W kontekście ataku Smurf, kluczową kwestią jest umiejętność rozpoznawania i zarządzania ruchem sieciowym, co można osiągnąć jedynie poprzez zastosowanie zapory ogniowej oraz implementację odpowiednich reguł filtrowania ruchu. Każda sieć powinna być wyposażona w odpowiednie rozwiązania zgodne z najlepszymi praktykami branżowymi, takimi jak regularne audyty bezpieczeństwa oraz dostosowane polityki zarządzania dostępem.

Pytanie 35

Jakim poleceniem w systemie Linux można ustalić trasę pakietu do celu?

A. pathping
B. tracert
C. netstat
D. traceroute
Polecenie 'traceroute' jest fundamentem w diagnostyce sieci, pozwalającym na śledzenie trasy, którą pokonują pakiety danych od źródła do docelowego urządzenia. Wykorzystuje ono protokoły ICMP (Internet Control Message Protocol) oraz UDP (User Datagram Protocol) do określenia, przez jakie routery przechodzą pakiety w drodze do określonego adresu IP. Przykładowo, uruchamiając polecenie 'traceroute www.example.com', użytkownik otrzyma listę wszystkich routerów, przez które dane przechodzą, wraz z czasem odpowiedzi każdego z nich. To narzędzie jest nieocenione w identyfikacji problemów z opóźnieniami w sieci, zrywami połączeń, czy też w kontroli jakości usług. Zgodnie z najlepszymi praktykami branżowymi, regularne monitorowanie tras pakietów może pomóc w optymalizacji sieci, a także w planowaniu rozbudowy infrastruktury. Zrozumienie działania 'traceroute' oraz umiejętność interpretacji jego wyników to kluczowe umiejętności dla każdego specjalisty zajmującego się administracją sieci.

Pytanie 36

Aby chronić sieć Wi-Fi przed nieupoważnionym dostępem, należy m.in.

A. włączyć filtrację adresów MAC
B. korzystać jedynie z częstotliwości używanych przez inne sieci WiFi
C. wyłączyć szyfrowanie informacji
D. ustalić identyfikator sieci SSID o długości co najmniej 16 znaków
Filtrowanie adresów MAC to jedna z fajniejszych metod na zabezpieczenie naszej sieci bezprzewodowej. Każde urządzenie ma swój unikalny adres MAC i można go użyć, żeby kontrolować, które sprzęty mogą się połączyć z siecią. Kiedy administrator włączy to filtrowanie, może stworzyć listę z dozwolonymi adresami. Dzięki temu, nawet jeśli ktoś zna hasło do naszej sieci, nie dostanie się do niej, jeśli jego adres MAC nie jest na liście. Ale trzeba pamiętać, że to nie daje 100% ochrony, bo adresy MAC da się sklonować. Mimo wszystko, to bardzo dobra dodatkowa metoda ochrony. Oczywiście, dobrze jest też korzystać z mocnych haseł i szyfrowania WPA2 lub WPA3, bo to są najlepsze praktyki w zabezpieczaniu sieci bezprzewodowych.

Pytanie 37

Który z wymienionych protokołów przekształca 48-bitowy adres MAC na 32-bitowy adres IP?

A. TCP
B. RARP
C. IP
D. ARP
RARP, czyli Reverse Address Resolution Protocol, jest protokołem stosowanym do odwzorowywania adresów MAC (Media Access Control) na adresy IP (Internet Protocol). W przeciwieństwie do ARP, który przekształca adres IP na adres MAC, RARP wykonuje operację w odwrotnym kierunku. Protokół ten jest szczególnie użyteczny w sytuacjach, gdy urządzenie sieciowe, takie jak stacja robocza lub serwer, nie ma skonfigurowanego adresu IP i musi go uzyskać na podstawie własnego adresu MAC. W praktyce, w momencie uruchamiania, urządzenie sieciowe wysyła żądanie RARP do serwera RARP w sieci, a serwer odpowiada, przypisując odpowiedni adres IP. RARP jest podstawą wielu protokołów i technologii sieciowych, a jego zrozumienie jest kluczowe w kontekście zarządzania adresacją IP, zwłaszcza w sieciach lokalnych. Warto również zauważyć, że RARP został w dużej mierze zastąpiony przez bardziej nowoczesne protokoły, takie jak BOOTP i DHCP, które oferują dodatkowe funkcjonalności.

Pytanie 38

Do jakiej grupy w systemie Windows Server 2008 powinien być przypisany użytkownik odpowiedzialny wyłącznie za archiwizację danych przechowywanych na serwerowym dysku?

A. Użytkownicy zaawansowani
B. Użytkownicy pulpitu zdalnego
C. Użytkownicy domeny
D. Operatorzy kopii zapasowych
Odpowiedź 'Operatorzy kopii zapasowych' jest poprawna, ponieważ w systemie Windows Server 2008 użytkownicy przypisani do tej grupy mają uprawnienia do wykonywania kopii zapasowych i przywracania danych. Operatorzy kopii zapasowych są odpowiedzialni za zarządzanie procesem archiwizacji danych na serwerze, co jest kluczowe dla zapewnienia integralności i dostępności informacji. W praktyce oznacza to, że użytkownik w tej roli może korzystać z narzędzi takich jak Windows Server Backup, które umożliwia planowanie i wykonywanie kopii zapasowych lokalnych oraz zdalnych. Dobre praktyki w zakresie bezpieczeństwa danych wskazują na konieczność regularnego tworzenia kopii zapasowych, co minimalizuje ryzyko utraty danych. Dodatkowo, zgodnie z najlepszymi praktykami w zarządzaniu danymi, operatorzy kopii zapasowych powinni być przeszkoleni w zakresie polityk backupowych oraz procedur przywracania, aby byli w stanie skutecznie reagować w razie awarii systemu lub utraty danych.

Pytanie 39

Jakie są korzyści płynące z użycia systemu plików NTFS?

A. możliwość sformatowania nośnika o niewielkiej pojemności (1,44MiB)
B. możliwość szyfrowania folderów i plików
C. zapisywanie plików z nazwami dłuższymi niż 255 znaków
D. przechowywanie tylko jednej kopii tabeli plików
System plików NTFS (New Technology File System) to nowoczesne rozwiązanie, które oferuje wiele zaawansowanych funkcji zarządzania danymi. Jedną z kluczowych zalet jest możliwość szyfrowania folderów i plików, co zapewnia wysoki poziom bezpieczeństwa przechowywanych informacji. Funkcja ta wykorzystuje technologię EFS (Encrypting File System), która pozwala użytkownikom na szyfrowanie danych na poziomie systemu plików. Dzięki temu, nawet w przypadku fizycznego dostępu do nośnika, nieautoryzowane osoby nie będą mogły odczytać zaszyfrowanych plików bez odpowiednich uprawnień. Praktyczne zastosowanie tej funkcjonalności jest szczególnie istotne w środowiskach korporacyjnych oraz w pracy z danymi wrażliwymi, gdzie bezpieczeństwo informacji jest kluczowe. Warto również zauważyć, że NTFS wspiera długie nazwy plików, co w połączeniu z szyfrowaniem, umożliwia komfortowe i bezpieczne zarządzanie dużymi zbiorami danych. W branży IT stosowanie NTFS jest standardem, szczególnie w systemach operacyjnych Windows, gdzie funkcjonalności te są szczególnie doceniane.

Pytanie 40

Rejestry widoczne na diagramie procesora mają rolę

Ilustracja do pytania
A. zapisywania adresu do kolejnej funkcji programu
B. przechowywania argumentów obliczeń
C. realizowania operacji arytmetycznych
D. zarządzania wykonywaniem programu
Rejestry w procesorze odgrywają kluczową rolę w przechowywaniu argumentów obliczeń co jest niezbędne do efektywnego wykonywania operacji arytmetycznych i logicznych. W architekturze komputerowej rejestry są szybkimi pamięciami które umożliwiają przetwarzanie danych bez konieczności częstego sięgania do pamięci operacyjnej RAM co znacznie przyspiesza działanie procesora. Na przykład w operacjach algebraicznych jak dodawanie czy mnożenie rejestry przechowują liczby które są przetwarzane przez jednostkę arytmetyczno-logiczna ALU. Ponadto rejestry są używane do przechowywania tymczasowych wyników obliczeń co pozwala na realizację złożonych operacji w serii kroków. Dobrymi praktykami branżowymi jest optymalizacja kodu aby jak najlepiej wykorzystać dostępne rejestry co przekłada się na wydajność aplikacji. Wiele nowoczesnych procesorów implementuje zestawy rejestrów specjalizujących się w określonych zadaniach jak SIMD dla operacji wektorowych co jest przykładem zaawansowanego wykorzystania rejestrów w celu poprawy wydajności obliczeń równoległych