Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 3 czerwca 2025 22:16
  • Data zakończenia: 3 czerwca 2025 22:29

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W jakich okolicznościach instalacja elektryczna nie wymaga konserwacji ani naprawy?

A. Kiedy prowadzone są prace konserwacyjne w obiekcie, na przykład malowanie ścian
B. Gdy użytkowanie instalacji stwarza zagrożenie dla bezpieczeństwa personelu lub otoczenia
C. Gdy stan techniczny instalacji jest niedostateczny lub wartości jej parametrów są poza zakresem określonym w instrukcji eksploatacji
D. Kiedy zostanie zauważone uszkodzenie instalacji elektrycznej
Odpowiedź wskazująca, że instalacja elektryczna nie musi być poddawana konserwacji w przypadku przeprowadzania prac konserwacyjnych, takich jak malowanie ścian, jest prawidłowa, ponieważ w tym kontekście nie zachodzi ryzyko uszkodzenia instalacji ani zagrożenie dla bezpieczeństwa. W rzeczywistości, prace konserwacyjne są często planowane i wykonywane w sposób, który minimalizuje ryzyko dla istniejącej instalacji. Przykładowo, przed rozpoczęciem malowania należy zabezpieczyć gniazdka elektryczne i kable, co pozwala na bezpieczne i zgodne z normami ISO i PN wykonywanie takich prac. Dobrą praktyką jest również przeprowadzenie przeglądu stanu instalacji przed rozpoczęciem jakichkolwiek działań konserwacyjnych, aby upewnić się, że nie ma ukrytych usterek, które mogłyby wpłynąć na bezpieczeństwo. Ostatecznie, przestrzeganie regularnych harmonogramów konserwacji i inspekcji jest kluczowe dla utrzymania bezpieczeństwa oraz wydajności instalacji elektrycznych.

Pytanie 2

Gdzie powinny być umieszczone liczniki zużycia energii elektrycznej w budynkach wielorodzinnych?

A. w lokalach mieszkalnych tylko w zamkniętych szafkach
B. poza lokalami mieszkalnymi jedynie w zamkniętych szafkach
C. poza lokalami mieszkalnymi w miejscach o łatwym dostępie
D. w lokalach mieszkalnych w miejscach o łatwym dostępie
Umieszczanie liczników zużycia energii elektrycznej w lokalach mieszkalnych, w tym w zamkniętych szafkach lub w miejscach łatwo dostępnych, nie jest zgodne z aktualnymi standardami i dobrymi praktykami w zakresie zarządzania infrastrukturą budowlaną. Istnieje kilka kluczowych powodów, które tłumaczą, dlaczego takie rozwiązanie może być niewłaściwe. Po pierwsze, lokalizacja liczników w mieszkaniach może prowadzić do naruszenia prywatności mieszkańców, co jest nieakceptowalne z punktu widzenia ochrony danych osobowych. Liczniki są urządzeniami technicznymi, a ich obecność w lokalach mieszkalnych może generować dodatkowe problemy, takie jak hałas czy ograniczenie przestrzeni. Ponadto, umieszczanie ich w łatwo dostępnych miejscach w lokalach może stwarzać ryzyko przypadkowego uszkodzenia lub manipulacji przez osoby trzecie, co jest szczególnie niebezpieczne. W kontekście wymogów dotyczących bezpieczeństwa, przechowywanie liczników w wydzielonych pomieszczeniach technicznych, zamykanych szafkach, pozwala na skuteczną kontrolę i ograniczenie dostępu do nich. Warto pamiętać, że zgodnie z przepisami prawa budowlanego oraz normami branżowymi, liczniki powinny być umiejscowione tak, aby mogły być łatwo dostępne dla wykwalifikowanego personelu, ale jednocześnie maksymalnie chronione przed dostępem osób nieuprawnionych. Tego typu podejścia zapewniają lepszą kontrolę nad systemem dystrybucji energii oraz zwiększają bezpieczeństwo zarówno użytkowników, jak i samej infrastruktury.

Pytanie 3

W jakim z podanych typów źródeł światła wykorzystuje się zapłonnik?

A. Lampa sodowa
B. Żarówka halogenowa
C. Świetlówka tradycyjna
D. Lampa rtęciowa
Wybór lampy sodowej, rtęciowej czy żarówki halogenowej jako źródła światła, w którym stosuje się zapłonnik, jest nieprawidłowy z powodu różnic w technologii i zasadzie działania tych lamp. Lampy sodowe wykorzystują zjawisko emisji światła poprzez naładowany gaz sodowy, jednak nie potrzebują zapłonnika, gdyż zamiast tego działają na zasadzie bezpośredniego przepływu prądu. Ponadto, lampy rtęciowe również nie wymagają zapłonnika w tradycyjnym sensie, ponieważ ich uruchomienie odbywa się poprzez elektryczne rozładowanie w gazie rtęciowym, co jest realizowane przez układ zapłonowy zintegrowany z balastem. Żarówki halogenowe, z kolei, są konstrukcją opartą na technologii żarowej, w której nie stosuje się zapłonników; zamiast tego, działają na zasadzie podgrzewania włókna wolframowego do wysokiej temperatury, co generuje światło. Zrozumienie różnic między tymi technologiami jest kluczowe, ponieważ prowadzi do lepszego doboru źródeł światła w zależności od zastosowania. Ignorowanie tych różnic może skutkować nieefektywnym działaniem systemów oświetleniowych i wyższymi kosztami eksploatacyjnymi. W praktyce, kluczowe jest stosowanie odpowiednich rozwiązań technologicznych w zależności od potrzeb i charakterystyki danego środowiska oświetleniowego.

Pytanie 4

Jakie jest wymagane napięcie testowe przy pomiarze rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V?

A. 250V
B. 750V
C. 500V
D. 1000 V
Wymagane napięcie probiercze przy badaniu rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V wynosi 500 V. Taki poziom napięcia jest zgodny z normami określonymi w dokumentach takich jak PN-EN 61557-2, które regulują przeprowadzanie badań izolacji. Stosowanie napięcia 500 V jest efektywne w testowaniu izolacji, gdyż pozwala na uzyskanie rzetelnych wyników, przy jednoczesnym minimalizowaniu ryzyka uszkodzenia izolacji. Praktyczne zastosowanie tego napięcia jest szczególnie widoczne w instalacjach o napięciu roboczym 230/400 V, gdzie niskie napięcie mogłoby nie ujawnić potencjalnych problemów, a zbyt wysokie mogłoby prowadzić do uszkodzeń lub fałszywych odczytów. Regularne testy rezystancji izolacji przy użyciu odpowiednich napięć są kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych, co wynika z praktyk branżowych oraz przepisów BHP.

Pytanie 5

Jaka jest minimalna wartość rezystancji izolacji przewodu, gdy mierzymy induktorem w sieci o napięciu znamionowym badanego obwodu U < 500 V?

A. ≥ 0,25 MΩ
B. < 0,25 MΩ
C. ≥ 0,5 MΩ
D. < 0,5 MΩ
Odpowiedzi, które podają wartości rezystancji izolacji poniżej 0,5 MΩ, nie są odpowiednie. Nie spełniają one podstawowych wymagań, co może być niebezpieczne. Wartości < 0,25 MΩ czy < 0,5 MΩ nie dają dobrego poziomu izolacji, co prowadzi do ryzyka porażenia prądem lub uszkodzenia sprzętu. W zasadzie, jeżeli rezystancja jest poniżej 0,5 MΩ, to może to oznaczać problemy z izolacją przewodów. To z kolei może prowadzić do naprawdę poważnych konsekwencji, jak pożary. Często myli się wartości rezystancji, chcąc uprościć pomiary, ale to jest naprawdę ryzykowne w kontekście bezpieczeństwa elektrycznego. Należy pamiętać, że dobra izolacja chroni nie tylko osoby pracujące w pobliżu, ale również sprzęt i systemy. Gdy wartości rezystancji są niższe niż wymagane 0,5 MΩ, może to wynikać z niewłaściwego stanu instalacji lub zużycia materiałów izolacyjnych. To jeszcze bardziej podkreśla, jak ważne są regularne kontrole i pomiary, żeby wszystko było zgodne z normami bezpieczeństwa instalacji elektrycznych.

Pytanie 6

Co może być przyczyną wzrostu temperatury łącznika puszkowego po włączeniu oświetlenia?

A. Luźny przewód w przełączniku
B. Przerwa w obwodzie lampy
C. Zwarcie w obwodzie lampy
D. Zbyt niska moc żarówki
Poluzowany przewód w wyłączniku może być odpowiedzialny za nagrzewanie się łącznika puszkowego, ponieważ prowadzi do zwiększonego oporu elektrycznego w miejscu połączenia. Gdy przewód nie jest odpowiednio dokręcony, pojawia się luz, co skutkuje niewłaściwym kontaktem i generowaniem ciepła. Zjawisko to jest zgodne z zasadą Joule'a, według której moc wydzielająca się na oporze jest proporcjonalna do kwadratu natężenia prądu i oporu. Przykłady zastosowania tej wiedzy można znaleźć w praktykach instalacyjnych, gdzie stosuje się odpowiednie narzędzia do dokręcania połączeń, co minimalizuje ryzyko nagrzewania się. Dobre praktyki branżowe zalecają regularne przeglądy połączeń elektrycznych oraz zastosowanie elementów zabezpieczających, takich jak złączki z funkcją blokady, aby uniknąć luzów w instalacjach elektrycznych.

Pytanie 7

Jakie rodzaje żył znajdują się w kablu oznaczonym symbolem SMYp?

A. Sektorowe
B. Wielodrutowe
C. Jednodrutowe
D. Płaskie
Odpowiedzi "Płaskie", "Sektorowe" i "Jednodrutowe" są nieco mylące. Przewody płaskie, chociaż mogą mieć swoje miejsce, to zazwyczaj są używane w sytuacjach, gdzie przestrzeń jest ograniczona, ale nie mają tej elastyczności co wielodrutowe. Przewody sektorowe są bardziej chyba do specyficznych zastosowań, ale nie mogą znieść dużych zgięć. No a te jednodrutowe... no cóż, mają ten problem, że są mniej elastyczne, przez co łatwiej je uszkodzić. Gdy chodzi o miejsce, gdzie trzeba coś często przenosić, to te jednodrutowe nie będą najlepsze, bo szybko się zużywają. Często w takich przypadkach nie myśli się o elastyczności i o tym, jak przewody będą pracować w ruchu. Dobór właściwych przewodów jest kluczowy, bo to wpływa na trwałość i niezawodność całej instalacji. Warto znać te normy i standardy w elektryce.

Pytanie 8

Jaka jest znamionowa efektywność silnika trójfazowego, jeśli P = 2,2 kW (mocy mechanicznej), UN = 400 V, IN = 4,6 A oraz cos φ = 0,82?

A. 0,39
B. 0,49
C. 0,69
D. 0,84
Znamionowa sprawność silnika trójfazowego obliczana jest na podstawie stosunku mocy mechanicznej do mocy czynnej dostarczonej do silnika. W tym przypadku, moc mechaniczna wynosi 2,2 kW, a moc czynna można obliczyć z wzoru: P = U * I * √3 * cos φ, gdzie U to napięcie, I to prąd, a cos φ to współczynnik mocy. Podstawiając dane: P = 400 V * 4,6 A * √3 * 0,82, otrzymujemy moc czynną równą około 2,63 kW. Następnie sprawność obliczamy jako: η = P_moc / P_czynna = 2,2 kW / 2,63 kW, co daje wartość około 0,84. W praktyce, znajomość sprawności silników elektrycznych jest kluczowa w doborze odpowiednich jednostek napędowych do maszyn i urządzeń, a także w ocenie efektywności energetycznej systemów. Standardy takie jak IEC 60034-30 definiują klasy sprawności dla silników elektrycznych, co pozwala na ich porównywanie i wybór najbardziej efektywnych rozwiązań.

Pytanie 9

Jakie znaczenie ma opis OMY 500 V 3x1,5 mm2 umieszczony na izolacji przewodu?

A. Sznur mieszkalny pięciożyłowy w izolacji polietylenowej
B. Sznur mieszkalny trzyżyłowy w izolacji polwinitowej
C. Przewód oponowy mieszkalny trzyżyłowy w izolacji polwinitowej
D. Przewód oponowy warsztatowy pięciożyłowy w izolacji polietylenowej
Odpowiedź wskazująca na przewód oponowy mieszkaniowy trzyżyłowy w izolacji polwinitowej jest poprawna, ponieważ oznaczenie OMY 500 V 3x1,5 mm2 wskazuje na konkretny typ przewodu, który jest powszechnie stosowany w instalacjach elektrycznych w budynkach mieszkalnych. Oznaczenie 'OMY' odnosi się do przewodów oponowych, które charakteryzują się dużą elastycznością i odpornością na uszkodzenia mechaniczne. Izolacja polwinitowa (PVC) zabezpiecza przed działaniem wilgoci i substancji chemicznych, co czyni ten przewód idealnym do stosowania w warunkach domowych, gdzie często zachodzi ryzyko narażenia na różnorodne czynniki zewnętrzne. Przewód o przekroju 3x1,5 mm2 oznacza, że ma trzy żyły o średnicy 1,5 mm2, co jest standardowym przekrojem dla obwodów oświetleniowych i gniazd wtykowych w mieszkaniach. Przykłady zastosowania obejmują instalacje w domach jednorodzinnych, w których przewody te są używane do podłączenia oświetlenia oraz zasilania urządzeń elektrycznych. Zgodność z normą PN-EN 50525-2-21 potwierdza, że przewód spełnia wymagane standardy bezpieczeństwa oraz jakości.

Pytanie 10

Który rodzaj żarówki przedstawiono na ilustracji?

Ilustracja do pytania
A. Ledowy.
B. Halogenowy.
C. Wolframowy.
D. Rtęciowy.
Żarówka LED, którą przedstawiono na ilustracji, jest doskonałym przykładem nowoczesnych rozwiązań oświetleniowych. Charakteryzuje się ona nie tylko wysoką efektywnością energetyczną, ale także długą żywotnością, sięgającą nawet 25 000 godzin. Diody LED, umieszczone na żółtych paskach wewnątrz szklanej bańki, zapewniają równomierne rozproszenie światła, co wpływa na komfort użytkowania. W przeciwieństwie do tradycyjnych żarówek wolframowych, które emitują dużą ilość ciepła, żarówki LED pozostają chłodne podczas pracy, co zwiększa bezpieczeństwo i zmniejsza ryzyko pożaru. Ponadto, żarówki LED są dostępne w różnych temperaturach barwowych, co pozwala na dostosowanie oświetlenia do indywidualnych potrzeb użytkownika. Przykładem zastosowania żarówek LED mogą być systemy oświetleniowe w biurach, gdzie ich wysoka efektywność przekłada się na zmniejszenie kosztów energii oraz poprawę jakości pracy dzięki lepszemu oświetleniu. Warto również zauważyć, że według norm unijnych i standardów efektywności energetycznej, stosowanie żarówek LED jest promowane jako sposób na ograniczenie emisji CO2 oraz zmniejszenie wpływu na środowisko.

Pytanie 11

Który przewód jest oznaczony literami PE?

A. Ochronno-neutralny
B. Ochronny
C. Fazowy
D. Neutralny
Odpowiedź "Ochronny" jest poprawna, ponieważ przewód oznaczony symbolem literowym PE (Protective Earth) jest przewodem ochronnym, który ma na celu zapewnienie bezpieczeństwa użytkowników instalacji elektrycznych. Jego główną funkcją jest odprowadzenie prądu do ziemi w przypadku wystąpienia awarii, co minimalizuje ryzyko porażenia prądem elektrycznym. W praktyce, przewód PE powinien być zawsze połączony z metalowymi częściami urządzeń elektrycznych, co tworzy skuteczną barierę ochronną. W zgodzie z normami IEC 60439 oraz PN-EN 60204-1, stosowanie przewodów ochronnych jest obowiązkowe w każdym systemie elektrycznym, aby zminimalizować ryzyko wystąpienia niebezpiecznych sytuacji. Warto również pamiętać, że przewód PE nie należy mylić z przewodem neutralnym (N), który pełni inną rolę w obiegu prądu, a ich pomylenie może prowadzić do poważnych problemów w instalacji. Dlatego wiedza o odpowiednich oznaczeniach przewodów jest kluczowa w zapewnieniu bezpieczeństwa i prawidłowego funkcjonowania systemów elektrycznych.

Pytanie 12

Przed zainstalowaniem uzwojenia wsypywanego stojana w silniku indukcyjnym, należy odpowiednio przygotować jego żłobki przez

A. nałożenie oleju elektroizolacyjnego
B. nałożenie lakieru elektroizolacyjnego
C. zabezpieczenie klinami ochronnymi
D. wyłożenie izolacją żłobkową
Właściwe wyłożenie żłobków izolacją żłobkową przed umieszczeniem uzwojenia w silniku indukcyjnym jest kluczowe dla zapewnienia efektywności i bezpieczeństwa pracy silnika. Izolacja żłobkowa stanowi barierę między uzwojeniem a żłobkiem, chroniąc przed zwarciami oraz poprawiając trwałość elementów. Dzięki zastosowaniu odpowiednich materiałów izolacyjnych, takich jak żywice epoksydowe lub poliuretanowe, uzyskujemy wysoką odporność na działanie wysokich temperatur i wilgoci. Przykładem zastosowania tych materiałów jest przemysł motoryzacyjny, gdzie silniki są narażone na ekstremalne warunki. Ponadto, zgodnie z normami IEC 60034 dotyczącymi silników elektrycznych, odpowiednia izolacja żłobków jest niezbędna do zachowania parametrów pracy silnika oraz spełnienia wymogów bezpieczeństwa. W praktyce, stosowanie wysokiej jakości izolacji przekłada się na mniejsze straty energii oraz wydłużenie żywotności silnika, co jest kluczowe z punktu widzenia efektywności kosztowej i ekologicznej.

Pytanie 13

Który z rodzajów kabli ma zewnętrzną osłonę wykonaną z polwinitu?

A. XzTKMXpw
B. LgY
C. YADY
D. DYt
Typ przewodu YADY jest powszechnie stosowany w instalacjach elektrycznych, a jego charakterystyczną cechą jest powłoka zewnętrzna wykonana z polwinitu (PVC). Polwinit jest materiałem o wysokiej odporności na działanie czynników atmosferycznych oraz chemicznych, dzięki czemu przewody tego typu znajdują zastosowanie zarówno w instalacjach wewnętrznych, jak i zewnętrznych. Stosuje się je w budownictwie, w infrastrukturze przemysłowej oraz w systemach automatyki. Przewody YADY charakteryzują się także elastycznością, co ułatwia ich instalację w trudnodostępnych miejscach. Zgodnie z normami PN-EN 50525, przewody te mogą być używane do zasilania urządzeń elektrycznych, a ich budowa zapewnia odpowiednią izolację oraz bezpieczeństwo użytkowania. Warto również zwrócić uwagę na specyfikację dostosowaną do różnych warunków pracy, co czyni je uniwersalnym rozwiązaniem w wielu branżach.

Pytanie 14

Który z podanych materiałów charakteryzuje się najwyższą właściwą przewodnością elektryczną?

A. Aluminium
B. Stal
C. Brąz
D. Miedź
Miedź to w zasadzie najlepszy wybór, jeśli chodzi o przewodność elektryczną wśród tych materiałów. Ma około 58 MS/m przewodności, a to naprawdę dużo! Dla porównania, aluminium ma tylko około 37 MS/m, więc wiadomo, dlaczego miedź jest tak powszechnie stosowana w elektryce i elektronice. W praktyce wykorzystuje się ją do robienia przewodów i różnych elementów elektronicznych, jak złącza czy obwody drukowane. Dzięki wysokiej przewodności miedzi, straty energii przy przesyle prądu są minimalne, co jest mega ważne w elektroenergetyce. Oprócz tego, miedź jest odporna na korozję i ma sporą wytrzymałość mechaniczną, dlatego sprawdza się w wielu zastosowaniach, od domów po przemysł. W branży, mówi się, że miedź to standardowy materiał do przewodów, więc to tylko potwierdza, jak ważna jest w inżynierii elektrycznej.

Pytanie 15

Który element wyposażenia rozdzielnicy przedstawiono na ilustracji?

Ilustracja do pytania
A. Czujnik kolejności faz.
B. Lampkę sygnalizacyjną trójfazową.
C. Przekaźnik czasowy.
D. Regulator temperatury.
Lampka sygnalizacyjna trójfazowa, przedstawiona na ilustracji, to urządzenie, które odgrywa kluczową rolę w monitorowaniu stanu zasilania w instalacjach elektrycznych. Model SL-RGB 3in1 firmy Kanlux jest zaprojektowany do wskazywania obecności napięcia w trzech fazach, co jest istotne w kontekście instalacji przemysłowych oraz obiektów użyteczności publicznej. Lampki sygnalizacyjne trójfazowe są niezbędne w systemach energetycznych, ponieważ informują operatorów o prawidłowym funkcjonowaniu zasilania, co może zapobiec awariom i uszkodzeniom sprzętu. Umożliwiają one szybkie wykrycie problemów w zasilaniu, takich jak brak fazy czy asymetria napięcia. W praktyce, lampki te często są używane w połączeniu z innymi urządzeniami zabezpieczającymi, takimi jak wyłączniki różnicowoprądowe, co pozwala na zbudowanie kompleksowego systemu monitorowania i ochrony instalacji elektrycznych. Dodatkowo, zgodność z normami, takimi jak PN-EN 60204-1, zapewnia, że urządzenia te są bezpieczne i efektywne w użytkowaniu.

Pytanie 16

Jakie z wymienionych usterek w obwodzie odbiorczym instalacji elektrycznej powinno spowodować automatyczne odcięcie napięcia przez wyłącznik różnicowoprądowy?

A. Zwarcie międzyfazowe
B. Skok napięcia
C. Upływ prądu
D. Przeciążenie obwodu
Odpowiedź 'Upływ prądu' jest na pewno trafna, bo wyłącznik różnicowoprądowy, czyli RCD, działa dokładnie tak, jak powinien. On potrafi sprawdzać różnice w prądzie, który wpływa i wypływa z obwodu. Powiedzmy, że jak jest jakiś problem z izolacją, to prąd może wyciekać do ziemi. To właśnie wtedy RCD to zauważa i natychmiast odłącza zasilanie, co naprawdę zmniejsza ryzyko porażenia prądem albo pożaru. RCD często spotykamy w łazienkach, gdzie wilgoć sprawia, że ryzyko kontaktu z prądem jest większe. Warto też wiedzieć, że normy, takie jak PN-EN 61008, precyzują, jakie są wymagania dotyczące tych wyłączników i gdzie można je stosować, co podkreśla ich istotność dla bezpieczeństwa elektrycznego. Używanie RCD w instalacjach jest zgodne z dobrymi praktykami i przepisami budowlanymi, więc to naprawdę ważny temat.

Pytanie 17

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa stosowana do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach: PN = 3 kW, UN = 230 V?

A. gG 16 A
B. aR 16 A
C. aM 20 A
D. gB 20 A
Wybór wkładki topikowej gG 16 A jako zabezpieczenia dla obwodu jednofazowego bojlera elektrycznego o mocy 3 kW i napięciu 230 V jest właściwy z kilku powodów. Przede wszystkim, wkładki gG są stosowane do ochrony obwodów przed przeciążeniem oraz zwarciem, co jest kluczowe w przypadku urządzeń grzewczych, takich jak bojler. Znamionowy prąd bojlera można obliczyć, dzieląc moc przez napięcie, co daje wynik P/N = 3000 W / 230 V ≈ 13 A. Wybierając wkładkę o wartości 16 A, zapewniamy odpowiedni margines bezpieczeństwa, który zapobiega przypadkowemu wyłączeniu z powodu chwilowych przeciążeń. Standardy branżowe, takie jak PN-EN 60269, wskazują na odpowiednie zastosowanie wkładek gG w instalacjach, gdzie wymagane jest zabezpieczenie przed skutkami zwarć i przegrzania. W praktyce, wkładki topikowe gG są powszechnie stosowane w domowych instalacjach elektrycznych i zapewniają skuteczną ochronę oraz niezawodność działania.

Pytanie 18

Elektronarzędzie przedstawione na rysunku jest stosowane przy wykonywaniu instalacji elektrycznej

Ilustracja do pytania
A. prefabrykowanej.
B. podtynkowej.
C. prowadzonej w tynku.
D. natynkowej.
Odpowiedź 'podtynkowej' jest poprawna, ponieważ elektronarzędzie przedstawione na rysunku to frezarka do rowków, która jest kluczowym narzędziem w instalacjach elektrycznych podtynkowych. Umożliwia ono precyzyjne wykonywanie bruzd w murach, gdzie następnie kable elektryczne są układane pod tynkiem. Taki sposób instalacji jest zgodny z najlepszymi praktykami budowlanymi, które zalecają ukrywanie przewodów dla zapewnienia estetyki i bezpieczeństwa. Instalacje podtynkowe chronią kable przed uszkodzeniami mechanicznymi oraz eliminują ryzyko zwarcia spowodowanego wystawieniem przewodów na działanie czynników zewnętrznych. W przypadku zastosowań w obiektach mieszkalnych, standardy budowlane, takie jak PN-IEC 60364, podkreślają znaczenie odpowiedniej izolacji oraz układania instalacji w sposób, który minimalizuje ryzyko uszkodzeń i ułatwia przyszłe prace konserwacyjne.

Pytanie 19

Jakiej z wymienionych czynności nie przeprowadza się w trakcie oględzin urządzenia napędowego z silnikiem elektrycznym podczas pracy?

A. Sprawdzenia szczotek i szczotkotrzymaczy
B. Kontroli stanu osłon elementów wirujących
C. Oceny stanu przewodów ochronnych oraz ich podłączenia
D. Sprawdzenia działania systemów chłodzenia
Odpowiedź dotycząca sprawdzenia szczotek i szczotkotrzymaczy jako czynności, której nie wykonuje się podczas oględzin urządzenia napędowego z silnikiem elektrycznym w czasie ruchu, jest poprawna. Podczas pracy silnika elektrycznego, szczegóły takie jak szczotki i szczotkotrzymacze nie mogą być skutecznie oceniane, ponieważ wymagają one zatrzymania silnika, aby móc przeprowadzić dokładne wizualne i techniczne badania. Szczotki są kluczowymi elementami, które przekazują prąd do wirnika i ich stan ma istotny wpływ na wydajność silnika. W praktyce, regularne kontrole tych komponentów powinny być przeprowadzane w warunkach postoju, aby uniknąć uszkodzeń i zapewnić długotrwałe, bezproblemowe funkcjonowanie napędu. Zaleca się stosowanie standardów takich jak PN-EN 60034, które określają wymagania dotyczące silników elektrycznych, oraz dokumentacji producentów, aby przestrzegać najlepszych praktyk obsługi i konserwacji urządzeń. Wnioskując, ocena stanu szczotek i szczotkotrzymaczy w czasie ruchu nie jest możliwa, co czyni tę odpowiedź prawidłową.

Pytanie 20

Jaką wartość ma prędkość obrotowa pola magnetycznego stojana silnika indukcyjnego przy danych: fN = 50 Hz; p = 4?

A. 720 obr./min
B. 750 obr./min
C. 1 500 obr./min
D. 1 450 obr./min
Prędkość obrotowa pola magnetycznego stojana silnika indukcyjnego można obliczyć za pomocą wzoru: n = (120 * fN) / p, gdzie n to prędkość obrotowa w obr./min, fN to częstotliwość zasilania w hercach, a p to liczba par biegunów. W podanym przypadku fN wynosi 50 Hz, a liczba par biegunów p wynosi 4. Podstawiając wartości do wzoru, otrzymujemy: n = (120 * 50) / 4 = 1500 obr./min. Jednakże, aby uzyskać prędkość obrotową rzeczywistą, musimy uwzględnić poślizg silnika indukcyjnego, który wynosi zazwyczaj od 2 do 5% w zależności od obciążenia. Przy założeniu typowego poślizgu na poziomie 5%, obliczamy prędkość rzeczywistą: 1500 - (0,05 * 1500) = 1425 obr./min. W praktyce jednak standardowe silniki indukcyjne o częstotliwości 50 Hz i 4 parach biegunów mają prędkość nominalną wynoszącą 750 obr./min, co odpowiada ich charakterystyce pracy w rzeczywistych warunkach. Takie parametry są zgodne z normami IEC 60034-1, które opisują wymagania dla maszyn elektrycznych.

Pytanie 21

Woltomierz działający na zasadzie magnetoelektrycznej, który mierzy napięcie sinusoidalnie z dodatkiem składowej stałej, wskaże wartość

A. chwilową napięcia
B. skuteczną napięcia
C. znamionową napięcia
D. średnią napięcia
Wybór odpowiedzi dotyczącej skutecznej, chwilowej lub znamionowej wartości napięcia w kontekście tego pytania wskazuje na niepełne zrozumienie zasad działania woltomierzy magnetoelektrycznych oraz różnic pomiędzy różnymi typami pomiarów napięcia. Skuteczna wartość napięcia, często używana w analizach obwodów prądu przemiennego, odnosi się do wartości rms (root mean square), która jest miarą dostarczanej energii. Mimo że pomiar skuteczny jest istotny w kontekście obliczeń związanych z mocą, woltomierz magnetoelektryczny w tym przypadku nie wskazuje tej wartości w przypadku napięcia sinusoidalnego ze składową stałą. Z kolei chwilowa wartość napięcia odnosi się do pomiaru w danym momencie czasu, co nie jest praktycznym zastosowaniem w przypadku długoterminowego pomiaru napięcia, a ponadto nie uwzględnia składowej stałej. Odpowiedź dotycząca znamionowej wartości napięcia także nie jest właściwa, gdyż wartość znamionowa jest określona dla określonych warunków pracy urządzenia i służy do oceny jego specyfikacji, co również nie jest tożsame z pomiarem rzeczywistym. W efekcie, wybierając nieprawidłowe odpowiedzi, można nieświadomie wpłynąć na skuteczność i bezpieczeństwo aplikacji elektrycznych, co jest sprzeczne z dobrą praktyką inżynieryjną oraz standardami branżowymi.

Pytanie 22

Jakiego urządzenia należy użyć, aby zweryfikować ciągłość przewodu podczas instalacji?

A. Megaomomierza
B. Omomierza
C. Amperomierza
D. Watomierza
Omomierz jest instrumentem pomiarowym, który służy do określania oporu elektrycznego w obwodach. Użycie omomierza do sprawdzenia ciągłości przewodów instalacyjnych jest standardową praktyką w branży elektrycznej. Narzędzie to pozwala na ocenę, czy przewody są poprawnie podłączone i czy nie ma w nich przerw, co jest kluczowe dla bezpieczeństwa i efektywności instalacji. Przykładowo, podczas montażu instalacji elektrycznej w budynkach mieszkalnych, omomierz może być użyty do testowania połączeń między różnymi elementami systemu, co zapewnia, że żadne przerwy w przewodzeniu nie zakłócą działania urządzeń. Dobrą praktyką jest również pomiar oporu izolacji, co może zapobiec potencjalnym awariom i zagrożeniom pożarowym. Warto pamiętać, że w przypadku wyniku wskazującego na wysoką wartość oporu, może to oznaczać problem z przewodem, który należy rozwiązać przed zakończeniem instalacji.

Pytanie 23

Jaką z poniższych wkładek bezpiecznikowych powinno się zastosować w celu zabezpieczenia przewodów przed skutkami zwarć oraz przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. aM 20 A
B. gG 16 A
C. aM 16 A
D. gG 20 A
Wybór wkładki bezpiecznikowej gG 16 A do zabezpieczenia obwodu jednofazowego bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V jest uzasadniony z kilku powodów. Po pierwsze, moc bojlera wynosząca 3 kW przy 230 V generuje prąd znamionowy równy około 13 A (obliczane według wzoru I = P/U). W tym przypadku wkładka gG, zaprojektowana do ochrony przewodów przed przeciążeniem i zwarciem, jest odpowiednia, gdyż może wytrzymać chwilowe przeciążenia, jakie mogą wystąpić podczas rozruchu bojlera. Ponadto, wkładki gG mają charakterystykę czasowo-prądową, co oznacza, że mogą tolerować krótkotrwałe przeciążenia, co czyni je idealnym wyborem w aplikacjach, gdzie występują takie zjawiska. Stosowanie wkładek aM, które są bardziej przystosowane do ochrony obwodów silnikowych, nie jest wskazane w tym przypadku, ponieważ ich charakterystyka nie jest optymalna do zabezpieczenia obwodu grzewczego. W praktyce, dobór wkładek bezpiecznikowych powinien opierać się na analizie specyfiki obciążenia oraz na standardach takich jak PN-EN 60269, które definiują wymagania dla wkładek bezpiecznikowych. Dlatego wkładka gG 16 A jest najlepszym wyborem dla tego zastosowania.

Pytanie 24

Którego narzędzia należy użyć do demontażu w rozdzielnicy piętrowej uszkodzonego urządzenia pokazanego na rysunku?

Ilustracja do pytania
A. Szczypiec uniwersalnych.
B. Wkrętaka imbusowego.
C. Wkrętaka płaskiego.
D. Szczypiec typu Segera.
Poprawna odpowiedź to wkrętak płaski, który jest narzędziem niezbędnym do demontażu wyłącznika nadprądowego zamontowanego na szynie DIN w rozdzielnicy. Wyłączniki nadprądowe są zabezpieczeniami elektrycznymi, które chronią instalacje przed przeciążeniem i zwarciami. Aby skutecznie usunąć taki element, należy użyć wkrętaka płaskiego do odblokowania mechanizmu zatrzaskowego, który uniemożliwia swobodne wyjęcie wyłącznika. W przypadku użycia niewłaściwego narzędzia, jak szczypce uniwersalne czy wkrętak imbusowy, istnieje ryzyko uszkodzenia obudowy urządzenia lub samej rozdzielnicy. Stosowanie wkrętaka płaskiego jest zgodne z najlepszymi praktykami w branży elektrycznej, które podkreślają potrzebę użycia odpowiednich narzędzi do danej aplikacji, co zapewnia bezpieczeństwo i integralność instalacji. Dodatkowo, warto pamiętać o konieczności odłączenia zasilania przed rozpoczęciem jakichkolwiek prac, aby zapobiec porażeniu prądem. Zastosowanie wkrętaka płaskiego nie tylko ułatwia proces demontażu, ale również minimalizuje ryzyko uszkodzeń, co jest kluczowe w pracach konstruujących i serwisujących instalacje elektryczne.

Pytanie 25

W jaki sposób powinno się przeprowadzać zalecane przez producenta regularne testy działania wyłącznika różnicowoprądowego?

A. Naciskając przycisk TEST na załączonym wyłączniku
B. Obserwując reakcję załączonego wyłącznika na odłączenie przewodu ochronnego w rozdzielnicy
C. Naciskając przycisk TEST na wyłączonym wyłączniku
D. Obserwując reakcję wyłączonego wyłącznika na zwarcie przewodów czynnych w obwodzie wyjściowym
Aby prawidłowo sprawdzić działanie wyłącznika różnicowoprądowego (RCD), należy nacisnąć przycisk TEST na załączonym wyłączniku. W momencie naciśnięcia przycisku TEST, wyłącznik symuluje wyciek prądu, co powinno spowodować jego natychmiastowe wyłączenie. Działanie to jest zgodne z zaleceniami zawartymi w normach europejskich EN 61008 oraz EN 61009, które podkreślają znaczenie regularnych testów wyłączników RCD w celu zapewnienia bezpieczeństwa elektrycznego. Przykładem zastosowania tej procedury może być okresowe testowanie w instalacjach domowych lub przemysłowych, co powinno odbywać się co najmniej raz na miesiąc. Regularne testowanie RCD jest kluczowe, ponieważ pozwala upewnić się, że wyłącznik będzie działał prawidłowo w przypadku rzeczywistego wycieku prądu, co może zminimalizować ryzyko porażenia prądem lub pożaru. Należy pamiętać, że po teście wyłącznik powinien być ponownie włączony, aby przywrócić normalne funkcjonowanie instalacji elektrycznej.

Pytanie 26

W dokumentacji dotyczącej instalacji elektrycznej w łazience podano, że gniazdo zasilające dla pralki powinno być umieszczone poza strefą II. Jaką minimalną odległość od wanny powinno mieć to gniazdo?

A. 1,2 m
B. 1,0 m
C. 0,5 m
D. 0,6 m
Wybór 0,5 m albo 1,0 m jako odpowiedzi na to pytanie może wynikać z pewnych nieporozumień co do stref w łazience i zasad bezpieczeństwa związanych z instalacjami elektrycznymi. Gniazdo musi być przynajmniej 0,6 m od krawędzi wanny, żeby było bezpiecznie. Odpowiedź 0,5 m jest słaba, bo zbliżenie gniazda do strefy II stwarza ryzyko porażenia prądem. Z kolei 1,0 m to też nie ma sensu, bo to za duża odległość, niezgodna z tym, co mówią przepisy. Te strefy są ściśle określone, a odpowiednie odległości mają na celu ograniczenie ryzyka, które może się pojawić w pobliżu wody. Dlatego żeby uniknąć niebezpieczeństwa związanego z nieprawidłowym montażem, ważne jest, żeby przestrzegać norm, takich jak PN-EN 60364, które mówią o zasadach instalacji elektrycznych w budynkach. Nie zapomnij także, że gniazda w łazienkach muszą być odporne na wilgoć i mieć odpowiednią klasę szczelności, bo to też wpływa na bezpieczeństwo. Ignorowanie tych zasad może prowadzić do poważnych problemów zdrowotnych i uszkodzeń sprzętu.

Pytanie 27

Jakie narzędzia, poza przymiaru kreskowego i młotka, należy wybrać do instalacji sztywnych rur elektroinstalacyjnych z PVC?

A. Wiertarka, płaskoszczypce, pion, poziomica
B. Wiertarka, piła do cięcia, poziomica, wkrętarka
C. Cęgi do izolacji, pion, piła do cięcia, obcinaczki
D. Cęgi do izolacji, obcinaczki, wkrętarka, płaskoszczypce
Wybór zestawu zawierającego wiertarkę, piłę do cięcia, poziomicę i wkrętarkę jest kluczowy dla prawidłowego montażu elektroinstalacyjnych rur sztywnych z PVC. Wiertarka jest niezbędna do wykonywania otworów w różnorodnych materiałach, co jest istotne podczas tworzenia połączeń i montażu w uchwytach. Piła do cięcia zapewnia dokładne i równe cięcia rur, co jest kluczowe dla szczelności i estetyki instalacji. Poziomica pozwala na precyzyjne ustawienie rur w osi poziomej, co jest podstawą dla uniknięcia problemów z odpływem i estetyką instalacji. Wkrętarka, z kolei, jest używana do mocowania różnych elementów, takich jak uchwyty i złącza, co pozwala na stabilne i bezpieczne wykonanie całej instalacji. Te narzędzia są zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie precyzji i jakości wykonania w instalacjach elektrycznych.

Pytanie 28

Jakie narzędzia będą konieczne do zamocowania listew elektroizolacyjnych na ścianie z płyt gipsowych?

A. Nóż monterski, wiertarka, zestaw kluczy.
B. Zestaw kluczy, wkrętarka, wiertło, przecinak.
C. Piła do cięcia, przecinak, młotek.
D. Wiertarka, wiertło, piła do cięcia, wkrętak.
Wybór odpowiedzi 'Wiertarka, wiertło, piła do cięcia, wkrętak' jest prawidłowy, ponieważ montaż listew elektroizolacyjnych na ścianie gipsowej wymaga precyzyjnych narzędzi do wykonania otworów oraz odpowiedniego przymocowania listew. Wiertarka z wiertłem pozwala na wykonanie otworów w ścianie, co jest kluczowe dla stabilnego montażu. Piła do cięcia jest niezbędna, gdyż listew często trzeba dostosować do długości, co wymaga precyzyjnego cięcia. Ostatnim kluczowym narzędziem jest wkrętak, który umożliwia przymocowanie listew do ściany za pomocą odpowiednich śrub. Zastosowanie wiertarki i wiertła zgodnie z zasadami bhp jest niezbędne, aby uniknąć uszkodzeń ściany i zapewnić, że otwory są odpowiedniej głębokości. Dobrą praktyką jest także stosowanie wkrętów samowiercących, co ułatwia montaż oraz zwiększa trwałość mocowania.

Pytanie 29

Pomiar rezystancji uzwojenia silnika elektrycznego przy użyciu omomierza wykazał wartość ∞ Ω. Co oznacza ten wynik dla uzwojenia silnika?

A. występuje zwarcie między zwojami.
B. działa prawidłowo.
C. izolacja jest uszkodzona.
D. jest uszkodzone.
Rezystancja uzwojenia silnika elektrycznego, której pomiar wskazuje wartość nieskończoną (∞ Ω), jednoznacznie sugeruje, że obwód uzwojenia jest przerwany. Przerwanie uzwojenia może wynikać z różnych przyczyn, takich jak zużycie mechaniczne, przegrzanie czy uszkodzenie mechaniczne. Przykładowo, w silnikach asynchronicznych, przerwanie uzwojenia może prowadzić do całkowitej utraty funkcji silnika. W praktyce, jeśli podczas pomiaru omomierzem uzyskamy wartość nieskończoności, konieczne jest dalsze diagnozowanie silnika, w tym wizualna inspekcja uzwojenia oraz sprawdzenie innych elementów, takich jak łożyska czy wirnik. W kontekście standardów branżowych, zgodnie z normą IEC 60034-1, regularne sprawdzanie stanu uzwojeń silników elektrycznych jest kluczowe dla zapewnienia niezawodności i wydajności operacyjnej urządzeń. Dlatego, aby uniknąć kosztownych awarii, zaleca się przeprowadzanie systematycznych testów rezystancji i monitorowanie stanu technicznego silników w cyklu regularnych przeglądów.

Pytanie 30

Jakie działania oraz w jakiej sekwencji powinny zostać przeprowadzone przy wymianie uszkodzonego fragmentu przewodu w instalacji umieszczonej w rurach peszla?

A. Odłączenie napięcia, rozkuwanie tynku, poprowadzenie nowej rury peszla z przewodami, uzupełnienie tynku, włączenie napięcia
B. Odłączenie zasilania, otwarcie puszek instalacyjnych, odkręcenie końców uszkodzonego przewodu, wymiana uszkodzonego odcinka przewodu, połączenie wymienionego przewodu w puszkach, zamknięcie puszek, włączenie zasilania, sprawdzenie poprawności działania instalacji
C. Odłączenie zasilania, rozkuwanie tynku w miejscu uszkodzenia, wymiana rury peszla z przewodami, włączenie napięcia, sprawdzenie funkcjonowania instalacji
D. Pomiar rezystancji przewodu, odłączenie napięcia, wymiana uszkodzonego przewodu, włączenie zasilania, sprawdzenie działania instalacji
Wymiana uszkodzonego odcinka przewodu w instalacji elektrycznej to poważna sprawa, więc trzeba to robić według ustalonej procedury, żeby wszystko działało jak należy i było bezpiecznie. Na początek odłączamy napięcie, bo to kluczowe, żeby nie dostać porażenia. Potem otwieramy puszki instalacyjne, żeby dostać się do przewodów. Kolejno odkręcamy końcówki uszkodzonego przewodu, a następnie zakładamy nowy. Ważne, żeby dobrze połączyć ten nowy przewód z innymi, które są w puszkach, żeby obwód działał bez problemu. Na koniec zamykamy puszki, żeby chronić przewody przed uszkodzeniami. Po wszystkim, włączamy napięcie i robimy test, żeby sprawdzić, czy wszystko działa. Taka procedura to co najmniej standard w branży, a jak wiadomo, bezpieczeństwo i efektywność to podstawa.

Pytanie 31

Które urządzenie stosowane w instalacjach elektrycznych przedstawiono na rysunku?

Ilustracja do pytania
A. Rozłącznik bezpiecznikowy.
B. Odłącznik bezpiecznikowy.
C. Wyłącznik nadmiarowoprądowy.
D. Wyłącznik przepięciowy.
Wybór niewłaściwej odpowiedzi może wynikać z mylenia różnych typów urządzeń zabezpieczających. Na przykład, odłącznik bezpiecznikowy, często mylony z rozłącznikiem, ma na celu odłączenie zasilania, ale nie zabezpiecza obwodu przed przepięciami czy przeciążeniami w ten sam sposób. Natomiast wyłącznik przepięciowy, który również może wydawać się atrakcyjną opcją, służy głównie do ochrony przed szkodliwymi skokami napięcia, które mogą uszkodzić podłączone urządzenia, a nie jest to jego funkcja w rozłączniku bezpiecznikowym. Wyłącznik nadmiarowoprądowy, z drugiej strony, może chronić przed przeciążeniem, jednak nie ma zdolności do odłączania obwodu w kontekście zapewnienia bezpieczeństwa operatora w sytuacji awaryjnej. Takie nieporozumienia mogą prowadzić do nieprawidłowego doboru urządzeń zabezpieczających, co w konsekwencji zwiększa ryzyko uszkodzeń instalacji oraz naraża użytkowników na niebezpieczeństwo. Kluczowym błędem jest zatem brak znajomości różnic w działaniach i zastosowaniach tych urządzeń, co powinno być uwzględnione podczas projektowania lub modernizacji instalacji elektrycznych. Właściwy dobór zabezpieczeń jest istotny dla zapewnienia bezpieczeństwa i efektywności działania całego systemu elektrycznego.

Pytanie 32

Jakie zadania związane z utrzymaniem instalacji elektrycznych zgodnie z przepisami BHP powinny być realizowane przez co najmniej dwuosobowy zespół?

A. Przeprowadzane regularnie przez upoważnione osoby w określonych lokalizacjach w czasie testów i pomiarów urządzeń znajdujących się pod napięciem
B. Przeprowadzane w wykopach o głębokości do 2 m podczas modernizacji lub konserwacji kabli
C. Wykonywane na wysokości przekraczającej 2 m w sytuacjach, gdy konieczne jest zastosowanie środków ochrony indywidualnej przed upadkiem z wysokości
D. Wykonywane w pobliżu urządzeń elektroenergetycznych wyłączonych z napięcia oraz uziemionych w widoczny sposób
Odpowiedź w sprawie prac na wysokości powyżej 2 metrów jest jak najbardziej trafiona. Przepisy BHP jasno mówią, że takie zadania powinny być wykonywane przez co najmniej dwie osoby. Dlaczego? Bo ryzyko upadku jest po prostu za duże. Nie wyobrażam sobie, żeby jedna osoba mogła w pełni zareagować, jeśli na przykład straci równowagę, zwłaszcza przy czymś takim jak montaż lamp na wysokich budynkach. Gdy jedna osoba zajmuje się np. sprzętem, to druga powinna mieć oko na bezpieczeństwo. Również zgodnie z normą PN-EN 50110-1 trzeba dobrze zaplanować takie prace i wyposażyć się w odpowiednie zabezpieczenia, jak uprzęże czy liny. Gdy obie osoby pracują razem, to zwiększa to bezpieczeństwo i sprawia, że wszystko idzie sprawniej. Bez tego można narazić się na niebezpieczeństwo, a zdrowie i życie zawsze powinno być na pierwszym miejscu.

Pytanie 33

Jakiej klasy ogranicznik przepięć powinno się montować w instalacjach mieszkalnych?

A. Klasy D
B. Klasy C
C. Klasy B
D. Klasy A
Odpowiedzi wskazujące na klasy B, D oraz A jako odpowiednie dla rozdzielnic mieszkalnych są niepoprawne głównie z powodu różnic w charakterystyce i zastosowaniach tych ograniczników. Klasa B, według normy IEC 61643-11, jest zaprojektowana do ochrony przed bardzo wysokimi przepięciami, które mogą występować w sieciach zasilających, co czyni je bardziej odpowiednimi do zastosowań w instalacjach przemysłowych, gdzie ryzyko wystąpienia takich zdarzeń jest znacznie wyższe. Ograniczniki klasy A z kolei są przeznaczone do ochrony przed bardzo niskimi, ale szybko zmieniającymi się przepięciami, co również nie odpowiada typowym wymaganiom dla mieszkań. Klasa D, zdefiniowana jako ogranicznik przeznaczony do instalacji w obiektach specjalistycznych, takich jak centra danych, również nie jest zalecana do użytku domowego. Sugerowanie tych klas ograniczników dla zastosowań w rozdzielnicach mieszkaniowych może prowadzić do niewłaściwej ochrony i potencjalnych uszkodzeń sprzętu, co jest wynikiem niepełnego zrozumienia standardów ochrony przeciwprzepięciowej oraz różnorodności warunków, w jakich te urządzenia są używane. Kluczowe jest, aby przy wyborze odpowiedniego ogranicznika kierować się wymaganiami specyfikacji technicznych oraz dobrą praktyką inżynieryjną, co pomoże uniknąć kosztownych błędów i zapewni skuteczną ochronę instalacji elektrycznych.

Pytanie 34

Który wyłącznik jest oznaczony symbolem CLS6-B6/2?

A. Dwubiegunowy różnicowoprądowy
B. Dwubiegunowy przepięciowy
C. Dwubiegunowy podnapięciowy
D. Dwubiegunowy instalacyjny nadprądowy
Wyłącznik oznaczony symbolem CLS6-B6/2 to instalacyjny nadprądowy wyłącznik dwubiegunowy, który jest kluczowym elementem w systemach elektrycznych. Jego główną funkcją jest ochrona obwodów przed przeciążeniem i zwarciem, co zapobiega uszkodzeniom urządzeń, a także minimalizuje ryzyko pożaru. Instalacyjne wyłączniki nadprądowe są projektowane zgodnie z normą IEC 60898, co zapewnia ich wysoką jakość i niezawodność. Przykładowe zastosowanie to użycie tego typu wyłączników w instalacjach domowych, gdzie chronią obwody oświetleniowe oraz gniazda elektryczne. W zależności od specyfikacji, wyłączniki mogą być skonfigurowane do ochrony obwodów jednofazowych lub trójfazowych, co sprawia, że są wszechstronne. Dodatkowo, ich funkcjonalność może być wzbogacona o elementy takie jak współpraca z urządzeniami różnicowoprądowymi, co zwiększa bezpieczeństwo instalacji. Wybór odpowiedniego wyłącznika jest kluczowy dla efektywności i bezpieczeństwa całego systemu elektrycznego.

Pytanie 35

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWartość
U - V20,0 Ω
V - W15,0 Ω
W - U15,0 Ω

A. Zwarcie międzyzwojowe w fazie W
B. Zwarcie międzyzwojowe w fazie V
C. Przerwa w uzwojeniu fazy W
D. Przerwa w uzwojeniu fazy V
Odpowiedź "Zwarcie międzyzwojowe w fazie W" jest prawidłowa, ponieważ analiza wyników pomiarów rezystancji uzwojeń trójfazowego silnika indukcyjnego wskazuje na istotne różnice w wartościach rezystancji, które są kluczowym wskaźnikiem stanu uzwojeń. W przypadku uzwojenia W, wartość rezystancji wynosi 5,0 Ω, co jest znacznie niższe od wartości uzwojeń U i V, które wynoszą odpowiednio 20,0 Ω i 15,0 Ω. Taka różnica wskazuje na wystąpienie zwarcia międzyzwojowego. W praktyce, gdy rezystancja jednego z uzwojeń jest znacznie niższa, oznacza to, że w tym uzwojeniu doszło do nieprawidłowości, która prowadzi do utraty właściwości izolacyjnych. W przypadku silników indukcyjnych, regularne monitorowanie rezystancji uzwojeń jest kluczowe dla wczesnego wykrywania uszkodzeń, co pozwala na zapobieganie poważniejszym awariom. Standardy branżowe, takie jak IEC 60034, podkreślają znaczenie regularnych przeglądów oraz testów, by zapewnić niezawodność i efektywność pracy urządzeń elektrycznych. Dodatkowo, znajomość typowych uszkodzeń, takich jak zwarcia międzyzwojowe, jest niezbędna dla techników w celu szybkiej diagnozy i naprawy silników elektrycznych.

Pytanie 36

Podczas inspekcji świeżo zrealizowanej instalacji elektrycznej nie ma potrzeby weryfikacji

A. wyboru zabezpieczeń oraz urządzeń
B. wyboru i oznakowania przewodów
C. rozmieszczenia tablic informacyjnych i ostrzegawczych
D. wartości natężenia oświetlenia na stanowiskach pracy
Wartość natężenia oświetlenia na stanowiskach pracy nie jest bezpośrednio związana z podstawowymi wymaganiami, jakimi są bezpieczeństwo i sprawność instalacji elektrycznej. W kontekście nadzoru nad nowo wykonanymi instalacjami, ważniejsze jest upewnienie się, że instalacja jest zgodna z normami oraz dobrze zorganizowana pod względem zabezpieczeń, oznaczeń i tablic informacyjnych. Obowiązki związane z badaniem natężenia oświetlenia są zazwyczaj związane z ergonomią pracy i komfortem użytkowników, co zalicza się do bardziej szczegółowych aspektów eksploatacji. W praktyce, standardy takie jak PN-EN 12464-1 oferują wytyczne dotyczące oświetlenia miejsc pracy, ale przed przystąpieniem do pomiarów natężenia, należy upewnić się, że sama instalacja elektryczna działa sprawnie i jest bezpieczna.

Pytanie 37

Przedstawiony na rysunku przyrząd służy do

Ilustracja do pytania
A. bezdotykowego pomiaru rezystancji przewodów.
B. pomiaru parametrów oświetlenia.
C. lokalizacji przewodów w instalacji elektrycznej.
D. sprawdzania ciągłości połączeń w instalacji.
Przedstawiony przyrząd to detektor przewodów elektrycznych, który jest istotnym narzędziem w branży elektrycznej. Jego głównym celem jest lokalizacja przewodów w instalacjach elektrycznych, co stanowi kluczowy etap w różnych pracach remontowych i instalacyjnych. Dzięki precyzyjnym funkcjom detekcji, możliwe jest zlokalizowanie przewodów schowanych w ścianach, co pozwala uniknąć ich uszkodzenia podczas wiercenia czy innych prac budowlanych. Zastosowanie tego urządzenia jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i efektywności pracy, ponieważ minimalizuje ryzyko uszkodzenia instalacji oraz potencjalnych zagrożeń związanych z porażeniem prądem. Warto dodać, że tego typu detektory mogą również pomóc w identyfikacji źle wykonanych instalacji elektrycznych, co może być kluczowe dla zapewnienia bezpieczeństwa użytkowników. Oprócz tego, dobrze jest znać zasady i normy dotyczące instalacji elektrycznych, takie jak PN-IEC 60364, które podkreślają znaczenie lokalizacji przewodów w zapewnieniu skutecznych i bezpiecznych prac budowlanych.

Pytanie 38

Który z podanych silników elektrycznych ma najbardziej sztywną charakterystykę mechaniczną n = f(M) w trybie pracy stabilnej?

A. Szeregowy prądu stałego
B. Obcowzbudny prądu stałego
C. Asynchroniczny klatkowy
D. Synchroniczny
Silnik szeregowy prądu stałego, silnik asynchroniczny klatkowy oraz silnik obcowzbudny prądu stałego mają charakterystyki mechaniczne, które są mniej sztywne w porównaniu do silnika synchronicznego. W przypadku silnika szeregowego prądu stałego, prędkość obrotowa jest silnie uzależniona od momentu obrotowego: im większy moment, tym niższa prędkość, co sprawia, że silnik ten jest bardziej elastyczny, ale także ma ograniczoną stabilność w pracy przy zmieniającym się obciążeniu. Silnik asynchroniczny klatkowy, z drugiej strony, ma charakterystykę, która pozwala na pewne zmiany prędkości w zależności od obciążenia, co może prowadzić do problemów z precyzyjną kontrolą prędkości, zwłaszcza w aplikacjach wymagających dużych momentów obrotowych. Silnik obcowzbudny prądu stałego, choć charakteryzuje się większą sztywnością niż szeregowy, nadal nie osiąga poziomu stabilności prędkości, jaki zapewnia silnik synchroniczny. Powszechnym błędem myślowym jest założenie, że silniki o większej mocy są automatycznie bardziej stabilne, podczas gdy to w rzeczywistości ich konstrukcja i typ zasilania decydują o charakterystyce pracy. W obliczu rosnących wymagań w zakresie efektywności energetycznej oraz precyzyjnego sterowania, zrozumienie różnic między tymi typami silników jest kluczowe dla inżynierów i projektantów systemów napędowych.

Pytanie 39

Jaką wartość maksymalnej dopuszczalnej impedancji pętli zwarcia należy zastosować w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, przy założeniu, że wyłączenie zasilania będzie realizowane przez instalacyjny wyłącznik nadprądowy C20?

A. 1,15 Ω
B. 2,30 Ω
C. 2,00 Ω
D. 3,83 Ω
Maksymalna dopuszczalna wartość impedancji pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, dla zapewnienia skutecznej ochrony przeciwporażeniowej przy uszkodzeniu izolacji, wynosi 1,15 Ω. Wartość ta jest kluczowa, ponieważ umożliwia szybkie zadziałanie instalacyjnego wyłącznika nadprądowego, takiego jak C20, który ma zdolność wyłączenia w ciągu 0,4 sekundy przy prądzie zwarciowym wynoszącym 5 kA. W praktyce, impedancja pętli zwarcia powinna być obliczana zgodnie z obowiązującymi normami, takimi jak PN-EN 60364, które określają zasady projektowania i wykonawstwa instalacji elektrycznych. Dla wyłącznika C20, wartość impedancji pętli zwarcia nie powinna przekraczać 1,15 Ω, aby zapewnić odpowiednią ochronę przed porażeniem prądem elektrycznym. Przykładowo, w instalacjach zasilających do budynków mieszkalnych, regularne pomiary impedancji pętli zwarcia są niezbędne do utrzymania bezpieczeństwa użytkowników.

Pytanie 40

Jaką rurę instalacyjną przedstawia symbol RKLF 20?

A. Sztywną o średnicy 20 mm
B. Sztywną o przekroju 20 mm2
C. Karbowaną o średnicy 20 mm
D. Karbowaną o przekroju 20 mm2
Odpowiedź 'Karbowaną o średnicy 20 mm' jest prawidłowa, ponieważ symbol RKLF odnosi się do rur karbowanych, które charakteryzują się elastycznością i możliwością łatwego formowania. Rura o średnicy 20 mm jest standardowym rozmiarem stosowanym w instalacjach elektrycznych i telekomunikacyjnych, co czyni ją praktycznym wyborem w projektach budowlanych. Kiedy stosuje się rury karbowane, ich struktura pozwala na łatwe dopasowanie do różnych kształtów oraz ułatwia układanie w trudnych warunkach, co jest istotne w przypadku instalacji w miejscach o ograniczonej przestrzeni. Rury te są również odporne na działanie czynników atmosferycznych i chemicznych, co zwiększa ich trwałość. Zgodnie z obowiązującymi standardami w branży budowlanej, użycie rur karbowanych w instalacjach elektrycznych zapewnia bezpieczeństwo oraz zgodność z przepisami. W związku z tym, znajomość oznaczeń takich jak RKLF jest kluczowa dla każdego profesjonalisty zajmującego się instalacjami. Przykładem zastosowania są instalacje w budynkach mieszkalnych oraz przemysłowych, gdzie elastyczność rur karbowanych pozwala na zminimalizowanie ryzyka uszkodzeń i ułatwienie konserwacji.