Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 8 czerwca 2025 14:10
  • Data zakończenia: 8 czerwca 2025 14:29

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wskaż protokół, którego wiadomości są używane przez polecenie ping?

A. ICMP
B. ARP
C. DNS
D. TCP
Protokół ICMP (Internet Control Message Protocol) jest kluczowym elementem w komunikacji sieciowej, wykorzystywanym do przesyłania komunikatów kontrolnych oraz diagnostycznych. Komenda ping opiera się właśnie na ICMP, wysyłając pakiety Echo Request i oczekując na odpowiedzi w postaci pakietów Echo Reply. Dzięki temu, użytkownicy i administratorzy mogą diagnozować dostępność urządzeń w sieci oraz mierzyć czas potrzebny na przesył danych. ICMP jest integralną częścią protokołu IP, co sprawia, że jego użycie jest zgodne z międzynarodowymi standardami, takimi jak RFC 792. W praktyce, polecenie ping pozwala na identyfikację problemów z łącznością, monitorowanie stanu sieci oraz umożliwia przeprowadzanie testów wydajności. Na przykład, w przypadku awarii serwera, administratorzy mogą użyć polecenia ping, aby sprawdzić, czy serwer jest osiągalny, co jest pierwszym krokiem w diagnostyce problemów sieciowych. Dobrą praktyką jest regularne używanie narzędzi diagnostycznych opartych na ICMP w celu utrzymania zdrowia sieci.

Pytanie 2

W jakiej warstwie modelu TCP/IP funkcjonuje protokół DHCP?

A. Internetu
B. Aplikacji
C. Łącza danych
D. Transportowej
Protokół DHCP, czyli Dynamic Host Configuration Protocol, działa w warstwie aplikacji w modelu TCP/IP. To oznacza, że zajmuje się tym, co dzieje się na poziomie aplikacji w sieci. Głównym zadaniem DHCP jest automatyczne przydzielanie adresów IP oraz różnych informacji konfiguracyjnych urządzeniom w sieci. Dzięki temu, administratorzy mogą łatwiej zarządzać adresami IP, bo nie muszą ręcznie ustawiać każdego urządzenia. Znajdziesz go w różnych środowiskach - od małych biur do dużych centrów danych, gdzie ręczne zarządzanie setkami adresów IP byłoby totalnie czasochłonne i mogłoby prowadzić do pomyłek. Zresztą, jak wiadomo, standardy IETF mówią, że ten protokół działa w modelu klient-serwer, co sprawia, że zarządzanie adresami jest prostsze i bardziej elastyczne. Co więcej, jeśli coś się zmienia w sieci, to łatwo można wszystko przestawić, a to jest mega ważne w dynamicznych warunkach IT.

Pytanie 3

Zestaw zasad do filtrowania ruchu w routerach to

A. ACPI (Advanced Configuration and Power Interface)
B. MMC (Microsoft Management Console)
C. ACL (Access Control List)
D. NNTP (Network News Transfer Protocol)
Dobra robota z odpowiedzią na ACL! To jest naprawdę trafne, bo ACL, czyli Access Control List, to zbiór reguł, które naprawdę mają duże znaczenie w sieciach. Dzięki nim można decydować, co można przesyłać do i z urządzeń, takich jak ruter. To działa na poziomie pakietów, co daje adminom możliwość kontrolowania ruchu sieciowego za pomocą adresów IP, protokołów i portów. Fajnym przykładem, jak można to wykorzystać, jest ograniczenie dostępu do niektórych zasobów czy też zezwolenie tylko zaufanym adresom IP. To naprawdę pomaga w zwiększeniu bezpieczeństwa sieci. W branży często mówi się o tym, żeby stosować ACL jako część większej strategii bezpieczeństwa, obok takich rzeczy jak firewalle czy systemy wykrywania włamań. Nie zapomnij też, że warto regularnie przeglądać i aktualizować te reguły, bo środowisko sieciowe ciągle się zmienia, a dostęp do ważnych zasobów trzeba minimalizować tylko do tych, którzy naprawdę go potrzebują.

Pytanie 4

Gdy komputer K1 wykonuje polecenie ping, otrzymuje odpowiedź od komputera K2. Natomiast po wysłaniu polecenia ping w odwrotnym kierunku komputer K2 nie dostaje odpowiedzi od K1. Oba urządzenia działają na systemie Windows 7 lub 10. Jaka może być przyczyna tej sytuacji?

A. Zapora sieciowa jest wyłączona na komputerach K1 oraz K2.
B. Karta sieciowa komputera K2 jest uszkodzona.
C. Nieprawidłowa konfiguracja kart sieciowych w komputerach K1 i K2.
D. Ustawienia domyślne zapory na komputerze K1 są skonfigurowane.
Odpowiedź wskazująca na skonfigurowane domyślne ustawienia zapory na komputerze K1 jest prawidłowa, ponieważ zapory sieciowe w systemach operacyjnych, takich jak Windows 7 i 10, mają na celu zabezpieczenie systemu przed nieautoryzowanym dostępem. W przypadku, gdy zapora na komputerze K1 jest skonfigurowana w sposób blokujący przychodzące pakiety ICMP (protokół używany przez polecenie ping), komputer K2 nie będzie w stanie uzyskać odpowiedzi na wysyłane żądania ping. Przykładem praktycznego zastosowania tej wiedzy jest sytuacja, gdy administratorzy sieci muszą zarządzać regułami zapory, aby umożliwić określone typy komunikacji w sieci. Dobre praktyki sugerują, aby zapora była odpowiednio skonfigurowana, aby zezwalać na komunikację o krytycznym znaczeniu, jednocześnie blokując nieautoryzowane połączenia. Warto również regularnie monitorować i aktualizować ustawienia zapory w celu dostosowania do zmieniających się potrzeb sieci oraz zagrożeń.

Pytanie 5

Jak nazywa się protokół używany do komunikacji za pomocą terminala tekstowego?

A. Voice over IP (VoIP)
B. Simple Mail Transfer Protocol (SMTP)
C. Internet Message Access Protocol (IMAP)
D. Internet Relay Chat (IRC)
Internet Relay Chat (IRC) to protokół komunikacyjny, który został stworzony w 1988 roku i służy do prowadzenia rozmów w czasie rzeczywistym za pomocą tekstowej konsoli. IRC umożliwia użytkownikom łączenie się w kanały dyskusyjne, gdzie mogą wymieniać wiadomości w grupach lub prowadzić rozmowy prywatne. Protokół ten jest szczególnie popularny wśród programistów, graczy i społeczności internetowych, które potrzebują efektywnej formy komunikacji. Dzięki architekturze klient-serwer, IRC pozwala na jednoczesne połączenie wielu użytkowników, co czyni go odpowiednim rozwiązaniem dla grupowych dyskusji. Warto również zauważyć, że IRC obsługuje różne komendy, które pozwalają na zarządzanie kanałami, administrację użytkowników oraz moderowanie rozmów. Standardy dotyczące IRC są szeroko akceptowane w branży, co czyni go trwałym elementem internetowej kultury komunikacyjnej.

Pytanie 6

Który z protokołów przesyła pakiety danych użytkownika bez zapewnienia ich dostarczenia?

A. HTTP
B. TCP
C. UDP
D. ICMP
UDP (User Datagram Protocol) jest protokołem, który dostarcza mechanizm do przesyłania datagramów bez gwarancji ich dostarczenia. Oznacza to, że podczas korzystania z UDP, nie ma żadnych mechanizmów potwierdzających odbiór wysłanych danych. Jest to niezwykle przydatne w zastosowaniach, w których szybkość jest kluczowa, a niewielkie straty danych są akceptowalne. Przykłady zastosowania UDP obejmują transmisję strumieniową audio i wideo, gier online oraz VoIP, gdzie opóźnienie jest bardziej problematyczne niż utrata pojedynczych pakietów. W odróżnieniu od TCP, który zapewnia niezawodność dzięki mechanizmom takim jak retransmisje i kontrola błędów, UDP jest prostszy i wymaga mniej zasobów, co przyczynia się do niższych opóźnień i większej wydajności w odpowiednich zastosowaniach. W branży IT przyjęto, że protokoły transportowe powinny być dobierane w zależności od wymagań aplikacji, co czyni UDP ważnym elementem zestawu narzędzi do komunikacji sieciowej.

Pytanie 7

W topologii fizycznej gwiazdy wszystkie urządzenia działające w sieci są

A. podłączone do węzła sieci
B. podłączone do jednej magistrali
C. połączone z dwoma sąsiadującymi komputerami
D. połączone pomiędzy sobą odcinkami kabla tworząc zamknięty pierścień
W przypadku połączeń w sieci, które są zorganizowane w inny sposób, jak np. w przypadku podłączenia do magistrali, mamy do czynienia z topologią magistrali. W tej konfiguracji wszystkie urządzenia dzielą wspólne medium transmisyjne, co może prowadzić do kolizji danych oraz zmniejszenia wydajności w miarę wzrostu liczby podłączonych komputerów. Podobnie połączenia w pierścień, gdzie każde urządzenie jest podłączone do dwóch innych, tworząc zamknięty cykl, mogą wiązać się z problemami, takimi jak trudności w diagnostyce oraz potencjalne punkty awarii, które mogą zakłócić funkcjonowanie całej sieci. W praktyce, takie topologie nie zapewniają takiej elastyczności i odporności na awarie jak topologia gwiazdy. Liczne organizacje i standardy branżowe, takie jak IEEE 802.3, promują stosowanie topologii gwiazdy ze względu na jej zalety w zakresie zarządzania ruchem i zwiększonej niezawodności. Warto zauważyć, że nieprawidłowe interpretacje dotyczące struktury sieci mogą prowadzić do błędnych decyzji w projektowaniu, co z kolei może generować dodatkowe koszty oraz problemy z utrzymaniem sieci. Dlatego kluczowe jest zrozumienie podstawowych różnic pomiędzy tymi topologiami oraz ich praktycznych implikacji.

Pytanie 8

Oblicz koszt brutto materiałów niezbędnych do połączenia w sieć, w topologii gwiazdy, 3 komputerów wyposażonych w karty sieciowe, wykorzystując przewody o długości 2 m. Ceny materiałów podano w tabeli.

Nazwa elementuCena jednostkowa brutto
przełącznik80 zł
wtyk RJ-451 zł
przewód typu „skrętka"1 zł za 1 metr

A. 252 zł
B. 89 zł
C. 92 zł
D. 249 zł
Aby obliczyć koszt brutto materiałów do stworzenia sieci w topologii gwiazdy dla trzech komputerów, kluczowe jest zrozumienie, jakie elementy są potrzebne do prawidłowego połączenia. W tym przypadku, do połączenia komputerów niezbędne są: przełącznik, przewody o długości 2 m oraz wtyki RJ-45. Koszt przełącznika jest stały, a koszt przewodów i wtyków można obliczyć na podstawie ich liczby. Każdy komputer wymaga jednego przewodu, co w przypadku trzech komputerów oznacza 3 przewody, czyli 6 m w sumie. Do tego dodajemy koszt przełącznika i wtyków. Po zsumowaniu wszystkich kosztów dochodzimy do kwoty 92 zł, która jest poprawna. Warto pamiętać, że w praktyce, przy projektowaniu sieci, właściwy dobór sprzętu i materiałów ma ogromne znaczenie dla wydajności i stabilności sieci. Wytyczne branżowe zalecają, aby przy budowie sieci lokalnych zwracać uwagę na jakość komponentów oraz ich zgodność z obowiązującymi standardami, co może zapobiec problemom z komunikacją i stabilnością w przyszłości.

Pytanie 9

Komputer, który automatycznie otrzymuje adres IP, adres bramy oraz adresy serwerów DNS, łączy się z wszystkimi urządzeniami w sieci lokalnej za pośrednictwem adresu IP. Jednakże komputer ten nie ma możliwości nawiązania połączenia z żadnym hostem w sieci rozległej, ani poprzez adres URL, ani przy użyciu adresu IP, co sugeruje, że występuje problem z siecią lub awaria

A. rutera
B. serwera DNS
C. serwera DHCP
D. przełącznika
Poprawna odpowiedź to ruter, ponieważ jest to urządzenie, które umożliwia komunikację pomiędzy różnymi sieciami, w tym między siecią lokalną a siecią rozległą (WAN). Kiedy komputer uzyskuje adres IP, adres bramy i adresy serwerów DNS automatycznie, najczęściej korzysta z protokołu DHCP, który przypisuje te informacje. W przypadku braku możliwości połączenia z hostami w sieci rozległej, problem może leżeć w ruterze. Ruter zarządza ruchem danych w sieciach, a jego awaria uniemożliwia komunikację z innymi sieciami, takimi jak internet. Przykładowo, jeżeli ruter jest wyłączony lub ma uszkodzony firmware, żaden z komputerów w sieci lokalnej nie będzie mógł uzyskać dostępu do zewnętrznych zasobów, co skutkuje brakiem możliwości połączenia z adresami URL czy adresami IP. Dobrą praktyką jest regularne aktualizowanie oprogramowania ruterów oraz monitorowanie ich stanu, aby zapobiegać tego rodzaju problemom.

Pytanie 10

W systemach z rodziny Windows Server, w jaki sposób definiuje się usługę serwera FTP?

A. w serwerze aplikacji
B. w serwerze sieci Web
C. w usłudze zasad i dostępu sieciowego
D. w usłudze plików
Usługa serwera FTP w systemach z rodziny Windows Server jest częścią serwera sieci Web, co oznacza, że jej konfiguracja oraz zarządzanie odbywa się w kontekście roli IIS (Internet Information Services). IIS to kompleksowa platforma do hostowania różnych typów aplikacji internetowych i usług. W przypadku FTP, administratorzy mają możliwość tworzenia, zarządzania i konfigurowania różnych witryn FTP, a także zarządzania dostępem do zasobów za pomocą zaawansowanych ustawień uprawnień. Przykładowo, można skonfigurować serwer FTP do obsługi zdalnego przesyłania plików, co jest przydatne w wielu scenariuszach, takich jak transfer danych między serwerami lub zapewnienie dostępu klientom do plików. Z perspektywy bezpieczeństwa, warto również stosować szyfrowanie połączeń FTP przy użyciu FTPS lub SFTP, co zwiększa bezpieczeństwo przesyłanych danych. Zgodnie z dobrymi praktykami, administratorzy powinni regularnie monitorować logi serwera FTP oraz implementować odpowiednie zasady autoryzacji i audytów, aby zapewnić integralność i bezpieczeństwo danych.

Pytanie 11

Moduł SFP, który jest wymienny i zgodny z normami, odgrywa jaką rolę w urządzeniach sieciowych?

A. dodatkowej pamięci operacyjnej
B. konwertera mediów
C. zasilania rezerwowego
D. interfejsu do diagnostyki
Moduł SFP (Small Form-factor Pluggable) to coś, co naprawdę ułatwia życie w sieciach. Jego główną rolą jest przełączanie sygnałów z jednego medium na inne, co sprawia, że jest niby takim konwerterem. Dzięki SFP sieci mogą być bardziej elastyczne, bo można je dopasować do różnych kabli i technologii, jak światłowody czy kable miedziane. Na przykład, jeśli trzeba połączyć urządzenia na sporej odległości, można użyć modułu SFP, który działa ze światłowodami. To daje większą przepustowość i lepsze sygnały niż w przypadku miedzi. Co ciekawe, te moduły są zgodne z różnymi standardami, takimi jak SFF-8431 czy SFF-8432. To sprawia, że są kompatybilne z różnymi urządzeniami w sieci. Dzięki temu administratorzy sieci mogą szybko dostosowywać infrastrukturę do potrzeb, a jak coś się popsuje, to wymiana modułów jest szybka i prosta. To wszystko wpływa na lepszą dostępność i elastyczność sieci.

Pytanie 12

W sieci o strukturze zaleca się, aby na powierzchni o wymiarach

A. 5 m2
B. 20 m2
C. 30 m2
D. 10 m2
W sieci strukturalnej, umieszczenie jednego punktu abonenckiego na powierzchni 10 m2 jest zgodne z zaleceniami standardów branżowych oraz dobrą praktyką inżynieryjną. Takie rozmieszczenie zapewnia optymalną długość kabli, minimalizując straty sygnału i zakłócenia. Praktyczne zastosowanie tej zasady można zauważyć w projektowaniu sieci lokalnych (LAN), gdzie odpowiednia gęstość punktów abonenckich pozwala na efektywne wykorzystanie dostępnej infrastruktury, zapewniając jednocześnie odpowiednią jakość usług. Warto również wspomnieć o standardzie ANSI/TIA-568, który określa wymagania dotyczące okablowania strukturalnego. Zgodnie z tym standardem, rozmieszczenie punktów abonenckich na powierzchni 10 m2 pozwala na efektywne zarządzanie siecią, co przekłada się na lepszą jakość usług dla użytkowników końcowych. Umożliwia to także lepszą elastyczność w rozbudowie sieci oraz dostosowywaniu do zmieniających się potrzeb użytkowników, co jest kluczowe w dynamicznym środowisku technologicznym.

Pytanie 13

Administrator sieci planuje zapisać konfigurację urządzenia Cisco na serwerze TFTP. Jakie polecenie powinien wydać w trybie EXEC?

A. backup running-config tftp:
B. copy running-config tftp:
C. restore configuration tftp:
D. save config tftp:
Polecenie copy running-config tftp: jest standardowym sposobem zapisywania bieżącej konfiguracji urządzenia Cisco na zewnętrznym serwerze TFTP. Takie rozwiązanie pozwala na wykonanie kopii zapasowej konfiguracji – to jest absolutna podstawa dobrych praktyk administracyjnych. W praktyce wygląda to tak, że po wpisaniu tego polecenia urządzenie pyta o adres serwera TFTP oraz o nazwę pliku, pod którą ma zapisać konfigurację. Co ciekawe, to polecenie można wydać zarówno na routerach, jak i przełącznikach Cisco – jest to uniwersalny mechanizm. Z mojego doświadczenia, regularne archiwizowanie konfiguracji pozwala szybko odtworzyć ustawienia urządzenia po awarii lub błędzie w konfiguracji. Warto pamiętać, że TFTP jest protokołem prostym, niewymagającym logowania – często wykorzystywanym w środowiskach laboratoryjnych i mniejszych sieciach. Polecenie copy running-config tftp: jest zgodne z oficjalną dokumentacją Cisco i spotkasz je niemal w każdym podręczniku do sieci komputerowych. To taki klasyk, który każdy administrator sieci powinien znać na pamięć. Pozwala nie tylko zabezpieczyć się przed utratą konfiguracji, ale także ułatwia migracje ustawień między urządzeniami lub szybkie przywracanie systemu po problemach.

Pytanie 14

Protokół ARP (Address Resolution Protocol) pozwala na konwersję logicznych adresów z poziomu sieci na rzeczywiste adresy z poziomu

A. aplikacji
B. łącza danych
C. transportowej
D. fizycznej
Protokół ARP (Address Resolution Protocol) jest kluczowym elementem w sieciach komputerowych, który umożliwia mapowanie adresów IP (warstwa sieciowa) na adresy MAC (Media Access Control) w warstwie łącza danych. Protokół ten działa w lokalnych sieciach Ethernet, gdzie urządzenia muszą poznać fizyczny adres MAC, aby móc nawiązać połączenie z innym urządzeniem, którego adres IP znają. Przykładem praktycznym zastosowania ARP jest sytuacja, gdy komputer A chce wysłać dane do komputera B. Komputer A, znając adres IP komputera B, wysyła zapytanie ARP w sieci, aby uzyskać odpowiadający adres MAC. Odpowiedź w formie adresu MAC pozwala na zbudowanie ramki Ethernet, którą komputer A może wysłać do komputera B. Zrozumienie działania ARP jest istotne dla administratorów sieci, ponieważ nieprawidłowe konfiguracje lub ataki ARP spoofing mogą prowadzić do problemów z bezpieczeństwem i wydajnością sieci. ARP jest częścią zestawu protokołów TCP/IP, co czyni go fundamentalnym w kontekście komunikacji w sieciach nowoczesnych.

Pytanie 15

Która norma określa standardy dla instalacji systemów okablowania strukturalnego?

A. PN-EN50173
B. PN-EN 50174
C. PN-EN 55022
D. PN-EN 50310
Wybór innych norm, takich jak PN-EN 50310, PN-EN 50173 lub PN-EN 55022, może wynikać z niepełnego zrozumienia zakresu ich zastosowania. Norma PN-EN 50310 dotyczy wymagań dotyczących systemów okablowania w kontekście instalacji elektrycznych i sieciowych, jednak nie odnosi się bezpośrednio do standardów instalacji okablowania strukturalnego. Natomiast PN-EN 50173 określa wymagania dotyczące systemów okablowania strukturalnego, ale skupia się głównie na jego projektowaniu i nie obejmuje kompleksowych wytycznych dotyczących instalacji, co jest kluczowe w kontekście efektywnego układania kabli. Z kolei norma PN-EN 55022 koncentruje się na wymaganiach dotyczących emisji elektromagnetycznej urządzeń elektronicznych, co jest całkowicie inną dziedziną i nie ma zastosowania w kontekście instalacji okablowania. Wybierając niewłaściwe normy, można wprowadzić nieefektywne praktyki instalacyjne, które mogą prowadzić do problemów z wydajnością systemu, takich jak straty sygnału, zakłócenia elektromagnetyczne oraz problemy z serwisowaniem. Zrozumienie różnic między tymi normami oraz ich rzeczywistymi zastosowaniami jest kluczowe dla prawidłowego projektowania i instalacji systemów okablowania, co w dłuższej perspektywie wpływa na niezawodność i efektywność instalacji telekomunikacyjnych.

Pytanie 16

Parametr, który definiuje stosunek liczby wystąpionych błędnych bitów do ogólnej liczby odebranych bitów, to

A. Return Loss
B. Bit Error Rate
C. Near End Crosstalk
D. Propagation Delay Skew
Bit Error Rate (BER) to kluczowy parametr w telekomunikacji, który określa stosunek liczby błędnych bitów do całkowitej liczby otrzymanych bitów. Mierzy on jakość transmisji danych oraz niezawodność systemów komunikacyjnych. Niska wartość BER jest pożądana, ponieważ wskazuje na wysoką jakość sygnału i efektywność przesyłania informacji. W zastosowaniach praktycznych, takich jak sieci komputerowe czy systemy satelitarne, monitorowanie BER pozwala na szybką identyfikację problemów związanych z zakłóceniami sygnału, co jest kluczowe dla utrzymania wysokiej jakości usług. Standardy, takie jak ITU-T G.826, definiują sposoby pomiaru BER oraz akceptowalne poziomy w różnych aplikacjach. Zrozumienie i kontrola BER pozwala inżynierom na projektowanie bardziej niezawodnych systemów oraz na świadome podejmowanie decyzji dotyczących wyboru technologii transmisji, co w praktyce przekłada się na lepsze doświadczenia użytkowników końcowych.

Pytanie 17

Jaką wiadomość przesyła klient DHCP w celu przedłużenia dzierżawy?

A. DHCPNACK
B. DHCPREQUEST
C. DHCPACK
D. DHCPDISCOVER
Odpowiedź DHCPREQUEST jest poprawna, ponieważ jest to komunikat wysyłany przez klienta DHCP w celu odnowy dzierżawy. Proces odnowy dzierżawy IP odbywa się, gdy klient zbliża się do końca czasu przydzielonej mu dzierżawy (Lease Time). W momencie, gdy klient chce przedłużyć dzierżawę, wysyła komunikat DHCPREQUEST do serwera DHCP, informując go o chęci kontynuacji korzystania z aktualnie przypisanego adresu IP. W praktyce ten mechanizm jest kluczowy dla utrzymania ciągłości połączenia sieciowego, szczególnie w dynamicznych środowiskach, takich jak sieci Wi-Fi, gdzie urządzenia mogą często łączyć się i rozłączać. Dobrą praktyką jest monitorowanie przydzielonych adresów IP oraz czasu ich dzierżawy, aby uniknąć problemów z dostępnością adresów w sieci. Zgodnie z protokołem RFC 2131, komunikat DHCPREQUEST może również być używany w innych kontekstach, na przykład podczas początkowej konfiguracji IP, co czyni go wszechstronnym narzędziem w zarządzaniu adresami IP.

Pytanie 18

Adres IPv6 pętli zwrotnej to adres

A. ::1
B. FC80::
C. ::
D. FE80::
Wybór innych adresów pokazuje, że coś tu nie zrozumiałeś, jeśli chodzi o IPv6. Adres zerowy, czyli ::, dostaje się w momencie, gdy nie ma konkretnego adresu, więc użycie go jako pętli zwrotnej to duża pomyłka. Przez to nie wiadomo, do jakiego interfejsu to prowadzi. W konfiguracji sieci może być z tym sporo kłopotów. Z kolei adresy FC80:: i FE80:: to lokalne adresy, które są używane w lokalnej sieci, ale nie są przeznaczone do pętli zwrotnej. Wiele osób się w tym myli, co potem rodzi błędne ustawienia i problemy z diagnostyką. Adres pętli zwrotnej jest zupełnie inny, bo chodzi o komunikację wewnętrzną w urządzeniu. Musisz mieć na uwadze, że znajomość różnic między tymi adresami jest kluczowa, kiedy projektujesz coś związanego z siecią. Niewłaściwy adres może naprawdę namieszać w komunikacji i dostępności usług. Więc warto być czujnym na te detale!

Pytanie 19

Który z podanych adresów IP można uznać za prywatny?

A. 191.168.0.1
B. 8.8.8.8
C. 172.132.24.15
D. 10.34.100.254
Adres IP 10.34.100.254 jest adresem prywatnym, co oznacza, że jest przeznaczony do użytku wewnętrznego w sieciach lokalnych i nie jest routowany w Internecie. Adresy prywatne w sieciach komputerowych są zdefiniowane przez standard RFC 1918, który określa zakresy adresów, które mogą być używane w sieciach lokalnych. W przypadku IPv4, zakresy te obejmują: 10.0.0.0 do 10.255.255.255, 172.16.0.0 do 172.31.255.255 oraz 192.168.0.0 do 192.168.255.255. Adresy te są niezwykle ważne w kontekście tworzenia sieci domowych oraz korporacyjnych, ponieważ pozwalają na oszczędność publicznych adresów IP, które są ograniczonym zasobem. Przykładem zastosowania adresu prywatnego może być lokalna sieć w biurze, gdzie wiele komputerów korzysta z adresów w zakresie 192.168.x.x, a ich połączenie z Internetem odbywa się przez jeden publiczny adres IP dzięki technologii NAT (Network Address Translation).

Pytanie 20

Interfejs graficzny Menedżera usług IIS (Internet Information Services) w systemie Windows służy do ustawiania konfiguracji serwera

A. wydruku
B. WWW
C. DNS
D. terminali
Menedżer usług IIS (Internet Information Services) to kluczowe narzędzie do zarządzania serwerami WWW w systemie Windows. Umożliwia nie tylko konfigurację, ale także monitorowanie i optymalizację wydajności aplikacji webowych. Dzięki interfejsowi graficznemu, użytkownicy mogą łatwo tworzyć i zarządzać witrynami internetowymi, a także ustawiać różne protokoły, takie jak HTTP czy HTTPS. IIS wspiera wiele technologii, w tym ASP.NET, co pozwala na rozwijanie dynamicznych aplikacji internetowych. Przykładem praktycznego zastosowania IIS jest uruchamianie serwisów e-commerce, które wymagają stabilnego i bezpiecznego serwera do obsługi transakcji online. Dobrze skonfigurowany IIS według najlepszych praktyk zapewnia szybkie ładowanie stron, co jest niezbędne w kontekście SEO oraz doświadczenia użytkowników. Umożliwia także zarządzanie certyfikatami SSL, co jest kluczowe dla zabezpieczenia danych przesyłanych przez użytkowników.

Pytanie 21

Standardowa sekwencja przetwarzania zasad grupowych w systemie Windows jest następująca:

A. domena – lokacja – jednostka organizacyjna – lokalny komputer
B. lokalny komputer – lokacja – domena – jednostka organizacyjna
C. lokacja – domena – jednostka organizacyjna – lokalny komputer
D. jednostka organizacyjna – domena – lokacja – lokalny komputer
Domyślna kolejność przetwarzania zasad grupy w systemie Windows jest kluczowym elementem zarządzania konfiguracją i bezpieczeństwem w infrastrukturze IT. Zasadniczo, system operacyjny Windows przetwarza zasady grupy w określonej kolejności, która zaczyna się od lokalnego komputera, a następnie obejmuje lokację, domenę oraz jednostkę organizacyjną. Oznacza to, że lokalne zasady mają pierwszeństwo i mogą nadpisywać zasady na wyższych poziomach, takich jak domena czy jednostka organizacyjna. Przykładem zastosowania tej kolejności może być sytuacja w dużej organizacji, gdzie lokalny komputer jest skonfigurowany z pewnymi politykami bezpieczeństwa, które muszą być egzekwowane przed zastosowaniem szerszych zasad na poziomie domeny. W praktyce, administratorzy powinni dobrze rozumieć tę hierarchię, aby efektywnie zarządzać konfiguracją i zapewnić zgodność z politykami organizacji, jednocześnie minimalizując ryzyko kolizji zasad. Sposób, w jaki te zasady są przetwarzane, jest zgodny z najlepszymi praktykami branżowymi, które sugerują, aby najpierw stosować zasady lokalne, a następnie stopniowo rozszerzać je na szersze zbiory, co umożliwia bardziej precyzyjne zarządzanie i kontrolę bezpieczeństwa.

Pytanie 22

W systemach operacyjnych Windows konto użytkownika z najwyższymi uprawnieniami domyślnymi przypisane jest do grupy

A. operatorzy kopii zapasowych
B. administratorzy
C. goście
D. użytkownicy zaawansowani
Konto użytkownika z grupy administratorzy w systemach operacyjnych Windows ma najwyższe uprawnienia domyślne, co oznacza, że może wprowadzać zmiany w systemie, instalować oprogramowanie oraz modyfikować ustawienia zabezpieczeń. Administratorzy mogą również zarządzać innymi kontami użytkowników, co czyni ich kluczowymi w kontekście zarządzania systemem. Przykładowo, administratorzy mogą tworzyć nowe konta, nadawać i odbierać uprawnienia, a także uzyskiwać dostęp do plików i folderów systemowych, które są niedostępne dla standardowych użytkowników. Z perspektywy praktycznej, rola administratora jest niezbędna w organizacjach, gdzie wymagane jest utrzymanie bezpieczeństwa i integralności danych. W kontekście standardów branżowych, dobrym przykładem jest wdrożenie zasady minimalnych uprawnień, co oznacza, że użytkownicy powinni mieć tylko te uprawnienia, które są niezbędne do wykonywania ich zadań, a uprawnienia administratorów powinny być przydzielane z rozwagą i tylko w razie potrzeby.

Pytanie 23

Kontrola pasma (ang. bandwidth control) w przełączniku to funkcjonalność

A. pozwalająca na równoczesne przesyłanie danych z wybranego portu do innego portu
B. pozwalająca ograniczyć przepustowość na wyznaczonym porcie
C. umożliwiająca zdalne połączenie z urządzeniem
D. umożliwiająca jednoczesne łączenie przełączników przy użyciu wielu łącz
Zarządzanie pasmem (bandwidth control) w przełączniku jest kluczowym elementem w kontekście efektywnego zarządzania siecią. Odpowiedź, która wskazuje na możliwość ograniczenia przepustowości na wybranym porcie, jest poprawna, ponieważ ta funkcjonalność pozwala administratorom sieci na precyzyjne dostosowanie dostępnych zasobów do konkretnych wymagań. Przykładowo, w sytuacji, gdy na jednym porcie podłączone są urządzenia o różnym zapotrzebowaniu na pasmo, zarządzanie pasmem pozwala na priorytetyzację ruchu i ograniczenie prędkości transferu dla mniej krytycznych aplikacji. W praktyce, techniki takie jak Quality of Service (QoS) są często wykorzystywane, aby zapewnić, że aplikacje o wysokim priorytecie, takie jak VoIP czy transmisje wideo, mają zapewnioną odpowiednią przepustowość, podczas gdy inne, mniej istotne usługi mogą być throttlowane. Standardy branżowe, takie jak IEEE 802.1Q, wskazują na znaczenie zarządzania pasmem w kontekście rozwoju sieci VLAN, co dodatkowo podkreśla jego istotność w nowoczesnych architekturach sieciowych.

Pytanie 24

Czy po zainstalowaniu roli Hyper-V na serwerze Windows można

A. centralne zarządzanie oraz wsparcie dla rozproszonych aplikacji biznesowych
B. upraszczanie i automatyzowanie zarządzania kluczami licencji zbiorczych
C. tworzenie maszyn wirtualnych oraz ich zasobów i zarządzanie nimi
D. szybkie zdalne wdrażanie systemów operacyjnych Windows na komputerach w sieci
Odpowiedź wskazuje na kluczową funkcjonalność Hyper-V, która polega na tworzeniu i zarządzaniu maszynami wirtualnymi (VM). Hyper-V to wirtualizacyjna platforma oferowana przez Microsoft, która pozwala na uruchamianie wielu instancji systemów operacyjnych na tym samym fizycznym serwerze. Użytkownicy mogą tworzyć maszyny wirtualne z różnymi konfiguracjami sprzętowymi, co umożliwia testowanie aplikacji, uruchamianie serwerów plików, baz danych czy aplikacji webowych w izolowanym środowisku. Przykładem zastosowania może być wykorzystanie Hyper-V do symulacji środowiska produkcyjnego w celu przeprowadzenia testów przed wdrożeniem nowych rozwiązań. Dodatkowo, wirtualizacja za pomocą Hyper-V pozwala na lepsze wykorzystanie zasobów fizycznych, zmniejszenie kosztów operacyjnych i zapewnienie elastyczności w zarządzaniu infrastrukturą IT. W kontekście dobrych praktyk branżowych, używanie Hyper-V jest zgodne z podejściem do wirtualizacji zasobów, które zwiększa skalowalność i redukuje czas przestojów serwerów.

Pytanie 25

Jaką metodę należy zastosować, aby chronić dane przesyłane w sieci przed działaniem sniffera?

A. Szyfrowanie danych w sieci
B. Skanowanie za pomocą programu antywirusowego
C. Wykorzystanie antydialera
D. Zmiana hasła konta użytkownika
Szyfrowanie danych w sieci to kluczowy proces, który znacząco zwiększa bezpieczeństwo przesyłanych informacji. Sniffer to narzędzie służące do podsłuchiwania ruchu w sieci, co oznacza, że atakujący może przechwytywać dane takie jak hasła, numery kart kredytowych czy inne wrażliwe informacje. Szyfrowanie danych sprawia, że nawet jeśli te dane zostaną przechwycone, będą nieczytelne dla osób trzecich. Przykładem szyfrowania jest protokół HTTPS, który jest szeroko stosowany w Internecie do zabezpieczania komunikacji między przeglądarką a serwerem. Dzięki zastosowaniu szyfrowania, dane są kodowane za pomocą algorytmów takich jak AES czy RSA, co sprawia, że tylko uprawnione osoby z odpowiednim kluczem mogą je odczytać. Wdrożenie szyfrowania w transmitowanych danych jest zgodne z najlepszymi praktykami branżowymi, które zalecają zabezpieczanie wszystkich wrażliwych informacji w celu ochrony prywatności i integralności danych.

Pytanie 26

Jaką rolę odgrywa usługa proxy?

A. firewalla.
B. pośrednika sieciowego.
C. serwera e-mail.
D. serwera z usługami katalogowymi.
Proxy to taka usługa, która działa jak pośrednik między użytkownikiem a serwerem. Dzięki niemu możemy mieć większe bezpieczeństwo i prywatność, bo ukrywa nasz adres IP i daje dostęp do treści, które mogą być zablokowane w danym regionie. Na przykład, gdy firma korzysta z proxy, może kontrolować, co pracownicy oglądają w internecie, a także monitorować ruch sieciowy i blokować nieodpowiednie strony. Proxy działa też jak bufor, dzięki czemu często odwiedzane strony ładują się szybciej, bo mniej czasu schodzi na ich pobieranie. Warto wiedzieć, że korzystanie z proxy to standard w branży, który pomaga zapewnić bezpieczeństwo i wydajność w zarządzaniu siecią, co potwierdzają różne organizacje, jak Internet Engineering Task Force (IETF).

Pytanie 27

Ruter otrzymał pakiet, który jest adresowany do komputera w innej sieci. Adres IP, który jest celem pakietu, nie znajduje się w sieci bezpośrednio podłączonej do rutera, a tablica routingu nie zawiera informacji na jego temat. Brama ostateczna nie została skonfigurowana. Jaką decyzję podejmie ruter?

A. Wyśle na interfejs wyjściowy do kolejnego skoku
B. Zwróci pakiet do nadawcy
C. Przekaże do hosta w lokalnej sieci
D. Odrzuci pakiet
Ruter nie prześle pakietu, bo brakuje mu info, żeby go wysłać. W sieciach każdy pakiet powinien trafiać do konkretnego adresu IP. Jak ruter dostaje pakiet z adresem, którego nie ma w swojej tablicy routingu, a brama ostatniej szansy nie jest ustawiona, to ruter nie wie, gdzie go wysłać. Odrzucenie pakietu to normalna sprawa, zgodnie z zasadami, które rządzą sieciami. Weźmy na przykład zamknięte sieci w firmach – tam administracja ma obowiązek pilnować, żeby tablice routingu były aktualne. Jeśli nie ma odpowiednich tras, pakiety po prostu znikają, co jest przydatne, by nikt nieproszony się nie włamał. Takie sytuacje są też opisane w standardach IETF, które mówią, jak ważne jest zarządzanie trasami w sieciach IP.

Pytanie 28

Licencja typu TRIAL pozwala na korzystanie z oprogramowania

A. przez nieograniczony czas, z możliwością wprowadzenia zmian
B. w ograniczonym zakresie, np. z pominięciem niektórych funkcji
C. przez określony okres (np. 3 miesiące)
D. wyłącznie do zastosowań niekomercyjnych
Licencja typu TRIAL jest stworzona, aby umożliwić użytkownikom przetestowanie oprogramowania przez określony czas, najczęściej od kilku dni do kilku miesięcy, co umożliwia ocenę jego funkcjonalności i dopasowania do potrzeb użytkownika. Ten model licencjonowania jest powszechnie stosowany w branży oprogramowania, pozwalając potencjalnym klientom na zapoznanie się z produktem, zanim podejmą decyzję o jego zakupie. Przykładem może być oprogramowanie do edycji wideo, które oferuje 30-dniowy okres próbny. W tym czasie użytkownik ma dostęp do pełnej funkcjonalności, co pozwala mu na swobodne korzystanie i testowanie narzędzi. Warto podkreślić, że takie licencje są zgodne z dobrymi praktykami branżowymi, ponieważ zwiększają zaufanie klientów i mogą prowadzić do większej liczby zakupów po zakończeniu okresu próbnego. Rekomendacje dla użytkowników wskazują, aby podczas korzystania z wersji trial dokładnie ocenić, czy oprogramowanie spełnia ich oczekiwania, a także sprawdzić, jakie są warunki licencji po jej zakończeniu, co jest istotne z punktu widzenia dalszego użytkowania.

Pytanie 29

Jaką maksymalną liczbę komputerów można zaadresować adresami IP w klasie C?

A. 254 komputery
B. 255 komputerów
C. 256 komputerów
D. 252 komputery
Wybór 256 komputerów jako maksymalnej liczby hostów w sieci klasy C jest błędny z kilku istotnych powodów. Liczba ta wynika z niepełnego zrozumienia struktury adresu IP. Klasa C, zgodnie z definicją, przeznacza 8 bitów na identyfikację hostów, co teoretycznie rzeczywiście daje 256 adresów. Jednak w praktyce dwa z tych adresów są zarezerwowane. Adres sieci, który jest używany do identyfikacji samej sieci, oraz adres rozgłoszeniowy, który służy do komunikacji z wszystkimi hostami w sieci, nie mogą być przydzielane do urządzeń. To fundamentalna zasada w projektowaniu sieci, która często bywa pomijana przez osoby nieposiadające doświadczenia w tej dziedzinie. Wybierając 255 komputerów, również można popełnić błąd w myśleniu, gdyż znów nie uwzględnia to rezerwacji adresu rozgłoszeniowego, a zatem wciąż nie jest to prawidłowa liczba. Podobnie, 252 komputery mogą wydawać się logicznym wyborem, ale nie uwzględnia to pełnej możliwości wykorzystania adresów zarezerwowanych wyłącznie dla hostów. W praktyce, skuteczne zarządzanie adresacją IP wymaga zrozumienia tych zasad oraz ich konsekwencji dla projektowania i operacyjności sieci. Brak tej wiedzy może prowadzić do problemów z komunikacją i zarządzaniem siecią, co jest krytyczne w każdym środowisku IT.

Pytanie 30

Które z poniższych urządzeń sieciowych umożliwia segmentację sieci na poziomie warstwy 3 modelu OSI?

A. Repeater (regenerator sygnału)
B. Punkt dostępowy (Access Point)
C. Switch
D. Router
Router to urządzenie, które działa na warstwie trzeciej modelu OSI, czyli warstwie sieciowej. To właśnie routery odpowiadają za segmentację sieci na poziomie IP – rozdzielają ruch pomiędzy różne podsieci, umożliwiają komunikację między nimi oraz podejmują decyzje o trasowaniu pakietów. Dzięki temu możliwe jest tworzenie złożonych, dobrze zarządzanych i bezpiecznych architektur sieciowych. W praktyce, routery pozwalają np. oddzielić sieć firmową od sieci gościnnej, a także izolować ruch różnych działów w przedsiębiorstwie. Standardowo wykorzystuje się je do łączenia lokalnych sieci LAN z Internetem czy innymi sieciami WAN. Warto pamiętać, że niektóre zaawansowane switche warstwy 3 również mogą pełnić funkcje segmentacji na tym poziomie, ale ich podstawowe zadanie to przełączanie w warstwie drugiej. Routery są jednak dedykowanym rozwiązaniem do segmentacji warstwy trzeciej i trasowania. Moim zdaniem z punktu widzenia praktyka sieciowego, zrozumienie tej roli routera to absolutna podstawa, bo od tego zależy cała logika podziału i bezpieczeństwa sieci w każdej szanującej się organizacji.

Pytanie 31

Za pomocą polecenia netstat w systemie Windows można zweryfikować

A. zapisy w tablicy routingu komputera
B. parametry interfejsów sieciowych komputera
C. aktywną komunikację sieciową komputera
D. ścieżkę połączenia z wybranym adresem IP
Wybór odpowiedzi dotyczących ustawień interfejsów sieciowych, zapisków w tablicy routingu lub trasy połączenia z wybranym adresem IP wskazuje na pewne nieporozumienia dotyczące funkcjonalności narzędzia 'netstat'. Ustawienia interfejsów sieciowych komputera są zarządzane poprzez inne narzędzia, takie jak 'ipconfig' w systemach Windows, które pokazują szczegóły konfiguracji interfejsów. Z kolei tablica routingu, która określa, jak pakiety danych są kierowane w sieci, może być sprawdzana za pomocą polecenia 'route', a nie 'netstat'. Co więcej, możliwość śledzenia trasy połączeń realizuje narzędzie 'tracert', które umożliwia zobaczenie drogi, jaką pokonują pakiety danych do danego adresu IP. Te błędne odpowiedzi sugerują mylne zrozumienie specyfiki działania narzędzi sieciowych oraz ich zastosowań. Aby skutecznie zarządzać siecią, istotne jest zrozumienie, które narzędzia są odpowiednie do określonych zadań, co jest kluczowe w administracji systemów i sieci komputerowych.

Pytanie 32

Jakie polecenie służy do analizy statystyk protokołów TCP/IP oraz bieżących połączeń sieciowych w systemach operacyjnych rodziny Windows?

A. route
B. netstat
C. ping
D. tracert
Polecenie 'netstat' jest podstawowym narzędziem w systemach Windows, które umożliwia użytkownikom sprawdzenie statystyk protokołów TCP/IP oraz bieżących połączeń sieciowych. Dzięki 'netstat' można uzyskać informacje o aktywnych połączeniach TCP, korzystających z portów, a także o stanie tych połączeń. Przykładowo, użycie polecenia 'netstat -a' wyświetli wszystkie aktywne połączenia oraz porty nasłuchujące, co jest szczególnie przydatne w diagnostyce problemów z siecią czy w analizie bezpieczeństwa. Ponadto, 'netstat' potrafi zidentyfikować, które programy są odpowiedzialne za otwarte połączenia, co pozwala na lepszą kontrolę nad bezpieczeństwem systemu. Narzędzie to jest zgodne ze standardami administracji sieci, a jego zastosowanie w codziennej pracy może znacznie usprawnić zarządzanie infrastrukturą sieciową. Warto także wspomnieć, że 'netstat' jest wszechstronnym narzędziem, które znajduje zastosowanie w różnych systemach operacyjnych, co czyni je uniwersalnym rozwiązaniem dla specjalistów zajmujących się sieciami.

Pytanie 33

Do zdalnego administrowania stacjami roboczymi nie używa się

A. pulpitu zdalnego
B. programu UltraVNC
C. programu Wireshark
D. programu TeamViewer
Program Wireshark to narzędzie służące do analizy ruchu sieciowego, a nie do zdalnego zarządzania stacjami roboczymi. Umożliwia on przechwytywanie i analizowanie pakietów danych przesyłanych w sieci, co jest kluczowe w diagnostyce problemów sieciowych oraz zabezpieczaniu infrastruktury IT. Wireshark pozwala na zrozumienie ruchu sieciowego, wykrywanie nieprawidłowości czy analizowanie wydajności, jednak jego funkcjonalność nie obejmuje zdalnego dostępu do komputerów. W praktyce, narzędzie to jest używane przez administratorów sieci, specjalistów ds. bezpieczeństwa oraz inżynierów do monitorowania i analizowania komunikacji w sieci. Przykładowo, przy użyciu Wireshark można zidentyfikować potencjalne ataki, sprawdzić, jakie dane są przesyłane między urządzeniami, a także analizować protokoły sieciowe. W kontekście dobrych praktyk, korzystanie z Wiresharka powinno odbywać się zgodnie z zasadami etyki zawodowej oraz przepisami prawa, szczególnie w odniesieniu do prywatności użytkowników.

Pytanie 34

Który standard protokołu IEEE 802.3 powinien być użyty w środowisku z zakłóceniami elektromagnetycznymi, gdy dystans między punktem dystrybucji a punktem abonenckim wynosi 200 m?

A. 100Base–FX
B. 10Base2
C. 100Base–T
D. 1000Base–TX
Standard 100Base-FX jest odpowiedni w środowiskach, gdzie występują zakłócenia elektromagnetyczne, zwłaszcza w sytuacjach wymagających przesyłania sygnału na odległość do 200 m. Ten standard wykorzystuje światłowody, co znacząco zwiększa odporność na zakłócenia elektromagnetyczne w porównaniu do standardów opartych na miedzi, takich jak 100Base-T. W praktyce oznacza to, że w miejscach, gdzie instalacje elektryczne mogą generować zakłócenia, 100Base-FX jest idealnym rozwiązaniem. Przykładem zastosowania tego standardu mogą być instalacje w biurach znajdujących się w pobliżu dużych maszyn przemysłowych lub w środowiskach, gdzie wykorzystywane są silne urządzenia elektryczne. 100Base-FX obsługuje prędkość przesyłu danych do 100 Mb/s na dystansie do 2 km w kablu światłowodowym, co czyni go bardzo elastycznym rozwiązaniem dla różnych aplikacji sieciowych. Ponadto, stosowanie światłowodów przyczynia się do zminimalizowania strat sygnału, co jest kluczowe w przypadku dużych sieci korporacyjnych.

Pytanie 35

Jakie medium transmisyjne powinno się zastosować do połączenia urządzeń sieciowych oddalonych o 110 m w pomieszczeniach, gdzie występują zakłócenia EMI?

A. Fal radiowych
B. Światłowodu jednodomowego
C. Skrętki ekranowanej STP
D. Kabla współosiowego
Światłowód jednodomowy to świetny wybór, jeśli chodzi o podłączanie różnych urządzeń w sieci, zwłaszcza na dystansie do 110 m. Ma tę przewagę, że radzi sobie w trudnych warunkach, gdzie jest dużo zakłóceń elektromagnetycznych. To naprawdę pomaga, bo światłowody są znacznie mniej wrażliwe na te zakłócenia w porównaniu do tradycyjnych kabli. Poza tym, oferują mega dużą przepustowość – da się przesyłać dane z prędkościami sięgającymi gigabitów na sekundę, co jest kluczowe dla aplikacji, które potrzebują dużo mocy obliczeniowej. Używa się ich w różnych branżach, takich jak telekomunikacja czy infrastruktura IT, gdzie ważne jest, żeby sygnał był mocny i stabilny. Warto też dodać, że światłowody są zgodne z międzynarodowymi standardami, co czyni je uniwersalnymi i trwałymi. Oczywiście, instalacja wymaga odpowiednich technik i narzędzi, co może być droższe na starcie, ale w dłuższej perspektywie na pewno się opłaca ze względu na ich efektywność i pewność działania.

Pytanie 36

Jakie są powody wyświetlania na ekranie komputera informacji, że system wykrył konflikt adresów IP?

A. Inne urządzenie w sieci posiada ten sam adres IP co komputer
B. W konfiguracji protokołu TCP/IP jest nieprawidłowy adres bramy domyślnej
C. Usługa DHCP nie działa w sieci lokalnej
D. Adres IP urządzenia jest poza zakresem lokalnych adresów sieciowych
Widzisz, jak to jest? Kiedy dwa urządzenia w tej samej sieci lokalnej mają ten sam adres IP, pojawia się konflikt. System operacyjny na to reaguje ostrzeżeniem. Takie sytuacje najczęściej zdarzają się, gdy adresy IP są przypisywane ręcznie lub gdy serwer DHCP nie działa tak, jak powinien. Moim zdaniem, żeby tego uniknąć, sieciowcy powinni używać DHCP, bo on sam przydziela unikalne adresy IP urządzeniom. Dobrze byłoby również monitorować, jakie adresy IP są przydzielane i korzystać z rezerwacji DHCP, żeby pewne urządzenia zawsze miały ten sam adres, co zmniejsza ryzyko problemów. Kiedy zajdzie konflikt, to warto sprawdzić, jakie adresy IP mają wszystkie urządzenia w sieci. To może pomóc szybko znaleźć problem.

Pytanie 37

Z jakiego powodu adres 192.168.100.127 nie może zostać przypisany jako adres komputera w sieci 192.168.100.0/25?

A. To adres rozgłoszeniowy w tej sieci
B. To adres pętli zwrotnej danego komputera
C. Nie jest to adres prywatny dla tej sieci
D. Nie wchodzi w skład zakresu adresów tej sieci
Adres 192.168.100.127 jest adresem rozgłoszeniowym dla sieci 192.168.100.0/25, co oznacza, że nie może być przydzielony żadnemu z komputerów w tej sieci. Przy analizie adresów IP, istotne jest zrozumienie, że dla każdej podsieci istnieje jeden adres przeznaczony na rozgłoszenie, który jest zarezerwowany do komunikacji z wszystkimi urządzeniami w danej sieci. W przypadku podsieci 192.168.100.0/25, zakres adresów wynosi od 192.168.100.1 do 192.168.100.126, z 192.168.100.0 jako adresem sieci i 192.168.100.127 jako adresem rozgłoszeniowym. W praktyce, adres rozgłoszeniowy jest wykorzystywany do wysyłania pakietów, które mają dotrzeć do wszystkich urządzeń w lokalnej sieci, co jest zgodne z dobrymi praktykami w zarządzaniu adresacją IP. Zrozumienie roli adresów rozgłoszeniowych jest kluczowe dla efektywnego projektowania i zarządzania sieciami komputerowymi, co umożliwia optymalizację komunikacji oraz efektywne wykorzystanie zasobów sieciowych.

Pytanie 38

Aby zabezpieczyć system Windows przed nieautoryzowanym dostępem poprzez ograniczenie liczby nieudanych prób logowania, należy ustawić

A. Zasady grup, Opcje zabezpieczeń
B. Panel Sterowania, Zaporę systemu Windows
C. Zasady grup, Zasady konta
D. Panel Sterowania, Konta użytkowników
Niepoprawne odpowiedzi koncentrują się na aspektach, które nie są bezpośrednio związane z właściwym zabezpieczeniem systemu Windows przed włamaniami. W przypadku pierwszej odpowiedzi, panel sterowania i zapora systemu Windows, chociaż są istotne dla ochrony systemu, nie oferują bezpośredniego mechanizmu ograniczania liczby nieudanych prób logowania. Zaporę można wykorzystać do blokowania nieautoryzowanego dostępu do sieci, ale nie radzi sobie z problemem logowania na poziomie użytkownika. Ponadto, w kontekście zabezpieczeń, mało prawdopodobne jest, aby sama konfiguracja zapory mogła skutecznie zapobiec atakom opartym na próbach odgadnięcia haseł. Z drugiej strony, odpowiedzi odnoszące się do kont użytkowników mogą być mylone z innymi aspektami zarządzania kontami, ale nie zawierają kluczowych mechanizmów polityki blokad i audytu, które są wbudowane w zasady grup. Zasady grup są bardziej kompleksowe i zapewniają centralne zarządzanie, co jest krytyczne dla organizacji, które pragną utrzymać wysoki poziom bezpieczeństwa. Nieprawidłowe podejście do zabezpieczeń często wynika z niedostatecznego zrozumienia hierarchii oraz funkcjonalności narzędzi dostępnych w systemie operacyjnym, co prowadzi do błędnych wyborów w kontekście zabezpieczania systemu.

Pytanie 39

Liczba 22 w adresie http://www.adres_serwera.pL:22 wskazuje na numer

A. portu, inny od standardowego numeru dla danej usługi
B. aplikacji, do której skierowane jest zapytanie
C. sekwencyjny pakietu przesyłającego dane
D. PID procesu działającego na serwerze
Dobra robota z wyborem odpowiedzi! Port 22 rzeczywiście jest tym, co używamy w protokole SSH. To taki numer, który pozwala różnym programom na komunikację przez ten sam adres IP. Wiesz, porty to jak adresy dla naszych usług w sieci. W przypadku SSH, numer 22 jest standardowy i wielu administratorów go używa do zdalnego logowania na serwery. Fajnie jest też wiedzieć, że zmiana portu na inny może pomóc w zwiększeniu bezpieczeństwa, bo trudniej wtedy nieautoryzowanym osobom się włamać. Warto pamiętać o podstawowych zasadach zarządzania portami, bo to naprawdę ważne zagadnienie w administracji sieci. No i te standardy jak RFC 793 czy 4253 pomagają zrozumieć, jak to wszystko działa.

Pytanie 40

Ile bitów o wartości 1 występuje w standardowej masce adresu IPv4 klasy B?

A. 32 bity
B. 16 bitów
C. 24 bity
D. 8 bitów
Odpowiedzi, które wskazują na inne wartości bitów w masce adresu IPv4 klasy B, bazują na mylnych założeniach dotyczących struktury adresacji w sieciach. Przykładowo, stwierdzenie, że maska klasy B zawiera 8 bitów, może wynikać z nieporozumienia dotyczącego ogólnej struktury adresów IPv4. Adres IPv4 składa się z 32 bitów, jednak te bity dzielą się na część identyfikującą sieć oraz część przeznaczoną dla hostów. W przypadku klasy B, mamy do czynienia z podziałem na 16 bitów dla adresu sieci i 16 bitów dla adresów hostów. Wybór 32 bitów jako odpowiedzi może wynikać z błędnej interpretacji, gdzie cały adres IP jest brany pod uwagę, nie zaś maska. Podobnie, błędna odpowiedź wskazująca na 24 bity może sugerować, że osoba odpowiadająca myli maskę z prefiksem CIDR stosowanym w klasie C. Warto pamiętać, że klasy adresowe oraz ich maski są podstawowym elementem projektowania sieci i znajomość ich właściwego przypisania jest kluczowa w kontekście zarządzania infrastrukturą oraz przydzielania adresów IP w sieciach komputerowych. Dlatego istotne jest, aby zrozumieć nie tylko liczby, ale również ich znaczenie i zastosowanie w praktyce.