Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 30 maja 2025 08:04
  • Data zakończenia: 30 maja 2025 08:08

Egzamin zdany!

Wynik: 40/40 punktów (100,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Tuner DVB-T pozwala na odbiór sygnałów

A. telewizji naziemnej analogowej
B. telewizji satelitarnej cyfrowej
C. telewizji naziemnej cyfrowej
D. telewizji satelitarnej analogowej
Tuner DVB-T (Digital Video Broadcasting - Terrestrial) jest urządzeniem zaprojektowanym do odbioru sygnałów cyfrowej telewizji naziemnej. W odróżnieniu od analogowej telewizji, która jest stopniowo wycofywana, DVB-T pozwala na odbiór sygnałów w wysokiej jakości, co jest możliwe dzięki kompresji danych oraz cyfrowemu przesyłaniu. W praktyce oznacza to, że użytkownicy mogą korzystać z lepszej jakości obrazu i dźwięku, a także z dodatkowych usług, takich jak napisy czy wiele kanałów w ramach jednego multipleksu. Standard DVB-T jest powszechnie stosowany w wielu krajach, co czyni go rozwiązaniem uniwersalnym. Przykładem zastosowania tunera DVB-T mogą być telewizory i dekodery, które umożliwiają odbiór kanałów telewizyjnych dostępnych w danym regionie bez potrzeby korzystania z kabli czy satelitów. Dodatkowo, tunery te są kompatybilne z różnymi formatami kodowania, co zwiększa ich funkcjonalność i elastyczność w użytkowaniu.

Pytanie 2

Jaką rolę pełni heterodyna w odbiorniku radiowym?

A. wzmacniacza wstępnego
B. mieszacza
C. generatora lokalnego
D. demodulatora
Heterodyna w odbiorniku radiowym rzeczywiście pełni funkcję generatora lokalnego, co jest kluczowe w procesie odbioru sygnałów radiowych. Generator lokalny generuje sygnał o stałej częstotliwości, który następnie jest mieszany z sygnałem odbieranym z anteny. Proces ten, znany jako mieszanie, pozwala na przesunięcie częstotliwości sygnału do zakresu częstotliwości pośredniej (IF). Dzięki temu, sygnał staje się bardziej dostępny dla dalszego przetwarzania, w tym demodulacji, co jest niezbędne do uzyskania pierwotnej informacji. W praktyce, zastosowanie heterodyny jako generatora lokalnego jest standardową praktyką w radioodbiornikach, co czyni je bardziej efektywnymi w odbiorze i przetwarzaniu sygnałów. Heterodyna jest szczególnie ważna w systemach komunikacji radiowej, gdzie jakość odbioru sygnału bezpośrednio wpływa na jakość transmisji. Dobrze zaprojektowane układy heterodynowe przyczyniają się do minimalizacji szumów i zakłóceń, co jest kluczowe w nowoczesnych zastosowaniach radiowych.

Pytanie 3

Urządzenie, które pozwala na odbiór sygnałów o różnych częstotliwościach z dwóch lub więcej anten odbiorczych, tak aby te sygnały były przesyłane do odbiornika za pomocą jednego kabla, to

A. zwrotnica antenowa
B. głowica odbiorcza
C. dzielnik sygnału
D. mieszacz
Zwrotnica antenowa to kluczowe urządzenie w systemach odbioru sygnałów telekomunikacyjnych, które pozwala na efektywne zarządzanie sygnałami z różnych źródeł. Dzięki zwrotnicy możliwe jest jednoczesne odbieranie sygnałów o różnych częstotliwościach z dwóch lub więcej anten, co znacznie zwiększa elastyczność i wydajność systemów komunikacyjnych. Przykładem zastosowania zwrotnicy antenowej jest instalacja w systemach telewizyjnych, gdzie wiele anten odbierających sygnały z różnych nadajników jest podłączonych do jednego odbiornika. W praktyce, zwrotnica kieruje odpowiednie sygnały do odbiornika w sposób, który minimalizuje straty i zakłócenia. Dodatkowo, zwrotnice antenowe są zgodne z normami branżowymi, co zapewnia ich niezawodność i efektywność w trudnych warunkach odbioru. Zastosowanie zwrotnic w telekomunikacji jest istotne, ponieważ pozwala na optymalizację pasma częstotliwościowego oraz zapewnia lepszą jakość odbieranego sygnału, co jest kluczowe w kontekście nowoczesnych technologii, takich jak DVB-T czy DVB-S.

Pytanie 4

Jaka jest przybliżona wartość pasożytniczej częstotliwości lustrzanej (Fl) w zakresie AM dla sygnału radiowego o częstotliwości nośnej fs = 1 450 kHz oraz częstotliwości pośredniej odbiornika fp = 465 kHz (fl=f<Sub>s+2fp)?

A. 930 kHz
B. 1,45 MHz
C. 1915 kHz
D. 2,38 MHz
Wartość pasożytniczej częstotliwości lustrzanej (Fl) dla sygnału stacji radiowej oblicza się, wykorzystując wzór Fl = fs + 2fp. W naszym przypadku mamy częstotliwość nośną fs wynoszącą 1 450 kHz oraz częstotliwość pośrednią fp równą 465 kHz. Po podstawieniu wartości do wzoru otrzymujemy Fl = 1 450 kHz + 2 * 465 kHz = 1 450 kHz + 930 kHz = 2 380 kHz, co po zaokrągleniu daje 2,38 MHz. Zrozumienie tego zagadnienia jest kluczowe w kontekście projektowania odbiorników radiowych, gdzie pasożytnicze częstotliwości mogą prowadzić do zakłóceń w odbiorze sygnału. Na przykład, w tuningu odbiorników AM istotne jest, aby unikać częstotliwości lustrzanych, które mogą wpłynąć na jakość odbioru. Dobrą praktyką jest takie projektowanie, które minimalizuje wpływ takich efektów, poprzez odpowiednie filtrowanie i stosowanie technik demodulacji, które są zgodne ze standardami branżowymi.

Pytanie 5

W trakcie przeglądu okresowego systemu telewizji kablowej jakość sygnału u poszczególnych abonentów ocenia się, dokonując pomiaru

A. poziomu sygnału przesyłanego przez stację czołową do abonentów
B. współczynnika szumów w kanale zwrotnym poszczególnych abonentów
C. poziomu sygnału wizyjnego w gniazdach abonenckich poszczególnych użytkowników
D. współczynnika szumów w sygnale przekazywanym przez stację czołową do abonentów
Wybór współczynnika szumów w kanale zwrotnym poszczególnych abonentów jako metody monitorowania jakości sygnału telewizyjnego jest właściwy, ponieważ szum w kanale zwrotnym może znacząco wpływać na jakość odbieranego sygnału. W praktyce, kanał zwrotny to ścieżka, którą sygnał jest przesyłany od abonenta do stacji czołowej, a jego jakość jest kluczowa dla stabilności i niezawodności całego systemu telewizji kablowej. Współczynnik szumów określa, w jakim stopniu sygnał jest zakłócany przez niepożądane sygnały, a jego analiza umożliwia identyfikację problemów mogących prowadzić do degradacji jakości obrazu i dźwięku. Wykorzystując te informacje, technicy mogą podejmować odpowiednie kroki, takie jak regulacja poziomu sygnału, poprawa izolacji kabli czy aktualizacja urządzeń, aby zapewnić optymalne warunki dla abonentów. Poznanie standardów branżowych, takich jak ITU-T J.83, które definiują parametry transmisji w telewizji kablowej, również może pomóc w lepszym zrozumieniu, jak ważny jest monitoring tych wskaźników.

Pytanie 6

Dzięki działaniu negatywnego sprzężenia zwrotnego, wzmocnienie tego układu

A. wynosi 0
B. pozostaje takie samo
C. zwiększa się
D. zmniejsza się
Ujemne sprzężenie zwrotne jest kluczowym mechanizmem w wielu układach elektronicznych, które pozwala na stabilizację wzmocnienia oraz redukcję zniekształceń sygnału. W przypadku zastosowania ujemnego sprzężenia zwrotnego, część sygnału wyjściowego jest przekazywana z powrotem do wejścia, co zmniejsza ogólne wzmocnienie układu. Przykładem zastosowania ujemnego sprzężenia zwrotnego mogą być wzmacniacze operacyjne, gdzie taka technika pozwala na uzyskanie stabilnych parametrów pracy, niezależnych od zmian warunków otoczenia czy elementów składowych. Dzięki temu, poprzez odpowiednie dostosowanie wartości rezystorów w układzie, można kontrolować stopień ujemnego sprzężenia zwrotnego, a tym samym wzmocnienie. W praktyce, wzmocnienie spada w wyniku zastosowania sprzężenia zwrotnego, co prowadzi do wyższej linearności odpowiedzi układu oraz zmniejszenia szumów, co jest zgodne z najlepszymi praktykami w inżynierii elektronicznej.

Pytanie 7

Jakie są komponenty sprzętowe sieci komputerowych?

A. sterowniki urządzeń
B. oprogramowanie komunikacyjne
C. protokoły
D. urządzenia dostępu
Urządzenia dostępu stanowią kluczowy element infrastruktury sieci komputerowych, ponieważ umożliwiają użytkownikom oraz urządzeniom podłączenie się do sieci. Do najpopularniejszych urządzeń dostępu należą modemy, routery oraz punkty dostępu (access points). Modem łączy sieć domową z Internetem, router rozdziela połączenie internetowe na wiele urządzeń, a punkty dostępu rozszerzają zasięg sieci bezprzewodowej. W kontekście standardów, przykładami mogą być urządzenia zgodne z protokołami IEEE 802.11, które definiują normy dla sieci WLAN, oraz urządzenia obsługujące IPv4 i IPv6, które są niezbędne do komunikacji w Internecie. W praktyce, wybór odpowiednich urządzeń dostępu wpływa na efektywność i bezpieczeństwo sieci, co czyni je fundamentem każdej infrastruktury komputerowej.

Pytanie 8

Do skonstruowania głośnika dynamicznego należy zastosować magnes wykonany z

A. materiału diamagnetycznego
B. ferromagnetyka miękkiego
C. ferromagnetyka twardego
D. materiału paramagnetycznego
Głośniki dynamiczne są jednym z najpowszechniej stosowanych typów głośników w przemyśle audio. W ich budowie wykorzystuje się magnesy z ferromagnetyka miękkiego, co pozwala na uzyskanie wysokiej efektywności przetwarzania sygnału elektrycznego na dźwięk. Ferromagnetyk miękki charakteryzuje się zdolnością do łatwego namagnesowania oraz demagnetyzacji. Dzięki temu, zmiany w kierunku prądu elektrycznego w cewce głośnika powodują, że pole magnetyczne jest dynamicznie modyfikowane, co z kolei wpływa na ruch membrany głośnika i generowanie fal dźwiękowych. W praktyce oznacza to lepsze odwzorowanie dźwięku oraz szybszą reakcję na zmiany sygnału audio. W branży audiofilskiej stosuje się takie rozwiązania w celu maksymalizacji jakości dźwięku, co jest zgodne z wysokimi standardami, jakimi są normy AES i IEC dotyczące sprzętu audio. Przykładem zastosowania ferromagnetyków miękkich mogą być głośniki wysokiej klasy, które muszą odtwarzać dźwięk w szerokim zakresie częstotliwości z zachowaniem wysokiej dynamiki oraz niskich zniekształceń.

Pytanie 9

Wzmacniacz mocy dysponuje wyjściami głośnikowymi o impedancji 8 Ω. Jaka konfiguracja połączenia dwóch głośników będzie właściwa dla tego wzmacniacza?

A. Dwa głośniki 16 Ω połączone równolegle
B. Dwa głośniki 8 Ω połączone równolegle
C. Głośnik 8 Ω i 4 Ω połączone szeregowo
D. Głośnik 4 Ω i 2 Ω połączone szeregowo
Odpowiedź dotycząca połączenia dwóch głośników 16 Ω połączonych równolegle jest prawidłowa. Wzmacniacz mocy o wyjściu 8 Ω jest zaprojektowany do pracy z obciążeniem wynoszącym 8 Ω. Kiedy dwa głośniki 16 Ω są połączone równolegle, ich impedancja całkowita obliczana jest według wzoru: 1/Z = 1/Z1 + 1/Z2, co w tym przypadku daje 1/Z = 1/16 + 1/16, co prowadzi do Z = 8 Ω. Dzięki temu wzmacniacz będzie poprawnie zasilany, a obie jednostki będą pracować w optymalnych warunkach, co zapewni odpowiednią jakość dźwięku i uniknie przeciążenia wzmacniacza. W praktyce, takim rozwiązaniem może być wykorzystanie dwóch głośników w systemach audio, gdzie potrzeba większej mocy, ale przy jednoczesnym przestrzeganiu zalecanej impedancji. Dobrą praktyką przy projektowaniu systemów audio jest zapewnienie, aby całkowita impedancja obciążenia nie odbiegała od specyfikacji wzmacniacza, co zapobiega przegrzewaniu się i uszkodzeniom.

Pytanie 10

W trakcie serwisowania instalacji antenowej zauważono błąd popełniony przez instalatora. Zamiast właściwego przewodu o impedancji falowej 75 Ω, podłączono przewód o impedancji falowej 300 Ω. W efekcie tego błędu sygnał, który docierał do odbiornika,

A. nie uległ zmianie
B. był stłumiony
C. był wzmocniony
D. był równy 0
Odpowiedź, że sygnał był stłumiony, jest prawidłowa, ponieważ różnica w impedancji falowej pomiędzy przewodem o impedancji 75 Ω a przewodem o impedancji 300 Ω powoduje poważne straty sygnału. W przypadku, gdy impedancja źródła i obciążenia nie jest zgodna, część sygnału jest odbijana na złączu, co prowadzi do zmniejszenia jego amplitudy. Praktycznie oznacza to, że efektywność transmisji sygnału jest znacznie obniżona. W przypadku instalacji antenowych, stosowanie przewodów o właściwej impedancji jest kluczowe dla zapewnienia optymalnej jakości odbioru sygnału. Zgodnie z normami branżowymi, takie jak IEC 61169, zachowanie odpowiednich wartości impedancji jest kluczowe dla minimalizacji strat transmisyjnych. Zastosowanie przewodów o nieodpowiedniej impedancji, jak w tym przypadku, często skutkuje stłumieniem sygnału, co może prowadzić do problemów z jakością odbioru, takich jak zniekształcenia czy zrywanie sygnału. Dlatego w praktyce zawsze należy upewnić się, że używane komponenty w instalacjach są zgodne z wymaganiami technicznymi.

Pytanie 11

Jeżeli wartość rezystancji potencjometru suwakowego pomiędzy zaciskiem krańcowym a zaciskiem ślizgacza zmienia się proporcjonalnie do położenia ślizgacza, to charakterystyka takiego potencjometru stanowi funkcję

A. logarytmiczną
B. wykładniczą
C. liniową
D. hiperboliczną
Potencjometr suwakowy działa na zasadzie zmiany rezystancji w zależności od położenia ślizgacza. Kiedy mówimy, że wartość rezystancji zmienia się wprost proporcjonalnie do położenia ślizgacza, oznacza to, że zmiana wartości rezystancji jest liniowa w odniesieniu do ruchu ślizgacza. Przykładowo, w przypadku potencjometru suwakowego o całkowitej rezystancji 10 kΩ, jeśli ślizgacz znajduje się w połowie drogi, wartość rezystancji między skrajnym zaciskiem a ślizgaczem wyniesie 5 kΩ. Taki charakterystyka jest niezwykle przydatna w aplikacjach audio, gdzie potencjometry linowe są wykorzystywane do regulacji głośności. W standardach branżowych, takich jak IEC, zaleca się użycie potencjometrów liniowych w sytuacjach, gdzie oczekuje się precyzyjnej i proporcjonalnej regulacji. Zrozumienie tej zasady pozwala na lepsze projektowanie obwodów elektronicznych oraz zrozumienie dynamiki działania różnych komponentów. Praca z potencjometrami liniowymi daje inżynierom szeroki wachlarz możliwości dostosowywania i optymalizacji systemów elektronicznych.

Pytanie 12

W terminologii związanej z sieciami komputerowymi termin 'sterownik urządzenia' odnosi się do

A. programu
B. typ złącza
C. rodzaju kabli w sieci LAN
D. małej płytki elektronicznej
Sterownik urządzenia, w kontekście sieci komputerowych, odnosi się do oprogramowania, które umożliwia komunikację pomiędzy systemem operacyjnym a sprzętem komputerowym, takim jak karty sieciowe, drukarki czy inne urządzenia peryferyjne. Program ten tłumaczy polecenia z systemu operacyjnego na zrozumiałe dla sprzętu sygnały, co pozwala na prawidłowe funkcjonowanie urządzenia. Na przykład, gdy komputer próbuje wysłać dane do drukarki, sterownik umożliwia przetworzenie tych danych na format, który drukarka jest w stanie zrozumieć. W praktyce, podczas instalacji nowego sprzętu, użytkownicy często muszą zainstalować odpowiedni sterownik, aby zapewnić pełną funkcjonalność urządzenia. W branży IT przestrzega się standardów, takich jak IEEE 802.3 w przypadku kart sieciowych, które definiują sposoby komunikacji w sieciach lokalnych, co również podkreśla znaczenie odpowiednich sterowników w zapewnieniu zgodności z tymi standardami.

Pytanie 13

Skrót odnoszący się do zakresu fal radiowych o częstotliwości od 30 MHz do 300 MHz z modulacją FM to

A. LF
B. VHF
C. MF
D. ULF
Odpowiedź VHF, czyli Very High Frequency, odnosi się do pasma fal radiowych o częstotliwości od 30 MHz do 300 MHz. Jest to kluczowy zakres częstotliwości, który znajduje szerokie zastosowanie w komunikacji radiowej, w tym w nadawaniu telewizyjnym, radiu FM oraz w systemach komunikacji bezprzewodowej. Przykładem zastosowania VHF są stacje telewizyjne, które nadawane są w tym paśmie, zapewniając wysoką jakość sygnału i zasięg. W praktyce, urządzenia działające w zakresie VHF, takie jak transceivery i odbiorniki, muszą spełniać określone normy techniczne, aby zapewnić efektywność i niezawodność działania w tym zakresie. Warto również zauważyć, że VHF jest mniej podatne na zakłócenia ze strony przeszkód terenowych, co czyni je bardziej efektywnym w zastosowaniach mobilnych i na otwartych przestrzeniach. Dlatego VHF jest preferowane w wielu zastosowaniach, od komunikacji morskiej po systemy awaryjne, co pokazuje jego znaczenie w nowoczesnej technologii komunikacyjnej.

Pytanie 14

Aby dwukrotnie zmniejszyć wzmocnienie członu inercyjnego pierwszego rzędu z transmitancją G(s) = k / (1 + sT), konieczne jest

A. zmniejszyć wartość k dwukrotnie
B. podwoić wartość T
C. zmniejszyć wartość T dwukrotnie
D. podwoić wartość k
Aby dwukrotnie zmniejszyć wzmocnienie członu inercyjnego pierwszego rzędu opisanego transmitancją G(s) = k / (1 + sT), należy zmniejszyć wzmocnienie k o połowę. Transmitancja systemu pokazuje, że wzmocnienie k jest kluczowym parametrem wpływającym na odpowiedź systemu. Zmniejszając k, zmniejszamy amplitudę odpowiedzi, co odpowiada zmniejszeniu wzmocnienia systemu. Przykładem zastosowania tej zmiany może być regulacja kontrolera PID w automatyce, gdzie obniżenie wzmocnienia w celu redukcji oscylacji lub przechyłów w odpowiedzi systemu może być konieczne, aby osiągnąć stabilność. W praktyce, zmniejszenie wzmocnienia pozwala na lepsze dopasowanie odpowiedzi systemu do oczekiwanego zachowania, co jest zgodne z zasadami projektowania systemów sterowania, gdzie dąży się do uzyskania stabilnej i precyzyjnej regulacji. Warto również zauważyć, że zmniejszając k, system staje się mniej czuły na zakłócenia, co jest istotne w wielu aplikacjach inżynieryjnych.

Pytanie 15

W trakcie konserwacji systemu antenowego wykryto błąd dokonany przez instalatora. Zamiast odpowiedniego przewodu o impedancji falowej 75 Ω podłączono przewód o impedancji falowej 300 Ω. W rezultacie tej pomyłki poziom sygnału odbieranego przez odbiornik

A. pozostał bez zmian
B. wynosił 0
C. uległ zmniejszeniu
D. uległ wzrostowi
Odpowiedź, że poziom sygnału zmniejszył się, jest prawidłowa, ponieważ zastosowanie przewodu o impedancji falowej 300 Ω zamiast 75 Ω prowadzi do niedopasowania impedancyjnego. Takie niedopasowanie powoduje odbicie części sygnału, co w rezultacie skutkuje osłabieniem sygnału odbieranego przez odbiornik. W systemach telekomunikacyjnych, zgodnych z normami, takie jak IEC 61196 dotyczące przewodów do sygnałów analogowych i cyfrowych, kluczowe jest stosowanie przewodów o odpowiedniej impedancji, aby minimalizować straty sygnału. W praktyce, dobór odpowiedniego przewodu może znacząco wpłynąć na jakość sygnału, a nieodpowiedni wybór może prowadzić do zakłóceń, zniekształceń oraz obniżonej jakości odbioru. W przypadku systemów telewizyjnych czy radiowych, stosowanie przewodów o 75 Ω jest standardem, ponieważ pozwala na optymalne przenoszenie sygnałów bez znaczących strat. Warto pamiętać, że w profesjonalnych instalacjach antenowych dbałość o zgodność impedancyjną jest kluczowym aspektem zapewniającym wysoką jakość odbioru oraz niezawodność systemu.

Pytanie 16

Jakie urządzenie elektroniczne jest niezbędne do bezpośredniego łączenia układów CMOS z układami TTL?

A. Stabilizator impulsowy
B. Generator fali prostokątnej
C. Konwerter poziomów logicznych
D. Wzmacniacz napięciowy
Konwerter poziomów logicznych jest niezbędnym układem elektronicznym, gdy chcemy połączyć układy CMOS (Complementary Metal-Oxide-Semiconductor) z układami TTL (Transistor-Transistor Logic). Różnice w poziomach napięć logicznych między tymi dwoma technologiami mogą prowadzić do uszkodzenia układów, dlatego konwerter zapewnia bezpieczne i prawidłowe przejście sygnałów. Na przykład, standardowe napięcie logiczne dla układów TTL wynosi 5V, podczas gdy dla wielu układów CMOS poziom logiczny „1” może wynosić od 3V do 15V, w zależności od konkretnego układu. Konwertery poziomów logicznych są projektowane tak, aby dostosować te napięcia, co pozwala na prawidłowe i niezawodne działanie systemu. W praktyce konwertery te są szeroko stosowane w systemach, gdzie różne technologie są integrowane, np. w mikrokontrolerach, które współpracują z różnymi typami czujników lub modułów komunikacyjnych. Dzięki konwerterom poziomów logicznych można również uniknąć problemów związanych z kompatybilnością sygnałów w projektach elektronicznych, co jest kluczowe dla zapewnienia stabilności i niezawodności działania całego układu.

Pytanie 17

Aby przeprowadzić ocenę jakości sygnału cyfrowej telewizji satelitarnej, wymagane jest użycie miernika

A. DVB-T
B. DVB-S
C. DVB-H
D. DVB-C
Odpowiedź DVB-S jest prawidłowa, ponieważ jest to standard telewizji satelitarnej, który jest wykorzystywany do przesyłania sygnałów cyfrowych przez satelity. Mierniki DVB-S są zaprojektowane specjalnie do analizy sygnałów satelitarnych, co obejmuje pomiar jakości sygnału, siły sygnału oraz innych parametrów, takich jak BER (Bit Error Rate) i MER (Modulation Error Ratio). Zastosowanie takiego miernika jest kluczowe dla instalacji anten satelitarnych i optymalizacji ich ustawienia, co może znacząco wpłynąć na jakość odbioru. Na przykład, w przypadku ustawiania anteny, ważne jest, aby uzyskać jak najwyższą jakość sygnału, aby zminimalizować utratę pakietów danych i zniekształcenia obrazu. Standard DVB-S jest powszechnie stosowany w Europie i wielu innych regionach, co czyni go najlepszym wyborem dla profesjonalistów w dziedzinie telekomunikacji satelitarnej. Warto pamiętać, że podczas pomiarów należy także zwrócić uwagę na warunki atmosferyczne, które mogą wpływać na jakość sygnału.

Pytanie 18

Adresy fizyczne MAC w sieciach komputerowych są początkowo przydzielane przez

A. indywidualnego użytkownika sieci
B. zarządcę sieci lokalnej
C. dostawcę usług internetowych
D. producenta karty sieciowej
Adresy fizyczne MAC (Media Access Control) są unikalnymi identyfikatorami przypisywanymi do interfejsów sieciowych urządzeń. Te adresy są nadawane przez producenta karty sieciowej i są zapisywane w trwałej pamięci sprzętowej urządzenia, co zapewnia ich unikalność i stałość. Adres MAC składa się z 48-bitowego numeru, który jest zazwyczaj przedstawiany w postaci 12-cyfrowego heksadecymalnego ciągu, podzielonego na sześć par. Standard IEEE 802.3 definiuje sposób komunikacji w sieciach lokalnych oraz znaczenie adresów MAC. Przykładem zastosowania adresów MAC jest ich użycie w protokołach takich jak Ethernet, gdzie umożliwiają one identyfikację urządzeń w sieci i kierowanie danych w odpowiednie miejsca. W praktyce, jeśli dwa urządzenia chcą wymienić informacje w sieci lokalnej, adres MAC jednego z nich będzie wskazywał, do którego urządzenia mają być przekazywane dane, co jest kluczowe dla poprawnego działania komunikacji w sieci.

Pytanie 19

Jakie elementy zawiera oznaczenie typu tranzystora?

A. tylko cyfry
B. tylko litery
C. cyfry oraz wielkie litery
D. cyfry i małe litery
Oznaczenie typu tranzystora rzeczywiście składa się z cyfr oraz wielkich liter, co jest zgodne z przyjętymi standardami w branży półprzewodników. Przykładem może być tranzystor typu BC547, gdzie 'BC' to oznaczenie serii, a '547' to numer katalogowy, który jest cyfrą. Takie oznaczenie ułatwia inżynierom oraz technikom identyfikację i dobór odpowiednich komponentów do projektów elektronicznych. Ponadto, zgodnie z normami międzynarodowymi, jak IEC 60747, oznaczenia tranzystorów powinny być jednoznaczne i pozwalać na szybkie zrozumienie specyfikacji, takich jak maksymalne napięcie, prąd czy zastosowanie. Używanie cyfr i wielkich liter pozwala na tworzenie bardziej zróżnicowanych i precyzyjnych oznaczeń, co jest kluczowe w kontekście profesjonalnych aplikacji elektronicznych oraz w dokumentacji technicznej, gdzie jasność i zrozumiałość oznaczeń mają ogromne znaczenie dla efektywności pracy zespołów inżynieryjnych. Te praktyki pomagają także w dostosowywaniu komponentów do różnych norm i standardów obowiązujących na rynkach międzynarodowych.

Pytanie 20

Jaka jest rezystancja wewnętrzna baterii AAA, jeśli jej napięcie w stanie jałowym wynosi U1=1,5 V, a pod obciążeniem prądem 100 mA U2=1,45 V?

A. 50,0 Ω
B. 5,00 Ω
C. 0,50 Ω
D. 0,05 Ω
Wartość rezystancji wewnętrznej baterii można obliczyć na podstawie różnicy napięcia w stanie jałowym i napięcia pod obciążeniem. W tym przypadku mamy napięcie w stanie jałowym U1 = 1,5 V oraz napięcie pod obciążeniem U2 = 1,45 V. Różnica ta wynosi ΔU = U1 - U2 = 0,05 V. Zastosowanie prawa Ohma pozwala na obliczenie rezystancji wewnętrznej (R) jako R = ΔU / I, gdzie I to prąd płynący przez obciążenie. W naszym przypadku prąd wynosi 100 mA, czyli 0,1 A. Zatem, R = 0,05 V / 0,1 A = 0,5 Ω. Taka rezystancja wewnętrzna wskazuje, że bateria jest w dobrym stanie, ponieważ niskie wartości rezystancji wewnętrznej są pożądane w akumulatorach, co przekłada się na ich efektywność i dłuższą żywotność. Niska rezystancja wewnętrzna minimalizuje straty energii i pozwala na efektywniejsze wykorzystanie energii zgromadzonej w baterii, co jest kluczowe w zastosowaniach wymagających wysokiej wydajności, takich jak urządzenia przenośne i systemy zasilania awaryjnego.

Pytanie 21

W jakim układzie pracuje wzmacniacz operacyjny oznaczony na schemacie literą B?

Ilustracja do pytania
A. Odwracającym.
B. Całkującym.
C. Różniczkującym.
D. Nieodwracającym.
Wzmacniacz operacyjny oznaczony literą B pracuje w konfiguracji nieodwracającej, co oznacza, że sygnał wyjściowy jest równy sygnałowi wejściowemu pomnożonemu przez współczynnik wzmocnienia, który jest większy lub równy jeden. W tej konfiguracji, wejście nieodwracające (plus) jest podłączone do sygnału wejściowego przez rezystor R8, natomiast wejście odwracające (minus) jest połączone z masą za pomocą rezystora R9. Taki układ zapewnia, że sygnał wyjściowy nie zmienia fazy w stosunku do sygnału wejściowego. W praktyce, wzmacniacze operacyjne w konfiguracji nieodwracającej są powszechnie stosowane w aplikacjach takich jak wzmacniacze audio, filtry aktywne oraz systemy pomiarowe, gdzie zachowanie fazy sygnału jest kluczowe. Dzięki wysokiej impedancji wejściowej i niskiej impedancji wyjściowej, wzmacniacze te są w stanie efektywnie współpracować z różnymi źródłami sygnału, co czyni je niezwykle użytecznymi w projektowaniu układów elektronicznych.

Pytanie 22

Aby podwoić zakres pomiarowy woltomierza o rezystancji wewnętrznej Rw = 150 kΩ, konieczne jest dodanie rezystora Rp o wartości rezystancji w układzie szeregowym

A. 300 kΩ
B. 150 kΩ
C. 450 kΩ
D. 75 kΩ
Odpowiedź 150 kΩ jest prawidłowa, ponieważ aby dwukrotnie rozszerzyć zakres pomiarowy woltomierza, konieczne jest dołączenie rezystora w szereg z woltomierzem. Woltomierz o rezystancji wewnętrznej Rw = 150 kΩ ma wartość rezystancji, która jest kluczowa w obliczeniach. Aby uzyskać nowy, pożądany zakres, suma rezystancji wewnętrznej woltomierza i dodatkowego rezystora musi być taka, aby całkowity opór był dwukrotnie większy niż początkowy. Przy dołączeniu rezystora Rp w szereg, całkowity opór wynosi Rw + Rp. Chcąc podwoić wartość Rw, musimy rozwiązać równanie Rw + Rp = 2 * Rw, co prowadzi do Rp = Rw. Zatem, dla Rw = 150 kΩ, Rp również wynosi 150 kΩ. Tego typu połączenia są powszechnie stosowane w praktyce inżynieryjnej, zwłaszcza w pomiarach elektrycznych, gdzie precyzja jest kluczowa. Dlatego w takich zastosowaniach, jak kalibracja przyrządów pomiarowych, istotne jest, aby znać zasady dołączania rezystorów w celu uzyskania dokładnych wyników pomiarów.

Pytanie 23

Podczas fachowej wymiany uszkodzonego układu scalonego SMD – kontrolera przetwornicy impulsowej w odbiorniku TV – powinno się zastosować

A. lutownicę gazową
B. stację na gorące powietrze
C. lutownicę transformatorową
D. stację lutowniczą grzałkową
Stacja na gorące powietrze jest narzędziem idealnym do wymiany uszkodzonych układów scalonych SMD, takich jak sterowniki przetwornic impulsowych w odbiornikach TV. Dzięki zastosowaniu gorącego powietrza można jednocześnie podgrzewać wiele pinów układu, co znacząco ułatwia proces lutowania oraz odlutowywania. Metoda ta minimalizuje ryzyko uszkodzenia elementów sąsiadujących, ponieważ nie wprowadza bezpośredniego kontaktu z gorącą powierzchnią, jak ma to miejsce w przypadku lutownic. W praktyce, użytkownicy stacji na gorące powietrze powinni ustawić odpowiednią temperaturę (zwykle w zakresie 250-350°C) oraz przepływ powietrza, co zależy od konkretnego rozmiaru i typu układu. Użycie tej technologii jest zgodne z najlepszymi praktykami w branży, co podkreślają normy IPC, które promują odpowiednie techniki lutowania dla komponentów SMD. Ponadto, stacje na gorące powietrze są również używane do reworku i napraw, co czyni je wszechstronnym narzędziem w elektronice.

Pytanie 24

Która z wymienionych liczb nie stanowi reprezentacji w systemie BCD8421?

A. 10011001
B. 01100110
C. 11111111
D. 00000000
Liczba 11111111 nie pasuje do kodu BCD8421. Mówiąc prościej, ten kod służy do zapisywania cyfr od 0 do 9 w systemie binarnym, a każda cyfra zajmuje 4 bity. W BCD8421 każda cyfra dziesiętna ma swój własny zapis binarny: 0000 dla 0, 0001 dla 1, 0010 dla 2 itd. A tu mamy osiem jedynek, co jest problematyczne, bo nie ma takiej cyfry dziesiętnej, która mogłaby się tak zapisać. BCD8421 jest szczególnie przydatny w różnych urządzeniach pomiarowych, gdzie ważne jest, żeby dane były dokładnie odwzorowane i łatwe do przetworzenia. Korzystanie z tego kodu pozwala uniknąć błędów w zaokrągleniach, które mogłyby się pojawić w standardowym zapisie binarnym. Tak więc, znajomość BCD8421 i jego prawidłowe użycie naprawdę ułatwia późniejszą pracę z danymi.

Pytanie 25

Podczas konserwacji systemu sygnalizacji włamania i napadu nie jest konieczne sprawdzenie

A. działania obwodów sabotażowych
B. wysokości zamontowania manipulatora
C. poziomu naładowania akumulatora
D. działania czujek alarmowych
Wysokość zamontowania manipulatora nie jest elementem, który wpływa na funkcjonalność systemu sygnalizacji włamania i napadu, co czyni tę odpowiedź prawidłową. W ramach konserwacji systemu kluczowe jest sprawdzenie działania obwodów sabotażowych, poziomu naładowania akumulatora oraz czujek alarmowych. Obwody sabotażowe mają na celu zabezpieczenie urządzeń przed próbami ich usunięcia lub zniszczenia, co jest kluczowe dla utrzymania integralności systemu. Poziom naładowania akumulatora jest istotny, aby zapewnić ciągłość zasilania w przypadku awarii energetycznej, a czujki alarmowe są pierwszym ogniwem detekcji intruza. Dlatego w praktyce, podejście do konserwacji powinno uwzględniać te elementy w celu zapewnienia sprawności systemu. Zgodnie z normami branżowymi, regularne przeglądy tych komponentów powinny być integralną częścią procedur konserwacyjnych, co zapewnia bezpieczeństwo użytkowników oraz ich mienia.

Pytanie 26

Jakie urządzenie należy zastosować do pomiaru indukcyjności cewki?

A. analizatora
B. omomierza
C. mostka RLC
D. watomierza
Odpowiedź 'mostek RLC' jest prawidłowa, ponieważ mostek RLC jest dedykowanym narzędziem do pomiaru indukcyjności, pojemności oraz rezystancji. Działa na zasadzie porównywania nieznanej wartości z wartościami referencyjnymi, co pozwala na uzyskanie dokładnych wyników. W praktyce, mostki RLC są często wykorzystywane w laboratoriach oraz w przemyśle elektronicznym do testowania komponentów, gdzie precyzyjne pomiary indukcyjności są kluczowe, np. w projektowaniu filtrów, transformatorów czy cewek. Standardy branżowe, takie jak normy IEC, podkreślają znaczenie stosowania odpowiednich narzędzi do pomiarów w celu zapewnienia jakości oraz bezpieczeństwa urządzeń elektronicznych. Dodatkowo, mostek RLC pozwala na przeprowadzenie analizy rezonansowej, co ma istotne znaczenie w zastosowaniach RF (radiofrekwencyjnych), gdzie zachowanie indukcyjności w określonych warunkach częstotliwościowych jest kluczowe dla prawidłowego funkcjonowania obwodów.

Pytanie 27

Kiedy impedancja falowa linii Zf oraz impedancja obciążenia Zobc są równe, to linia długa

A. nie jest dostosowana falowo
B. stanowi dla sygnału wejściowego przerwę
C. jest dostosowana falowo
D. stanowi dla sygnału wejściowego zwarcie
Odpowiedź "jest dopasowana falowo" jest prawidłowa, ponieważ oznacza, że impedancja falowa linii Zf jest równa impedancji obciążenia Zobc, co skutkuje minimalizacją odbić fali elektromagnetycznej na końcu linii. W praktyce oznacza to, że energia sygnału jest w pełni absorbowana przez obciążenie, a nie odbijana z powrotem w stronę źródła. Takie dopasowanie falowe jest kluczowe w systemach telekomunikacyjnych, gdzie ma wpływ na jakość sygnału i efektywność przesyłu danych. W zastosowaniach, takich jak linie transmisyjne w systemach RF czy optycznych, przestrzeganie zasad dopasowania impedancji pozwala na zminimalizowanie strat sygnału oraz zredukowanie zakłóceń, co jest zgodne z najlepszymi praktykami w inżynierii komunikacyjnej. W standardach takich jak IEEE 802.3 czy w systemach telekomunikacyjnych, dopasowanie impedancji stanowi fundament efektywnej wymiany danych i zapewnienia integralności sygnału.

Pytanie 28

Odpowiednia sekwencja działań przy wymianie uszkodzonej czujki ruchu w systemie kontroli dostępu powinna wyglądać następująco:

A. wpisać kod serwisowy, odłączyć zasilanie AC, odłączyć akumulator, wymienić czujkę
B. wpisać kod serwisowy, odłączyć akumulator, wymienić czujkę
C. wpisać kod użytkownika, odłączyć zasilanie AC, odłączyć akumulator, wymienić czujkę
D. wpisać kod użytkownika, odłączyć zasilanie AC, wymienić czujkę
Właściwa odpowiedź, czyli wpisanie kodu serwisowego, odłączenie zasilania AC, odłączenie akumulatora i następnie wymiana czujki, jest zgodna z najlepszymi praktykami w zakresie bezpiecznej konserwacji systemów kontroli dostępu. W pierwszej kolejności ważne jest użycie kodu serwisowego, ponieważ tylko osoby uprawnione powinny mieć dostęp do opcji serwisowych. To zapewnia, że żadne nieautoryzowane zmiany nie będą mogły zostać wprowadzone w systemie. Odłączenie zasilania AC jest kluczowe, aby uniknąć ryzyka zwarcia lub porażenia prądem podczas pracy z urządzeniami elektrycznymi. Następnie, odłączenie akumulatora zapobiega ewentualnym nieprzewidzianym awariom, które mogą wystąpić, gdy urządzenie jest wciąż zasilane. Dopiero po wykonaniu tych kroków można bezpiecznie wymienić czujkę. Przykładem zastosowania takiej procedury może być serwisowanie systemu w obiektach komercyjnych, gdzie bezpieczeństwo danych i osób jest priorytetem. Takie działania są zgodne z normami ISO 27001, które dotyczą bezpieczeństwa informacji.

Pytanie 29

Aktywna bariera podczerwieni może działać, wykorzystując fale elektromagnetyczne o długości wynoszącej

A. 600 nm
B. 300 nm
C. 900 nm
D. 500 nm
Aktywna bariera podczerwieni, znana również jako czujnik podczerwieni, wykorzystuje promieniowanie elektromagnetyczne o długości fali około 900 nm do detekcji obiektów. Długość fali 900 nm znajduje się w zakresie bliskiej podczerwieni, co sprawia, że jest idealna do zastosowań związanych z detekcją ruchu i obecności. Czujniki te są powszechnie stosowane w systemach alarmowych, automatycznych drzwiach oraz w systemach inteligentnych budynków. W praktyce, czujniki te działają na zasadzie analizy zmian w promieniowaniu podczerwonym emitowanym przez obiekty w ich zasięgu. Kiedy obiekt, na przykład człowiek, przemieszcza się w polu detekcji, zmienia to ilość promieniowania docierającego do czujnika, co wyzwala sygnał alarmowy. Warto zaznaczyć, że technologie te są zgodne z aktualnymi standardami branżowymi, co zapewnia ich niezawodność oraz efektywność w różnych warunkach zastosowania.

Pytanie 30

W wzmacniaczu mocy działającym w klasie A prąd przez element aktywny tego wzmacniacza (tranzystor) przepływa przez czas

A. wynoszący pełen okres sygnału sterującego
B. wynoszący połowę okresu sygnału sterującego
C. krótszy niż pełen okres, lecz dłuższy niż pół okresu sygnału sterującego
D. krótszy od pół okresu sygnału sterującego
Wzmacniacze mocy pracujące w klasie A charakteryzują się tym, że element aktywny, zazwyczaj tranzystor, prowadzi prąd przez cały okres sygnału sterującego. Oznacza to, że w każdym cyklu sygnału, niezależnie od jego amplitudy czy kształtu, tranzystor jest aktywny przez pełny okres. To podejście zapewnia wysoką liniowość i małe zniekształcenia, co jest kluczowe w aplikacjach audio, gdzie jakość dźwięku jest priorytetem. W praktyce, wzmacniacze klasy A są często wykorzystywane w drobnych systemach audio, gdzie wymagane jest odtwarzanie sygnałów o wysokiej wierności. Przykładem mogą być wzmacniacze lampowe, które zyskały popularność wśród audiofilów właśnie dzięki jakości dźwięku. Wzmacniacze te są również stosowane w systemach RF (radio-frequency), gdzie ich stabilność i linearność są kluczowe. Znajomość działania wzmacniaczy klasy A jest niezbędna dla inżynierów pracujących w branży audio oraz telekomunikacyjnej, co czyni tę wiedzę niezwykle istotną w kontekście standardów branżowych.

Pytanie 31

Jakiego przyrządu pomiarowego powinno się użyć do zmierzenia wartości skutecznej napięcia prostokątnego o częstotliwości 100 Hz?

A. Galwanometru do pomiaru napięcia zmiennego
B. Woltomierza AC bez opcji TRUE RMS
C. Woltomierza AC z opcją TRUE RMS
D. Galwanometru do pomiaru napięcia stałego
Woltomierz AC z funkcją TRUE RMS jest odpowiednim narzędziem do pomiaru wartości skutecznej napięcia przebiegu prostokątnego, zwłaszcza przy częstotliwości 100 Hz. Funkcja TRUE RMS (Root Mean Square) pozwala na dokładne określenie wartości skutecznej napięcia, niezależnie od kształtu jego przebiegu. W przypadku przebiegów prostokątnych, które mają wyraźnie zdefiniowane wartości szczytowe, tradycyjne woltomierze AC bez funkcji TRUE RMS mogą dawać zafałszowane wyniki, ponieważ są zaprojektowane do pomiaru przebiegów sinusoidalnych. Użycie woltomierza z funkcją TRUE RMS jest zgodne z najlepszymi praktykami w pomiarach elektrycznych, co zapewnia rzetelność wyników. Przykładowo, w zastosowaniach przemysłowych, gdzie często spotyka się różnorodne kształty przebiegów napięcia, posługiwanie się woltomierzem TRUE RMS jest kluczowe dla precyzyjnej analizy parametrów elektrycznych urządzeń, takich jak silniki elektryczne czy generatory. Takie podejście zwiększa efektywność diagnostyki i pozwala na lepsze zarządzanie energią.

Pytanie 32

Jakie jest znaczenie tzw. krosowania przewodu skrętki, który jest zakończony dwoma wtykami RJ-45, podczas łączenia różnych urządzeń w sieci LAN?

A. Na zapewnieniu takiej samej sekwencji ułożenia żył skrętki w obu wtykach RJ-45
B. Na uziemieniu ekranu skrętki
C. Na zastosowaniu oddzielnych ekranów dla poszczególnych żył skrętki
D. Na odpowiedniej zamianie kolejności ułożenia żył skrętki w jednym wtyku RJ-45 w stosunku do drugiego wtyku
Krosowanie przewodu skrętki polega na zamianie kolejności żył w jednym wtyku RJ-45 w porównaniu do drugiego. Tego rodzaju połączenie jest niezbędne w przypadku łączenia dwóch urządzeń, które obydwa pełnią funkcję urządzeń końcowych, na przykład dwóch komputerów. Standard T568A oraz T568B definiuje, jak powinny być ułożone żyły w wtykach RJ-45, a krosowanie polega na tym, że w jednym wtyku żyły są ułożone zgodnie z jednym standardem, a w drugim zgodnie z drugim standardem, co pozwala na poprawne przesyłanie sygnałów. Przykładem zastosowania krosowania jest połączenie dwóch komputerów bezpośrednio za pomocą kabla, co pozwala na utworzenie lokalnej sieci bez użycia switcha. W praktyce krosowanie przewodów jest istotną umiejętnością dla techników sieciowych, gdyż umożliwia elastyczne konfigurowanie sieci lokalnych w zależności od potrzeb, zgodnie z zasadami wydajności i niskich opóźnień w komunikacji."

Pytanie 33

HDMI to standard wykorzystywany do przesyłania sygnału

A. analogowego obrazu i dźwięku
B. cyfrowego wideo i dźwięku
C. cyfrowego dźwięku
D. analogowego obrazu
HDMI, czyli High-Definition Multimedia Interface, to standardowy interfejs stworzony do przesyłania sygnałów wysokiej jakości audio i wideo w postaci cyfrowej. Umożliwia on jednoczesne przesyłanie wielu kanałów audio oraz obrazu w rozdzielczości HD i wyższej. W praktyce oznacza to, że podłączając urządzenie, takie jak telewizor czy monitor, do źródła sygnału, na przykład odtwarzacza Blu-ray czy komputera, użytkownik może cieszyć się krystalicznie czystym dźwiękiem i obrazem bez strat jakości. HDMI stało się de facto standardem w elektronice użytkowej, a jego wszechstronność znajduje zastosowanie w telewizorach, projektorach, konsolach do gier oraz systemach kina domowego. Dodatkowo, HDMI obsługuje różne technologie, takie jak CEC (Consumer Electronics Control), które pozwala na sterowanie wieloma urządzeniami za pomocą jednego pilota. Warto również wspomnieć o różnych wersjach HDMI, które oferują różne możliwości, między innymi obsługę 4K czy HDR, co dodatkowo zwiększa jego użyteczność w nowoczesnych zastosowaniach multimedialnych.

Pytanie 34

Liczba 3,5 w naturalnym systemie binarnym będzie zapisana jako

A. 01,1
B. 11,1
C. 11,0
D. 10,1
Liczba 3,5 w naturalnym kodzie binarnym przyjmuje postać '11,1', co można rozłożyć na dwie części: część całkowitą i część ułamkową. Część całkowita liczby 3 w systemie binarnym to '11', ponieważ 3 to suma 2^1 oraz 2^0. Część ułamkowa 0,5 reprezentowana jest w systemie binarnym jako ',1', ponieważ 0,5 to 1/2, co odpowiada 2^-1. W naturalnym kodzie binarnym łączymy obie części, uzyskując '11,1'. Zrozumienie konwersji liczb z systemu dziesiętnego na binarny jest kluczowe w informatyce, szczególnie w kontekście programowania oraz obliczeń w systemach komputerowych. W praktyce, znajomość tych konwersji jest niezbędna przy tworzeniu algorytmów operujących na liczbach zmiennoprzecinkowych oraz przy pracy z systemami obliczeń numerycznych, gdzie precyzja i dokładność zapisu wartości są kluczowe. Wiedza ta jest również istotna przy projektowaniu systemów cyfrowych, takich jak mikroprocesory, które operują na danych zapisanych w formacie binarnym.

Pytanie 35

Częścią odpowiedzialną za przekształcenie energii fal elektromagnetycznych na napięcie w radiowym odbiorniku jest

A. wzmacniacz w.cz.
B. antenna odbiorcza
C. heterodyna
D. demodulator
Antena odbiorcza jest kluczowym elementem w odbiornikach radiowych, ponieważ jej podstawową funkcją jest przekształcanie energii fal elektromagnetycznych w sygnały elektryczne. Dzięki swojej konstrukcji, antena jest w stanie efektywnie zbierać fale radiowe, które następnie są konwertowane na napięcie. W praktyce oznacza to, że anteny są projektowane z myślą o ich rezonansie dla określonych częstotliwości, co pozwala na optymalne odbieranie sygnałów. Na przykład, anteny dipolowe są popularne w zastosowaniach amatorskich, a ich prostota i efektywność sprawiają, że są szeroko stosowane w radiokomunikacji. W branży telekomunikacyjnej istotne jest również przestrzeganie standardów dotyczących efektywności anten, takich jak te określone przez ETSI lub IEEE, co zapewnia wysoką jakość odbioru sygnałów. Zrozumienie roli anteny w systemie radiowym pozwala inżynierom lepiej projektować i integrować różne komponenty, poprawiając jakość i niezawodność komunikacji.

Pytanie 36

Najczęściej wykorzystywany do tworzenia sieci komputerowej LAN przewód UTP skrętka jest zbudowany z

A. jednej pary żył w przewodzie
B. trzech par żył w przewodzie
C. czterech par żył w przewodzie
D. dwóch par żył w przewodzie
Przewód UTP (Unshielded Twisted Pair) używany w budowie sieci LAN składa się z czterech par przewodów, co jest zgodne z najnowszymi standardami sieciowymi, takimi jak 10BASE-T, 100BASE-TX oraz 1000BASE-T. W każdej parze żył, przewody są skręcone ze sobą, co redukuje zakłócenia elektromagnetyczne oraz poprawia jakość sygnału. Dzięki czterem parom możliwe jest jednoczesne przesyłanie danych w obu kierunkach, co zwiększa przepustowość i efektywność komunikacji w sieci. Standardy takie jak TIA/EIA-568 określają zasady dotyczące użycia przewodów UTP oraz ich okablowania, co jest kluczowe przy projektowaniu nowoczesnych sieci komputerowych. W praktyce, stosowanie skrętki UTP z czterema parami żył pozwala na osiągnięcie dużej szybkości transmisji, co jest szczególnie istotne w środowiskach biurowych czy w centrach danych, gdzie wymagana jest wysoka wydajność sieci. Dodatkowo, zrozumienie struktury przewodu UTP ma kluczowe znaczenie dla instalacji oraz diagnostyki problemów w sieci.

Pytanie 37

Obniżenie stałej czasowej T w regulatorze PI skutkuje

A. obniżeniem przeregulowania oraz obniżeniem czasu regulacji
B. podwyższeniem przeregulowania oraz obniżeniem czasu regulacji
C. podwyższeniem przeregulowania oraz wydłużeniem czasu regulacji
D. obniżeniem przeregulowania oraz wydłużeniem czasu regulacji
Odpowiedź, że zmniejszenie stałej czasowej T w regulatorze PI prowadzi do zwiększenia przeregulowania oraz zmniejszenia czasu regulacji, jest poprawna. Zmniejszenie T skutkuje szybszą reakcją regulatora na zmiany w systemie, co przekłada się na krótszy czas regulacji. W praktycznych zastosowaniach inżynieryjnych, takich jak systemy automatyki przemysłowej, skrócony czas regulacji jest kluczowy dla osiągnięcia stabilności i wydajności procesu. Przykładowo, w systemach HVAC (ogrzewanie, wentylacja, klimatyzacja) zastosowanie regulatora PI z mniejszą stałą czasową T pozwala na szybsze dostosowywanie temperatury i wilgotności w pomieszczeniach, co zwiększa komfort użytkowników. Jednakże, zbyt szybka reakcja może prowadzić do wystąpienia przeregulowania, co jest zjawiskiem, w którym system przekracza wartość docelową przed ustabilizowaniem się, co może prowadzić do nieefektywności i nawet uszkodzenia sprzętu. Dlatego ważne jest, aby przy projektowaniu regulatorów PI kierować się zasadami dobrych praktyk inżynieryjnych, zapewniając odpowiednie dobieranie stałych czasowych w kontekście konkretnego zastosowania.

Pytanie 38

Jakie jest zastosowanie funkcji NTP w urządzeniach elektronicznych, które są połączone z Internetem?

A. Weryfikacji tożsamości użytkownika
B. Zmiany oprogramowania
C. Synchronizacji bieżącego czasu
D. Pobrania adresu IP z serwera DHCP
Funkcja NTP (Network Time Protocol) jest kluczowym protokołem w systemach komputerowych, który służy do synchronizacji czasu w urządzeniach podłączonych do sieci. Dzięki NTP, urządzenia mogą uzyskiwać dokładny czas z serwerów NTP, które są często zsynchronizowane z atomowymi zegarami, co zapewnia wysoką precyzję. Synchronizacja czasu jest fundamentalna w wielu aplikacjach, takich jak systemy bankowe, transakcje online, czy rejestracje zdarzeń w systemach monitorowania. Przykładowo, systemy bezpieczeństwa i audytów wymagają precyzyjnego znacznika czasu do prawidłowego funkcjonowania, aby móc jednoznacznie określić moment zdarzenia. NTP jest również zgodny z normami IETF, co czyni go standardem w dziedzinie synchronizacji czasu w sieciach komputerowych. Niezgodność czasowa może prowadzić do poważnych problemów, takich jak utrata danych czy błędy w komunikacji, co podkreśla znaczenie NTP w codziennym funkcjonowaniu złożonych systemów informatycznych.

Pytanie 39

Ile wejść adresowych posiada multiplekser 8-wejściowy?

A. 5 wejść adresowych
B. 4 wejścia adresowe
C. 3 wejścia adresowe
D. 2 wejścia adresowe
Multiplekser 8-wejściowy wymaga 3 wejść adresowych, aby skutecznie zidentyfikować jeden z ośmiu dostępnych sygnałów wejściowych. Każde wejście adresowe może przyjąć wartość binarną 0 lub 1, co oznacza, że 3 bity adresowe mogą reprezentować 2^3 = 8 kombinacji, co idealnie odpowiada liczbie sygnałów wejściowych w tym przypadku. Przykładem zastosowania multipleksera 8-wejściowego jest w systemach cyfrowych, gdzie może on być używany do wyboru jednego z wielu sygnałów w systemach telekomunikacyjnych lub w obwodach logicznych. Standardy takie jak IEEE 802.3 dla Ethernetu wykorzystują podobne mechanizmy do zarządzania ruchem danych. Dobre praktyki w projektowaniu systemów cyfrowych sugerują stosowanie multiplekserów w celu uproszczenia architektury i minimalizacji ilości wymaganych połączeń, co zapewnia większą elastyczność i łatwiejsze zarządzanie komponentami systemu.

Pytanie 40

Port USB stanowi uniwersalną magistralę

A. równoległo-szeregowa
B. szeregowa
C. równoległa
D. szeregowo-równoległa
Odpowiedź 'szeregowa' jest poprawna, ponieważ standard USB (Universal Serial Bus) opiera się na komunikacji szeregowej. W systemach szeregowych dane są przesyłane pojedynczo, co pozwala na mniejsze wymagania dotyczące kabli oraz uproszczoną architekturę połączeń. W praktyce oznacza to, że urządzenia USB są w stanie komunikować się z komputerem, wymieniając dane jeden bit po drugim, co jest bardziej efektywne w kontekście długości kabli oraz kosztów produkcji. Ponadto, architektura szeregowa USB umożliwia złożone operacje, takie jak 'hot swapping', czyli podłączanie i odłączanie urządzeń bez konieczności wyłączania komputera. W branży IT standardy USB są szeroko stosowane w celu zapewnienia interoperacyjności urządzeń, co czyni je kluczowym elementem zarówno w zastosowaniach biurowych, jak i w produkcji. Przykładem zastosowania USB są myszki komputerowe, klawiatury, a także urządzenia peryferyjne, takie jak drukarki i skanery, które korzystają z tej samej magistrali do wymiany danych, co umożliwia ich łatwą integrację z komputerami.