Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 26 kwietnia 2025 20:38
  • Data zakończenia: 26 kwietnia 2025 21:38

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką liczbę należy użyć do pomnożenia wartości znamionowego prądu silnika trójfazowego klatkowego, który napędza pompę, aby obliczyć maksymalną dopuszczalną wartość nastawy prądu na jego zabezpieczeniu termicznym?

A. 2,2
B. 0,8
C. 1,1
D. 1,4
Odpowiedź 1,1 jest poprawna, ponieważ przy obliczaniu maksymalnej dopuszczalnej wartości nastawy prądu na zabezpieczeniu termicznym silników trójfazowych, stosuje się współczynnik 1,1. Ten współczynnik uwzględnia zwiększone obciążenie silnika w przypadku jego rozruchu oraz wpływ na jego pracę w warunkach długotrwałego obciążenia. Przyjmuje się, że silniki trójfazowe mogą być obciążane do wartości 10% powyżej znamionowej przez krótki czas, co jest kluczowe dla ochrony silnika oraz zapewnienia jego efektywności. W praktyce oznacza to, że jeżeli znamionowy prąd silnika wynosi na przykład 10 A, to maksymalna wartość nastawy na zabezpieczeniu termicznym powinna wynosić 11 A. Zastosowanie tego współczynnika jest zgodne z normami IEC 60034 oraz wytycznymi producentów urządzeń, co jest kluczowe dla zabezpieczenia silników i zapewnienia ich prawidłowej pracy.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Który przewód powinien być zastosowany do połączenia z siecią 230 V transformatora znajdującego się w metalowej obudowie centralki alarmowej?

A. OMY 2×0,75 mm2
B. YTDY 4×0,5 mm2
C. YTDY 2×0,5 mm2
D. OMY 3×0,75 mm2
Wybór przewodów YTDY 4×0,5 mm2, OMY 2×0,75 mm2 oraz YTDY 2×0,5 mm2 do podłączenia transformatora w metalowej obudowie centralki alarmowej jest niewłaściwy z kilku powodów. Przewody YTDY, chociaż popularne w zastosowaniach, nie są zalecane do instalacji, gdzie istotna jest odporność na czynniki zewnętrzne i elastyczność. Dodatkowo, ich przekrój 0,5 mm2 jest zbyt mały, co może prowadzić do przegrzewania się przewodów przy większym obciążeniu. Przy zasilaniu 230 V z transformatora, kluczowe jest stosowanie przewodów o odpowiednim przekroju, który zapewni bezpieczeństwo i minimalizację strat energii. OMY 2×0,75 mm2, mimo że ma odpowiedni przekrój, nie zawiera wystarczającej liczby żył do podłączenia dodatkowych funkcji, co ogranicza jego funkcjonalność. Istotnym błędem jest także ignorowanie norm dotyczących instalacji elektrycznych, takich jak PN-EN 60228, które określają wymagania dla przewodów stosowanych w instalacjach. W związku z tym, wybór przewodów musi być przemyślany, uwzględniając zarówno ich właściwości fizyczne, jak i normatywne. Unikanie stosowania przewodów o zbyt niskim przekroju oraz tych, które nie spełniają wymogów normatywnych, jest kluczowe dla zapewnienia bezpieczeństwa i prawidłowego działania instalacji.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Jakie maksymalne napięcie elektryczne należy wykorzystać do zasilania lampy oświetleniowej zlokalizowanej w łazience w strefie 0?

A. 110 V DC
B. 12 V AC
C. 230 V AC
D. 50 V AC
Zasilanie lampy oświetleniowej w łazience, szczególnie w strefie 0, musi być zgodne z zasadami bezpieczeństwa, które mają na celu minimalizację ryzyka porażenia prądem elektrycznym. Maksymalna wartość napięcia, która jest bezpieczna do zastosowania w tym obszarze, wynosi 12 V AC. Tego rodzaju zasilanie jest skuteczne w eliminacji ryzyka niebezpiecznych sytuacji, jakie mogą wystąpić w wilgotnym środowisku. Przykładem zastosowania 12 V AC może być instalacja oświetlenia LED w kabinie prysznicowej lub nad wanną, gdzie bezpośredni kontakt z wodą stwarza dodatkowe zagrożenie. Zgodnie z normami IEC 60364, stosowanie niskiego napięcia, takiego jak 12 V, w obszarach o podwyższonym ryzyku, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Oprócz tego, systemy oświetleniowe zasilane niskim napięciem są często bardziej energooszczędne i umożliwiają zastosowanie rozwiązań z zakresu inteligentnego budownictwa, takich jak zdalne sterowanie oświetleniem.

Pytanie 6

Które z wymienionych urządzeń służy do ochrony przewodów w systemach elektrycznych przed skutkami zwarć?

A. Przekaźnik termiczny
B. Wyłącznik różnicowoprądowy
C. Odłącznik
D. Bezpiecznik
Odłącznik, przekaźnik termiczny oraz wyłącznik różnicowoprądowy to urządzenia, które w pewnym stopniu mogą przyczynić się do ochrony instalacji elektrycznych, ale nie pełnią funkcji zabezpieczania przewodów przed skutkami zwarć w taki sposób, jak bezpiecznik. Odłącznik służy do rozłączania obwodów, ale nie monitoruje i nie reaguje na zmiany natężenia prądu, co czyni go niewystarczającym w kontekście ochrony przed przeciążeniem. Przekaźnik termiczny, choć może reagować na wzrost temperatury związany z przeciążeniem, nie oferuje tak szybkiej reakcji jak bezpiecznik i nie jest stosowany przy krótkich zwarkach, które mogą uszkodzić urządzenia. Wyłącznik różnicowoprądowy z kolei chroni przed porażeniem prądem elektrycznym w przypadku upływu prądu do ziemi, jednak nie zabezpiecza przed przeciążeniami wynikającymi z zwarć w obwodzie. Często mylone są funkcje tych urządzeń, co prowadzi do błędnych wniosków. Kluczowe jest zrozumienie, że każde z tych urządzeń ma swoją rolę w systemie zabezpieczeń, ale bezpiecznik pozostaje jedynym skutecznym rozwiązaniem do bezpośredniej ochrony przed skutkami zwarć. W praktyce, pominięcie roli bezpiecznika w instalacji elektrycznej może prowadzić do poważnych zagrożeń, dlatego ważne jest przestrzeganie norm i dobrych praktyk w trakcie projektowania i montażu instalacji elektrycznych.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Korzystając z danych zamieszczonych w tabeli wyznacz, wartość rezystancji jednej żyły przewodu YDY 3×2,5 mm2 o długości 100 m.

Dane techniczne przewodu YDY
Ilość i przekrój znamionowy żyłGrubość znamionowa izolacjiMax. rezystancja żyłOrientacyjna masa przewodu o długości 1 km
mm²mmΩ/kmkg/km
2x10,818,181
2x1,50,812,197
2x2,50,87,41125
2x40,94,61176
2x60,93,08228
3x10,918,196
3x1,50,912,1116
3x2,50,97,41153

A. 741,0 Ω
B. 74,10 Ω
C. 7,410 Ω
D. 0,741 Ω
Odpowiedź '0,741 Ω' jest jak najbardziej trafna! Dobrze, że wziąłeś pod uwagę długość przewodu, bo 100 m to tak naprawdę 1/10 km. Obliczenia rezystancji dla przewodów miedzianych można znaleźć w normach, a te mówią, że dla 2,5 mm² rezystancja na kilometr to około 7,41 Ω. Wiadomo, że jeśli mamy 100 m, to musimy to przeliczyć na 0,741 Ω. W inżynierii elektrycznej takie obliczenia są mega ważne, bo pomagają zrozumieć, jak minimalizować straty energii i dobierać odpowiednie zabezpieczenia. Właściwe przeliczenia pomagają w efektywności energetycznej. Formuła R = ρ * (L / A) to standardowy sposób podejścia, który powinien być znany każdemu, kto projektuje instalacje elektryczne. Dzięki temu cały system działa lepiej.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jaką wielkość należy zmierzyć, aby ocenić skuteczność zabezpieczeń podstawowych w elektrycznej instalacji o napięciu znamionowym do 1 kV?

A. Rezystancji uziomu
B. Rezystancji izolacji
C. Impedancji zwarciowej
D. Napięcia krokowego
Pomiar rezystancji izolacji jest kluczowym elementem oceny skuteczności ochrony podstawowej w instalacjach elektrycznych, szczególnie w tych o napięciu znamionowym do 1 kV. Odpowiedni poziom rezystancji izolacji zapewnia, że nie występują niepożądane przepływy prądu do ziemi, co mogłoby prowadzić do porażenia prądem lub uszkodzenia urządzeń. Zgodnie z normą PN-EN 60364-6, minimalna rezystancja izolacji powinna wynosić co najmniej 1 MΩ dla systemów o napięciu do 1 kV, co gwarantuje odpowiednie bezpieczeństwo. Przykładem zastosowania tego pomiaru jest przeprowadzanie testów przed oddaniem do użytkowania nowej instalacji, a także regularne kontrole w celu wykrycia degradacji izolacji na skutek starzenia się materiałów, wilgoci czy innych czynników zewnętrznych. Dzięki tym pomiarom można zminimalizować ryzyko awarii, co jest szczególnie istotne w obiektach użyteczności publicznej oraz w środowiskach przemysłowych, gdzie bezpieczeństwo użytkowników ma kluczowe znaczenie.

Pytanie 11

Jakie nastąpi zmiana w przekładni napięciowej transformatora jednofazowego, jeśli podczas jego modernizacji nawinięto o 10% więcej zwojów po stronie niskiego napięcia, nie zmieniając ilości zwojów po stronie wysokiego napięcia?

A. Spadnie o 19%
B. Spadnie o 10%
C. Wzrośnie o 21%
D. Wzrośnie o 10%
Transformator jednofazowy działa na zasadzie przekładni napięciowej, która jest definiowana jako stosunek liczby zwojów uzwojenia wysokiego napięcia do liczby zwojów uzwojenia niskiego napięcia. W przypadku, gdy nawinięto o 10% więcej zwojów na stronie dolnego napięcia, liczba zwojów w uzwojeniu niskiego napięcia wzrasta, co prowadzi do zmiany przekładni. Jeśli oznaczymy liczbę zwojów uzwojenia niskiego napięcia jako N1, uzwojenia wysokiego napięcia jako N2, to nowa liczba zwojów uzwojenia niskiego napięcia wyniesie 1,1 * N1. Nowa przekładnia napięciowa (U2/U1) oblicza się jako N2/(1,1 * N1), co skutkuje zmniejszeniem przekładni o około 10%. W praktyce, zwiększenie liczby zwojów po stronie dolnego napięcia oznacza, że transformator będzie w stanie obniżyć napięcie w mniejszym stopniu, co ma znaczenie w aplikacjach wymagających stabilizacji napięcia, takich jak zasilanie urządzeń elektronicznych, gdzie precyzyjne napięcie jest kluczowe. W przemyśle energetycznym zrozumienie przekładni napięciowej jest niezbędne do projektowania transformatorów oraz ich optymalizacji. Zmiany w liczbie zwojów mogą być korzystne w niektórych warunkach operacyjnych, co podkreśla znaczenie regularnych przeglądów i modernizacji transformatorów.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Podczas pracy z urządzeniami elektrycznymi na wysokościach, jakiego środka ochrony indywidualnej należy użyć?

A. Buty robocze
B. Rękawice ochronne
C. Uprząż ochronna
D. Kask ochronny
Kask ochronny, choć istotny dla bezpieczeństwa, nie zapewnia ochrony przed upadkiem z wysokości. Jego główną funkcją jest ochrona głowy przed uderzeniami i spadającymi przedmiotami. W pracy na wysokościach może być używany jako dodatkowe zabezpieczenie, ale nie zastąpi uprzęży. Rękawice ochronne, choć mogą być przydatne w pracy z urządzeniami elektrycznymi, przede wszystkim chronią dłonie przed urazami mechanicznymi i porażeniem prądem. Nie są jednak środkiem zabezpieczającym przed upadkiem. Wybór odpowiednich rękawic zależy od specyfiki wykonywanych zadań, np. czy są to prace z wysokim napięciem. Buty robocze są istotnym elementem ochrony indywidualnej, zapewniają stabilność i ochronę stóp przed urazami. Jednakże, podobnie jak kask i rękawice, nie chronią przed upadkiem z wysokości. Wszystkie te elementy mają swoje miejsce w zestawie środków ochrony indywidualnej, ale uprząż ochronna jest jedynym skutecznym zabezpieczeniem przed upadkiem. Warto pamiętać, że dobór odpowiednich środków ochrony powinien zawsze uwzględniać specyfikę wykonywanej pracy oraz potencjalne zagrożenia, jakie mogą wystąpić w środowisku pracy. Tylko kompleksowe podejście do bezpieczeństwa pozwala minimalizować ryzyko wypadków.

Pytanie 15

W trakcie naprawy części instalacji elektrycznej zasilającej silnik indukcyjny, uszkodzone przewody aluminiowe zamieniono na przewody H07V-R o przekroju żyły 50 mm2. Jaki powinien być minimalny przekrój przewodu PE, aby warunek samoczynnego wyłączenia zasilania został spełniony?

A. 25 mm2
B. 35 mm2
C. 20 mm2
D. 50 mm2
Odpowiedź 25 mm2 jest poprawna, ponieważ zgodnie z normami PN-IEC 60364-5-54, minimalny przekrój przewodu ochronnego (PE) powinien być co najmniej równy 1,5 mm2 dla instalacji o maksymalnym prądzie znamionowym do 32 A. W przypadku instalacji z przewodami zasilającymi o znacznych przekrojach, takich jak 50 mm2 w przypadku przewodów H07V-R, wymagana jest zasada, że przekrój przewodu PE powinien wynosić co najmniej 50% przekroju przewodu fazowego w przypadku aluminium lub 25% w przypadku miedzi. Tutaj mamy do czynienia z przewodami aluminiowymi, więc obliczając 50% z 50 mm2, otrzymujemy 25 mm2. Taki przekrój zapewnia odpowiednią zdolność przewodu PE do przewodzenia prądu w przypadku awarii, co jest kluczowe dla ochrony ludzi oraz urządzeń. Przykładem zastosowania tej zasady może być instalacja elektryczna w przemyśle, gdzie wymagania bezpieczeństwa są szczególnie restrykcyjne.

Pytanie 16

Trójfazowy silnik indukcyjny, obciążony połową swojej mocy znamionowej, działa z prędkością n = 1450 obr/min. W pewnym momencie doszło do spadku prędkości obrotowej, co spowodowało charakterystyczne "buczenie" silnika. Jakie mogły być przyczyny tego zakłócenia w pracy silnika?

A. Kilku procentowy wzrost napięcia zasilania
B. Brak napięcia w jednej z faz
C. Podwojony moment obciążenia
D. Odłączenie przewodu ochronnego od zacisku PE
Zanik napięcia w jednej z faz silnika indukcyjnego trójfazowego prowadzi do nierównomiernego przepływu prądu w uzwojeniach, co skutkuje spadkiem momentu obrotowego oraz zwiększeniem prędkości ślizgu. Silnik, zamiast stabilnie pracować, zaczyna generować wibracje i dźwięki, co objawia się charakterystycznym "buczeniem". W przypadku pracy z obciążeniem wynoszącym połowę mocy znamionowej, silnik może być w stanie tolerować pewne zakłócenia, ale zanik napięcia w jednej fazie jest krytycznym problemem. Przykładowo, w przemyśle, awarie zasilania w jednej fazie mogą prowadzić do uszkodzeń silników oraz innych komponentów systemu, dlatego ważne jest stosowanie zabezpieczeń, takich jak wyłączniki różnicowoprądowe oraz monitoring jakości zasilania. Aby poprawić niezawodność systemów elektrycznych, stosuje się również układy równoważące obciążenia międzyfazowe. Stosując te zasady, można znacząco zwiększyć bezpieczeństwo i efektywność pracy silników.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jakim skrótem literowym określamy system automatyki energetycznej, który umożliwia przywrócenie normalnej pracy linii energetycznej po jej wyłączeniu przez urządzenia zabezpieczające?

A. SZR
B. SCO
C. SRN
D. SPZ
Skrót SPZ (samoczynne przywracanie zasilania) odnosi się do systemu automatyki energetycznej, który ma na celu przywrócenie normalnego funkcjonowania linii energetycznej po jej wyłączeniu przez urządzenia zabezpieczające. System ten jest kluczowy dla zapewnienia ciągłości dostaw energii elektrycznej oraz minimalizacji przerw w zasilaniu. W praktyce, SPZ działa na zasadzie wykrywania awarii lub przeciążeń, co inicjuje proces odłączenia danego obwodu. Po ustabilizowaniu warunków pracy i wykryciu, że awaria została usunięta, system automatycznie przywraca zasilanie. Przykładowo, w przypadku chwilowego wzrostu zapotrzebowania, SPZ może zresetować wyłącznik, co pozwala uniknąć niepotrzebnych przerw w zasilaniu. Praktyczna implementacja SPZ znajduje zastosowanie w różnych sektorach, od przemysłu, przez sieci dystrybucji, aż po systemy energetyczne w budynkach. Wiele krajowych standardów, takich jak PN-EN 50160, podkreśla znaczenie takich rozwiązań dla jakości dostaw energii elektrycznej oraz bezpieczeństwa systemu energetycznego.

Pytanie 19

Przed rozpoczęciem wymiany uszkodzonych części instalacji elektrycznej do 1 kV, należy najpierw odłączyć napięcie, a następnie stosować się do zasad bezpieczeństwa w poniższej kolejności:

A. zabezpieczyć przed ponownym załączeniem, potwierdzić brak napięcia, uziemić instalację elektryczną
B. zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną, potwierdzić brak napięcia
C. potwierdzić brak napięcia, zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną
D. potwierdzić brak napięcia, uziemić instalację elektryczną, zabezpieczyć przed ponownym załączeniem
Przed przystąpieniem do wymiany uszkodzonych elementów instalacji elektrycznej do 1 kV, kluczowe jest przestrzeganie ustalonej procedury bezpieczeństwa. Po pierwsze, zabezpieczenie przed powtórnym załączeniem oznacza zastosowanie odpowiednich blokad lub zamknięć, które uniemożliwiają przypadkowe przywrócenie zasilania podczas prac. Po tym etapie, potwierdzenie braku napięcia jest niezbędne, aby upewnić się, że instalacja faktycznie jest de-energizowana. Można to osiągnąć za pomocą odpowiednich przyrządów pomiarowych, takich jak wskaźniki napięcia, które powinny być używane przez wykwalifikowany personel. Uziemienie instalacji elektrycznej jest kolejnym krokiem, który zapewnia, że wszelkie pozostałe ładunki elektryczne są bezpiecznie odprowadzane do ziemi, co minimalizuje ryzyko porażenia prądem. Cała ta procedura jest zgodna z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które określają zasady dotyczące eksploatacji instalacji elektrycznych.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Która z podanych przyczyn jest odpowiedzialna za ocieranie wirnika o stojan w silniku indukcyjnym klatkowym podczas jego działania?

A. Nagle zmniejszone napięcie zasilające
B. Pęknięcie pierścieni zwierających pręty wirnika
C. Nagle zwiększone napięcie zasilające
D. Poluzowanie tabliczki zaciskowej
Pęknięcie pierścieni zwierających pręty wirnika to istotny problem, który może prowadzić do ocierania wirnika o stojan w silniku indukcyjnym klatkowym. Pierścienie te mają na celu zapewnienie stabilności wirnika podczas jego obrotu, a ich integralność strukturalna jest kluczowa dla poprawnej pracy silnika. Kiedy pierścienie ulegają uszkodzeniu, wirnik może zacząć się przemieszczać zbyt blisko stojana, co doprowadza do tarcia i potencjalnych uszkodzeń obu komponentów. W kontekście praktycznym, regularne przeglądy i testy wizualne silników, w tym kontrola stanu pierścieni zwierających, są kluczowe dla zapobiegania takim awariom. Zgodnie z najlepszymi praktykami w branży, każda usterka powinna być diagnozowana i usuwana natychmiastowo, aby uniknąć dalszych uszkodzeń oraz kosztownych przestojów. Warto również zaznaczyć, że ogólny stan wirnika i jego osprzętu powinien być systematycznie monitorowany na podstawie standardów, takich jak IEC 60034, które szczegółowo określają wymagania dotyczące silników elektrycznych.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Którego z poniższych pomiarów eksploatacyjnych instalacji oświetleniowej nie jest możliwe przeprowadzić przy użyciu typowego miernika uniwersalnego?

A. Rezystancji izolacji przewodów
B. Napięcia w poszczególnych fazach
C. Ciągłości przewodów ochronnych
D. Prądu, który jest pobierany przez odbiornik
Rezystancja izolacji przewodów jest kluczowym pomiarem w ocenie bezpieczeństwa instalacji elektrycznych i oświetleniowych. Typowe mierniki uniwersalne, takie jak multimetrowe, są przeznaczone głównie do pomiarów prądu, napięcia i oporu, jednak nie są wystarczające do pomiaru rezystancji izolacji. Pomiar ten wymaga zastosowania specjalistycznych urządzeń, takich jak megomierze, które generują znacznie wyższe napięcia (zazwyczaj w zakresie 250V, 500V lub 1000V) w celu oceny jakości izolacji. W praktyce, taki pomiar pozwala na wykrycie uszkodzeń izolacji, które mogą prowadzić do niebezpiecznych sytuacji, takich jak przebicia elektryczne. Normy takie jak PN-IEC 60364 podkreślają konieczność regularnego przeprowadzania pomiarów rezystancji izolacji, co jest niezbędne dla zapewnienia bezpieczeństwa użytkowników oraz trwałości instalacji. Przykładowo, w przypadku instalacji w obiektach publicznych, pomiar ten jest obligatoryjny, aby zapewnić spełnienie określonych standardów bezpieczeństwa elektrycznego.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Korzystając z tabeli oceń, który wynik badania pozwala wyciągnąć pozytywny wniosek o stanie izolacji jednofazowej instalacji elektrycznej 230 V, 50 Hz.

Napięcie nominalne obwoduNapięcie pomiarowe prądu stałego d.c.Wymagana rezystancja izolacji
V
SELV i PELV250≥ 0,5
do 500 V włącznie, w tym FELV500≥ 1,0
powyżej 500 V1000≥ 1,0

Wynik badaniaNapięcie pomiarowe prądu stałego, kVRezystancja izolacji, kΩ
A.2301050
B.250500
C.4001100
D.5001000

A. A.
B. B.
C. C.
D. D.
Wybór innej odpowiedzi niż D wskazuje na pewne nieporozumienia dotyczące wymagań normatywnych związanych z izolacją instalacji elektrycznych. W przypadku instalacji jednofazowej o napięciu 230 V, standardy ustanawiają minimalne wymagania dotyczące rezystancji izolacji na poziomie 1,0 MΩ. Odpowiedzi inne niż D mogą sugerować, że użytkownik nie dostrzega znaczenia tych norm. Przykładowo, wybór odpowiedzi A lub B może być wynikiem błędnego założenia, że niższe wartości rezystancji są akceptowalne. Często w praktyce można spotkać się z sytuacjami, gdzie niewłaściwy pomiar lub interpretacja wyników prowadzi do błędnych wniosków, co z kolei może doprowadzić do decyzji o kontynuacji eksploatacji instalacji, która w rzeczywistości jest zagrożona. Warto zwrócić uwagę, że tylko odpowiednia rezystancja izolacji może zapewnić bezpieczeństwo użytkowników oraz sprawność urządzeń elektrycznych. W związku z tym, nieprzestrzeganie tych norm może prowadzić do poważnych konsekwencji, takich jak ryzyko porażenia prądem lub pożaru. Kluczową kwestią jest zrozumienie, że odpowiednie wartości rezystancji izolacji są podstawą do oceny stanu każdego systemu elektrycznego. Dlatego tak ważne jest, aby przy podejmowaniu decyzji korzystać z dokładnych danych i sprawdzać je zgodnie z obowiązującymi standardami.

Pytanie 31

Jaką czynność kontrolną można przeprowadzić podczas obserwacji silnika elektrycznego w trakcie jego działania?

A. Weryfikacja stabilności połączeń elementów napędowych
B. Kontrola stanu szczotek oraz szczotkotrzymaczy
C. Sprawdzenie stopnia nagrzewania obudowy
D. Ocena stanu pierścieni ślizgowych i komutatora
Sprawdzenie stopnia nagrzewania się obudowy silnika elektrycznego jest kluczowym elementem monitorowania jego stanu podczas pracy. Nagrzewanie się silnika może wskazywać na różne problemy, takie jak przeciążenie, zatarcie łożysk, niewłaściwe smarowanie lub awarię izolacji. W praktyce, do pomiaru temperatury obudowy można wykorzystać pirometr lub czujniki temperatury, co pozwala na monitorowanie parametrów pracy silnika w czasie rzeczywistym. Wartości temperatury powinny być zgodne z normami producenta; ich przekroczenie może prowadzić do uszkodzenia silnika, co w konsekwencji wiąże się z kosztownymi naprawami i przestojami w produkcji. Zgodnie z zaleceniami branżowymi, regularne pomiary temperatury są częścią rutynowych przeglądów technicznych, co pozwala na wczesne wykrywanie problemów i zwiększa bezpieczeństwo operacyjne. Właściwe podejście do monitorowania temperatury silnika jest zgodne z najlepszymi praktykami w zarządzaniu utrzymaniem ruchu oraz z normami ISO, które zalecają proaktywne podejście do zarządzania ryzykiem w infrastrukturze technicznej.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Kontrolę instalacji elektrycznej, znajdującej się w pomieszczeniach o wysokiej wilgotności (75÷100%), w zakresie efektywności ochrony przed porażeniem elektrycznym należy przeprowadzać co najmniej raz na

A. 4 lata
B. 1 rok
C. 3 lata
D. 2 lata
Instalacje elektryczne w pomieszczeniach wilgotnych, takich jak łazienki czy piwnice, wymagają szczególnej uwagi w kontekście ochrony przeciwporażeniowej. Wilgotność powietrza w takich miejscach może prowadzić do zwiększonego ryzyka porażenia prądem, dlatego też zgodnie z obowiązującymi normami i zaleceniami, takie instalacje powinny być poddawane kontroli co najmniej raz w roku. Regularne przeglądy pozwalają na wczesne wykrywanie potencjalnych usterek, takich jak uszkodzenia izolacji, niewłaściwe zabezpieczenia czy korozja elementów instalacji. Przykładem może być kontrola stanu gniazdek elektrycznych, które w miejscach o wysokiej wilgotności narażone są na działanie wody, co może prowadzić do zwarć. Warto również zwrócić uwagę na zastosowanie odpowiednich zabezpieczeń, takich jak różnicowoprądowe wyłączniki zabezpieczające (RCD), które mogą istotnie zwiększyć poziom bezpieczeństwa. Przestrzeganie tych zasad jest zgodne z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące instalacji elektrycznych w miejscach narażonych na wilgoć.

Pytanie 36

Które z poniższych stwierdzeńnie jest rezultatem przeglądu instalacji elektrycznej?

A. Zachowana jest ciągłość przewodów ochronnych oraz połączeń wyrównawczych
B. Elementy instalacji zostały odpowiednio dobrane i poprawnie zainstalowane
C. Na podstawie danych dostarczonych przez producenta, oznaczeń oraz certyfikatów, elementy instalacji są zgodne z normami bezpieczeństwa
D. W instalacji nie stwierdzono widocznych uszkodzeń, które mogłyby deteriorować bezpieczeństwo
Wnioskowanie na podstawie dostarczonych informacji dotyczących oznakowań, świadectw i oceny wizualnej elementów instalacji elektrycznej wymaga głębszego zrozumienia ich kontekstu i znaczenia. Wskazanie, że elementy instalacji spełniają wymagania bezpieczeństwa, jest niewystarczające bez potwierdzenia ich rzeczywistego stanu i sposobu użytkowania. Po pierwsze, informacje producentów mogą być nieaktualne lub nieprawdziwe w kontekście konkretnej instalacji. Sytuacje, w których elementy instalacji są zainstalowane zgodnie z wymaganiami, nie zawsze zapewniają ich długotrwałą funkcjonalność. W praktyce, nawet jeśli brak widocznych uszkodzeń może sugerować dobry stan techniczny, nie oznacza to automatycznie, że instalacja jest wolna od ukrytych wad. Zdarza się, że uszkodzenia są niewidoczne na pierwszy rzut oka, co może prowadzić do poważnych problemów eksploatacyjnych w przyszłości. Ponadto, każdy element instalacji elektrycznej powinien być regularnie poddawany przeglądom i testom, aby potwierdzić jego integralność. Ważnym aspektem jest także interpretacja wyników pomiarów, które mogą dostarczyć bardziej szczegółowych informacji o ciągłości przewodów ochronnych. Kluczowe jest, aby nie polegać wyłącznie na wnioskach wizualnych i dokumentacyjnych, lecz przeprowadzać systematyczne badania i inspekcje w celu zapewnienia najwyższych standardów bezpieczeństwa, zgodnych z normami takimi jak PN-EN 50110-1, które kładą nacisk na odpowiednie użytkowanie oraz konserwację instalacji elektrycznych.

Pytanie 37

Na podstawie wyników pomiarów zamieszczonych w przedstawionej tabeli określ uszkodzenie występujące w instalacji.

Pomiar napięcia między przewodem PE i drugim punktem instalacji
Drugi punkt pomiaru:Przewód fazowy LPrzewód neutralny NMetalowa rura COMetalowa rura gazowaMetalowa wanna łazienkowa
232 V0 V51 V49 V0 V
Wynik:232 V0 V51 V49 V0 V

A. Zwarcie między przewodem neutralnym i fazowym.
B. Przebicie izolacji przewodu fazowego do metalowych rur.
C. Uszkodzona izolacja przewodu neutralnego w pobliżu wanny.
D. Uszkodzone połączenia wyrównawcze miejscowe.
Poprawna odpowiedź wskazuje na uszkodzone połączenia wyrównawcze miejscowe, co jest zgodne z wynikami pomiarów. W przypadku, gdy napięcie na metalowych elementach instalacji, takich jak rury, wynosi 51 V i 49 V w stosunku do przewodu ochronnego PE, sugeruje to, że połączenia wyrównawcze nie funkcjonują prawidłowo. W dobrze zaprojektowanej instalacji elektrycznej, wszystkie metalowe elementy powinny być podłączone do systemu uziemiającego, co pozwala na równomierne rozłożenie potencjału elektrycznego. Uszkodzenie połączeń wyrównawczych może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem elektrycznym, a także stanowi naruszenie norm bezpieczeństwa określonych w Polskich Normach (PN) oraz Dyrektywie Niskonapięciowej. W praktyce, regularne kontrole i pomiary instalacji elektrycznych są kluczowe, aby zapewnić bezpieczeństwo użytkowników oraz zgodność z obowiązującymi normami. Wykonana analiza wskazuje na konieczność przeprowadzania napraw w celu przywrócenia prawidłowego działania systemu ochrony przeciwporażeniowej.

Pytanie 38

Której z poniższych czynności nie obejmuje zakres kontrolny badań instalacji elektrycznej?

A. Badania zabezpieczeń przed dotykiem pośrednim
B. Pomiarów oraz weryfikacji spadków napięć
C. Oględzin związanych z ochroną przeciwpożarową
D. Pomiarów rezystancji izolacji przewodów
Pomiarów i sprawdzania spadków napięć nie przewiduje zakres badań okresowych instalacji elektrycznej, ponieważ tego rodzaju pomiary są wykonywane w ramach diagnostyki systemów energetycznych, a nie standardowych przeglądów instalacji elektrycznych. W badaniach okresowych koncentruje się na ocenie stanu technicznego instalacji oraz zabezpieczeń, takich jak odporność izolacji przewodów. Pomiar rezystancji izolacji przewodów pozwala na ocenę stanu izolacji i identyfikację potencjalnych zagrożeń związanych z przebiciem. Badania ochrony przed dotykiem pośrednim są kluczowe dla zapewnienia bezpieczeństwa użytkowników, gdyż dotyczą oceny skuteczności systemów zabezpieczeń. Oględziny dotyczące ochrony przeciwpożarowej są niemniej istotne, gdyż pozwalają na wykrycie nieprawidłowości mogących prowadzić do pożaru. Standardy, takie jak PN-IEC 60364, określają szczegółowe wymagania dotyczące badań okresowych, co podkreśla znaczenie poszczególnych metod oceny stanu instalacji elektrycznych.

Pytanie 39

Jakie będą konsekwencje zmiany w instalacji elektrycznej w budynku mieszkalnym przewodów ADG 1,5 mm2 na przewody DY 1,5 mm2?

A. Osłabienie wytrzymałości mechanicznej przewodów
B. Zwiększenie rezystancji pętli zwarcia
C. Obniżenie napięcia roboczego
D. Zwiększenie obciążalności prądowej instalacji
Wymiana przewodów ADG 1,5 mm² na przewody DY 1,5 mm² w elektrycznej instalacji mieszkaniowej prowadzi do zwiększenia obciążalności prądowej instalacji. Przewody DY, w przeciwieństwie do przewodów ADG, charakteryzują się lepszymi właściwościami przewodzenia prądu oraz wyższą odpornością na wpływy mechaniczne i chemiczne. Dzięki zastosowaniu materiałów wysokiej jakości oraz odpowiedniej konstrukcji, przewody DY mogą przenieść większe obciążenia prądowe, co jest szczególnie istotne w kontekście rosnącego zapotrzebowania na energię elektryczną w nowoczesnych gospodarstwach domowych. Przykładem zastosowania przewodów DY może być zainstalowanie w domach systemów inteligentnego zarządzania energią, gdzie stabilność i wydajność przewodów mają kluczowe znaczenie. Warto zauważyć, że zgodnie z obowiązującymi normami, takich jak PN-IEC 60364, zaleca się użycie przewodów o wyższej obciążalności w instalacjach, w których przewiduje się duże obciążenia prądowe.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.