Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 26 maja 2025 11:28
  • Data zakończenia: 26 maja 2025 11:49

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

W miarę wzrostu współczynnika lepkości oleju używanego w systemach hydraulicznych, jakie zmiany zachodzą w lepkości oleju?

A. w mniejszym zakresie przy zmianach temperatury
B. w mniejszym zakresie przy zmianach ciśnienia
C. w szerszym zakresie przy zmianach ciśnienia
D. w szerszym zakresie przy zmianach temperatury
Wybór odpowiedzi wskazujących na szerszy zakres zmian lepkości przy zmianach ciśnienia czy temperatury jest związany z nieporozumieniami na temat działania olejów hydraulicznych i ich właściwości. Wysoki współczynnik lepkości oznacza, że olej jest bardziej oporny na zmiany, co w kontekście temperatury oznacza, że jego lepkość nie zmienia się znacząco, gdy temperatura wzrasta lub maleje. Z kolei przy niskim współczynniku lepkości, olej jest bardziej podatny na te zmiany. W związku z tym, sugerowanie, że olej o wysokiej lepkości może zmieniać swoje właściwości w szerszym zakresie przy zmianach temperatury, jest niezgodne z zasadami fizyki płynów. W układach hydraulicznych, oleje muszą charakteryzować się stabilnością lepkości w określonych warunkach eksploatacyjnych, co jest kluczowe dla efektywności działania. Warto zwrócić uwagę, że nieprawidłowe podejście do doboru oleju może prowadzić do nieefektywności systemu, zwiększonego zużycia energii, a nawet do uszkodzeń komponentów. Dlatego tak ważne jest zrozumienie, jak właściwości oleju wpływają na jego działanie w praktycznych zastosowaniach hydraulicznych.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Podłączenie kondensatora (w układzie równoległym do obciążenia) do wyjścia jednofazowego prostownika działającego w konfiguracji mostka Graetza wpłynie na napięcie wyjściowe w sposób

A. redukcji tętnień
B. zmiany przebiegu jednopulsowego na dwupulsowy
C. zmniejszenia składowej stałej
D. zmiany przebiegu dwupulsowego na jednopulsowy
Zrozumienie wpływu kondensatora na wyjście prostownika jest kluczowe dla prawidłowego projektowania układów elektronicznych. Nieprawidłowe założenie, że kondensator zmienia przebieg jednopulsowy na dwupulsowy, wynika z mylnego rozumienia działania prostowników. W rzeczywistości, prostownik mostkowy zawsze generuje przebieg dwupulsowy, ponieważ każdy cykl prądu zmiennego jest konwertowany na dwa impulsy napięcia stałego. Dodanie kondensatora nie zmienia tego fundamentalnego charakteru działania prostownika. Kolejną błędną koncepcją jest stwierdzenie, że kondensator zmniejsza składową stałą napięcia. W rzeczywistości, kondensator może jedynie wygładzać zmiany napięcia, ale nie prowadzi do zmiany wartości średniej napięcia wyjściowego. W praktycznych zastosowaniach, kondensatory są wykorzystywane głównie do eliminacji tętnień, a nie do modyfikacji składowej stałej. Warto również zauważyć, że dodanie kondensatora nie zmienia przebiegu dwupulsowego na jednopulsowy, ponieważ takie podejście ignoruje zasadnicze różnice w strukturze sygnału. Zamiast tego, kondensator pełni funkcję stabilizatora, poprawiając jakość napięcia na wyjściu. Wnioskując, kluczowe jest, aby przy projektowaniu układów zasilających w pełni zrozumieć rolę kondensatora oraz jego działanie w kontekście analizy częstotliwościowej i filtracji sygnału.

Pytanie 9

Transoptor wykorzystuje się do

A. sygnalizowania transmisji
B. galwanicznej izolacji obwodów
C. galwanicznego połączenia obwodów
D. konwersji impulsów elektrycznych na promieniowanie świetlne
Zamiana impulsów elektrycznych na promieniowanie świetlne jest funkcją, którą pełnią diody LED, a nie transoptory. Transoptor to urządzenie, które wykorzystuje światło do przesyłania sygnałów, ale nie zamienia energii elektrycznej na promieniowanie, tylko używa wewnętrznego źródła światła do aktywacji detektora, co zapewnia separację galwaniczną. Sygnalizacja transmisji, choć może sugerować pewne aspekty działania transoptora, nie oddaje głównego celu tego komponentu, którym jest izolacja. Izolacja galwaniczna jest kluczowym aspektem w wielu aplikacjach, gdzie różne poziomy napięcia muszą być oddzielone, a nie tylko sygnalizowane. W praktyce, transoptory są projektowane specjalnie do tej funkcji, aby chronić obwody przed szkodliwymi skutkami zakłóceń i różnic potencjałów. W związku z tym, odpowiedzi sugerujące sygnalizację czy zamianę energii są mylne i nie odzwierciedlają rzeczywistego zastosowania transoptorów w nowoczesnej elektronice, gdzie kluczowa jest ochrona i niezawodność obwodów.

Pytanie 10

W układzie zastosowano przetworniki ciśnienia o prądowych sygnałach wyjściowych. Na podstawie danych katalogowych przetworników oraz wyników przeprowadzonych pomiarów wskaż, który z przetworników nie działa prawidłowo.

PrzetwornikZakres sygnału
wejściowego
[MPa]
Zakres sygnału
wyjściowego [mA]
Wartość sygnału
wejściowego
[MPa]
Wartość sygnału
wyjściowego [mA]
10 ÷ 10 ÷ 200,5010
20 ÷ 20 ÷ 200,505
30 ÷ 14 ÷ 200,5012
40 ÷ 24 ÷ 200,505

A. Przetwornik 2
B. Przetwornik 1
C. Przetwornik 3
D. Przetwornik 4
Decyzja o wyborze innych przetworników, jak Przetwornik 1, 2 lub 3, wskazuje na błędne zrozumienie podstawowych zasad działania tych urządzeń. Każdy przetwornik ciśnienia ma swoje specyfikacje i charakterystyki wyjściowe, które muszą być zgodne z wartościami ciśnienia, jakie są mierzone. Nieprawidłowe przypisanie funkcji lub wartości sygnałów wyjściowych prowadzi do redukcji efektywności systemu pomiarowego oraz może wprowadzać niepewności w dalszych analizach danych. Problemy te mogą wynikać z niepełnej interpretacji danych katalogowych lub nieuwagi przy analizie wyników pomiarów. W praktyce, przetworniki ciśnienia powinny zawsze działać w określonych granicach tolerancji, a ich sygnały powinny być ściśle monitorowane, aby zapewnić dokładność. Ponadto, nieprawidłowe założenia dotyczące działania przetworników mogą prowadzić do sytuacji, w których błędne decyzje operacyjne są podejmowane na podstawie niedokładnych danych. Warto zwrócić uwagę na standardy branżowe, takie jak normy ISO, które podkreślają znaczenie kalibracji i weryfikacji urządzeń pomiarowych. Niezrozumienie tych zasad może prowadzić do błędnych konkluzji i obniżenia jakości całego procesu technologicznego.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Jakie napięcie wyjściowe przetwornika ciśnienia będzie przy wartościach ciśnienia wynoszących 450 kPa, jeśli jego napięcie wyjściowe mieści się w zakresie od 0 V do 10 V dla ciśnienia od 0 kPa do 600 kPa przy liniowej charakterystyce?

A. 4,5 V
B. 7,5 V
C. 3,0 V
D. 10,0 V
Jeżeli myślimy, że napięcie przetwornika ciśnienia wynosi 3,0 V albo 4,5 V, to widzimy, że coś jest nie tak. Przy 450 kPa, napięcie powinno być wyższe niż 4,5 V, bo to tylko 45% zakresu. Jak wybierzesz 3,0 V, to jesteśmy jeszcze dalej od prawdziwej wartości, która wynosi 7,5 V, co wskazuje na znaczące niedoszacowanie. Gdy mówimy o 10,0 V, to nie bierzemy pod uwagę limitów przetwornika, bo maksymalne ciśnienie 600 kPa to tylko 10 V. Takie myślenie prowadzi do błędnych wniosków, bo nie uwzględnia, że napięcie jest ściśle związane z ciśnieniem. Często ludzie myślą, że napięcie zawsze może być maksymalne, niezależnie od ciśnienia. Warto zrozumieć, że te rzeczy muszą być obliczane na podstawie proporcji. W praktyce, jeśli źle zinterpretujemy dane z przetwornika, może to prowadzić do poważnych problemów, takich jak niewłaściwe ustawienia systemu, co wpłynie na wydajność procesów przemysłowych.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jakie narzędzie powinno się zastosować do przygotowania przewodu LgY 0,75 mm2 przed jego montażem w listwie zaciskowej?

A. Klucz płaski
B. Klucz dynamometryczny
C. Zaciskarkę konektorów
D. Zaciskarkę tulejek
Zaciskarka tulejek jest narzędziem przeznaczonym do trwałego łączenia przewodów z różnymi typami konektorów, co jest kluczowe w procesie przygotowania przewodu LgY 0,75 mm² do montażu w listwie zaciskowej. Użycie zaciskarki pozwala na uzyskanie solidnego i niezawodnego połączenia, które jest zgodne z normami bezpieczeństwa oraz standardami branżowymi, takimi jak PN-EN 60352. Przykładem zastosowania zaciskarki tulejek jest łączenie przewodów w instalacjach elektrycznych, gdzie wymagane jest zapewnienie wysokiej jakości połączeń elektrycznych, zwłaszcza w sytuacjach, gdy przewody są narażone na wibracje lub zmiany temperatury. Przeprowadzenie prawidłowego zaciskania pozwala na uzyskanie niskiej rezystancji połączenia, co jest kluczowe dla efektywności energetycznej oraz bezpieczeństwa użytkowania instalacji. Korzystając z dobrej jakości zaciskarki, można również uniknąć problemów związanych z luźnymi połączeniami, które mogą prowadzić do przegrzewania się przewodów i potencjalnych zagrożeń pożarowych.

Pytanie 16

Jaką metodę łączenia materiałów należy wykorzystać do zestawienia stali nierdzewnej z mosiądzem?

A. Lutowanie twarde
B. Klejenie
C. Lutowanie miękkie
D. Zgrzewanie
Lutowanie twarde jest techniką, która idealnie nadaje się do łączenia stali nierdzewnej i mosiądzu, dzięki właściwościom materiałów oraz temperaturze lutowania. Lutowanie twarde polega na stosowaniu stopów lutowniczych, które mają wyższą temperaturę topnienia niż w przypadku lutowania miękkiego, co pozwala na uzyskanie mocniejszych połączeń. Technika ta jest szczególnie cenna w zastosowaniach przemysłowych, gdzie wymagana jest wysoka wytrzymałość mechaniczna i odporność na korozję. Przykładem mogą być elementy w instalacjach hydraulicznych, gdzie połączenie stali nierdzewnej z mosiężnymi złączkami pozwala na zapewnienie długotrwałej i szczelnej pracy. Warto również zauważyć, że lutowanie twarde jest zgodne z normami przemysłowymi, takimi jak ISO 17672, które określają wymagania dotyczące materiałów stosowanych w procesie lutowania. Dzięki tym właściwościom, lutowanie twarde stanowi najlepszy wybór do tego typu zastosowań.

Pytanie 17

Którego urządzenia nie wolno zasilać z źródła napięcia oznaczonego jako 400 V; 3/N/PE ~50 Hz?

A. Silnika prądu stałego o napięciu 400 V
B. Silnika trójfazowego klatkowego o napięciu międzyfazowym 400 V skojarzonego w Δ
C. Transformatora trójfazowego o napięciu górnym 400 V i skojarzeniu Dy5
D. Silnika jednofazowego o napięciu 230 V
Silnik prądu stałego o napięciu 400 V nie może być zasilany ze źródła napięciowego 400 V; 3/N/PE ~50 Hz, ponieważ wymaga on specyficznego napięcia zasilania i charakterystyki napięcia stałego. Silniki prądu stałego są projektowane do pracy przy konkretnym napięciu, a ich zasilanie napięciem przemiennym mogłoby spowodować uszkodzenie mechanizmu wirnika oraz układów regulacji. W praktyce, silniki te są zasilane z falowników lub prostowników, które konwertują napięcie przemienne na stałe. Standardy IEC 60034 dotyczące maszyn elektrycznych oraz normy dotyczące bezpieczeństwa elektrycznego podkreślają konieczność stosowania odpowiednich wartości napięcia, aby zapewnić prawidłową i bezpieczną pracę urządzeń. Należy również pamiętać, że każdy silnik powinien być dopasowany do specyfikacji źródła zasilania, co zapobiega nieprawidłowym działaniom i możliwym uszkodzeniom.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Taśmociąg, który jest napędzany trójfazowym silnikiem indukcyjnym, porusza się w kierunku przeciwnym do oczekiwanego. Co może być tego przyczyną?

A. zwarciem dwóch faz.
B. zwarciem jednej fazy z obudową.
C. przerwą w jednej z faz.
D. błędną sekwencją faz.
Kiedy w jednej fazie jest przerwa, to zazwyczaj silnik w ogóle nie działa, a nie że zmienia kierunek obrotów. Zmiany w fazach nie wywołają odwrócenia kierunku, tylko silnik może chodzić słabiej lub wcale. A jak faza zetknie się z obudową, to już jest poważny problem, który może uszkodzić sam silnik i inne części. Z kolei zwarcie dwóch faz nie zmienia kierunku obrotów, ale może silnik mocno przeciążyć, co prowadzi do jego przegrzania i uszkodzenia. Ludzie często mylą przyczyny z objawami, co może prowadzić do błędnych wniosków. Kierunek obrotów silnika indukcyjnego to wypadkowa sekwencji zasilania faz, a nie jakieś inne problemy. Dlatego musisz przestrzegać zasad instalacji oraz zaleceń producentów, żeby uniknąć problemów z działaniem maszyn.

Pytanie 21

Która z poniższych metod nie jest wykorzystywana do trwałego łączenia elementów z tworzyw sztucznych?

A. Zgrzewania
B. Klejenia
C. Spawania
D. Zaginania
Spawanie, zgrzewanie i klejenie to techniki, które są powszechnie stosowane do trwałego łączenia elementów wykonanych z tworzyw sztucznych, co czyni je nieodpowiednimi odpowiedziami na zadane pytanie. Spawanie polega na stosowaniu wysokiej temperatury w celu stopienia krawędzi dwóch elementów, co stoi w sprzeczności z celem pytania, ponieważ łączy je na trwałe. Zgrzewanie natomiast wykorzystuje ciepło i ciśnienie do połączenia materiałów, co jest typowe dla cienkowarstwowych tworzyw sztucznych, takich jak polietylen czy polipropylen. Te metody są szczególnie cenione w przemyśle, ponieważ pozwalają na uzyskanie mocnych i odpornych na czynniki zewnętrzne połączeń. Klejenie, z użyciem odpowiednich adhezyjnych substancji chemicznych, również umożliwia trwałe łączenie elementów z tworzyw sztucznych, a współczesne technologie oferują szeroki wachlarz klejów, które zapewniają różne właściwości, takie jak elastyczność czy odporność na wysokie temperatury. Typowe błędy myślowe prowadzące do wyboru tych odpowiedzi mogą wynikać z mylenia procesów formowania z procesami łączenia. Ważne jest zrozumienie, że każdy z tych procesów ma swoje specyficzne zastosowania i nie każdy z nich jest odpowiedni do trwałego łączenia elementów wykonanych z tworzyw sztucznych.

Pytanie 22

Jakie wymiary biorą pod uwagę dopuszczalne odchylenia w realizacji elementu mechanicznego?

A. Nominalne
B. Rzeczywiste
C. Jednostronne
D. Graniczne
Odpowiedzi "Nominalne", "Rzeczywiste" oraz "Jednostronne" nie uwzględniają prawidłowych koncepcji odnoszących się do tolerancji wykonania elementów mechanicznych. Wymiar nominalny to teoretyczna wartość, która nie bierze pod uwagę ewentualnych błędów wykonawczych. W praktyce, stosowanie jedynie wymiarów nominalnych prowadziłoby do niezgodności w produkcie, gdyż nie zabezpieczałoby to elementów przed nieprawidłowościami w procesie ich wytwarzania. Z kolei wymiary rzeczywiste opisują rzeczywisty wymiar wykonanej części, który może się różnić od wymiaru nominalnego oraz są wynikiem procesów produkcyjnych, a ich analiza jest istotna na etapie kontroli jakości. Wymiar jednostronny z kolei odnosi się do systemu tolerancji, który definiuje jedynie jeden kierunek tolerancji, co w wielu zastosowaniach nie jest wystarczające, ponieważ nie uwzględnia błędów w innym kierunku, co może prowadzić do problemów z pasowaniem. Stosowanie takich koncepcji w projektowaniu elementów mechanicznych często prowadzi do niewłaściwego zrozumienia zasad tolerancji oraz ich wpływu na finalną jakość produktu. Kluczowe jest zrozumienie, że tolerancje graniczne są niezbędne dla zapewnienia, że części będą funkcjonować poprawnie razem w odpowiednich warunkach eksploatacyjnych.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Siłownik hydrauliczny o powierzchni tłoka A = 20 cm2 musi wygenerować siłę F = 30 kN. Jakie powinno być ciśnienie oleju?

A. 15 bar
B. 15 000 bar
C. 150 bar
D. 1 500 bar
Wybór ciśnienia 15 000 bar jest niewłaściwy, ponieważ wartość ta przekracza wytrzymałość typowych materiałów stosowanych w hydraulice. Tak ekstremalne ciśnienie nie jest praktykowane w żadnym standardowym zastosowaniu hydraulicznym. To prowadzi do mylnego wrażenia, że wyższe ciśnienie zawsze oznacza większą moc, co jest błędne. Niepotrzebne zwiększenie ciśnienia może prowadzić do uszkodzeń elementów układu hydraulicznego, a w skrajnych przypadkach do katastrof. Odpowiedź 1 500 bar również jest niepoprawna, ponieważ przeliczenia wskazują, że jest to wartość znacznie wyższa niż wymagana w danym przypadku. Z kolei 15 bar jest zbyt niskim ciśnieniem, co skutkowałoby nieskutecznością siłownika w wytwarzaniu wymaganej siły. Istotnym błędem w myśleniu może być niepełne zrozumienie zasad działania hydrauliki, gdzie kluczowe są proporcje między siłą, ciśnieniem i powierzchnią czynnych tłoków. Właściwe obliczenia i dobór parametrów są kluczowe w projektowaniu i eksploatacji maszyn hydraulicznych, co podkreśla znaczenie edukacji technicznej oraz przestrzegania standardów branżowych. Zrozumienie tych zasad pozwala na uniknięcie kosztownych błędów oraz zwiększa bezpieczeństwo operacyjne w zastosowaniach hydraulicznych.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Podczas rozbierania łożysk kulkowych powinno się wykorzystać

A. ściągacz
B. klucz dynamometryczny
C. palnik gazowy
D. młotek
Ściągacz to narzędzie specjalnie zaprojektowane do usuwania łożysk, kołków i innych elementów, które mogą być trudne do wyjęcia z powodu ich pasowania lub osadzenia na wrzecionie. W przypadku łożysk kulkowych, ściągacz umożliwia równomierne i bezpieczne usunięcie łożyska z wału lub obudowy bez ryzyka uszkodzenia elementów. Użycie ściągacza minimalizuje ryzyko uszkodzeń powierzchni oraz zmniejsza potrzebę stosowania siły, co wpływa na przedłużenie żywotności zarówno łożyska, jak i wału. W praktyce, podczas serwisowania maszyn lub pojazdów, ściągacz jest często standardowym wyposażeniem warsztatu, zgodnym z branżowymi standardami bezpieczeństwa i efektywności. Zaleca się stosowanie ściągaczy o odpowiednim rozmiarze, co zapewnia precyzyjne dopasowanie do usuwanego elementu. Dodatkowo, warto zapoznać się z procedurami demontażu opisanymi w dokumentacji technicznej producentów, aby zapewnić prawidłowe wykonanie operacji.

Pytanie 27

Jaką rezystancję ma świecąca żarówka, której napięcie nominalne wynosi 230 V, a moc to 100 W?

A. 529 ?
B. 460 ?
C. 2,3 ?
D. 23 k?
Wynik 2,3 Ω to zdecydowanie za mało dla żarówki przy zadanym napięciu i mocy. To sugeruje, że żarówka by przewodziła ogromne prądy, co byłoby niebezpieczne. A 23 kΩ? No, to już za dużo, bo sugeruje, że żarówka w ogóle nie przewodzi prądu, co mija się z rzeczywistością. 460 Ω mogłoby być efektem złych obliczeń dotyczących mocy lub napięcia, ale to też nie pasuje do praktycznych zastosowań. W obliczeniach rezystancji trzeba brać pod uwagę zarówno napięcie, jak i moc, inaczej możemy dojść do błędnych konkluzji. Najczęstsze pomyłki to na przykład mylenie jednostek czy błędne przekształcanie wzorów. W projektowaniu obwodów niezwykle istotne jest, żeby dobrze rozumieć rezystancję komponentów, bo ma to wpływ na ich dobór, a przez to na wydajność i bezpieczeństwo całego systemu elektrycznego.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

W normalnych warunkach działania wyłącznika różnicowoprądowego wektorowa suma natężeń prądów sinusoidalnych przepływających w przewodach fazowych oraz neutralnym wynosi

A. 1 A
B. 3 A
C. 2 A
D. 0 A
W przypadku wyłącznika różnicowoprądowego, jego podstawowym zadaniem jest monitorowanie różnicy natężeń prądu między przewodami fazowymi a przewodem neutralnym. W warunkach normalnej pracy, gdy urządzenie działa prawidłowo, suma wektorowa natężeń prądów płynących przez przewody powinna wynosić 0 A. Oznacza to, że prąd wpływający do obwodu przez przewód fazowy jest równy prądowi wypływającemu przez przewód neutralny. Przykładowo, jeśli w obwodzie mamy trzy przewody fazowe, każdy z określonym natężeniem prądu, to ich suma wektorowa, uwzględniająca odpowiednie fazy, powinna wskazywać na zerowe natężenie w przewodzie neutralnym. Zgodnie z normą PN-IEC 61008, wyłączniki różnicowoprądowe są projektowane w taki sposób, aby skutecznie wykrywać różnice prądów oraz zapewniać bezpieczeństwo użytkowników poprzez automatyczne odłączenie obwodu w przypadku wykrycia upływu prądu. Taka funkcjonalność jest kluczowa w instalacjach elektrycznych, gdzie bezpieczeństwo i ochrona przed porażeniem prądem są priorytetami.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Silniki, które mają największy moment rozruchowy to

A. szeregowe prądu stałego
B. asynchroniczne prądu przemiennego
C. bocznikowe prądu stałego
D. synchroniczne prądu przemiennego
Silniki szeregowe prądu stałego charakteryzują się największym momentem rozruchowym spośród różnych typów silników elektrycznych. Dzieje się tak, ponieważ w silniku szeregowym wirnik i uzwojenie wzbudzenia są połączone szeregowo, co prowadzi do zmaksymalizowania prądu, który płynie przez uzwojenie wzbudzenia podczas rozruchu. W rezultacie moment obrotowy generowany w chwilach niskich prędkości jest znacznie większy niż w innych typach silników. Praktycznie rzecz biorąc, silniki te są często stosowane w aplikacjach, gdzie wymagany jest wysoki moment obrotowy przy niskich prędkościach, takich jak wózki widłowe, dźwigi czy pojazdy elektryczne. Dzięki ich konstrukcji, silniki te mogą przekazywać dużą moc przy niewielkich prędkościach, co czyni je idealnym wyborem w sytuacjach, gdzie siła jest kluczowa. W branży inżynieryjnej standardy dotyczące doboru silników pod kątem momentu rozruchowego są ściśle przestrzegane, co pozwala na optymalne dobieranie urządzeń do konkretnych zadań.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.