Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 10 czerwca 2025 10:45
  • Data zakończenia: 10 czerwca 2025 10:48

Egzamin niezdany

Wynik: 4/40 punktów (10,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W maszynach wirujących można zdiagnozować nieosiowe położenie wałów, niewyważenie mas wirujących lub ugięcie wałów

A. testerem izolacji
B. tachometrem
C. rejestratorem prądu
D. analizatorem drgań
Analizator drgań jest kluczowym narzędziem w diagnostyce maszyn wirujących, ponieważ umożliwia szczegółową analizę drgań generowanych przez maszyny, co pozwala na wykrycie nieprawidłowości związanych z ich ustawieniem, wyważeniem czy ugięciem wałów. Pomiar drgań jest istotnym elementem monitorowania stanu technicznego maszyn, zgodnie z normami ISO 10816 dotyczącymi oceny stanu maszyn na podstawie pomiarów drgań. Analizator drgań może wykryć różne rodzaje nieprawidłowości, takie jak niewyważenie, które prowadzi do nadmiernych drgań i może skutkować uszkodzeniami łożysk czy innych komponentów. Przykładowo, w przypadku silników elektrycznych, analiza drgań może pomóc w ocenie ich wyważenia oraz identyfikacji problemów z łożyskami, co pozwala na wczesne podjęcie działań serwisowych. W praktyce, regularne monitorowanie drgań może znacznie wydłużyć żywotność maszyn, a także zredukować koszty związane z nieplanowanymi przestojami i naprawami.

Pytanie 2

Jaka jest maksymalna wartość podciśnienia, które może być doprowadzone do zaworu o danych znamionowych zamieszczonych w tabeli?

MS-18-310/2-HN
Zawory elektromagnetyczne 3/2 G1/8
Średnica nominalna : 1,4 mm
Ciśnienie pracy : -0,95 bar...8 bar
Czas zadziałania : 12 ms
Temperatura pracy : -10°C...+70°C
Zabezpieczenie : IP 65 EN 60529
Napięcie sterujące : 12V DC - 230V AC

A. 0,75 bara.
B. 1 bar.
C. 0,95 bara.
D. 2 bary.
Wybór odpowiedzi, która nie wskazuje 0,95 bara jako maksymalnej wartości podciśnienia, może wynikać z kilku nieporozumień dotyczących interpretacji danych technicznych. Na przykład, wybór 0,75 bara jako maksymalnej wartości mógłby sugerować, że użytkownik nie zauważył pełnego zakresu ciśnień, który zawór może obsłużyć. W rzeczywistości maksymalne podciśnienie, które może być doprowadzone do zaworu, jest wyraźnie określone w dokumentacji technicznej, a jego przekroczenie może prowadzić do uszkodzenia urządzenia. Stosowanie ciśnień wyższych niż 0,95 bara, jak w przypadku odpowiedzi 2 bary lub 1 bar, wskazuje na nieporozumienie w zakresie parametrów pracy zaworu. Takie podejście może prowadzić do nieprawidłowego doboru urządzeń w systemach ciśnieniowych, co może skutkować nieefektywnym działaniem lub awarią. Na przykład, w systemach hydraulicznych istotne jest przestrzeganie określonych limitów ciśnienia, aby zapewnić bezpieczeństwo i wydajność. W praktyce, niedocenienie wartości podciśnienia może mieć poważne konsekwencje dla trwałości zaworów oraz całego układu, co podkreśla znaczenie dokładnej analizy danych technicznych i konsultacji z tabelami znamionowymi przed podjęciem decyzji o doborze komponentów.

Pytanie 3

Podczas działania napędu zwrotnego z użyciem silnika prądu stałego zaobserwowano, że prędkość obrotowa silnika jest różna w obu kierunkach oraz że iskrzenie szczotek przy obrocie w jedną stronę jest znacznie większe niż przy obrocie w kierunku przeciwnym. Jakie kroki należy podjąć w celu naprawy silnika?

A. Zamienić łożyska
B. Obtoczyć oraz przeszlifować komutator
C. Ustawić szczotki w strefie neutralnej
D. Znormalizować nacisk szczotek
Wymiana łożysk nie rozwiąże problemu nierównej prędkości obrotowej oraz intensywnego iskrzenia szczotek. Łożyska odpowiadają za utrzymanie osi silnika w odpowiedniej pozycji i zmniejszenie tarcia, jednakże nie mają wpływu na działanie komutatora ani na kontakt szczotek z wirnikiem. Z kolei ujednolicanie nacisku szczotek, chociaż może wydawać się logicznym rozwiązaniem, nie adresuje bezpośrednio problemu iskrzenia, które jest wynikiem niewłaściwego ustawienia szczotek. Obtoczenie i przeszlifowanie komutatora mogą jedynie częściowo poprawić sytuację, ale nie zlikwidują źródła problemu, jakim jest niewłaściwe ustawienie szczotek. Ustawienie szczotek w strefie neutralnej jest nie tylko najlepszym sposobem na rozwiązanie zaobserwowanych problemów, ale także jest zgodne z praktykami stosowanymi w serwisie silników prądu stałego, co podkreśla znaczenie precyzyjnej diagnostyki oraz regulacji. Ostatecznie, te działania powinny być częścią regularnych przeglądów technicznych, aby zapewnić długotrwałą i efektywną pracę silnika.

Pytanie 4

Do czego służy stabilizator napięcia?

A. do przekształcania napięcia przemiennego w napięcie stałe
B. do utrzymywania stałego napięcia niezależnie od zmian natężenia prądu obciążenia oraz zmian napięcia wejściowego
C. do konwersji napięcia przemiennego na napięcie przemienne o innej częstotliwości oraz innej wartości skutecznej
D. do wygładzania napięcia po prostowaniu przez prostownik
Stabilizator napięcia jest urządzeniem, które ma za zadanie utrzymywanie stałego napięcia na wyjściu, niezależnie od zmian natężenia prądu obciążenia oraz fluktuacji napięcia wejściowego. W praktyce oznacza to, że gdy obciążenie zmienia się, a także gdy napięcie zasilające ulega zmianie (na przykład w wyniku wahań w sieci energetycznej), stabilizator zapewnia, że napięcie na wyjściu pozostaje na pożądanym poziomie. Przykładem zastosowania stabilizatorów napięcia są zasilacze do urządzeń elektronicznych, takich jak komputery czy telewizory, które wymagają stałego napięcia do prawidłowego działania. W branży elektronicznej oraz elektrycznej, stosowanie stabilizatorów napięcia jest zgodne z dobrymi praktykami, które mają na celu zapewnienie niezawodności i bezpieczeństwa urządzeń. Stabilizatory mogą również chronić sprzęt przed uszkodzeniami spowodowanymi nadmiernym wzrostem napięcia lub jego spadkiem. Warto zaznaczyć, że stabilizatory mogą działać w różnych trybach, w tym jako liniowe lub impulsowe, w zależności od zastosowania i wymagań dotyczących efektywności energetycznej.

Pytanie 5

Jaką sprężarkę klasyfikuje się jako sprężarkę wyporową?

A. Sprężarkę osiową
B. Turbosprężarkę
C. Sprężarkę śrubową
D. Sprężarkę promieniową
Sprężarki promieniowe, osiowe i turbosprężarki to przykłady sprężarek dynamicznych, które działają na zupełnie innych zasadach niż sprężarki wyporowe. Sprężarki promieniowe wprowadzają powietrze w kierunku promieniowym, a energia kinetyczna jest przekazywana na sprężany gaz, co prowadzi do wzrostu ciśnienia. Natomiast sprężarki osiowe wykorzystują wirnik, który poprzez obrót generuje siłę odśrodkową, sprężając gaz wzdłuż osi wirnika. Turbosprężarki z kolei, będące specyficznym rodzajem sprężarek, są często używane w silnikach spalinowych do zwiększenia mocy, jednak ich zasada działania opiera się głównie na odzyskiwaniu energii ze spalin. Typowe błędy myślowe, które prowadzą do mylenia tych typów sprężarek ze sprężarkami wyporowymi, obejmują nieznajomość podstawowych różnic w mechanizmach działania. Warto podkreślić, że sprężarki wyporowe są bardziej efektywne w aplikacjach wymagających stałego ciśnienia, podczas gdy sprężarki dynamiczne są bardziej odpowiednie w zastosowaniach, gdzie kluczowe znaczenie ma wysoka prędkość i wydajność przepływu, jak na przykład w systemach wentylacyjnych czy chłodziarek. Zrozumienie tych różnic jest istotne dla prawidłowego doboru sprężarki do określonej aplikacji przemysłowej.

Pytanie 6

Do połączeń spoczynkowych trwałych nie wlicza się

A. nitowania
B. kołkowania
C. spawania
D. klejenia
Kołkowanie to technika łączenia elementów, która nie tworzy połączeń spoczynkowych nierozłącznych. W przeciwieństwie do spawania, klejenia czy nitowania, kołkowanie polega na wprowadzeniu kołków w otwory w elementach, co pozwala na ich łatwe zdemontowanie. To podejście jest często stosowane w konstrukcjach, gdzie wymagana jest możliwość demontażu w przyszłości, jak na przykład w budownictwie modułowym. W praktyce oznacza to, że kołkowane połączenia mogą być używane w miejscach, gdzie zachodzi potrzeba konserwacji lub wymiany komponentów bez konieczności uszkadzania całej struktury. Zgodnie z normami ISO oraz PN, kołkowanie odbywa się z zachowaniem odpowiednich tolerancji wymiarowych i materiałowych, co zapewnia ich niezawodność i bezpieczeństwo. Warto również zauważyć, że kołkowanie jest jedną z metod stosowanych w różnych branżach, w tym w motoryzacji i konstrukcjach stalowych, gdzie elastyczność w montażu jest kluczowa.

Pytanie 7

Ciecze hydrauliczne o podwyższonej odporności na ogień, wykorzystywane w miejscach narażonych na wybuch, to ciecze oznaczone symbolami

A. HPG, HTG, HT
B. HV, HLP, HLPD
C. HLP, HFA, HTG
D. HFA, HFC, HFD
Wybór innych odpowiedzi wiąże się z błędnym zrozumieniem klasyfikacji cieczy hydraulicznych oraz ich właściwości. Odpowiedzi HLP oraz HTG odnoszą się do cieczy, które nie mają właściwości trudnopalnych. HLP to oleje hydrauliczne, które mogą być palne i nie są przeznaczone do stosowania w środowiskach o podwyższonym ryzyku pożarowym. Również HTG to oleje typu 'thermo-glycol', które są wykorzystywane do systemów grzewczych, a nie jako cieczy hydraulicznych w warunkach zagrożenia eksplozją. Odpowiedzi takie jak HPG i HT mogą być mylone z cieczami trudnopalnymi, jednak nie odpowiadają standardom wymaganym dla aplikacji, gdzie bezpieczeństwo jest priorytetem. Często błędem myślowym jest przekonanie, że wszystkie oleje mogą być stosowane w każdym warunku, co prowadzi do niebezpiecznych sytuacji w miejscach, gdzie występuje potencjalne ryzyko zapłonu. W celu zapewnienia bezpieczeństwa, kluczowe jest, aby użytkownicy posiadali wiedzę na temat odpowiednich standardów oraz certyfikacji cieczy hydraulicznych, takich jak ISO 12922, które definiują wymagania dotyczące ich palności oraz zastosowania w specyficznych warunkach operacyjnych.

Pytanie 8

Elementy, które umożliwiają przepływ medium wyłącznie w jednym kierunku, to zawory

A. zwrotne
B. rozdzielające
C. dławiące
D. regulacyjne
Zawory zwrotne, znane również jako zawory jednostronne, pełnią kluczową rolę w systemach hydraulicznych i pneumatycznych, zapewniając przepływ czynnika roboczego tylko w jednym kierunku. Ich podstawowym zadaniem jest zapobieganie cofaniu się cieczy lub gazu, co może prowadzić do poważnych uszkodzeń urządzeń oraz obiegów. W praktyce, zawory zwrotne są często stosowane w instalacjach wodociągowych, systemach odwadniających, a także w układach pneumatycznych, gdzie ich skuteczność jest niezbędna dla prawidłowego funkcjonowania całego systemu. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie stosowania odpowiednich komponentów, w tym zaworów zwrotnych, aby zapewnić niezawodność i bezpieczeństwo działania instalacji. Warto również zaznaczyć, że w przypadku ich zastosowania w budownictwie, zawory zwrotne chronią przed powstawaniem podciśnienia, co może prowadzić do niepożądanych skutków, takich jak uszkodzenia instalacji lub zmniejszenie efektywności energetycznej urządzeń. Z tego względu, znajomość i umiejętność doboru zaworów zwrotnych w odpowiednich aplikacjach jest niezwykle istotna dla inżynierów i techników.

Pytanie 9

W trakcie serwisowania urządzenia mechatronicznego, w którym istnieje ryzyko wystąpienia napięcia elektrycznego, technik mechatronik powinien stosować

A. nienaruszonych narzędzi izolowanych
B. rękawic ochronnych i fartucha ochronnego
C. szczypiec oraz zestawu wkrętaków
D. okularów ochronnych i fartucha ochronnego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Używanie nieuszkodzonych narzędzi izolowanych jest kluczowym elementem zapewnienia bezpieczeństwa podczas pracy z urządzeniami mechatronicznymi, w których może występować niebezpieczne napięcie elektryczne. Narzędzia izolowane, takie jak śrubokręty, szczypce czy klucze, są zaprojektowane z myślą o minimalizacji ryzyka porażenia prądem elektrycznym. Izolacja narzędzi powinna spełniać odpowiednie normy, takie jak IEC 60900, które określają wymagania dotyczące narzędzi używanych w obszarach narażonych na wysokie napięcia. Przykładem zastosowania izolowanych narzędzi może być naprawa elektrycznych systemów sterowania w robotach przemysłowych, gdzie dostęp do napięciowych elementów urządzenia wiąże się z ryzykiem. W praktyce, stosowanie tych narzędzi powinno być rutyną w codziennej pracy mechatronika, a przed każdym użyciem należy upewnić się, że nie ma widocznych uszkodzeń izolacji. Regularne kontrole i konserwacja narzędzi izolowanych są również niezbędne, aby zapewnić ich niezawodność i skuteczność.

Pytanie 10

Jakie urządzenia oraz przyrządy pomiarowe są kluczowe do określenia parametrów filtrów pasmowych?

A. Częstościomierz i miernik uniwersalny
B. Amperomierz i oscyloskop
C. Generator fali stojącej oraz woltomierz
D. Generator i oscyloskop

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Generator i oscyloskop to naprawdę ważne narzędzia, które pomagają w określaniu parametrów filtrów pasmowych. Generator wytwarza różne sygnały o różnych częstotliwościach, co jest super przydatne, bo pozwala na testowanie, jak filtr reaguje na różne pasma. Dzięki temu, można sprawdzić, które częstotliwości przechodzą, a które są tłumione. Oscyloskop natomiast wizualizuje te sygnały, więc dokładnie można analizować kształt i amplitudę sygnału wyjściowego filtru w odpowiedzi na sygnał wejściowy. Na przykład, kiedy analizujemy filtr dolnoprzepustowy, ustawiamy różne częstotliwości za pomocą generatora, a oscyloskop pokazuje, jak filtr tłumi sygnały, które są wyższe niż jego częstotliwość graniczna. To wszystko jest zgodne z najlepszymi praktykami w inżynierii elektronicznej i pozwala na precyzyjne projektowanie oraz testowanie układów elektronicznych.

Pytanie 11

Osoba obsługująca urządzenie generujące drgania, takie jak młot pneumatyczny, powinna być przede wszystkim wyposażona

A. w rękawice antywibracyjne
B. w odzież ochronną
C. w hełm ochronny
D. w gogle ochronne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rękawice antywibracyjne to naprawdę ważna rzecz dla ludzi, którzy pracują z maszynami, które drżą, jak na przykład młot pneumatyczny. Te drgania mogą prowadzić do poważnych problemów zdrowotnych, na przykład do zespołu wibracyjnego, który uszkadza nerwy i stawy. Dlatego właśnie te rękawice są zaprojektowane tak, żeby pochłaniać te drgania, co bardzo pomaga w zmniejszeniu ich wpływu na dłonie i ramiona. Z własnego doświadczenia powiem, że dzięki nim praca staje się znacznie bardziej komfortowa, a czas, kiedy można bezpiecznie używać sprzętu, naprawdę się wydłuża. Widzisz to często w budownictwie, gdzie pracownicy używają młotów wyburzeniowych. Normy ISO 5349 mówią, że takie rękawice to dobry sposób na to, żeby zminimalizować ryzyko zdrowotne związane z długotrwałym narażeniem na drgania.

Pytanie 12

Jakie zjawisko fizyczne wyróżnia przetwornik piezoelektryczny?

A. Modyfikacja rezystancji przewodnika w reakcji na przyłożoną siłę rozciągającą
B. Wytwarzanie siły elektromotorycznej na granicy dwóch metali
C. Zmiana napięcia na końcach elementu przewodzącego prąd w wyniku działania pola magnetycznego
D. Wytwarzanie ładunku elektrycznego na powierzchni elementu pod wpływem zastosowanej siły kompresyjnej lub rozciągającej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przetworniki piezoelektryczne działają na zasadzie zjawiska piezoelektrycznego, które polega na generowaniu ładunku elektrycznego na powierzchni materiału pod wpływem przyłożonej siły mechanicznej, takiej jak ściskanie lub rozciąganie. Materiały piezoelektryczne, takie jak kwarc czy ceramika piezoelektryczna, wykazują unikalne właściwości, które pozwalają im przekształcać energię mechaniczną w elektryczną i odwrotnie. To zjawisko znajduje szerokie zastosowanie w technologii, na przykład w mikrofonach, głośnikach oraz czujnikach siły i drgań. W praktyce, gdy na przetwornik piezoelektryczny działa siła, np. podczas nacisku, atomy w materiale przesuwają się, co prowadzi do powstania różnicy potencjałów i wytworzenia ładunku elektrycznego. Przetworniki te są wykorzystywane w medycynie (np. w ultrasonografii) oraz w przemyśle motoryzacyjnym do monitorowania drgań i stanu technicznego pojazdów. Zarówno w projektowaniu, jak i w zastosowaniach inżynieryjnych, znajomość właściwości materiałów piezoelektrycznych oraz ich zastosowania w różnych dziedzinach jest kluczowa dla efektywnego wykorzystania tej technologii.

Pytanie 13

Cyfrowy tachometr jest narzędziem do mierzenia

A. naprężeń w metalach
B. prędkości obrotowej wału silnika
C. lepkości cieczy
D. natężenia przepływu powietrza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Tachometr cyfrowy to urządzenie, które służy do precyzyjnego pomiaru prędkości obrotowej wału silnika. W praktyce, tachometry cyfrowe są niezbędne w wielu dziedzinach, takich jak motoryzacja, przemysł czy inżynieria. Zasada działania tych urządzeń opiera się na pomiarze liczby obrotów wału w określonym czasie, co pozwala na obliczenie prędkości obrotowej w jednostkach takich jak obroty na minutę (RPM). Przykład zastosowania tachometru cyfrowego można znaleźć w diagnostyce silników, gdzie jego pomiar pozwala na ocenę stanu technicznego oraz efektywności działania jednostki napędowej. W branży motoryzacyjnej, tachometry są często używane do regulacji pracy silnika, co ma wpływ na osiągi pojazdu oraz jego zużycie paliwa. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie precyzyjnych pomiarów w procesach inżynieryjnych, co czyni tachometry cyfrowe kluczowym elementem w zapewnieniu jakości i efektywności systemów mechanicznych.

Pytanie 14

Używane wielokrotnie w ciągu jednej godziny przyrządy oraz narzędzia powinny być zgodnie z zasadami ergonomii w

A. widoczności.
B. pomieszczeniu, gdzie znajduje się stanowisko pracy.
C. zasięgu ręki.
D. zapleczu zakładu pracy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "zasięg ręki" jest jak najbardziej trafna. Z mojego doświadczenia wynika, że ergonomiczne zasady są kluczowe w każdej pracy. Ważne jest, żeby narzędzia były pod ręką, bo to naprawdę ułatwia życie. Jak narzędzia są w zasięgu ręki, to unikamy dziwnych ruchów, które mogą prowadzić do kontuzji czy po prostu zmęczenia. Na przykład, w produkcji, gdzie często trzeba sięgać po różne rzeczy, dobrze umiejscowione narzędzia mogą zwiększyć wydajność i bezpieczeństwo. Normy jak ISO 9241 mówią, że trzeba dostosować stanowisko pracy do potrzeb ludzi, co oznacza, że wszystko musi być łatwo dostępne. Dbając o ergonomię, nie tylko pomagamy pracownikom, ale też poprawiamy wyniki firmy.

Pytanie 15

Nie można zrealizować regulacji prędkości obrotowej silników indukcyjnych poprzez zmianę

A. liczby par biegunów
B. kolejności faz
C. wartości częstotliwości napięcia zasilającego
D. wartości skutecznej napięcia zasilania stojana

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kolejność faz w silnikach indukcyjnych nie wpływa na prędkość obrotową, a jedynie na kierunek obrotów. Dostosowanie prędkości obrotowej silnika indukcyjnego można osiągnąć poprzez zmianę częstotliwości napięcia zasilającego, co jest zgodne z zasadą, że prędkość obrotowa silnika jest proporcjonalna do częstotliwości napięcia. Również zmianę liczby par biegunów, co wymaga zmiany konstrukcji silnika. Przykłady zastosowania tej wiedzy obejmują systemy napędowe, gdzie kontrola prędkości jest kluczowa, takie jak pompy czy wentylatory, gdzie za pomocą falowników przekształca się częstotliwość zasilania. Standardy jak IEC 60034-1 regulują takie aspekty, zapewniając wydajność i bezpieczeństwo operacyjne. Zrozumienie, że kolejność faz nie wpływa na prędkość, jest kluczowe w prawidłowym projektowaniu i eksploatacji systemów elektrycznych.

Pytanie 16

Watomierz jest urządzeniem do pomiaru mocy

A. pozornej
B. chwilowej
C. czynnej
D. biernej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Watomierz, jako urządzenie pomiarowe, jest kluczowym narzędziem w dziedzinie elektroenergetyki, służącym do pomiaru mocy czynnej. Moc czynna, wyrażana w watach (W), to ta część mocy, która jest rzeczywiście wykorzystywana do wykonywania pracy, na przykład zasilania urządzeń elektrycznych. Watomierze znajdują zastosowanie zarówno w przemyśle, jak i w domowych instalacjach elektrycznych, umożliwiając monitorowanie zużycia energii i optymalizację procesów. Dzięki kilku typom watomierzy, w tym analogowym i cyfrowym, możemy dokładnie określić, ile energii zostaje przekształcone w pracę użyteczną, co jest kluczowe dla oceny efektywności energetycznej systemów elektrycznych. W praktyce, pomiar mocy czynnej pozwala na oszacowanie kosztów zużycia energii oraz wykrywanie niesprawności w urządzeniach, co jest zgodne z najlepszymi praktykami w zarządzaniu energią, w tym normami ISO 50001.

Pytanie 17

Jaką kolejność należy zastosować przy montażu zespołu do przygotowania powietrza, zaczynając od sprężarki?

A. smarownica, filtr powietrza, manometr
B. filtr powietrza, zawór redukcyjny z manometrem, smarownica
C. manometr, filtr powietrza, smarownica
D. smarownica, filtr powietrza, zawór redukcyjny, manometr

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "filtr powietrza, zawór redukcyjny z manometrem, smarownica" jest prawidłowa, ponieważ kolejność montażu tych elementów ma kluczowe znaczenie dla sprawności i bezpieczeństwa całego systemu przygotowania powietrza. Filtr powietrza powinien być zainstalowany jako pierwszy, ponieważ jego główną rolą jest usunięcie zanieczyszczeń i wilgoci z powietrza, co zapobiega ich przedostawaniu się do kolejnych komponentów systemu. Zawór redukcyjny, wyposażony w manometr, reguluje ciśnienie powietrza, co jest niezbędne do zapewnienia optymalnych warunków pracy dla maszyn i urządzeń odbierających sprężone powietrze. Na końcu montujemy smarownicę, która smaruje ruchome elementy urządzeń zasilanych sprężonym powietrzem, a jej umiejscowienie za zaworem redukcyjnym zapewnia, że smar znajduje się pod odpowiednim ciśnieniem. Taka kolejność montażu jest zgodna z najlepszymi praktykami branżowymi, co pozwala na długotrwałe i niezawodne działanie całego układu.

Pytanie 18

Która metoda regulacji prędkości obrotowej silnika obcowzbudnego prądu stałego umożliwi efektywną regulację w szerokim zakresie od 0 do nn?

A. Rezystancją w obwodzie twornika
B. Napięciem przyłożonym do obwodu wzbudzenia
C. Napięciem przyłożonym do obwodu twornika
D. Rezystancją w obwodzie wzbudzenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Napięcie przyłożone do obwodu twornika silnika obcowzbudnego prądu stałego jest kluczowym parametrem wpływającym na prędkość obrotową silnika. Zwiększenie napięcia powoduje wzrost prędkości obrotowej, podczas gdy obniżenie napięcia prowadzi do jej zmniejszenia. Taka regulacja jest szczególnie efektywna, gdyż pozwala na uzyskanie szerokiego zakresu prędkości od 0 do nn bez istotnych strat mocy oraz przy zachowaniu wysokiej sprawności energetycznej. W praktyce, ta metoda jest stosowana w aplikacjach takich jak napędy wózków widłowych czy w systemach automatyki, gdzie precyzyjne sterowanie prędkością jest kluczowe. Ponadto, zgodnie z zasadami dobrych praktyk w inżynierii, ta metoda regulacji jest preferowana ze względu na prostotę obsługi i łatwość implementacji w obwodach elektronicznych. Warto zaznaczyć, że stosowanie odpowiednich układów elektronicznych, jak np. falowniki DC, może znacznie ułatwić to zadanie, oferując dodatkowe funkcje, takie jak zabezpieczenia przed przeciążeniami.

Pytanie 19

Obniżenie temperatury czynnika w sprężarkach skutkuje

A. osadzaniem zanieczyszczeń na dnie zbiornika
B. skraplaniem pary wodnej oraz osuszaniem powietrza
C. powiększaniem objętości sprężonego powietrza
D. wzrostem ciśnienia sprężonego powietrza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wzrost ciśnienia sprężonego powietrza po schłodzeniu czynnika jest zjawiskiem fizycznym wynikającym z zastosowania zasady gazów doskonałych, która mówi, że przy stałej objętości gazu, jego ciśnienie rośnie wraz ze spadkiem temperatury. W praktyce, schładzanie czynnika roboczego w sprężarkach służy nie tylko do podniesienia efektywności procesu sprężania, ale również do dehydratacji powietrza, co jest kluczowe w aplikacjach przemysłowych. Zastosowanie systemów chłodzenia w sprężarkach przyczynia się do redukcji kondensacji pary wodnej, co zapobiega korozji i osadzaniu się zanieczyszczeń w układzie pneumatycznym. Udoskonalone systemy, takie jak sprężarki o wyższej wydajności czy chłodnice powietrza, przyczyniają się do zwiększenia efektywności energetycznej, co jest zgodne z najlepszymi praktykami w branży. W efekcie, poprawa ciśnienia sprężonego powietrza poprzez schładzanie czynnika roboczego jest kluczowym elementem dla uzyskania wysokiej jakości sprężonego powietrza.

Pytanie 20

Jaki aparat elektryczny jest wykorzystywany do ochrony silnika indukcyjnego przed przeciążeniem?

A. Wyłącznik różnicowoprądowy
B. Wyłącznik nadmiarowy
C. Przekaźnik termobimetalowy
D. Stycznik elektromagnetyczny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przekaźnik termobimetalowy jest urządzeniem, które działa na zasadzie różnicy temperatur pomiędzy dwoma metalami o różnych współczynnikach rozszerzalności. Jego głównym zastosowaniem jest ochrona silników indukcyjnych przed przeciążeniem i przegrzaniem. W momencie, gdy prąd płynący przez silnik przekracza ustaloną wartość, przekaźnik odcina zasilanie, co zapobiega uszkodzeniu silnika. Przekaźniki termobimetalowe są często stosowane w obwodach napędowych, gdzie silniki są narażone na zmienne warunki pracy. Dobrą praktyką jest ich instalacja w połączeniu z wyłącznikami automatycznymi, co zapewnia dodatkową ochronę. Zgodnie z normami IEC 60947-4-1, przekaźniki te muszą spełniać określone wymagania zabezpieczeń przeciążeniowych, co czyni je wiarygodnym rozwiązaniem w aplikacjach przemysłowych.

Pytanie 21

Spośród wymienionych zjawisk fizycznych, w urządzeniach przekształcających liniowe przemieszczenie na sygnał elektryczny, najczęściej stosowane jest zjawisko

A. zwane efektem Dopplera
B. magnotorezystancji (Gaussa)
C. magnetooptyczne (Faradaya)
D. piezoelektryczne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zjawisko magnotorezystancji (Gaussa) jest szeroko stosowane w czujnikach przekształcających przemieszczenie liniowe na sygnał elektryczny ze względu na swoją wysoką czułość i precyzję. Magnotorezystancja polega na zmianie oporu elektrycznego materiału w wyniku działania pola magnetycznego. W praktyce, czujniki te mogą być wykorzystane w różnych aplikacjach, takich jak automatyka przemysłowa, robotyka oraz systemy pomiarowe. W standardach branżowych, takich jak IEC 61131, podkreśla się znaczenie precyzyjnych pomiarów w systemach automatyzacji, co czyni rozwiązania bazujące na magnotorezystancji preferowanym wyborem. Przykładem może być zastosowanie w czujnikach położenia w silnikach elektrycznych, gdzie dokładne informacje o przemieszczeniu są kluczowe dla efektywności i bezpieczeństwa operacji. Ponadto, magnotorezystancyjne czujniki są odporne na zakłócenia elektromagnetyczne, co zwiększa ich niezawodność w trudnych warunkach przemysłowych. Z tego względu, ich wykorzystanie w nowoczesnych systemach pomiarowych stanowi standard w wielu branżach.

Pytanie 22

Do działań wstępnych, które pozwolą na prawidłowy montaż nowego paska klinowego w przekładni pasowej, nie należy zaliczać

A. sprawdzenia wymiarów
B. analizy stopnia zużycia
C. weryfikacji czystości paska
D. oceny stopnia naprężenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'sprawdzenie stopnia naprężenia' jest poprawna, ponieważ nie jest to czynność przygotowawcza, lecz działa niezbędne do zapewnienia prawidłowej pracy paska klinowego po jego montażu. Zanim pasek zostanie zamontowany, kluczowe jest, aby skupić się na weryfikacji wymiarów, kontroli czystości paska oraz ocenie stopnia zużycia. Weryfikacja wymiarów polega na sprawdzeniu długości i szerokości paska, co zapewnia, że nowy pasek będzie pasował do przekładni pasowej. Kontrola czystości paska jest niezbędna, aby zminimalizować ryzyko uszkodzeń mechanicznych i zapewnić odpowiednie tarcie między paskiem a kołami pasowymi. Ocena stopnia zużycia paska pozwala ustalić, czy stary pasek wymaga wymiany. Najważniejsze standardy branżowe, takie jak ISO 9001, zalecają dokładne przygotowanie przed montażem, co podkreśla znaczenie tych czynności, aby uniknąć problemów z wydajnością i trwałością systemu napędowego.

Pytanie 23

W trakcie pracy z urządzeniem hydraulicznym pracownik poślizgnął się na plamie oleju i doznał zwichnięcia kostki. Jakie czynności należy podjąć, aby udzielić pierwszej pomocy poszkodowanemu?

A. Zabandażować kostkę i przewieźć pacjenta do lekarza
B. Nastawić staw i zabandażować kostkę
C. Podać leki przeciwbólowe
D. Przyłożyć zimny okład na zwichnięty staw i unieruchomić go

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Jak masz zwichnięty staw, to schłodzenie go zimnym okładem i unieruchomienie to naprawdę istotne kroki. Zimny okład zmniejsza obrzęk i ból, co jest zgodne z zasadami pierwszej pomocy, które mówią, że lód trzeba stosować w ciągu pierwszych 48 godzin po kontuzji. Zimno powoduje, że naczynia krwionośne się kurczą, przez co przepływ krwi do uszkodzonego miejsca jest mniejszy, a to znaczy, że obrzęk się nie powiększa. Unieruchomienie stawu to też ważna sprawa, bo pomaga zapobiec dalszym uszkodzeniom i stabilizuje kontuzjowany obszar, co zmniejsza ból. W praktyce powinieneś użyć elastycznego bandaża, żeby dobrze zabezpieczyć kostkę, bo to standard w takich sytuacjach. Nie zapomnij też monitorować stanu poszkodowanego i jeśli coś jest nie tak, to skontaktować się z lekarzem. Dobra pierwsza pomoc opiera się na wytycznych organizacji zajmujących się zdrowiem, więc możesz zwiększyć szansę na szybki powrót do zdrowia.

Pytanie 24

Jakie z czynności związanych z wymianą oleju oraz filtrów w zasilaczu hydraulicznym powinno być zrealizowane jako ostatnie?

A. Odkręcić śruby mocujące pokrywę do zbiornika, zdjąć pokrywę, dokładnie oczyścić i przepłukać zbiornik
B. Wlać olej do właściwego poziomu i włączyć zasilanie, aby umożliwić samoczynne odpowietrzenie
C. Odłączyć wszystkie obwody, wyłączyć zasilanie, odkręcić śrubę odpowietrzającą lub wyjąć korek wlewowy i lekko przechylając zasilacz zlać olej
D. Zamienić uszczelkę między zbiornikiem a pokrywą oraz wymienić wkłady filtrujące, a później połączyć zbiornik z pokrywą, przestrzegając zalecanej siły dokręcania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Właściwy przebieg czynności przy wymianie oleju i filtrów w zasilaczu hydraulicznym powinien kończyć się wlaniem nowego oleju do odpowiedniego poziomu i włączeniem zasilania. Jest to kluczowy etap, ponieważ zapewnia prawidłowe funkcjonowanie systemu hydraulicznego. Po napełnieniu zbiornika olejem, należy uruchomić zasilacz, co pozwala na samoczynne odpowietrzenie układu. W praktyce, odpowietrzanie jest istotne, ponieważ usunięcie powietrza z układu hydraulicznego zapobiega powstawaniu kawitacji, a tym samym zwiększa efektywność i żywotność urządzeń. Zgodnie z wytycznymi producentów zasilaczy hydraulicznych, tego rodzaju czynności powinny być zawsze wykonywane według ścisłych norm, aby zapewnić bezpieczeństwo i niezawodność systemu. Na przykład, jeżeli w systemie pozostało powietrze, może to prowadzić do nieprawidłowego działania siłowników, co negatywnie wpływa na dokładność operacji hydraulicznych. Zatem, kluczowe znaczenie ma również monitorowanie poziomu oleju oraz regularne sprawdzanie stanu filtrów, co jest zgodne z praktykami zarządzania konserwacją w branży hydraulicznej.

Pytanie 25

Która z wymienionych właściwości komponentów systemów automatyki, stosowanych w liniach produkcyjnych, ma kluczowe znaczenie przy projektowaniu linii do konfekcjonowania rozcieńczalników do farb i lakierów?

A. Iskrobezpieczeństwo
B. Efektywność
C. Bezobsługowość
D. Niezawodność

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Iskrobezpieczeństwo jest kluczową cechą w projektowaniu linii produkcyjnych, zwłaszcza w kontekście konfekcjonowania substancji chemicznych, takich jak rozcieńczalniki do farb i lakierów, które są łatwopalne i mogą wydzielać niebezpieczne opary. Użycie podzespołów i urządzeń spełniających normy iskrobezpieczeństwa (np. ATEX w Europie) ma na celu minimalizację ryzyka wybuchów oraz pożarów. Przykładem mogą być pompy, które są zaprojektowane tak, aby nie generować iskier podczas pracy, a także systemy wentylacyjne, które skutecznie odprowadzają opary. W praktyce oznacza to stosowanie materiałów odpornych na korozję, jak również instalację odpowiednich czujników wykrywających obecność niebezpiecznych gazów. Właściwe zabezpieczenie strefy zagrożonej wybuchem powinno obejmować także odpowiednie klasyfikacje stref, które są zgodne z międzynarodowymi standardami, takimi jak IEC 60079. Zatem iskrobezpieczeństwo nie tylko zwiększa bezpieczeństwo pracowników, ale także zapewnia ciągłość produkcji, co jest niezbędne w efektywnych liniach produkcyjnych.

Pytanie 26

Aby zachować odpowiedni poziom ciśnienia w systemach hydraulicznych, wykorzystuje się zawory

A. rozdzielające
B. dławiące
C. redukujące
D. odcinające

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawory redukcyjne odgrywają kluczową rolę w zarządzaniu ciśnieniem w układach hydraulicznych. Ich głównym zadaniem jest obniżenie ciśnienia roboczego na określonym poziomie, co jest istotne w wielu zastosowaniach przemysłowych. Zawory te działają poprzez automatyczne regulowanie przepływu cieczy, co pozwala na utrzymanie stabilnych warunków pracy w układzie. Na przykład, w systemach hydraulicznych zasilających maszyny produkcyjne, zawory redukcyjne zapewniają, że ciśnienie nie przekracza wartości określonej przez producenta, co zapobiega uszkodzeniom i zwiększa bezpieczeństwo operacji. Dobre praktyki w branży hydraulicznej zalecają regularne sprawdzanie i konserwację zaworów redukcyjnych, aby zapewnić ich prawidłowe funkcjonowanie. Dodatkowo, zgodność z normami takimi jak ISO 4414 dotycząca bezpieczeństwa w hydraulice, podkreśla wagę stosowania właściwych zaworów w celu minimalizacji ryzyka awarii systemów hydraulicznych.

Pytanie 27

Jakie urządzenie jest używane do pomiaru ciśnienia w systemach hydraulicznych?

A. przepływomierz
B. zawór nadążny
C. manometr
D. tensometr

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Manometr to urządzenie pomiarowe, które służy do określania ciśnienia w cieczy lub gazie w systemach hydraulicznych. Działa na zasadzie przetwarzania ciśnienia na przemieszczenie mechaniczne, które jest następnie odczytywane na skali. Manometry są kluczowe w wielu zastosowaniach przemysłowych, w tym w hydraulice, gdzie precyzyjne pomiary ciśnienia są niezbędne dla zapewnienia prawidłowego funkcjonowania maszyn i urządzeń. Przykładowo, w hydraulicznych systemach roboczych, takich jak prasy czy podnośniki, manometry pozwalają na monitorowanie ciśnienia roboczego, co jest istotne dla bezpieczeństwa oraz efektywności pracy. Ponadto, stosowanie manometrów zgodnych z normami, takimi jak PN-EN 837, zapewnia ich niezawodność oraz dokładność pomiarów, co jest zgodne z najlepszymi praktykami w branży. Właściwe użycie manometrów przyczynia się do optymalizacji procesów produkcyjnych oraz minimalizacji ryzyka awarii związanych z nieprawidłowym ciśnieniem w układzie hydraulicznym.

Pytanie 28

Pomiary izolacyjności w instalacjach elektrycznych realizuje się

A. omomierzem
B. laboratoryjnym mostkiem Thomsona
C. megaomomierzem
D. technicznym mostkiem Thomsona

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiary rezystancji izolacji instalacji elektrycznej wykonuje się za pomocą megaomomierza, który jest specjalistycznym urządzeniem zaprojektowanym do oceny stanu izolacji. Megaomomierze działają na zasadzie generowania wysokiego napięcia, co pozwala na dokładne zmierzenie rezystancji izolacyjnej. Zgodnie z normami PN-EN 61557, pomiar rezystancji izolacji jest kluczowym elementem w ocenie bezpieczeństwa instalacji elektrycznych. W praktyce, podczas regularnych kontroli, technicy zalecają wykonywanie takich pomiarów co najmniej raz na rok, aby zminimalizować ryzyko awarii spowodowanych uszkodzeniem izolacji. Pomiary te są szczególnie istotne w obiektach przemysłowych, gdzie występują różne czynniki zewnętrzne mogące wpływać na stan izolacji, takie jak wilgoć, zanieczyszczenia czy zmiany temperatury. W przypadku stwierdzenia niskiej rezystancji, może to wskazywać na degradację materiału izolacyjnego, co wymaga podjęcia działań naprawczych.

Pytanie 29

Olej hydrauliczny klasy HL to olej

A. mineralny bez dodatków uszlachetniających
B. mineralny posiadający właściwości antykorozyjne
C. o polepszonych parametrach lepkości i temperatury
D. syntetyczny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Olej hydrauliczny HL to mineralny olej, który ma fajne właściwości antykorozyjne. Jest używany w hydraulice, gdzie trzeba dbać o to, żeby nie było rdzy, a lepkość była w porządku. To oznaczenie HL znaczy, że olej jest naprawdę dobrej jakości i spełnia normy ISO 6743-4. Dlatego często wykorzystuje się go w maszynach, jak prasy czy dźwigi, gdzie niezawodność to podstawa. Dzięki jego właściwościom, olej ten pomaga wydłużyć żywotność elementów układu hydraulicznego, co z czasem pozwala zaoszczędzić trochę pieniędzy na eksploatacji. No i pamiętaj, że jak chcesz, żeby maszyny działały sprawnie i w miarę wiekowe były w dobrym stanie, to musisz stosować odpowiednie oleje jak HL, bo to jest ważne dla gwarancji i efektywności pracy.

Pytanie 30

Jaką metodę należy wykorzystać do pomiaru prędkości obrotowej wirnika silnika napędzającego system mechatroniczny?

A. Ultradźwiękową
B. Termoluminescencyjną
C. Stroboskopową
D. Radiometryczną

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź stroboskopowa jest prawidłowa, ponieważ technika ta jest powszechnie stosowana do pomiaru prędkości obrotowej wirujących elementów, takich jak wały silników. Stroboskopowe pomiary opierają się na zjawisku stroboskopowym, które wykorzystuje krótkie impulsy światła emitowane przez stroboskop do oświetlania wirującego obiektu. W momencie, gdy częstotliwość błysków stroboskopu jest zsynchronizowana z prędkością obrotową wału, obiekt wydaje się zatrzymany, co pozwala dokładnie określić jego prędkość obrotową. Przykładem zastosowania tej metody mogą być sytuacje w przemyśle, gdzie konieczne jest monitorowanie prędkości wałów w maszynach produkcyjnych. Metoda stroboskopowa jest również preferowana w badaniach laboratoryjnych, ponieważ nie wpływa na działanie mierzonych elementów, co jest zgodne z najlepszymi praktykami w inżynierii. Dodatkowo, ta metoda jest szeroko opisana w normach takich jak ISO 24410, które określają wymagania dotyczące pomiarów prędkości obrotowej.

Pytanie 31

Silnik komutatorowy był narażony na długotrwałe przeciążenie, co doprowadziło do pojawienia się zwarć międzyzwojowych. Proces naprawy silnika polega na wymianie

A. komutatora.
B. uzwojenia.
C. szczotek.
D. łożysk.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana uzwojenia w silniku komutatorowym jest kluczowym zabiegiem naprawczym, zwłaszcza gdy występują zwarcia międzyzwojowe. Zwarcia te mogą mieć różne przyczyny, w tym długotrwałe przeciążenie, które prowadzi do degradacji izolacji między zwojami. Wymiana uzwojenia polega na demontażu starego uzwojenia oraz nawinięciu nowego, co wymaga precyzyjnych umiejętności oraz znajomości technik nawijania. Uzwojenia są odpowiedzialne za generowanie pola magnetycznego, które napędza wirnik, dlatego ich stan bezpośrednio wpływa na wydajność całego silnika. W praktyce, przed przystąpieniem do wymiany, należy dokładnie zdiagnozować przyczynę uszkodzenia oraz przeprowadzić testy elektryczne, aby upewnić się, że nowe uzwojenie będzie działało poprawnie. Standardy takie jak IEC 60034 dotyczące silników elektrycznych podkreślają znaczenie odpowiednich materiałów izolacyjnych oraz technik montażowych, co zwiększa żywotność i niezawodność silnika. Właściwe podejście do wymiany uzwojenia przyczynia się do minimalizacji ryzyka wystąpienia podobnych problemów w przyszłości.

Pytanie 32

Jaką wartość można zarejestrować korzystając z enkodera absolutnego jednoobrotowego?

A. Przyspieszenie
B. Moment obrotowy
C. Ciśnienie
D. Przesunięcie kątowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Enkoder absolutny jednoobrotowy służy do pomiaru przesunięcia kątowego, co oznacza, że pozwala na określenie dokładnej pozycji obiektu w zakresie jednego obrotu. Działa na zasadzie rejestrowania unikalnej wartości kodu dla każdej pozycji kątowej, co sprawia, że jest niezwykle precyzyjny. Zastosowanie tego typu enkodera w aplikacjach takich jak robotyka, automatyka przemysłowa czy mechatronika jest powszechne, gdyż pozwala na dokładne określenie położenia elementów ruchomych. Przykładem zastosowania może być kontrola położenia silnika krokowego, gdzie dokładne informacje o kącie obrotu są kluczowe dla precyzyjnego sterowania ruchem. Enkodery absolutne jednoobrotowe są również zgodne z normami branżowymi, takimi jak IEC 61131, co zapewnia ich wysoką jakość i niezawodność. Dzięki swojej konstrukcji, eliminują problem utraty pozycji po wyłączeniu zasilania, co jest istotne w wielu aplikacjach przemysłowych.

Pytanie 33

Mocno podgrzana ciecz hydrauliczna wytwarza podczas awarii w słabo wentylowanym pomieszczeniu tzw. "mgłę olejową", która może prowadzić do różnych schorzeń

A. dermatologicznych
B. układu sercowego
C. układu słuchu
D. układu pokarmowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Silnie rozgrzana ciecz hydrauliczna, która tworzy mgłę olejową w pomieszczeniach o słabej wentylacji, może prowadzić do problemów dermatologicznych. Wysoka temperatura oraz skład chemiczny cieczy hydraulicznej mogą powodować podrażnienie skóry, a nawet alergie kontaktowe. Osoby narażone na długotrwały kontakt z taką mgłą mogą doświadczać objawów takich jak wysypka, swędzenie czy inne zmiany skórne. Dobrą praktyką w środowisku pracy jest stosowanie odpowiednich środków ochrony osobistej, takich jak rękawice ochronne oraz odzież długą, a także zapewnienie odpowiedniej wentylacji pomieszczeń, co jest zgodne z normami BHP. Standardy te są szczególnie istotne w przemysłach, gdzie wykorzystywane są substancje chemiczne, aby minimalizować ryzyko zdrowotne dla pracowników. Warto również przeprowadzać regularne szkolenia dla pracowników dotyczące zagrożeń związanych z substancjami chemicznymi oraz zasad ochrony zdrowia w miejscu pracy.

Pytanie 34

Jakie napięcie wyjściowe przetwornika ciśnienia będzie przy wartościach ciśnienia wynoszących 450 kPa, jeśli jego napięcie wyjściowe mieści się w zakresie od 0 V do 10 V dla ciśnienia od 0 kPa do 600 kPa przy liniowej charakterystyce?

A. 7,5 V
B. 4,5 V
C. 10,0 V
D. 3,0 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 7,5 V to dobra odpowiedź. Przetwornik ciśnienia działa liniowo, co znaczy, że napięcie na wyjściu rośnie proporcjonalnie do ciśnienia. Zaczynając od 0 kPa do 600 kPa, napięcia wahają się od 0 do 10 V. Możemy łatwo policzyć napięcie dla 450 kPa. To 75% całego zakresu, bo 450 kPa podzielone przez 600 kPa daje 0,75. Jak to pomnożymy przez 10 V, dostajemy 7,5 V. W inżynierii, zwłaszcza w automatyce, takie dokładne pomiary ciśnienia są naprawdę ważne. Liniowe przetworniki są wszędzie tam, gdzie trzeba mieć precyzyjne dane. Oczywiście warto regularnie kalibrować te urządzenia, bo to zapewnia ich prawidłowe działanie i eliminuje błędy w pomiarach.

Pytanie 35

W tabeli podano dane techniczne sterownika PLC Jakim maksymalnym prądem można obciążyć sterownik dołączając do jego wyjścia silnik?

Dane techniczne
Napięcie zasilająceAC/DC 24 V
Wejścia:
Zakres dopuszczalnyDC 20,4 ... 28,8 V
Przy sygnale „0"maks. AC/DC 5 V
Przy sygnale „1"min. AC/DC 12 V
Prąd wejściowy2,5 mA
Wyjścia:
Rodzaj4 przekaźnikowe
Prąd ciągły10 A - przy obciążeniu rezystancyjnym,
3 A - przy obciążeniu indukcyjnym

A. 3 A
B. 2,5 A
C. 10 A
D. 0,75 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maksymalny prąd 3 A, który można obciążyć sterownik PLC, odpowiada specyfikacjom podanym w dokumentacji technicznej urządzenia. W praktyce oznacza to, że przy dołączaniu silnika indukcyjnego do wyjścia sterownika, nie można przekraczać tego prądu, aby uniknąć uszkodzenia urządzenia. Przykładowo, jeśli planujesz używać niewielkiego silnika do napędu wentylatora lub pompy, upewnij się, że jego maksymalne zapotrzebowanie na prąd nie przekracza tego limitu. W przemyśle, często stosuje się zabezpieczenia, takie jak bezpieczniki lub wyłączniki przeciążeniowe, które chronią sprzęt przed uszkodzeniami związanymi z nadmiernym prądem. Dobrym rozwiązaniem jest również monitorowanie prądu roboczego silnika przy pomocy amperomierza, co pozwala na bieżąco ocenić, czy urządzenie pracuje w dopuszczalnych granicach. Zrozumienie i przestrzeganie tych limitów jest kluczowe dla wydajności oraz długowieczności systemów automatyki przemysłowej, w których używane są sterowniki PLC.

Pytanie 36

Jakim symbolem literowym określa się zmienną wyjściową w sterowniku PLC?

A. Q
B. T
C. R
D. I

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź Q jest poprawna, ponieważ w systemach programowalnych sterowników logicznych (PLC) zmienne wyjściowe oznaczane są właśnie tym symbolem. Wyjścia są sygnałami, które sterownik generuje na podstawie przetworzonych danych wejściowych oraz zaimplementowanych algorytmów. Standardowe oznaczenia w programowaniu PLC opierają się na konwencjach przyjętych w branży, gdzie 'I' oznacza wejścia (Input), 'Q' wyjścia (Output), 'R' jest często używane dla rejestrów, a 'T' odnosi się do timerów. Przykładem zastosowania zmiennych wyjściowych jest kontrola urządzeń wykonawczych, takich jak silniki, siłowniki czy zawory. Na przykład, w prostym procesie automatyzacji, sygnał wyjściowy Q0.0 może być użyty do włączania lub wyłączania silnika w odpowiedzi na warunki zdefiniowane przez czujniki wejściowe. Zrozumienie tych oznaczeń jest kluczowe dla efektywnego programowania i diagnostyki systemów automatyki przemysłowej, co jest zgodne z normami IEC 61131-3, które definiują struktury programowania w PLC.

Pytanie 37

Potrojenie natężenia prądu przepływającego przez rezystor o niezmiennej rezystancji spowoduje, że ilość ciepła wydzielającego się w nim wzrośnie

A. sześciokrotnie
B. trzykrotnie
C. dziewięciokrotnie
D. dwukrotnie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "dziewięciokrotnie" jest poprawna, ponieważ zgodnie z prawem Joule'a, moc wydzielająca się w rezystorze jest proporcjonalna do kwadratu natężenia prądu płynącego przez ten rezystor. Prawo to można zapisać jako P = I²R, gdzie P to moc, I to natężenie prądu, a R to rezystancja. Jeśli natężenie prądu wzrasta trzykrotnie (I -> 3I), moc wydzielająca się w rezystorze staje się P' = (3I)²R = 9I²R, co oznacza, że moc wzrasta dziewięciokrotnie. W praktyce, takie zjawisko ma kluczowe znaczenie w projektowaniu obwodów elektrycznych i systemów grzewczych, gdzie kontrola wydzielanego ciepła jest istotna dla bezpieczeństwa i efektywności energetycznej. Zrozumienie tej zależności pozwala inżynierom na odpowiednie dobieranie wartości rezystancji oraz zabezpieczeń, aby uniknąć przegrzewania się elementów w obwodach elektronicznych, co może prowadzić do awarii lub uszkodzeń sprzętu. W branży elektronicznej i elektrycznej, przestrzeganie tych zasad jest niezbędne dla zapewnienia niezawodności i trwałości urządzeń.

Pytanie 38

Blok przedstawiony na rysunku realizuje funkcję logiczną

Ilustracja do pytania
A. NAND
B. AND
C. NOR
D. OR

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Blok przedstawiony na rysunku realizuje funkcję logiczną AND, co można łatwo zauważyć po symbolu "&" umieszczonym wewnątrz bloku. Funkcja AND jest jedną z podstawowych funkcji logicznych stosowanych w elektronice cyfrowej oraz programowaniu. Działa na zasadzie, że jej wyjście będzie miało wartość prawda (1) tylko wtedy, gdy wszystkie podłączone wejścia mają wartość prawda (1). W praktyce funkcja ta jest często wykorzystywana w układach cyfrowych, takich jak bramki logiczne, gdzie umożliwia realizację złożonych operacji działania systemu. Na przykład, w systemach alarmowych, sygnał alarmowy może być aktywowany tylko wtedy, gdy wszystkie czujniki wykryją intruza. Warto zaznaczyć, że zgodnie z normami IEEE i innymi standardami branżowymi, użycie funkcji AND jest kluczowe w budowie niezawodnych układów logicznych, co czyni tę wiedzę niezwykle ważną w kontekście inżynierii elektronicznej.

Pytanie 39

Aby poprawić efektywność montażu połączeń gwintowych, wykorzystuje się klucze

A. uniwersalne
B. zapadkowe
C. oczko
D. płaskie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klucze zapadkowe są specjalizowanymi narzędziami, które pozwalają na szybkie i efektywne dokręcanie oraz odkręcanie połączeń gwintowych, co znacznie zwiększa wydajność montażu. Ich konstrukcja pozwala na ciągłe obracanie klucza w jednym kierunku bez konieczności jego wyjmowania z miejsca pracy. Działa to na zasadzie mechanizmu zapadkowego, gdzie przekręcenie klucza w jedną stronę powoduje, że zapadka przeskakuje, umożliwiając kolejne ruchy. W praktyce oznacza to, że praca z kluczem zapadkowym jest znacznie szybsza i mniej męcząca, co ma kluczowe znaczenie w środowiskach przemysłowych, gdzie czas i efektywność są na wagę złota. Użycie kluczy zapadkowych jest zgodne z normami ergonomii oraz efektywności pracy, co czyni je bardzo popularnym rozwiązaniem w mechanice i montażu. Warto również zauważyć, że klucze zapadkowe są dostępne w różnych rozmiarach i konfiguracjach, co pozwala na ich stosowanie w różnorodnych zastosowaniach, od napraw samochodowych po prace w przemyśle budowlanym.

Pytanie 40

Jak definiuje się natężenie przepływu Q cieczy w rurociągu?

A. stosunek objętości cieczy, która przechodzi przez przekrój do czasu, w jakim dokonuje się ten przepływ.
B. iloczyn prędkości cieczy oraz czasu jej przepływu.
C. iloczyn ciśnienia cieczy oraz pola przekroju rurociągu.
D. stosunek pola przekroju rurociągu do prędkości, z jaką ciecz przepływa.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź definiuje natężenie przepływu Q jako stosunek objętości cieczy przepływającej przez przekrój poprzeczny rurociągu do czasu, w którym ta objętość przechodzi przez dany przekrój. Wzór na natężenie przepływu można zapisać jako Q = V/t, gdzie V to objętość cieczy, a t to czas. To podejście jest fundamentalne w hydraulice i inżynierii cieczy, ponieważ pozwala na dokładne określenie ilości cieczy przepływającej przez system. W praktyce, znajomość natężenia przepływu jest kluczowa przy projektowaniu systemów wodociągowych, kanalizacyjnych oraz instalacji przemysłowych, gdzie zachowanie odpowiednich parametrów przepływu jest niezbędne dla efektywności i bezpieczeństwa. W standardach branżowych, takich jak normy ISO dotyczące przepływu cieczy, definiuje się metody pomiaru Q, co podkreśla znaczenie tej wielkości w inżynierii fluidów. Właściwe obliczenie natężenia przepływu jest także kluczowe w kontekście zachowania energii w systemach hydraulicznych, co wpływa na dobór odpowiednich pomp oraz armatury.