Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 13 kwietnia 2025 00:55
  • Data zakończenia: 13 kwietnia 2025 00:59

Egzamin niezdany

Wynik: 9/40 punktów (22,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Godło mapy 6.115.27.25.3.4 w układzie współrzędnych PL-2000 oznacza mapę w skali

A. 1:500
B. 1:2000
C. 1:1000
D. 1:5000
Wybór odpowiedzi 1:5000 jako właściwej w kontekście godła mapy 6.115.27.25.3.4 w układzie współrzędnych PL-2000 jest zgodny z powszechnie przyjętymi standardami kartograficznymi. Mapa w skali 1:5000 oznacza, że jeden jednostkowy pomiar na mapie odpowiada 5000 jednostkom w rzeczywistości. Tego rodzaju skala jest często stosowana w planowaniu przestrzennym oraz w dokumentacji budowlanej, co czyni ją niezwykle użyteczną w praktyce. Na przykład, w planowaniu urbanistycznym, mapy w skali 1:5000 pozwalają na dokładną analizę terenu, co jest kluczowe dla projektowania infrastruktury i oceny wpływu na środowisko. Ponadto, w Polsce standardy kartograficzne wskazują, że skale takie jak 1:5000 są odpowiednie dla oznaczania szczegółowych informacji, takich jak granice działek, lokalizacja budynków czy infrastruktura drogowa. Dlatego wiedza na temat skal mapy i ich zastosowania jest niezbędna dla profesjonalistów w dziedzinie geodezji, architektury i planowania przestrzennego.

Pytanie 2

Szkic polowy inwentaryzacji powykonawczej przyłącza kanalizacyjnego do budynku powinien zawierać

A. nazwę materiału z jakiego został wykonany przewód.
B. wartość średnicy przewodu.
C. szkic instalacji wewnątrz budynku.
D. wartość nachylenia przewodu.
Szkic polowy inwentaryzacji powykonawczej przyłącza kanalizacyjnego powinien zawierać kilka istotnych informacji, które są kluczowe dla sprawnego działania całego systemu. Średnica przewodu to jedna z tych najważniejszych rzeczy, bo to ona decyduje o tym, ile ścieków może przejść przez instalację. Według norm, średnica rury musi być dobrana do tego, ile ścieków będzie odprowadzane oraz do specyfiki budynku. Na przykład, w domach mieszkalnych zazwyczaj używa się rur o średnicy 100 mm, co powinno wystarczyć dla typowego gospodarstwa domowego. Warto to rozumieć, szczególnie przy planowaniu przyszłych prac budowlanych czy modernizacji, bo źle dobrana średnica może spowodować zatory i inne problemy w systemie. A znajomość średnicy pomoże też w odpowiednim doborze materiałów i nasadek do przewodów – to ważne, żeby wszystko było zgodne ze standardami jakości. Z moich doświadczeń wynika, że błędne określenie średnicy może prowadzić do poważnych awarii, co z kolei zwiększa koszty późniejszych napraw.

Pytanie 3

Który z podanych wzorów posłuży do obliczenia azymutu kolejnego boku Az<sub>2-3</sub>, jeżeli dany jest azymut boku poprzedniego Az<sub>1-2</sub> i pomierzony kąt lewy α na punkcie 2?

A. Az2-3 = Az2-1 – α + 200g
B. Az2-3 = Az2-1 + α - 200g
C. Az2-3 = Az1-2 – α + 200g
D. Az2-3 = Az1-2 + α - 200g
Odpowiedź Az2-3 = Az1-2 + α - 200g jest prawidłowa, ponieważ przy obliczaniu azymutu kolejnego boku w geodezji stosujemy wzór, który uwzględnia azymut boku poprzedniego oraz pomierzony kąt lewy. W praktyce, azymut boku Az2-3 można obliczyć, dodając kąt lewy α do azymutu boku Az1-2, a następnie odejmując 200g, co wynika z konwencji stosowanej w geodezji. Zgodnie z zasadami, w przypadku pomiarów z użyciem teodolitu, kąt lewy jest mierzony w przeciwnym kierunku do ruchu wskazówek zegara, co wymaga uwzględnienia odpowiednich poprawek przy wyznaczaniu azymutu. Praktyczne zastosowanie tego wzoru widoczne jest w terenie, gdzie precyzyjne pomiary są kluczowe dla uzyskania dokładnych wyników w mapowaniu i inżynierii. Warto również zauważyć, że standardy geodezyjne, takie jak PN-EN ISO 17123-1, zalecają staranne podejście do pomiarów kątów oraz azymutów, aby zapewnić wysoką jakość danych geodezyjnych.

Pytanie 4

Tworzący mapę zasadniczą zbiór danych o skrócie BDOT500 oznacza bazę danych

A. szczegółowych osnów geodezyjnych.
B. obiektów topograficznych.
C. geodezyjnej ewidencji sieci uzbrojenia terenu.
D. ewidencji gruntów i budynków.
BDOT500, czyli Baza Danych Obiektów Topograficznych 500, jest kluczowym zbiorem danych, który gromadzi informacje o obiektach topograficznych na terenie Polski. Zawiera ona m.in. dane dotyczące rzek, jezior, gór, budynków i innych istotnych elementów krajobrazu. Użycie BDOT500 jest niezbędne w wielu dziedzinach, takich jak planowanie przestrzenne, ochrona środowiska, a także w geodezji i kartografii. Przykładowo, podczas tworzenia map topograficznych, BDOT500 dostarcza rzetelnych i aktualnych informacji, co jest zgodne z normami określonymi w Polskiej Normie PN-EN ISO 19115, dotyczącej metadanych geograficznych. Dzięki temu użytkownicy mogą podejmować decyzje na podstawie wiarygodnych danych. Przy pracy z systemami GIS, wiedza o strukturze i zawartości BDOT500 umożliwia efektywne włączanie tych danych do różnych analiz przestrzennych, co przyczynia się do lepszego zarządzania zasobami oraz ochrony środowiska.

Pytanie 5

Który z wymienionych obiektów podlega obowiązkowemu wytyczeniu geodezyjnemu i inwentaryzacji powykonawczej?

A. Piaskownica.
B. Przyłącze wodociągowe.
C. Znak drogowy.
D. Ogrodzenie trwałe.
Przyłącze wodociągowe podlega obowiązkowemu wytyczeniu geodezyjnemu oraz inwentaryzacji powykonawczej, ponieważ jest to element infrastruktury technicznej, który ma istotne znaczenie dla organizacji przestrzennej oraz funkcjonowania sieci wodociągowej. Wytyczenie geodezyjne pozwala na precyzyjne określenie jego lokalizacji w terenie, co jest kluczowe dla uniknięcia kolizji z innymi instalacjami, co może prowadzić do kosztownych napraw i zakłóceń w dostawie wody. Inwentaryzacja powykonawcza ma na celu dokumentację stanu przyłącza po zakończeniu prac budowlanych, co jest istotne z punktu widzenia zarządzania infrastrukturą oraz jej późniejszej eksploatacji. Przykładem może być sytuacja, w której inwestor budowlany zleca wykonanie przyłącza wodociągowego, a następnie po zakończeniu prac geodeta przeprowadza inwentaryzację, aby potwierdzić zgodność wykonanego przyłącza z projektem. Zgodnie z obowiązującymi w Polsce przepisami prawa budowlanego oraz standardami geodezyjnymi, takie działania są niezbędne w celu zapewnienia bezpieczeństwa użytkowania oraz ochrony interesów publicznych.

Pytanie 6

W jakiej odległości od początku trasy znajduje się punkt na tej trasie oznaczony 0/3+57,00 m?

A. 357,00 m
B. 3557,00 m
C. 3057,00 m
D. 557,00 m
Odpowiedź 357,00 m jest poprawna, ponieważ oznaczenie 0/3+57,00 m wskazuje na dokładne miejsce na trasie. W tym systemie oznaczeń, pierwsza część (0) zazwyczaj odnosi się do kilometrażu, a druga część (3+57,00) do metrażu w obrębie tego kilometra. Zatem '3+57,00' oznacza, że punkt znajduje się 3 km i 57 m od punktu odniesienia. Przekształcając to na metry, mamy 3000 m + 57 m, co daje 3057 m. Jednakże, jeżeli punkt 0/3+57,00 m jest odniesiony do '0', oznacza to, że odległość od początku trasy wynosi 357,00 m. Użycie takiego systemu oznaczeń jest powszechne w geodezji, budownictwie i planowaniu infrastruktury, co umożliwia precyzyjne określenie lokalizacji punktów na trasie. Przykładowo, w projektach drogowych lub kolejowych, takie oznaczenia są kluczowe dla właściwego zarządzania i kontroli budowy.

Pytanie 7

Które prace geodezyjne zawsze poprzedza się wywiadem terenowym i przygotowaniem mapy porównania z terenem?

A. Aktualizację bazy danych obiektów topograficznych i mapy zasadniczej.
B. Pomiar kontrolny wychylenia komina.
C. Pomiar objętości mas ziemnych.
D. Obsługę inwestycji budowlanej.
Aktualizacja bazy danych obiektów topograficznych oraz mapy zasadniczej to proces, który zawsze wymaga przeprowadzenia wywiadu terenowego oraz przygotowania mapy porównawczej z terenem. Wywiad terenowy polega na zbieraniu informacji o aktualnym stanie obiektów w terenie oraz ich zmianach, co pozwala na dokładne odzwierciedlenie rzeczywistej sytuacji w systemach informacji geograficznej (GIS). Przykładem zastosowania tej praktyki mogą być projekty związane z urbanizacją, gdzie zmiany w infrastrukturze, takie jak nowe drogi czy budynki, muszą być uwzględnione w aktualizowanych mapach. Standardy, takie jak INSPIRE w Europie, nakładają obowiązek regularnego aktualizowania danych przestrzennych, co podkreśla znaczenie rzetelnego wywiadu terenowego przed przystąpieniem do aktualizacji. Dobre praktyki branżowe wskazują, że dokładne przygotowanie mapy porównawczej z terenem ułatwia identyfikację różnic oraz weryfikację jakości danych, co jest kluczowe dla zapewnienia wiarygodności i użyteczności systemów GIS.

Pytanie 8

Który z wymienionych szczegółów terenowych należy do pierwszej grupy dokładnościowej?

A. Budynek szkoły.
B. Boisko sportowe.
C. Linia brzegowa jeziora.
D. Drzewo przyuliczne.
Boisko sportowe, drzewo przyuliczne i linia brzegowa jeziora to rzeczy, które raczej nie powinny być w pierwszej grupie dokładnościowej. Często myśli się, że obiekty jak boiska, z powodu swojej wielkości, są mega dokładne. Ale to nie do końca prawda. Takie boiska mogą być różnie zrobione, a ich lokalizacja nie zawsze jest dokładna w dokumentach geodezyjnych, co sprawia, że nie kwalifikują się do tej grupy. Drzewo przyuliczne, mimo że ważne ekologicznie, też nie jest na tyle dokładne, bo jego położenie bywa subiektywne i się zmienia. Linia brzegowa jeziora, chociaż istotna geograficznie, też nie spełnia wymagań pierwszej grupy, bo jej kształt i lokalizacja zmieniają się przez warunki hydrologiczne i erozję. Dużo ludzi może je mylić, nie zdając sobie z tego sprawy, że zmienność i brak precyzyjnych danych pomiarowych sprawiają, że nie można ich wrzucać do tej samej kategorii co stabilne budynki. Rozumienie tej różnicy jest mega ważne, jeśli chcemy prowadzić analizy przestrzenne i skutecznie planować miasto.

Pytanie 9

Ile wynosi przyrost współrzędnej ∆y<sub>1-2</sub>, jeżeli pomierzona długość d<sub>1-2</sub> = 100,00 m oraz sinA<sub>1-2</sub> = 0,8910 i cosA<sub>1-2</sub> = 0,4540?

A. 8,91 m
B. 89,10 m
C. 4,54 m
D. 45,40 m
Poprawna odpowiedź to 89,10 m, co wynika z zastosowania podstawowych zasad trygonometrii w kontekście obliczeń inżynieryjnych. Przyrost współrzędnej ∆y<sub>1-2</sub> można obliczyć, stosując wzór: ∆y = d<sub>1-2</sub> * sin(A<sub>1-2</sub>), gdzie d<sub>1-2</sub> to długość między dwoma punktami, a A<sub>1-2</sub> to kąt, pod jakim ta długość jest zmierzona. W tym przypadku, mając d<sub>1-2</sub> równą 100,00 m oraz sinA<sub>1-2</sub> wynoszący 0,8910, obliczenie przyrostu współrzędnej wygląda następująco: ∆y = 100,00 m * 0,8910 = 89,10 m. W praktyce, taka metodologia obliczeń jest kluczowa w geodezji oraz budownictwie, gdzie precyzyjne pomiary i obliczenia są fundamentem dla prawidłowego prowadzenia prac budowlanych czy projektowych. Zrozumienie, jak wykorzystać funkcje trygonometryczne do obliczeń w przestrzeni, ma również zastosowanie w systemach nawigacyjnych oraz w analizie danych przestrzennych, co czyni tę wiedzę niezwykle przydatną w wielu branżach.

Pytanie 10

Wyniki wywiadu terenowego przeprowadzonego podczas prac geodezyjnych związanych z pomiarami sytuacyjnymi i wysokościowymi należy zaznaczyć na kopii mapy

A. topograficznej.
B. sozologicznej.
C. klasyfikacyjnej.
D. zasadniczej.
Wyniki wywiadu terenowego, które są kluczowe w procesie pomiarów geodezyjnych, powinny być zaznaczone na mapie zasadniczej. Mapa zasadnicza to dokument, który przedstawia szczegółowe dane dotyczące ukształtowania terenu, istniejącej infrastruktury oraz innych elementów przestrzennych. Wykonywanie pomiarów sytuacyjnych i wysokościowych w terenie jest niezbędne do zapewnienia aktualności tych informacji. Zgodnie z obowiązującymi standardami geodezyjnymi, wyniki pomiarów powinny być wprowadzane do mapy zasadniczej w sposób, który umożliwia ich późniejsze wykorzystanie w różnych dziedzinach, takich jak planowanie przestrzenne, ochrona środowiska czy inwestycje budowlane. Przykładem zastosowania może być proces aktualizacji danych w przypadku budowy nowego obiektu, gdzie dokładne odwzorowanie w terenie ma kluczowe znaczenie dla dalszych prac. W praktyce, geodeci często korzystają z technologii GPS oraz skaningu laserowego, aby dokładnie zarejestrować zmiany, które następnie odzwierciedlane są na mapach zasadniczych, co zgodne jest z dobrą praktyką branżową.

Pytanie 11

W centralnej części państwowego zasobu geodezyjnego i kartograficznego są gromadzone bazy danych, które dotyczą

A. rejestru cen i wartości nieruchomości .
B. państwowego rejestru podstawowych osnów geodezyjnych, grawimetrycznych i magnetycznych.
C. geodezyjnej ewidencji sieci uzbrojenia terenu.
D. ewidencji gruntów i budynków (katastru nieruchomości) .

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź odnosi się do państwowego rejestru podstawowych osnów geodezyjnych, grawimetrycznych i magnetycznych, który stanowi kluczowy element centralnego zasobu geodezyjnego i kartograficznego. Rejestr ten gromadzi dane dotyczące punktów odniesienia, które są fundamentem dla wszelkich prac geodezyjnych i projektowych. Dzięki niemu możliwe jest precyzyjne określenie położenia obiektów na powierzchni Ziemi oraz ich relacji przestrzennych. Przykłady zastosowania obejmują inżynierię lądową, urbanistykę oraz planowanie przestrzenne, gdzie dokładność danych geodezyjnych jest niezbędna. Organizacje zajmujące się geodezją powinny stosować wytyczne zgodne z normami ISO, aby zapewnić najwyższą jakość zbieranych danych. Warto także zauważyć, że utrzymanie i aktualizacja tego rejestru jest kluczowe dla rozwoju infrastruktury i ochrony środowiska, co czyni go niezbędnym narzędziem w procesach decyzyjnych związanych z zagospodarowaniem terenu.

Pytanie 12

Który z wymienionych dokumentów nie wchodzi w skład operatu technicznego przekazywanego do Państwowego Zasobu Geodezyjnego i Kartograficznego?

A. Opis topograficzny punktu osnowy pomiarowej.
B. Sprawozdanie techniczne.
C. Certyfikat rektyfikacji sprzętu geodezyjnego.
D. Dziennik pomiarowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Certyfikat rektyfikacji sprzętu geodezyjnego nie jest dokumentem, który należy przekazać do Państwowego Zasobu Geodezyjnego i Kartograficznego (PZGiK) w ramach operatu technicznego. Operat techniczny jest zbiorem dokumentów, które potwierdzają wykonanie prac geodezyjnych i składają się z elementów takich jak dziennik pomiarowy, sprawozdanie techniczne oraz opis topograficzny punktu osnowy pomiarowej. Certyfikat rektyfikacji dotyczy jedynie stanu oraz kalibracji sprzętu geodezyjnego i jest istotny w kontekście zapewnienia jakości pomiarów, jednak nie stanowi elementu operatu. W praktyce, operat techniczny jest kluczowy dla weryfikacji i archiwizacji danych geodezyjnych, co jest niezbędne dla utrzymania standardów w branży. Zgodnie z przepisami prawa, dokumentacja ta musi być starannie przygotowana, aby zapewnić jej zgodność z obowiązującymi normami. Dobrą praktyką jest regularne przeglądanie i aktualizowanie procedur dotyczących dokumentacji operatów technicznych, co przyczynia się do lepszej organizacji pracy geodetów i podnosi jakość świadczonych usług.

Pytanie 13

Kąty zenitalne (z) przyjmują wartości

A. 0° – 200°
B. 0° – 300°
C. 0° – 400°
D. 0° – 100°

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kąty zenitalne, oznaczane jako 'z', to miary kątów, które wskazują położenie obiektów w przestrzeni w stosunku do zenitu, czyli punktu na niebie znajdującego się bezpośrednio nad obserwatorem. Kąty te przyjmują wartości od 0° do 200°. Wartość 0° odpowiada bezpośredniemu położeniu obiektu w zenicie, natomiast 200° oznacza, że obiekt znajduje się na niebie w kierunku, który można określić jako 'pod' horyzontem, co jest konceptem bardziej teoretycznym, ponieważ w praktyce kąty nie mogą przekraczać 180°. W kontekście astronomii i geodezji, wiedza na temat kątów zenitalnych jest kluczowa przy obliczaniu pozycji ciał niebieskich, a także przy orientacji w terenie. Dzięki zastosowaniu kątów zenitalnych można precyzyjnie określić lokalizację obiektów w przestrzeni trójwymiarowej, co jest niezbędne w praktyce nawigacyjnej i w badaniach geograficznych. Standardy takie jak IAU (International Astronomical Union) oraz normy geodezyjne podkreślają wagę precyzyjnego pomiaru kątów zenitalnych w różnego rodzaju zastosowaniach, od mapowania po obserwacje astronomiczne.

Pytanie 14

Kolorem brązowym na mapie zasadniczej oznacza się sieci

A. gazowe.
B. kanalizacyjne.
C. elektroenergetyczne.
D. ciepłownicze.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Brązowy kolor na mapach zasadniczych jest standardowym oznaczeniem dla sieci kanalizacyjnych. Oznacza to, że wszelkie elementy związane z systemami odprowadzania ścieków oraz ich infrastrukturą są reprezentowane tą barwą. W praktyce, oznaczenie to jest istotne dla planowania przestrzennego oraz realizacji projektów budowlanych, ponieważ umożliwia inżynierom i projektantom łatwe zidentyfikowanie istniejących sieci kanalizacyjnych, co jest kluczowe przy wykopach i innych pracach ziemnych. Ponadto, zgodnie z normą PN-ISO 19115, stosowanie kolorów na mapach powinno być spójne i odzwierciedlać powszechnie przyjęte praktyki, co pozwala uniknąć nieporozumień w interpretacji danych przestrzennych. Zrozumienie systemów kanalizacyjnych jest niezbędne w kontekście zarządzania wodami oraz ochrony środowiska, co podkreśla ich znaczenie w infrastrukturze miejskiej.

Pytanie 15

Która z metod <u><strong>nie służy</strong></u> do wykonywania geodezyjnych sytuacyjnych pomiarów terenowych?

A. Domiarów prostokątnych.
B. Punktów rozproszonych.
C. Wcięć kątowych.
D. Biegunowa.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Punktów rozproszonych" jest prawidłowa, ponieważ metoda ta nie służy do geodezyjnych sytuacyjnych pomiarów terenowych. W geodezji sytuacyjnej wykorzystuje się techniki, które umożliwiają precyzyjne określenie położenia punktów w terenie, co jest kluczowe dla tworzenia map oraz dokumentacji geodezyjnej. Metody takie jak wcięcia kątowe, biegunowa czy domiary prostokątne są standardowymi technikami stosowanymi do precyzyjnego pomiaru kątów i odległości pomiędzy punktami. Przykładowo, metoda biegunowa polega na pomiarze kątów i odległości od jednego punktu do innych, co pozwala na tworzenie dokładnych rysunków sytuacyjnych. Z kolei domiary prostokątne wykorzystują współrzędne prostokątne, co jest szczególnie przydatne w obszarach miejskich. W przypadku punktów rozproszonych, metoda ta nie jest stosowana do pomiarów sytuacyjnych, lecz raczej do określenia lokalizacji punktów w kontekście pomiarów przestrzennych, co nie odpowiada wymaganiom geodezyjnym w analizie sytuacyjnej.

Pytanie 16

Dla którego z wymienionych obiektów dopuszcza się domiar większy niż 25 m, jeśli pomiary szczegółów terenowych są wykonywane metodą ortogonalną?

A. Stabilizowanego punktu załamania granicy działki.
B. Trwałego ogrodzenia.
C. Elementu podziemnego sieci gazowej.
D. Drewnianej podpory mostu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Elementy podziemnych sieci gazowych są specyficznymi obiektami, dla których dopuszczalne są większe domiary, co ma swoje uzasadnienie w bezpieczeństwie oraz w praktykach inżynieryjnych. W przypadku sieci gazowych, ze względu na ich charakter, kluczowe jest precyzyjne określenie lokalizacji, co może wymagać większych tolerancji w pomiarach. Standardy branżowe, takie jak norma PN-EN 1610, określają zasady wykonywania robót budowlanych związanych z budową i remontem sieci gazowych, które uwzględniają te specyfikacje. Przykładowo, w sytuacjach, gdy przy budowie infrastruktury gazowej zachodzi konieczność wykonania prac w strefach o dużym ryzyku, zachowanie odpowiednich odległości oraz precyzyjne wskazanie lokalizacji instalacji pozwala uniknąć niebezpieczeństw związanych z wyciekami gazu. Z tego względu, stosując metodę ortogonalną, można zastosować domiar większy niż 25 m, aby zapewnić odpowiedni poziom bezpieczeństwa i zgodności z obowiązującymi przepisami. W praktyce oznacza to, że takie podejście jest akceptowane i rekomendowane w celu skutecznego zabezpieczenia infrastruktury.

Pytanie 17

Miejsce, w którym przecina się niweleta z terenem, jest punktem

A. hektometrowym.
B. charakterystycznym.
C. załamania trasy.
D. zerowym robót ziemnych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Punkt zerowy robót ziemnych to kluczowy element w projektach budowlanych, który odnosi się do miejsca, w którym niweleta, czyli linia pozioma określająca wysokość terenu, przecina się z naturalnym poziomem gruntu. Ten punkt stanowi punkt odniesienia dla dalszych prac ziemnych i budowlanych. W praktyce oznacza to, że wszelkie pomiary wysokości i głębokości są dokonywane względem tego punktu, co umożliwia precyzyjne wykonanie wykopów, nasypów oraz układanie nawierzchni. Zastosowanie punktu zerowego pozwala na uniknięcie błędów w pomiarach, które mogłyby prowadzić do poważnych problemów w późniejszych etapach budowy, takich jak osiadanie konstrukcji czy nieprawidłowe ukształtowanie terenu. Zgodnie z dobrą praktyką inżynieryjną, punkt zerowy powinien być ustalany na etapie planowania inwestycji, a jego lokalizacja powinna być dokładnie zaznaczona na dokumentacji projektowej. Współczesne technologie, takie jak skanowanie 3D czy GPS, również wspierają precyzyjne wyznaczanie punktu zerowego, co zwiększa dokładność i efektywność prac budowlanych.

Pytanie 18

Różnice wysokości i poprawki zapisuje się w dzienniku niwelacji z dokładnością do

A. 0,1 m
B. 0,001 m
C. 0,0001 m
D. 0,01 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Różnice wysokości oraz poprawki w niwelacji zapisuje się z dokładnością do 0,001 m, co jest zgodne z normami określającymi precyzję pomiarów geodezyjnych. Taka dokładność jest niezbędna w sytuacjach, gdzie niewielkie zmiany wysokości mogą mieć istotne znaczenie dla wyników pomiarów, jak na przykład w budownictwie, gdzie precyzyjne pomiary są kluczowe dla stabilności konstrukcji. Standardy geodezyjne, takie jak norma PN-EN ISO 17123-1, wskazują na konieczność stosowania przyrządów pomiarowych o dużej dokładności. W praktyce, zapisując różnice wysokości w dzienniku niwelacji, stosuje się tę wartość, aby zapewnić, że wyniki są wystarczająco precyzyjne do celów projektowych i budowlanych. Wysoka dokładność pomiarów wpływa nie tylko na jakość wyników, ale również na zaufanie do nich w kontekście dalszych analiz oraz podejmowania decyzji.

Pytanie 19

Który błąd <b>nie</b> jest eliminowany poprzez pomiar ze środka w niwelacji geometrycznej?

A. Różnego miejsca zera pary łat.
B. Osiadania instrumentu.
C. Zakrzywienia powierzchni ziemi.
D. Refrakcji pionowej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Różne miejsca zera pary łat odnoszą się do różnic w ustawieniu łat, które mogą wpływać na dokładność pomiarów wysokości. W niwelacji geometrycznej, aby uzyskać precyzyjne wyniki, istotne jest, aby instrument niwelacyjny był umieszczony w odpowiedniej pozycji, a poziom zerowy łat był równy na obu końcach odcinka pomiarowego. Pomiar ze środka niwelacji, czyli wykonanie pomiaru od punktu, w którym instrument jest stabilnie ustawiony, minimalizuje wpływ potencjalnych błędów wynikających z asymetrii umiejscowienia łat. Przykładowo, w praktyce budowlanej, stosowanie niwelacji geometrycznej z pomiarem ze środka jest kluczowe podczas wyznaczania poziomych powierzchni fundamentów, co zapewnia ich równość i zmniejsza ryzyko osiadania budynku. W standardach branżowych, takich jak PN-EN ISO 17123, podkreśla się znaczenie precyzyjnego ustawienia instrumentów oraz odpowiedniego pomiaru, aby zmniejszyć błędy systematyczne i uzyskać wysoką dokładność pomiarów.

Pytanie 20

Który wzór należy zastosować do obliczenia sumy kątów wewnętrznych w ciągu poligonowym zamkniętym?

A. [β]t = Ap – Ak + n · 200g
B. [β]t = (n - 2) · 200g
C. [β]t = Ak – Ap + n · 200g
D. [β]t = (n + 2) · 200g

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wzór [β]t = (n - 2) · 200g jest kluczowy do obliczenia sumy kątów wewnętrznych w poligonie zamkniętym, gdzie n oznacza liczbę boków. W przypadku wielokątów, suma kątów wewnętrznych wynika z faktu, że każdy dodatkowy bok wprowadza dodatkowe kąty. W praktyce, dla trójkąta, który ma 3 boki, suma kątów wynosi 180°, co odpowiada wzorowi (3 - 2) · 180° = 180°. Dla czworokąta (4 boki) suma kątów wynosi 360° – (4 - 2) · 180° = 360°. Wzór ten jest szeroko stosowany w geometrii i architekturze, a także w inżynierii, gdzie dokładne obliczenia kątów są niezbędne do projektowania struktur. Zrozumienie tego wzoru pozwala na lepsze planowanie i realizację projektów, a także unikanie błędów konstrukcyjnych.

Pytanie 21

Położenie punktów wyznaczających osie konstrukcyjne budynku jednorodzinnego geodeta powinien tyczyć na ławach ciesielskich z precyzją do

A. 0,01 m
B. 0,001 m
C. 1 m
D. 0,1 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 0,001 m jest prawidłowa, ponieważ dokładność wyznaczania osi konstrukcyjnych budynku jednorodzinnego wymaga precyzyjnych pomiarów, które są kluczowe dla zapewnienia właściwej geometria obiektu. Taka precyzja jest istotna nie tylko dla estetyki budynku, ale również dla jego funkcjonalności i trwałości. W praktyce, geodeci stosują instrumenty pomiarowe, takie jak tachimetry i niwelatory, które umożliwiają osiągnięcie dokładności na poziomie milimetra. Przykładowo, podczas budowy fundamentów, minimalne odchylenie od wyznaczonych osi może prowadzić do problemów w późniejszych etapach, takich jak nierówności w ścianach czy dachu. Standardy branżowe, takie jak PN-EN 1991, podkreślają znaczenie precyzyjnego pomiaru w kontekście obliczeń statycznych oraz analizy obciążeń budowlanych. Osiągnięcie takiej dokładności może również wymagać zastosowania nowoczesnych technologii, takich jak pomiar GPS o wysokiej dokładności, co stanowi praktykę rekomendowaną w profesjonalnym geodezyjnym pomiarze budowlanym.

Pytanie 22

Pomiarową osnowę wysokościową wyznacza się metodą niwelacji

A. hydrostatycznej.
B. siatkowej.
C. trygonometrycznej.
D. punktów rozproszonych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiarowa osnowa wysokościowa wyznaczana metodą niwelacji trygonometrycznej to kluczowy element w geodezji, który pozwala na precyzyjne określenie różnic wysokości pomiędzy punktami w terenie. Metoda ta polega na wykorzystaniu triangulacji, gdzie pomiary kątów i odległości wykonuje się z punktów kontrolnych, aby obliczyć wysokości względne. Przykładem zastosowania tej metody jest budowa infrastruktury, gdzie niezbędne jest zapewnienie odpowiednich różnic wysokości dla dróg, mostów czy budynków. W praktyce, korzysta się z instrumentów takich jak teodolity czy tachymetry, które umożliwiają dokładnie wyznaczenie położenia punktów, a następnie, na podstawie pomiarów kątów i odległości, oblicza się różnice wysokości. Zastosowanie niwelacji trygonometrycznej jest zgodne z normami Polskiego Towarzystwa Geodezyjnego oraz międzynarodowymi standardami, co gwarantuje jej wysoką jakość oraz dokładność.

Pytanie 23

Od czego zależy gęstość i rozmieszczenie pikiet w pomiarze wysokościowym terenu?

A. Rodzaju zastosowanego sprzętu do pomiaru.
B. Sposobu wykonania szkicu polowego.
C. Liczby osób wykonujących pomiar.
D. Przewidywanej skali mapy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gęstość i rozmieszczenie pikiet w pomiarze wysokościowym terenu są ściśle związane z przewidywaną skalą mapy, która ma być rezultatem tego pomiaru. Skala mapy określa, jak szczegółowo mają być przedstawione dane na finalnym produkcie. Im mniejsza skala, tym mniej szczegółów musi być uwzględnionych, co może prowadzić do zmniejszenia gęstości pikiet. Z kolei przy większej skali, gdzie każdy detal terenu jest istotny, pikiety muszą być gęsiej rozmieszczone, aby uchwycić wszystkie istotne zmiany wysokości i ukształtowania terenu. Przykładowo, przy pomiarze terenu do małej skali, np. 1:50000, wystarczy mniej punktów pomiarowych, podczas gdy przy skali 1:5000 konieczne może być znacznie więcej pikiet, aby oddać wszystkie niuanse terenu. W praktyce, standardy takie jak ISO 19111 dotyczące geoinformacji podkreślają znaczenie odpowiedniego rozmieszczenia punktów pomiarowych w zależności od końcowego celu mapy, co jest kluczowe dla rzetelności i dokładności wyników pomiarów wysokościowych.

Pytanie 24

Od czego zależą wysokości opisów na mapie zasadniczej?

A. Od opisywanej treści i skali mapy.
B. Od rodzaju i kroju pisma.
C. Od wartości skalarnej mapy.
D. Od techniki wykonywanego opisu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wysokości opisów na mapie zasadniczej zależą w pierwszej kolejności od opisywanej treści oraz skali mapy. Skala mapy definiuje, w jakim stopniu rzeczywista powierzchnia została odwzorowana na mapie, co wpływa na sposób przedstawiania informacji. W praktyce oznacza to, że w przypadku map o dużej skali, które reprezentują mały obszar, opisy mogą być bardziej szczegółowe i tym samym wyższe, aby oddać specyfikę terenu. Na przykład, w mapie, która przedstawia obszar miejski, opisy budynków, ulic czy parków będą miały większą wysokość, aby były czytelne i zrozumiałe dla użytkowników. Dodatkowo, treść opisu, jak np. nazwy ulic czy obiektów, również ma wpływ na ich wysokość, gdyż dłuższe nazwy wymagają więcej miejsca. W branży kartograficznej ważne jest przestrzeganie standardów, takich jak Ustawodawstwo o geoinformacji oraz normy ISO, które określają zasady projektowania map, w tym sposoby przedstawiania opisów. Właściwe zrozumienie tych zasad pozwala tworzyć czytelne i funkcjonalne mapy.

Pytanie 25

Wysokości elementów naziemnych uzbrojenia terenu na mapach zasadniczych podaje się z dokładnością

A. 0,5 m
B. 0,01 m
C. 0,1 m
D. 0,05 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wysokości elementów naziemnych uzbrojenia terenu na mapach zasadniczych podawane są z dokładnością do 0,01 m, co wynika z potrzeby zachowania precyzji w dokumentacji geodezyjnej. Taka dokładność jest szczególnie istotna w kontekście prac budowlanych, inżynieryjnych oraz planowania przestrzennego. Umożliwia to nie tylko dokładne odwzorowanie terenu, ale także wspiera podejmowanie decyzji na podstawie precyzyjnych danych. Na przykład, w przypadku budowy infrastruktury, umiejętność dokładnego określenia wysokości elementów terenu ma kluczowe znaczenie dla projektowania systemów odwodnienia czy układania dróg. Stosowanie się do tej normy jest zgodne z wytycznymi określonymi w Polskiej Normie PN-EN ISO 19100, która dotyczy geoinformatyki. Praktyka ta również podnosi jakość usług geodezyjnych, co jest kluczowe w kontekście zaufania do dokumentacji oraz jej wykorzystania w późniejszych etapach inwestycji.

Pytanie 26

Opracowanie mapy zasadniczej dla terenów o znacznym obecnym lub przewidywanym zainwestowaniu należy wykonać w skali

A. 1:2000
B. 1:5000
C. 1:500
D. 1:1000

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1:2000 jest prawidłowa, ponieważ opracowanie mapy zasadniczej dla terenów o znacznym obecnym lub przewidywanym zainwestowaniu wymaga szczegółowego przedstawienia lokalizacji, granic i charakterystyki terenu. Skala 1:2000 pozwala na dokładne przedstawienie elementów urbanistycznych, takich jak ulice, budynki oraz infrastruktura techniczna. W praktyce, mapy w tej skali stosowane są do projektowania i planowania przestrzennego, co jest kluczowe w kontekście uchwał planistycznych i decyzji administracyjnych. W standardach branżowych, takich jak normy dotyczące geodezji i kartografii, podkreśla się znaczenie precyzyjnych odwzorowań w przypadkach intensywnej zabudowy. Przykładem zastosowania może być przygotowanie dokumentacji do wydania pozwolenia na budowę, gdzie konieczne jest uwzględnienie wszystkich detali infrastrukturalnych i istniejących obiektów, co jest możliwe tylko w takiej skali.

Pytanie 27

W którym przedziale mieści się wartość azymutu boku AB, jeśli różnice współrzędnych pomiędzy punktem początkowym a końcowym boku AB wynoszą ΔX<sub>AB</sub> &lt; 0, ΔY<sub>AB</sub> &lt; 0?

A. 300÷400g
B. 0÷100g
C. 200÷300g
D. 100÷200g

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wartość azymutu boku AB wyznacza kierunek, w którym leży ten bok w układzie współrzędnych. Różnice współrzędnych ΔX<sub>AB</sub> < 0 oraz ΔY<sub>AB</sub> < 0 oznaczają, że zarówno współrzędna X, jak i Y punktu końcowego boku AB są mniejsze niż współrzędne punktu początkowego. W takim przypadku, punkt końcowy znajduje się w lewym dolnym ćwiartce układu współrzędnych, co sugeruje, że azymut boku AB powinien wynosić między 180 a 270 stopni. Wartość azymutu 200÷300g odpowiada właśnie temu przedziałowi, co oznacza, że boki skierowane w tym kierunku mają większy kąt od poziomu. Przykładem zastosowania azymutu w praktyce jest nawigacja, gdzie precyzyjne określenie kierunku może być kluczowe dla wytyczenia trasy w terenie. W inżynierii lądowej czy geodezji, prawidłowe obliczenie azymutu ma fundamentalne znaczenie dla dokładności pomiarów oraz w późniejszym projektowaniu i realizacji budowli.

Pytanie 28

Której z wymienionych grup instrumentów i przyrządów geodezyjnych należy użyć do wykonania pomiaru terenu metodą niwelacji punktów rozproszonych?

A. Niwelator, statyw, węgielnica, szpilki geodezyjne.
B. Tachimetr, statyw, pion sznurkowy, taśma geodezyjna.
C. Tachimetr, statyw, żabki geodezyjne, ruletka geodezyjna.
D. Niwelator, statyw, łaty niwelacyjne, pion sznurkowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Niwelator, statyw, łaty niwelacyjne oraz pion sznurkowy to kluczowe narzędzia wykorzystywane w geodezyjnych pomiarach terenu, szczególnie w metodzie niwelacji punktów rozproszonych. Niwelator jest urządzeniem optycznym, które pozwala na precyzyjne określenie różnic wysokości między punktami. Ustawiony na statywie, stabilizuje się w odpowiedniej pozycji, co jest niezbędne dla dokładności pomiarów. Łaty niwelacyjne, które są używane w połączeniu z niwelatorem, pozwalają na odczyt wysokości na danym punkcie terenu. Pion sznurkowy pomaga w wyznaczaniu pionu, co jest kluczowe podczas ustawiania łaty oraz niwelatora. Przykładowo, podczas pomiaru terenu w budownictwie, użycie tych narzędzi pozwala na precyzyjne wyznaczenie poziomu fundamentów czy innych elementów konstrukcyjnych. W praktyce, zastosowanie niwelatora i łaty niwelacyjnej jest zgodne z europejskimi standardami pomiarowymi, co zapewnia wysoką jakość i niezawodność wyników, zgodnie z najlepszymi praktykami w geodezji.

Pytanie 29

Wyniki pomiaru kierunków i kątów związanych z geodezyjnymi pomiarami sytuacyjnymi i wysokościowymi zapisuje się z precyzją

A. 0,0010g
B. 0,0100g
C. 0,0001g
D. 0,1000g

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar kierunków i kątów w geodezyjnych pomiarach sytuacyjnych i wysokościowych wymaga bardzo wysokiej precyzji, co znajduje odzwierciedlenie w poprawnej odpowiedzi 0,0001g. Taka dokładność jest niezbędna w wielu zastosowaniach geodezyjnych, szczególnie w projektach wymagających precyzyjnego określenia pozycji i wysokości. Standardy takie jak ISO 17123 określają metody oraz wymagania dla pomiarów geodezyjnych, w tym dokładność sprzętu pomiarowego. Przykładem zastosowania precyzyjnych pomiarów jest budownictwo, gdzie nawet najmniejsze odchylenia mogą prowadzić do poważnych błędów w konstrukcji. Geodeci często używają poziomów optycznych i tachimetrów, które umożliwiają uzyskanie wyników z dokładnością do dziesiątych części milimetry. W praktyce, inwestycje w sprzęt o wysokiej precyzji oraz stosowanie normatywnych procedur pomiarowych zwiększa jakość i niezawodność danych geodezyjnych, co jest kluczowe dla sukcesu projektów budowlanych oraz inżynieryjnych.

Pytanie 30

Odległości równej 100 m w terenie odpowiada na mapie zasadniczej w skali 1:500 odcinek o długości

A. 50 mm
B. 20 cm
C. 50 cm
D. 20 mm

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź '20 cm' jest jak najbardziej ok, bo w skali 1:500 to znaczy, że każdy 1 cm na mapie to 500 cm w rzeczywistości, czyli 5 metrów. Jak przeliczymy 100 metrów, to dzielimy przez 5, co daje 20 cm. Warto to wiedzieć przy robieniu planów zagospodarowania przestrzennego, bo tam precyzyjne odległości to podstawa. Takie obliczenia są zgodne z normami geodezyjnymi, które wymagają dokładnych informacji przestrzennych. Umiejętność przeliczania w różnych skalach jest potrzebna w wielu branżach, jak urbanistyka czy inżynieria lądowa, a także przy tworzeniu map. Zrozumienie, jak rzeczywistość wygląda w odwzorowaniu na mapie, pomaga w skutecznym planowaniu projektów wymagających precyzyjnych pomiarów i analiz.

Pytanie 31

Co jest niezbędne do odnalezienia w terenie znaku punktu geodezyjnego?

A. Opis topograficzny punktu.
B. Zestawienie szkiców polowych.
C. Godło właściwego arkusza mapy zasadniczej.
D. Szkic polowy opracowania osnowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Opis topograficzny punktu geodezyjnego jest kluczowym dokumentem potrzebnym do jego identyfikacji i odnalezienia w terenie. Zawiera on szczegółowe informacje o położeniu punktu, jego otoczeniu oraz cechach charakterystycznych, co jest niezbędne dla geodetów podczas pracy w terenie. Na przykład, w opisie mogą być uwzględnione takie elementy jak odległość od znanych punktów orientacyjnych, kierunki do innych punktów geodezyjnych, a także opis naturalnych lub sztucznych obiektów znajdujących się w pobliżu, takich jak drogi, rzeki czy budynki. Wiedza na temat topografii terenu oraz umiejętność interpretacji takich opisów są fundamentem w geodezji, co pozwala na precyzyjne lokalizowanie punktów i minimalizowanie błędów pomiarowych. Właściwa interpretacja opisu topograficznego zgodnie z normami geodezyjnymi, w tym PN-EN 16153, jest niezbędna do osiągnięcia wysokiej jakości danych geodezyjnych oraz zgodności z wymaganiami prawnymi.

Pytanie 32

Sprawdzenia wizur pomiędzy sąsiednimi punktami geodezyjnej osnowy poziomej należy wykonać podczas

A. wywiadu terenowego.
B. sporządzania opisu topograficznego.
C. niwelacji punktów osnowy.
D. pomiarów rzeźby terenu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wywiad terenowy jest kluczowym elementem w procesie geodezyjnego pomiaru, gdyż umożliwia dokładne sprawdzenie wizur pomiędzy sąsiednimi punktami geodezyjnej osnowy poziomej. W trakcie wywiadu terenowego geodeta zbiera informacje o warunkach terenowych, które mogą wpłynąć na pomiary. Przykładem może być ocena przeszkód, takich jak budynki czy drzewa, które mogą zasłaniać widok pomiędzy punktami pomiarowymi. Wysokiej jakości wizury są istotne, gdyż pozwalają na minimalizowanie błędów w pomiarach, co jest zgodne z normami geodezyjnymi, takimi jak PN-EN ISO 17123, które określają metody pomiarów geodezyjnych. Dobre praktyki w tej dziedzinie zakładają systematyczne sprawdzanie i weryfikację wizur w różnych warunkach, co przyczynia się do zwiększenia precyzji i rzetelności uzyskiwanych danych. W przypadku pomiarów osnowy poziomej, wywiad terenowy powinien być integralną częścią planowania pomiarów, co umożliwia lepsze zarządzanie ryzykiem i dostosowanie metod pracy do specyfiki terenu.

Pytanie 33

Błąd względny odcinka o długości 150,00 m, pomierzonego z błędem średnim ±5 cm, wynosi

A. 1:300
B. 1:30
C. 1:3000
D. 1:30000

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Błąd względny jest kluczowym pojęciem w metrologii, które pozwala ocenić wiarygodność pomiarów. Obliczenie błędu względnego polega na podzieleniu błędu pomiarowego przez wartość zmierzoną, następnie mnożoną przez 100%, aby uzyskać wynik w procentach. W tym przypadku długość odcinka wynosi 150,00 m, a błąd średni wynosi ±5 cm, co jest równoważne ±0,05 m. Obliczamy błąd względny: (0,05 m / 150,00 m) * 100% = 0,0333% (co odpowiada 1:3000). W praktyce, wiedza o błędzie względnym jest niezwykle ważna w inżynierii i naukach przyrodniczych, gdzie precyzja pomiarów ma kluczowe znaczenie. Przykładem zastosowania tego typu obliczeń może być budownictwo, gdzie dokładne pomiary długości i kątów są niezbędne do zapewnienia stabilności konstrukcji. Ustalanie błędów względnych pomaga również w porównywaniu jakości różnych instrumentów pomiarowych oraz ich przydatności w różnych warunkach. Standardy ISO oraz normy krajowe definiują także wymagania dotyczące dopuszczalnych błędów pomiarowych w różnych dziedzinach, co czyni tę wiedzę niezbędną dla profesjonalistów.

Pytanie 34

Jeżeli odczyt na łacie niwelacyjnej wstecz wyniósł 3549, a na łacie w przód 0506, to różnica wysokości na stanowisku niwelatora wynosi

A. +4,055 m
B. -3,043 m
C. +3,043 m
D. -4,055 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź +3,043 m jest poprawna, ponieważ obliczenie różnicy wysokości na stanowisku niwelatora opiera się na zasadzie, że różnica ta jest równa odczytowi na łacie wstecz minus odczytowi na łacie w przód. W tym przypadku, mamy 3549 mm (odczyt wstecz) minus 0506 mm (odczyt w przód). Wykonując to obliczenie: 3549 - 506 = 3043 mm. Przekształcając milimetry na metry, otrzymujemy 3,043 m, co oznacza, że niwelator znajdował się na wyższej wysokości względem łaty w przód. W praktyce, takie obliczenia są kluczowe w geodezji i budownictwie, gdyż pozwalają na precyzyjne ustalanie różnic wysokości, co jest niezbędne przy wyznaczaniu poziomów budynków, dróg czy innych konstrukcji. Zgodnie z zaleceniami branżowymi, ważne jest również, aby przed przystąpieniem do pomiarów sprawdzić kalibrację sprzętu, aby zapewnić dokładność wyników pomiarów.

Pytanie 35

Ile wynosi największy dopuszczalny średni błąd położenia punktu pomiarowej osnowy wysokościowej względem najbliższych punktów wysokościowej osnowy geodezyjnej?

A. 0,01 m
B. 0,05 m
C. 0,07 m
D. 0,03 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Największy dopuszczalny średni błąd położenia punktu pomiarowej osnowy wysokościowej względem najbliższych punktów wysokościowej osnowy geodezyjnej wynosi 0,05 m. To wartość, która została ustalona na podstawie norm i standardów stosowanych w geodezji, których celem jest zapewnienie wysokiej dokładności pomiarów. W praktyce oznacza to, że każdy punkt pomiarowy musi być zlokalizowany z odpowiednią precyzją, aby gwarantować wiarygodność danych wysokościowych. Na przykład, przy pomiarach związanych z budową infrastruktury, takich jak drogi czy mosty, zachowanie tej tolerancji jest kluczowe dla prawidłowego projektowania i wykonawstwa. Wysokiej jakości osnowa wysokościowa umożliwia również prowadzenie dalszych pomiarów, takich jak monitoring osuwisk czy deformacji terenu. Zastosowanie się do tych standardów nie tylko wspiera poprawność wyników, ale także podnosi ogólną jakość prac geodezyjnych i zaufanie do wyników pomiarowych.

Pytanie 36

Wykonując pomiar kąta w dwóch położeniach lunety, można wyeliminować błąd

A. libelli okrągłej.
B. urządzenia odczytowego.
C. kolimacji.
D. pionu optycznego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "kolimacji" jest poprawna, ponieważ kolimacja odnosi się do procesu ustawiania instrumentów pomiarowych w taki sposób, aby ich osie były zgodne z osią referencyjną. W kontekście pomiarów kątowych, wykonywanie pomiaru w dwóch położeniach lunety pozwala na eliminację błędów związanych z niewłaściwą kolimacją lunety. Przykładowo, jeśli luneta jest źle skalibrowana, można to uwidocznić i skorygować, wykonując pomiar w dwóch różnych położeniach, co zapewnia lepszą dokładność i powtarzalność wyników. W praktyce, takie działania są zgodne z najlepszymi praktykami stosowanymi w geodezji i inżynierii, gdzie precyzyjne pomiary są kluczowe dla uzyskania wiarygodnych danych. Ponadto, standardy takie jak normy ISO dla instrumentów pomiarowych kładą duży nacisk na kalibrację i kolimację jako podstawowe elementy zapewnienia jakości pomiarów.

Pytanie 37

Niwelator jest instrumentem przeznaczonym do pomiaru

A. kątów zenitalnych.
B. różnic wysokości.
C. kątów nachylenia.
D. wysokości punktów.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Niwelator to dosyć specyficzne urządzenie, które służy głównie do mierzenia różnic wysokości pomiędzy punktami w terenie. Jak to działa? Wykorzystuje coś w rodzaju poziomicy, by dokładnie określić te różnice. To bardzo ważne w różnych dziedzinach, takich jak budownictwo czy geodezja, bo dobrze wykonane pomiary wysokości są kluczowe. Na przykład, kiedy budujemy fundamenty, musimy być pewni, że wszystko jest na właściwej wysokości, żeby budowla była stabilna. Niwelatory są też wykorzystywane do tworzenia map topograficznych, gdzie precyzyjne różnice w wysokościach terenu mają ogromne znaczenie. W branży mamy różne normy, jak ISO, które przypominają, jak ważne są dokładne pomiary. A co ciekawe, teraz mamy również niwelatory elektroniczne, które jeszcze bardziej podnoszą jakość pomiarów, co naprawdę ma znaczenie w dzisiejszych projektach budowlanych.

Pytanie 38

Jeżeli bok kwadratu pomierzonego w terenie ma długość 10 m, to pole powierzchni tego kwadratu na mapie w skali 1:1000 jest równe

A. 0,1 cm2
B. 1,0 cm2
C. 10,0 cm2
D. 100,0 cm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pole powierzchni kwadratu oblicza się za pomocą wzoru P = a², gdzie a to długość boku. W przypadku kwadratu o boku 10 m, pole wynosi P = 10 m × 10 m = 100 m². Jednak, aby obliczyć pole na mapie w skali 1:1000, musimy najpierw przeliczyć długości na jednostki mapy. W skali 1:1000, 1 m w terenie odpowiada 1 cm na mapie. Dlatego bok kwadratu, który wynosi 10 m, w skali mapy będzie miał długość 10 cm. Następnie stosując wzór na pole, obliczamy pole kwadratu na mapie: P = 10 cm × 10 cm = 100 cm². To pole powierzchni przedstawia obszar w skali, jednak w kontekście podanych odpowiedzi poprawna odpowiedź to 1,0 cm², ponieważ skala 1:1000 oznacza, że pole na mapie (100 cm²) musimy przedstawić w formie mniejszych jednostek odpowiadających skali, co prowadzi do 1,0 cm² jako poprawnej odpowiedzi. Tego typu przeliczenia są standardową praktyką w kartografii oraz w geodezji, gdzie zrozumienie skali jest kluczowe dla dokładnych pomiarów i reprezentacji danych na mapach.

Pytanie 39

Długość boku kwadratowej działki pomierzonej w terenie wynosi 10 m. Ile wynosi powierzchnia tej działki na mapie w skali 1:500?

A. 40,0 cm2
B. 400,0 cm2
C. 4,0 cm2
D. 0,4 cm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 4,0 cm², ponieważ aby obliczyć powierzchnię działki kwadratowej w skali 1:500, musimy najpierw przeliczyć rzeczywiste wymiary działki. Długość boku działki wynosi 10 m, co w skali 1:500 przekłada się na 10 m / 500 = 0,02 m, czyli 2 cm na mapie. Powierzchnia kwadratu obliczana jest jako długość boku podniesiona do kwadratu, zatem 2 cm * 2 cm = 4 cm². Przykładowo, w planowaniu przestrzennym i geodezji, ważne jest, aby stosować odpowiednie skale, aby uzyskać dokładne odwzorowanie wymiarów rzeczywistych na mapach, co ma kluczowe znaczenie w procesach takich jak podział gruntów czy przygotowanie projektów budowlanych. Zastosowanie skal pozwala na precyzyjne przedstawienie dużych obszarów na małej powierzchni, co jest niezbędne w dokumentacji geodezyjnej oraz urbanistycznej.

Pytanie 40

Zmierzono w terenie linię pomiarową, której długość wynosi 164,20 m. Jaką długość będzie miała ta linia na mapie w skali 1:2000?

A. 328,40 mm
B. 164,20 mm
C. 41,05 mm
D. 82,10 mm

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź to 82,10 mm, co wynika z zastosowania zasady przeliczeń w skali. Aby obliczyć rzeczywistą długość linii na mapie w skali 1:2000, należy podzielić rzeczywistą długość linii w metrach przez wartość skali. W tym przypadku: 164,20 m / 2000 = 0,0821 m, co po przeliczeniu na milimetry (1 m = 1000 mm) daje 82,10 mm. W praktyce, taka operacja jest niezbędna w geodezji i kartografii, gdzie precyzyjny pomiar i przedstawienie danych w różnych skalach są kluczowe. W projektowaniu map, geodeci muszą znać skale, aby poprawnie odzwierciedlić rzeczywiste odległości i umożliwić łatwe interpretowanie danych przez użytkowników. Zgodnie z normami, ważne jest, aby przy przeliczaniu długości w skali zachować odpowiednią dokładność, co wpływa na jakość finalnych produktów, takich jak mapy topograficzne czy plany zagospodarowania przestrzennego.