Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 7 czerwca 2025 14:26
  • Data zakończenia: 7 czerwca 2025 14:42

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który z zaworów pozwala na przepływ czynnika roboczego tylko w jednym kierunku?

A. Rozdzielający
B. Przelotowy
C. Odcinający
D. Zwrotny
Wybór niewłaściwego zaworu wynika z nieporozumienia dotyczącego funkcji poszczególnych typów zaworów. Zawór rozdzielający nie zapewnia jednokierunkowego przepływu czynnika roboczego, lecz ma na celu kierowanie przepływu do różnych sekcji systemu. Używany jest w aplikacjach, gdzie konieczne jest przełączanie między różnymi obiegami, co czyni go nieodpowiednim w kontekście wymagania o przepływie tylko w jednym kierunku. Zawór odcinający, z kolei, służy do całkowitego zamykania lub otwierania przepływu, a nie do jego kontrolowania w określonym kierunku. W praktyce, zawory odcinające są istotne w sytuacjach, gdzie konieczne jest całkowite odcięcie zasilania do danej linii, jednak nie regulują one kierunku przepływu, co jest kluczowe w kontekście pytania. Zawór przelotowy, podobnie jak zawór odcinający, nie ogranicza przepływu do jednego kierunku, ale raczej umożliwia swobodny przepływ w obu kierunkach. Zrozumienie charakterystyki tych zaworów jest kluczowe dla prawidłowego projektowania i eksploatacji systemów hydraulicznych i pneumatycznych, aby uniknąć błędów, które mogą prowadzić do awarii systemu.

Pytanie 2

Jaką średnicę powinien mieć otwór, aby pomieścić nit o średnicy 2 mm?

A. 2,0 mm
B. 2,3 mm
C. 1,9 mm
D. 2,1 mm
Wybór średnicy 2,0 mm sugeruje, że otwór powinien być identyczny z średnicą nitu, co jest niewłaściwe w kontekście praktycznego montażu. Taki otwór może być zbyt ciasny, co prowadzi do problemów przy wprowadzaniu nitu. W przypadku nitu o średnicy 2 mm, otwór musi być większy, aby zapewnić odpowiedni luz, który jest niezbędny do komfortowego montażu. Ponadto, wybór 1,9 mm również jest błędny, ponieważ zmniejsza luz, co znów może prowadzić do trudności w wprowadzeniu nitu oraz zwiększa ryzyko uszkodzenia materiału. Z kolei 2,3 mm, czyli zbyt duży otwór, może skutkować niewłaściwym osadzeniem nitu, co z kolei wpływa na trwałość i funkcjonalność połączenia. Wszelkie nieprawidłowe podejścia w kontekście średnicy otworu mogą prowadzić do niskiej jakości połączeń, co w konsekwencji zagraża integralności konstrukcji. W inżynierii montażowej stosuje się standardowe tolerancje, które pomagają w określeniu odpowiednich wymiarów otworów. Niezrozumienie tych zasad może prowadzić do nieodwracalnych błędów w produkcie końcowym czy w zakresie bezpieczeństwa. Dlatego tak istotne jest, aby przy projektowaniu połączeń zwracać uwagę na standardy dotyczące luzu, co jest kluczowe w każdym procesie technologii montażu.

Pytanie 3

Na podstawie fragmentu instrukcji serwisowej sprężarki tłokowej wskaż, która z wymienionych czynności konserwacyjnych powinna być wykonywana najczęściej.

CzynnośćCykle
Filtr ssącykontrolowanieco tydzień
czyszczenieco 60 godzin eksploatacji
wymianazależnie od potrzeb (co najmniej raz w roku)
Kontrola stanu olejucodziennie przed uruchomieniem
Wymiana olejupierwsza wymianapo 40 godzinach eksploatacji
kolejna wymianaraz w roku
Spust kondensatuco najmniej raz w tygodniu
Czyszczenie zaworu zwrotnegoco najmniej raz w roku
Pasek klinowykontrola naprężeniaco tydzień
wymianaw przypadku zużycia

A. Wymiana paska klinowego.
B. Kontrola stanu oleju.
C. Wymiana filtra ssącego.
D. Czyszczenie zaworu zwrotnego.
Kontrola stanu oleju jest kluczowym elementem konserwacji sprężarek tłokowych. Regularne sprawdzanie poziomu i jakości oleju zapewnia prawidłowe smarowanie wszystkich ruchomych części, co wpływa na ich trwałość oraz efektywność energetyczną urządzenia. Niekontrolowanie stanu oleju może prowadzić do zwiększonego tarcia, a w konsekwencji do poważnych uszkodzeń silnika. Zgodnie z zaleceniami producentów, kontrola oleju powinna odbywać się codziennie przed rozpoczęciem pracy sprężarki. Dodatkowo, w przypadku wykrycia zanieczyszczeń oleju, jego wymiana powinna być przeprowadzona natychmiastowo, aby zapobiec dalszym uszkodzeniom. Przykładowo, w warunkach przemysłowych, gdzie sprężarki pracują non-stop, regularna kontrola oleju staje się kluczowym elementem strategii utrzymania ruchu, co przyczynia się do mniejszych kosztów eksploatacji oraz dłuższej żywotności maszyn.

Pytanie 4

Przed ponownym połączeniem silnika elektrycznego z napędzaną maszyną konieczne jest przeprowadzenie

A. pomiary obrotów wirnika
B. pomiary napięcia zasilającego
C. kontroli kierunku obrotu wirnika
D. kontroli temperatury uzwojenia
Pomiar napięcia zasilania, prędkości wirnika i kontrola temperatury stojana to istotne rzeczy w pracy silników elektrycznych, ale przed ponownym połączeniem silnika z maszyną nie są aż tak kluczowe. Wydaje mi się, że skupienie na napięciu może być trochę mylące, bo choć prawidłowe napięcie jest konieczne do dobrego działania silnika, to wcale nie zapewnia, że wirnik obraca się w dobrą stronę. Czasami napięcie jest w normie, a kierunek obrotów i tak jest zły, co może prowadzić do poważnych szkód. Co do prędkości wirnika, to też jest to ważne, ale bardziej w kontekście wydajności. Nie można jednak polegać tylko na tym, by wiedzieć, czy sprzęt jest gotowy do pracy, bo prędkość nie mówi nam nic o kierunku, w jakim wirnik się obraca. Kontrola temperatury stojana jest bardziej związana z tym, jak pracuje silnik, a nie z jego przygotowaniem do połączenia. Wysoka temperatura może oznaczać problemy, ale nic nie mówi o kierunku obrotów. Dlatego, stawianie na te kwestie przed połączeniem, może prowadzić do błędnych wniosków i ryzyka awarii, co pokazuje, jak ważne jest, żeby najpierw upewnić się, że kierunek obrotów jest prawidłowy.

Pytanie 5

W trakcie użytkowania urządzenia mechatronicznego pracownik doznał porażenia prądem, lecz po chwili odzyskał oddech. Co należy zrobić?

A. położyć go na plecach z uniesionymi nogami
B. ustawić go w pozycji bocznej ustalonej
C. przystąpić do pośredniego masażu serca
D. rozpocząć wykonywanie sztucznego oddychania i kontynuować przez około 30 minut
Ułożenie osoby w pozycji bocznej ustalonej (PBU) jest kluczowym działaniem w przypadku osób po porażeniu prądem, które odzyskały oddech. Ta pozycja ma na celu zapewnienie swobodnego przepływu powietrza oraz zapobiegnięcie zadławieniu się, co jest szczególnie ważne, gdy pacjent jest nieprzytomny lub osłabiony. W PBU pacjent leży na boku, co pozwala na swobodne wydostawanie się wydzielin z jamy ustnej i zapobiega aspiracji. Wytyczne dotyczące pierwszej pomocy, takie jak te zawarte w standardach Europejskiego Ruchu na Rzecz Bezpieczeństwa (ERS), podkreślają znaczenie stosowania PBU w przypadkach utraty przytomności. Przykładem zastosowania jest sytuacja, gdy osoba po porażeniu prądem odzyskuje świadomość, ale nie jest w stanie samodzielnie kontrolować swoich dróg oddechowych. W takich przypadkach, szybka reakcja i odpowiednie ułożenie mogą uratować życie, dlatego znajomość tego działania jest niezbędna dla każdego, kto może być świadkiem takiego zdarzenia.

Pytanie 6

Wskaż, który rodzaj siłownika można wykorzystać w układzie zasilanym sprężonym powietrzem o ciśnieniu p = 0,8 MPa, jeśli wymagana jest siła teoretyczna 50 daN oraz przemieszczenie 10 cm?

A. D32, pmax = 10 bar, skok standardowy: 25, 50, 80, 100,125, 160, 200
B. D12, pmax = 10 bar, skok standardowy: 25, 50, 80, 100,125, 160, 200
C. D32, pmax = 10 bar, skok standardowy: 16, 32, 50, 80, 125, 200
D. D25, pmax = 10 bar, skok standardowy: 16, 32, 50, 80, 125, 200
Wybór niewłaściwego siłownika, takiego jak D25, D12 czy D32 z niewłaściwym skokiem, może prowadzić do nieoptymalnych rezultatów w aplikacjach przemysłowych. Siłownik D25, mimo że posiada maksymalne ciśnienie 10 bar, może nie być w stanie wygenerować wymaganej siły teoretycznej 50 daN w kontekście zadanego przemieszczenia. W przypadku siłownika D12, jego parametry mogą być zbyt niskie dla tego zastosowania, przez co nie spełni on oczekiwań w zakresie siły i skoku. Siłownik D32 z nieodpowiednim skokiem (np. 16, 32, 50, 80, 125, 200 mm) również może nie dostarczyć wymaganego przemieszczenia 10 cm, co jest kluczowe dla efektywności operacji. Przykładowe błędy myślowe obejmują nieprzemyślane założenie, że każdy siłownik o podobnym ciśnieniu roboczym jest równoważny w aplikacji, co jest dalekie od rzeczywistości. W praktyce, parametry takie jak średnica tłoka, siła teoretyczna oraz skok mają bezpośredni wpływ na skuteczność działania układów pneumatycznych. Wybór odpowiedniego siłownika powinien być oparty na analizie wymagań konkretnej aplikacji oraz standardów branżowych, aby zapewnić optymalne działanie systemu.

Pytanie 7

Który z wymienionych parametrów nie odnosi się do frezarki CNC?

A. Liczba wrzecion.
B. Dokładność pozycjonowania.
C. Gramatura wtrysku.
D. Najwyższa prędkość ruchu dla poszczególnych osi.
Liczba wrzecion, powtarzalność pozycjonowania oraz maksymalna prędkość ruchu dla poszczególnych osi to kluczowe parametry, które w znacznym stopniu wpływają na wydajność i jakość obróbki w frezarkach numerycznych. Liczba wrzecion odnosi się do ilości narzędzi, które mogą być zainstalowane w danej maszynie jednocześnie, co pozwala na realizację różnych operacji jednocześnie, zmniejszając czas przestoju i zwiększając wydajność produkcji. Powtarzalność pozycjonowania jest miarą precyzji, z jaką maszyna może powtórzyć te same ruchy, co jest kluczowe w kontekście produkcji części o ścisłych tolerancjach. Im wyższa powtarzalność, tym mniejsze ryzyko błędów produkcyjnych i mniejsze straty materiałowe. Z kolei maksymalna prędkość ruchu dla poszczególnych osi jest istotna dla ogólnego czasu cyklu obróbczej, co jest niezwykle ważne w kontekście konkurencyjności na rynku. Wybierając frezarkę numeryczną, inżynierowie muszą brać pod uwagę te parametry, aby dostosować wybór maszyny do specyficznych potrzeb produkcyjnych. Błędne rozumienie, że gramatura wtrysku jest istotna dla frezarek, może prowadzić do pominięcia kluczowych aspektów przy wyborze odpowiedniego sprzętu, co w konsekwencji może skutkować nieefektywnością produkcji oraz wyższymi kosztami operacyjnymi.

Pytanie 8

W sieci TN - C doszło do przerwania przewodu PEN. Jakie są tego konsekwencje?

A. pojawieniem się napięcia na obudowie urządzeń podłączonych do gniazda z bolcem ochronnym
B. brakiem zasilania dla wszystkich odbiorników
C. przepaleniem bezpieczników w obwodzie
D. spadkiem napięcia zasilającego do 0,5 UN
Nieprawidłowe odpowiedzi błędnie wskazują na skutki przerwania przewodu PEN. Przepalenie się bezpieczników w obwodzie nie jest bezpośrednim skutkiem przerwania tego przewodu, ponieważ bezpieczniki działają na zasadzie zabezpieczenia przed przeciążeniem lub zwarciem. W przypadku przerwania przewodu PEN, nie następuje natychmiastowe przeciążenie, które mogłoby prowadzić do przepalenia bezpieczników. Wskazanie braku napięcia zasilającego dla wszystkich odbiorników również jest błędne, ponieważ przerwanie przewodu PEN nie powoduje całkowitego wyłączenia zasilania, lecz może prowadzić do niebezpiecznych sytuacji, takich jak pojawienie się napięcia na obudowach. Spadek napięcia zasilającego do 0,5 UN również nie jest realistyczną konsekwencją. Tego rodzaju zjawisko nie jest standardowym efektem przerwania przewodu PEN, a spadki napięcia są bardziej związane z obciążeniem instalacji lub innymi problemami z siecią. W praktyce, należy pamiętać, że sieć TN-C wymaga szczególnej uwagi w kontekście ochrony przed porażeniem prądem, a kluczowym środkiem ochrony są wyłączniki różnicowoprądowe, które powinny być stosowane w takich systemach, aby zapewnić bezpieczeństwo użytkowników oraz minimalizować ryzyko wystąpienia napięcia na obudowach urządzeń.

Pytanie 9

Podczas użytkowania urządzenia zaobserwowano wzrost hałasu spowodowany przez łożysko toczne. Naprawa sprzętu polega na

A. zmniejszeniu luzów łożyska
B. wymianie osłony łożyska
C. redukcji nadmiaru smaru w łożysku
D. wymianie całego łożyska
Wymiana całego łożyska jest właściwą odpowiedzią w kontekście zwiększonego hałasu, który wskazuje na problemy z łożyskiem tocznym. W przypadku uszkodzenia łożyska, jego wymiana jest najlepszym rozwiązaniem, ponieważ usunięcie i zastąpienie uszkodzonego elementu zapewnia długotrwałą efektywność działania urządzenia. Standardy branżowe, takie jak ISO 1940, wskazują na potrzebę wymiany łożysk, gdy wykazują one znaczące zużycie lub uszkodzenie, co może prowadzić do awarii mechanizmu. Przykładem może być sytuacja w przemyśle motoryzacyjnym, gdzie wymiana łożysk w silnikach oraz układach napędowych jest kluczowym elementem zapewniającym ich niezawodność. Dodatkowo, regularna kontrola stanu łożysk oraz ich wymiana zgodnie z zaleceniami producenta sprzętu są najlepszą praktyką, co przekłada się na wydłużenie cyklu życia maszyn i zmniejszenie ryzyka awarii.

Pytanie 10

Jakim skrótem literowym określa się język drabinkowy?

A. LD
B. IL
C. STL
D. FBD
Język drabinkowy, znany jako LD, to jeden z najpopularniejszych języków w automatyce przemysłowej. Używa się go często do programowania sterowników PLC. Struktura tego języka wygląda jak drabinka, gdzie po bokach są zasilania, a w środku masz linie, które pokazują logikę działania. To strasznie ułatwia wszystko, bo dzięki temu operatorzy mogą szybko zrozumieć, co się dzieje w systemie. Przykładowo, jeśli chcemy, żeby silnik ruszał w zależności od czujnika, to właśnie w diagramie drabinkowym można to zobaczyć i łatwo poprawić, gdy coś nie działa. W praktyce LD jest zgodny z normą IEC 61131-3, która ustala zasady dla różnych języków programowania w automatyce, dlatego jest w zasadzie standardem w tej branży. W moim zdaniu to naprawdę dobry wybór do prostszych układów.

Pytanie 11

Jakie urządzenie można zastosować do pomiaru siły nacisku generowanej przez prasę pneumatyczną?

A. pirometr
B. szczelinomierz
C. tensometr
D. hallotron
Tensometr to urządzenie służące do pomiaru deformacji materiałów, co czyni go idealnym narzędziem do pomiaru siły nacisku wytwarzanej przez prasę pneumatyczną. Działa na zasadzie pomiaru zmiany oporu elektrycznego, który jest proporcjonalny do deformacji ciała stałego. W praktyce, tensometry są często stosowane w przemyśle do monitorowania obciążeń w różnych maszynach, w tym prasach hydraulicznych i pneumatycznych. Dzięki zastosowaniu tensometrów można na bieżąco kontrolować siłę nacisku, co jest niezwykle ważne dla zapewnienia bezpieczeństwa oraz efektywności procesów produkcyjnych. W standardach branżowych, takich jak ISO, zaleca się regularne stosowanie tensometrów w aplikacjach związanych z kontrolą jakości i monitorowaniem wydajności maszyn. Dodatkowo, zrozumienie działania tensometrów pozwala inżynierom na efektywniejsze projektowanie i optymalizację systemów mechanicznych.

Pytanie 12

Podczas użytkowania urządzenia laserowego do obróbki metali, ryzyko dla zdrowia pracownika może wynikać między innymi z

A. hałasu generowanego w trakcie obróbki
B. odprysków cząsteczek metalu
C. zanieczyszczenia pyłem wdychanego powietrza
D. zanieczyszczenia powietrza wdychanego oparami metalu
W analizie zagrożeń w czasie eksploatacji urządzeń laserowych do cięcia metali, różne warianty odpowiedzi wskazują na różne rodzaje potencjalnych zagrożeń, jednak nie wszystkie z nich są związane bezpośrednio z poważnymi konsekwencjami dla zdrowia. Zanieczyszczenie wdychanego powietrza pyłem, chociaż istotne, zazwyczaj w przypadku laserowego cięcia nie przekłada się na tak dramatyczne skutki zdrowotne jak opary metalu. Wysoka temperatura generowana podczas cięcia prowadzi do utleniania metalu i tworzenia się toksycznych oparów, co jest znacznie bardziej niebezpieczne. Emisja hałasu w czasie obróbki, choć sama w sobie jest uciążliwa i może prowadzić do uszkodzenia słuchu, niekoniecznie stanowi bezpośrednie zagrożenie zdrowia w kontekście ekspozycji na substancje chemiczne. Odpryski drobin metalu, mimo że mogą powodować urazy mechaniczne, nie mają tak istotnego wpływu na zdrowie w kontekście zagrożeń chemicznych związanych z oparami. Często mylące mogą być również postrzegane zagrożenia związane z hałasem i odpryskami, które choć istotne, nie są głównym źródłem zagrożeń zdrowotnych w tym kontekście, co prowadzi do błędnych konkluzji, że dotyczą one zdrowia na równi z oparami metalu.

Pytanie 13

Rysunek przedstawia symbol graficzny bramki

Ilustracja do pytania
A. NAND
B. Ex-NOR
C. NOR
D. Ex-OR
Symbol graficzny przedstawia bramkę Ex-OR (Exclusive OR), która jest kluczowym elementem w projektowaniu układów cyfrowych. Działa na zasadzie, że na wyjściu generuje stan wysoki (1) tylko wtedy, gdy na wejściach są różne stany – jednocześnie 1 i 0. To odróżnia ją od standardowej bramki OR, która daje wynik wysoki, gdy przynajmniej jedno z wejść ma stan wysoki. W praktyce, bramki Ex-OR są wykorzystywane w takich zastosowaniach jak sumatory w obliczeniach arytmetycznych, a także w układach logicznych, które wymagają porównywania stanów. Przykładem może być kontrola błędów w transmisji danych, gdzie bramka Ex-OR jest używana do generowania bitów parzystości. W kontekście standardów, stosowanie bramek Ex-OR jest zgodne z praktykami projektowania układów cyfrowych, które kładą nacisk na efektywność i minimalizację błędów. Zrozumienie działania tej bramki jest fundamentem dla dalszych zagadnień związanych z układami cyfrowymi i logiką.

Pytanie 14

Jaki rodzaj czujnika, montowanego na metalowym cylindrze siłownika pneumatycznego, powinno się wykorzystać do monitorowania położenia tłoka?

A. Czujnik optyczny
B. Czujnik magnetyczny
C. Czujnik indukcyjny
D. Czujnik tensometryczny
Czujniki optyczne, indukcyjne i tensometryczne mają swoje specyficzne zastosowania, ale nie są odpowiednie do monitorowania położenia tłoka w metalowym cylindrze siłownika pneumatycznego. Czujniki optyczne wykorzystują promieniowanie świetlne do detekcji obiektów, co może być skuteczne w warunkach, gdzie nie ma przeszkód oraz działań środowiskowych mogących wpływać na sygnał, ale w przypadku tłoka w siłowniku pneumatycznym, mogą napotykać trudności, np. z zabrudzeniem soczewek lub przesłonięciem sygnału. Czujniki indukcyjne, z drugiej strony, są przeznaczone do wykrywania metalowych obiektów, jednak nie zapewniają one informacji o położeniu konkretnego tłoka, a jedynie detekcję obecności metalu. Mogą być używane w aplikacjach, gdzie istnieje potrzeba wykrycia przeszkód, lecz ich zastosowanie w pozycjonowaniu tłoka jest ograniczone. Tensometryczne czujniki mierzą odkształcenie, co sprawia, że są one bardziej odpowiednie do monitorowania siły lub obciążenia, a nie do detekcji położenia. Użycie tych czujników do kontroli pozycji tłoka w siłowniku mogłoby prowadzić do mylnej interpretacji danych, co z kolei może skutkować błędami w procesie sterowania. W praktyce, nieprawidłowy wybór czujnika do konkretnego zastosowania może prowadzić do nieefektywności w systemach automatyki, co jest sprzeczne z najlepszymi praktykami branżowymi, które zalecają dobór czujników zgodnie z ich specyfiką oraz wymaganiami aplikacji.

Pytanie 15

Próba włączenia napędu z prawidłowo działającym silnikiem trójfazowym za każdym razem powoduje włączenie wyłącznika instalacyjnego. Jakie działanie może potencjalnie rozwiązać ten problem?

A. Zastosowanie wyłącznika instalacyjnego zwłocznego
B. Odłączenie uziemienia silnika
C. Zmiana kolejności faz
D. Podłączenie kondensatora rozruchowego
Pojęcia związane z odłączeniem uziemienia silnika, podłączeniem kondensatora rozruchowego oraz zmianą kolejności faz nie są skutecznymi rozwiązaniami problemu zadziałania wyłącznika instalacyjnego. Odłączenie uziemienia może prowadzić do niebezpiecznych sytuacji, w których niekontrolowane napięcia mogą pojawić się na obudowie silnika, co stwarza ryzyko porażenia prądem elektrycznym. Uziemienie jest kluczowe dla bezpieczeństwa urządzeń elektrycznych, gdyż chroni zarówno operatorów, jak i urządzenia przed skutkami zwarcia. Z kolei zastosowanie kondensatora rozruchowego jest metodą, która może pomóc jedynie w przypadku silników jednofazowych, a nie trójfazowych. Silniki trójfazowe zazwyczaj nie wymagają kondensatorów rozruchowych, ponieważ ich konstrukcja pozwala na efektywny rozruch bez dodatkowego wsparcia. Zmiana kolejności faz, chociaż może wpłynąć na kierunek obrotów silnika, nie rozwiązuje problemu przeciążenia przy rozruchu. W rzeczywistości, zmiana ta może prowadzić do nieprawidłowej pracy silnika, a nawet jego uszkodzenia. Warto również zauważyć, że silniki trójfazowe posiadają obliczone wartości prądowe i odpowiedni dobór wyłączników instalacyjnych powinien brać pod uwagę te parametry, zamiast stosować metody, które mogą wprowadzić dodatkowe ryzyko i nieprawidłowości w działaniu systemu.

Pytanie 16

Jak definiuje się natężenie przepływu Q cieczy w rurociągu?

A. iloczyn prędkości cieczy oraz czasu jej przepływu.
B. stosunek pola przekroju rurociągu do prędkości, z jaką ciecz przepływa.
C. iloczyn ciśnienia cieczy oraz pola przekroju rurociągu.
D. stosunek objętości cieczy, która przechodzi przez przekrój do czasu, w jakim dokonuje się ten przepływ.
Natężenie przepływu Q w rurociągu jest często mylone z innymi pojęciami związanymi z dynamiką cieczy. Przykładowo, odniesienie do stosunku pola przekroju rurociągu do prędkości przepływu cieczy jest błędne, ponieważ nie uwzględnia ono istoty natężenia jako miary objętości w jednostce czasu. Z kolei iloczyn ciśnienia cieczy i pola przekroju rurociągu odnosi się do mocy hydraulicznej, a nie do natężenia przepływu. Ten błąd w interpretacji może prowadzić do nieporozumień w projektowaniu systemów hydraulicznych, gdzie kluczowe jest zrozumienie różnic pomiędzy tymi wielkościami. Podobnie, iloczyn prędkości i czasu przepływu cieczy nie odpowiada definicji natężenia, ponieważ czas musi być rozumiany jako jednostka, a nie jako wartość, która w sposób bezpośredni łączy się z prędkością. Typowym błędem myślowym w tym kontekście jest skupienie się na jednostkach zamiast na fizycznym znaczeniu przepływu. W praktyce inżynieryjnej, właściwe zrozumienie i stosowanie definicji natężenia przepływu jest kluczowe dla obliczeń związanych z projektowaniem rur, pomp oraz całych instalacji, co wpływa na ich efektywność i funkcjonalność.

Pytanie 17

W układzie zastosowano przetworniki ciśnienia o prądowych sygnałach wyjściowych. Na podstawie danych katalogowych przetworników oraz wyników przeprowadzonych pomiarów wskaż, który z przetworników nie działa prawidłowo.

PrzetwornikZakres sygnału
wejściowego
[MPa]
Zakres sygnału
wyjściowego [mA]
Wartość sygnału
wejściowego
[MPa]
Wartość sygnału
wyjściowego [mA]
10 ÷ 10 ÷ 200,5010
20 ÷ 20 ÷ 200,505
30 ÷ 14 ÷ 200,5012
40 ÷ 24 ÷ 200,505

A. Przetwornik 1
B. Przetwornik 3
C. Przetwornik 4
D. Przetwornik 2
Decyzja o wyborze innych przetworników, jak Przetwornik 1, 2 lub 3, wskazuje na błędne zrozumienie podstawowych zasad działania tych urządzeń. Każdy przetwornik ciśnienia ma swoje specyfikacje i charakterystyki wyjściowe, które muszą być zgodne z wartościami ciśnienia, jakie są mierzone. Nieprawidłowe przypisanie funkcji lub wartości sygnałów wyjściowych prowadzi do redukcji efektywności systemu pomiarowego oraz może wprowadzać niepewności w dalszych analizach danych. Problemy te mogą wynikać z niepełnej interpretacji danych katalogowych lub nieuwagi przy analizie wyników pomiarów. W praktyce, przetworniki ciśnienia powinny zawsze działać w określonych granicach tolerancji, a ich sygnały powinny być ściśle monitorowane, aby zapewnić dokładność. Ponadto, nieprawidłowe założenia dotyczące działania przetworników mogą prowadzić do sytuacji, w których błędne decyzje operacyjne są podejmowane na podstawie niedokładnych danych. Warto zwrócić uwagę na standardy branżowe, takie jak normy ISO, które podkreślają znaczenie kalibracji i weryfikacji urządzeń pomiarowych. Niezrozumienie tych zasad może prowadzić do błędnych konkluzji i obniżenia jakości całego procesu technologicznego.

Pytanie 18

Parametry zamieszczone w tabeli charakteryzują

ParametrWartość
Wydajność21 l/min
Prędkość obrotowa1500 obr./min
objętość geometryczna14 cm³/obr.
zakres obrotówod 800 do 3500 obr/min
ciśnienie nominalne25 MPa
ciśnienie maksymalne26 MPa

A. kompresor olejowy.
B. pompę hydrauliczną.
C. silnik elektryczny.
D. silnik hydrauliczny.
Wybór silnika hydraulicznego, kompresora olejowego czy silnika elektrycznego jako odpowiedzi jest niepoprawny z kilku kluczowych powodów. Silnik hydrauliczny i silnik elektryczny pełnią zupełnie inne funkcje w systemach mechanicznych. Silnik hydrauliczny jest odpowiedzialny za przetwarzanie energii hydraulicznej na ruch mechaniczny, jednak nie charakteryzuje się parametrami opisanymi w tabeli, takimi jak wydajność w l/min czy ciśnienie nominalne. Z kolei kompresor olejowy ma na celu sprężanie cieczy, co również jest niezgodne z parametrami związanymi z pompami hydraulicznymi. Kompresory są projektowane z myślą o innych zastosowaniach, głównie w obiegu powietrza lub gazów, dlatego ich parametry nie są zbieżne z tymi, które są typowe dla pomp. Typowy błąd myślowy polega na myleniu funkcji różnych urządzeń hydraulicznych z ich właściwościami technicznymi. Aby zrozumieć, dlaczego taka pomyłka występuje, warto zwrócić uwagę na różnice w zastosowaniu tych urządzeń oraz ich podstawowe zasady działania. Przykładowo, parametry hydrauliczne, takie jak ciśnienie i wydajność, są kluczowe dla pomp, ale nie mają bezpośredniego związku z silnikami czy kompresorami. Zrozumienie tych podstawowych różnic jest niezbędne w przemyśle, aby prawidłowo dobierać urządzenia do konkretnych zadań.

Pytanie 19

Jaki typ licencji pozwala na używanie oprogramowania przez określony czas, po którym konieczna jest rejestracja lub usunięcie go z komputera?

A. Freeware
B. Adware
C. Trial
D. GNU GPL
Wybór innych odpowiedzi może wynikać z nieporozumienia co do definicji i zastosowań różnych typów licencji oprogramowania. Freeware to oprogramowanie dostępne za darmo, które nie ma ograniczeń czasowych, jednak często wiąże się z brakiem wsparcia technicznego lub ograniczonymi funkcjami. Użytkownicy mogą błędnie sądzić, że freeware działa na podobnej zasadzie jak licencje trial, co prowadzi do zamieszania. GNU GPL (General Public License) dotyczy oprogramowania open source, które można dowolnie używać, modyfikować i dystrybuować, nie wprowadza jednak ograniczeń czasowych, co czyni tę odpowiedź niewłaściwą. Adware to oprogramowanie, które wyświetla reklamy lub zbiera dane o użytkownikach, ale także nie wiąże się z czasowym ograniczeniem dostępu do funkcji. Wybierając błędną odpowiedź, użytkownicy mogą mylić licencje ograniczone w czasie z tymi, które są całkowicie bezpłatne lub otwarte. Ważne jest, aby dobrze zrozumieć te różnice, aby podejmować świadome decyzje dotyczące wyboru oprogramowania oraz przestrzegać przepisów licencyjnych, co jest kluczowe w dzisiejszym środowisku cyfrowym.

Pytanie 20

Które z poniższych sformułowań oznacza rozwinięcie skrótu CAM?

A. Komputerowe przygotowanie produkcji
B. Komputerowa kontrola jakości
C. Komputerowe wspomaganie wytwarzania
D. Komputerowe wspomaganie projektowania
Skrót CAM oznacza 'Computer-Aided Manufacturing', co w języku polskim tłumaczy się jako 'Komputerowe wspomaganie wytwarzania'. Jest to technologia, która wykorzystuje oprogramowanie i systemy komputerowe do wsparcia procesów produkcyjnych. CAM pozwala na automatyzację procesów wytwarzania, co prowadzi do zwiększenia efektywności i precyzji produkcji. Przykładem zastosowania CAM jest programowanie maszyn CNC (Computer Numerical Control), które wykorzystują dane generowane przez oprogramowanie do precyzyjnego wykonywania operacji mechanicznych. Dzięki zastosowaniu CAM przedsiębiorstwa mogą optymalizować swoje procesy, redukując czas cyklu produkcyjnego oraz minimalizując błędy ludzkie. W branży produkcyjnej, standardy takie jak ISO 9001 podkreślają znaczenie jakości i efektywności, co w połączeniu z technologią CAM przyczynia się do wytwarzania wyrobów o wysokiej jakości. Zastosowanie CAM jest szczególnie istotne w przemyśle, gdzie precyzja i efektywność są kluczowe, na przykład w produkcji części do pojazdów czy elektroniki.

Pytanie 21

Efektor umieszczony na końcu ramienia robota pełni przede wszystkim funkcję

A. ochrony ramienia robota przed przeciążeniem
B. chwytania elementu z odpowiednią siłą
C. umieszczania elementu w odpowiedniej lokalizacji
D. ochrony ramienia robota przed zderzeniem z operatorem
Efektor umieszczony na końcu ramienia robota odgrywa kluczową rolę w procesie manipulacji obiektami, a jego podstawową funkcją jest chwytanie elementu z odpowiednią siłą. Efektory, w zależności od ich konstrukcji i przeznaczenia, mogą być wyposażone w różnorodne mechanizmy, takie jak szczęki, przyssawki czy chwytaki pneumatyczne, które umożliwiają precyzyjne uchwyty. Na przykład, w branży produkcyjnej, roboty stosowane do montażu często wykorzystują efektory do chwytania i manipulacji drobnymi komponentami, co zwiększa efektywność i precyzję procesu. Dobrą praktyką jest dostosowywanie siły chwytu do specyfiki materiałów – w przypadku delikatnych obiektów stosuje się mniejsze siły, aby uniknąć uszkodzeń. Efektory są również zaprojektowane zgodnie z normami bezpieczeństwa, co zapewnia, że ich działanie nie będzie zagrażać operatorom ani innym pracownikom. Wybór odpowiedniego efektora i jego parametrów jest zatem kluczowym elementem w projektowaniu systemów automatyzacji procesów.

Pytanie 22

Aby ustalić wznios silnika indukcyjnego, należy wykonać pomiar

A. szerokości silnika oraz średnicy wirnika
B. średnicy stojana
C. wysokości silnika
D. odległości między osią wału a podstawą uchwytów silnika
Odległość między osią wału a podstawą łap silnika to naprawdę ważna sprawa, jeśli chodzi o wznios silnika indukcyjnego. W zasadzie pokazuje, jak ten silnik jest zamontowany w danym miejscu. Z tego wynika, na jakiej wysokości silnik jest w stosunku do jego osi obrotu, co ma spory wpływ na to, jak wszystko działa w całym układzie napędowym. Na przykład, jak wznios jest źle ustawiony, to może to spowodować, że silnik będzie dużo więcej zużywał energii i szybciej się psuł. W przemyśle, gdzie silniki indukcyjne są na porządku dziennym, na przykład w wentylacjach czy taśmach transportowych, dokładne pomiary wzniosu są niezbędne, żeby wszystko działało jak należy. Przydaje się też trzymanie się standardów, jak IEC 60034, bo to pomaga w montażu i eksploatacji silników elektrycznych.

Pytanie 23

Jaką metodę łączenia materiałów powinno się wybrać do skrzyżowania elementów ze stali nierdzewnej i mosiądzu?

A. Lutowanie twarde
B. Lutowanie miękkie
C. Sklejanie
D. Zgrzewanie
Lutowanie miękkie, zgrzewanie oraz sklejanie to techniki, które nie są odpowiednie do łączenia stali nierdzewnej z mosiądzem, z powodów technicznych i materiałowych. Lutowanie miękkie, które wykorzystuje temperatury poniżej 450 °C, nie zapewnia wystarczającej wytrzymałości dla takich połączeń, ponieważ materiały te wymagają znacznie wyższych temperatur, aby osiągnąć odpowiednią integralność strukturalną. Zgrzewanie, z kolei, polega na połączeniu materiałów poprzez ich miejscowe stopienie przy użyciu ciepła generowanego w miejscu złącza, co może być trudne do zrealizowania w przypadku stali nierdzewnej i mosiądzu, ze względu na różnice w ich przewodnictwie cieplnym oraz topnieniu. Technika ta również nie daje możliwości wypełnienia szczelin, co jest kluczowe przy łączeniu tych dwóch materiałów. Sklejanie, chociaż może być użyteczne w niektórych zastosowaniach, nie jest odpowiednie dla połączeń wymagających dużej wytrzymałości, jak w przypadku stali nierdzewnej i mosiądzu. Kleje nie zawsze są w stanie wytrzymać warunki pracy, takie jak zmiany temperatury, wilgotność czy obciążenia mechaniczne. Dlatego dla prawidłowego łączenia stali nierdzewnej i mosiądzu należy stosować lutowanie twarde, co zapewnia nie tylko odpowiednią wytrzymałość, ale również trwałość połączenia.

Pytanie 24

Podczas pracy z urządzeniem hydraulicznym pracownik odniósł ranę w udo na skutek wysunięcia siłownika i krwawi. Osoba ratująca, przystępując do udzielania pierwszej pomocy, powinna najpierw

A. założyć poszkodowanemu opatrunek uciskowy na ranę
B. założyć poszkodowanemu opatrunek uciskowy poniżej rany
C. sprawdzić, czy w okolicy są osoby posiadające kwalifikacje w reanimacji
D. umieścić poszkodowanego w bezpiecznej pozycji bocznej
Założenie opatrunku uciskowego na ranę jest kluczowym krokiem w przypadku, gdy poszkodowany krwawi. Opatrunek uciskowy ma na celu zatamowanie krwawienia poprzez zastosowanie odpowiedniego nacisku na ranę. W sytuacji, gdy krwotok jest znaczny, a czas reakcji jest ograniczony, natychmiastowe podjęcie działań może uratować życie. Dobrym przykładem zastosowania tej techniki jest stosowanie opatrunków hemostatycznych, które są zaprojektowane specjalnie do zatrzymywania krwawienia. W przypadku urazów spowodowanych np. wypadkami w pracy, pierwsza pomoc powinna być udzielana zgodnie z wytycznymi Europejskiej Rady Resuscytacji, które podkreślają znaczenie szybkiego i skutecznego działania. Należy pamiętać, że nawet przy udzielaniu pierwszej pomocy, ważne jest, aby wezwać odpowiednie służby ratunkowe, aby zapewnić dalszą pomoc medyczną. Znajomość zasad udzielania pierwszej pomocy oraz umiejętność szybkiego reagowania na sytuacje kryzysowe są niezbędne w każdym miejscu pracy, a odpowiednie szkolenia mogą znacząco zwiększyć bezpieczeństwo w środowisku zawodowym.

Pytanie 25

Jaki rodzaj czujnika nadaje się do pomiaru poziomu bez kontaktu?

A. Czujnik pojemnościowy
B. Czujnik hydrostatyczny
C. Czujnik ultradźwiękowy
D. Czujnik pływakowy
Czujniki pływakowe opierają się na fizycznym mechanizmie, w którym pływak unosi się na powierzchni cieczy, a zmiana jego położenia sygnalizuje poziom medium. Ich stosowanie wiąże się z ograniczeniami, takimi jak możliwość zanieczyszczenia mechanizmu oraz konieczność zapewnienia dostępu do cieczy. Czujniki hydrostatyczne mierzą ciśnienie hydrostatyczne w danym punkcie, co również wymaga kontaktu z medium, a zmiany temperatury czy gęstości cieczy mogą wpłynąć na dokładność pomiarów. Czujniki pojemnościowe działają na zasadzie pomiaru zmian pojemności elektrycznej spowodowanych obecnością medium, ale również wymagają kontaktu z mierzonym substancją, co ogranicza ich zastosowanie w przypadku substancji agresywnych lub zanieczyszczających. Błędem myślowym jest założenie, że wszystkie czujniki mogą działać w systemach bezkontaktowych; każdy z wymienionych czujników ma swoje ograniczenia i specyfikę, co należy uwzględnić przy wyborze odpowiedniego rozwiązania dla konkretnej aplikacji.

Pytanie 26

Jakiego materiału powinno się użyć do ekranowania urządzeń pomiarowych, aby zredukować wpływ pól elektromagnetycznych na ich funkcjonowanie?

A. Teflon
B. Aluminium
C. Szkło
D. Preszpan
Teflon, szklano i preszpan to materiały, które z różnych powodów nie nadają się do ekranowania elektromagnetycznego. Teflon, chociaż ma dobre właściwości dielektryczne i jest odporny na wiele chemikaliów, nie ma ani wystarczającej przewodności elektrycznej, ani zdolności do odbicia fal elektromagnetycznych. Z tego powodu nie jest skutecznym materiałem do ochrony przed zakłóceniami elektromagnetycznymi. Podobnie szkło, które również charakteryzuje się niską przewodnością, nie ma zdolności do efektywnego blokowania pól elektromagnetycznych. W rzeczywistości szkło może nawet stwarzać problemy w aplikacjach wymagających ekranowania, ponieważ promieniowanie elektromagnetyczne może przechodzić przez nie, co skutkuje zakłóceniami w działaniu delikatnych urządzeń pomiarowych. Preszpan, z kolei, to materiał kompozytowy, który ma zastosowanie głównie w dziedzinie elektroniki ze względu na swoje właściwości izolacyjne, ale ponownie, jego brak przewodności elektrycznej czyni go nieodpowiednim do ekranowania. Nieporozumienia związane z tymi materiałami często wynikają z mylnego przekonania, że dobra izolacja wystarcza do ochrony przed zakłóceniami elektromagnetycznymi. Kluczowe jest rozumienie różnicy między materiałami dielektrycznymi a przewodzącymi w kontekście ekranowania, co prowadzi do bardziej efektywnego projektowania systemów odpornych na zakłócenia.

Pytanie 27

Sprężarka typu śrubowego jest sprężarką

A. wyporową
B. przepływową
C. rotacyjną
D. turbinową
Sprężarki turbinowe nie są tym samym, co sprężarki śrubowe, ponieważ opierają się na zupełnie innej zasadzie działania. Turbiny sprężają gaz poprzez jego przyspieszenie w wirnikach, co prowadzi do wzrostu ciśnienia. Ta metoda jest bardziej charakterystyczna dla sprężarek używanych w silnikach lotniczych lub w systemach generacji energii. Z kolei sprężarki wyporowe działają na zasadzie zmiany objętości, gdzie tłok porusza się w cylindrze, sprężając gaz. To rozwiązanie, chociaż powszechnie stosowane w mniejszych urządzeniach, ma swoje ograniczenia w kontekście efektywności przy dużych przepływach. Ostatnią z wymienionych opcji, sprężarki przepływowe, również różnią się od sprężarek rotacyjnych, gdyż ich konstrukcja opiera się na ciągłym przepływie gazu przez układ, co czyni je bardziej odpowiednimi dla specyficznych zastosowań przemysłowych, a nie uniwersalnych. Mylenie tych różnych typów sprężarek wynika często z niewłaściwego zrozumienia ich mechanizmów działania, co prowadzi do błędnych wniosków. Kluczowe jest zrozumienie, że każdy typ sprężarki ma swoje unikalne cechy, zalety i ograniczenia, które determinują ich zastosowanie w praktyce. Właściwy dobór sprężarki powinien być uzależniony od specyficznych wymagań procesu oraz warunków operacyjnych.

Pytanie 28

Jakie urządzenie pomiarowe wykorzystuje się do określania podciśnienia?

A. Wariometr
B. Dynamometr
C. Pirometr
D. Wakuometr
Wariometr to przyrząd, który służy do pomiaru zmian ciśnienia atmosferycznego, a jego zastosowanie jest szczególnie widoczne w aeronautyce oraz meteorologii. Używany jest często w samolotach do określenia wysokości lotu i jest niezbędnym narzędziem dla pilotów, jednak nie ma zastosowania w pomiarze podciśnienia. Pirometr to urządzenie do pomiaru temperatury na podstawie promieniowania cieplnego, co czyni go całkowicie nieodpowiednim do miary ciśnienia jakiegokolwiek rodzaju. Z kolei dynamometr służy do pomiaru siły lub momentu obrotowego, co również nie ma związku z pomiarem podciśnienia. Te błędne odpowiedzi mogą wynikać z nieprecyzyjnego rozumienia funkcji i zastosowania różnych przyrządów pomiarowych. Kluczowe jest zrozumienie, że każdy przyrząd ma swoje specyficzne zastosowanie i pomylenie ich może prowadzić do nieprawidłowych wyników pomiarów oraz konsekwencji w praktyce inżynieryjnej. W kontekście branżowym, umiejętność rozróżniania pomiędzy różnymi typami przyrządów pomiarowych jest fundamentem dla każdej osoby zajmującej się inżynierią lub zarządzaniem procesami technologicznymi. Właściwe dobieranie narzędzi pomiarowych do specyficznych zadań jest kluczowe dla uzyskania wiarygodnych i dokładnych wyników.

Pytanie 29

Jaką kolejność powinny mieć poszczególne elementy zespołu przygotowania powietrza w instalacji pneumatycznej, zasilającej silnik pneumatyczny, patrząc od strony sprężarki?

A. Zawór sterujący, reduktor ciśnienia, układ smarowania, filtr powietrza
B. Układ smarowania, filtr powietrza, zawór sterujący, reduktor ciśnienia
C. Reduktor ciśnienia, filtr powietrza, układ smarowania, zawór sterujący
D. Filtr powietrza, reduktor ciśnienia, układ smarowania, zawór sterujący
Poprawna kolejność montażu elementów składowych zespołu przygotowania powietrza w układzie pneumatycznym zasilającym silnik pneumatyczny to filtr powietrza, reduktor ciśnienia, układ smarowania, a na końcu zawór sterujący. Filtr powietrza jest kluczowy, ponieważ usuwa zanieczyszczenia i wilgoć z powietrza, co chroni dalsze elementy układu przed uszkodzeniem i zapewnia ich dłuższą żywotność. Reduktor ciśnienia reguluje ciśnienie powietrza do odpowiedniego poziomu, co jest istotne dla prawidłowego działania silnika pneumatycznego. Następnie układ smarowania wprowadza odpowiednią ilość smaru, co jest niezbędne do prawidłowej pracy elementów ruchomych w silniku. Ostatnim elementem jest zawór sterujący, który umożliwia kontrolę nad przepływem powietrza do silnika. Taka struktura zapewnia optymalne warunki pracy i wydajność układu, zgodnie z najlepszymi praktykami branżowymi w zakresie automatyki i pneumatyki.

Pytanie 30

Zgodnie z wytycznymi producenta przedstawionymi w tabeli układ sterowniczy urządzenia mechatronicznego pracującego przy napięciu zasilania 24 V DC należy połączyć przewodami w kolorach żółto-zielonym oraz

Nazwa przewoduOznaczenie przewodu lub zacisku kodem alfanumerycznymOznaczenie przewodu kolorem
Przewód liniowy 1 (AC)
Przewód liniowy 2 (AC)
Przewód liniowy 3 (AC)
L1
L2
L3
czarnym lub
brązowym, lub szarym
Przewód neutralny (AC)N
Przewód środkowy (AC)Mniebieskim
Przewód dodatni (DC)L+czerwonym
Przewód ujemny (DC)L-czarnym
Przewód ochronny
Przewód ochronno-neutralny
Przewód ochronno-liniowy
Przewód ochronno-środkowy
PE
PEN
PEL
PEM
żółto-zielonym

A. brązowym i niebieskim.
B. czerwonym i czarnym.
C. czarnym i niebieskim.
D. szarym i niebieskim.
Odpowiedź jest poprawna, ponieważ zgodnie z wytycznymi producenta, przewód dodatni w układach zasilania DC oznaczony jest kolorem czerwonym, a przewód ujemny kolorem czarnym. W praktyce, oznaczenia kolorami przewodów mają na celu ułatwienie prawidłowego podłączenia komponentów elektronicznych i mechatronicznych, minimalizując ryzyko błędów, które mogą prowadzić do uszkodzenia urządzeń. Użycie przewodów w kolorach czerwonym i czarnym jest zgodne z powszechnie przyjętymi standardami, jak np. normy IEC 60446, które definiują oznaczenia kolorów przewodów elektrycznych. W kontekście układów zasilania 24 V DC, prawidłowe podłączenie przewodów jest kluczowe dla zapewnienia stabilności i bezpieczeństwa systemu. Dodatkowo, w przypadku błędnego podłączenia, mogą wystąpić usterki w działaniu urządzenia, a nawet jego trwałe uszkodzenie, co podkreśla znaczenie przestrzegania ustalonych zasad i norm w praktyce inżynierskiej.

Pytanie 31

Aby uzyskać precyzyjny pomiar natężenia prądu elektrycznego w systemach mechatronicznych, należy zastosować amperomierz

A. z rezystancją wewnętrzną równą rezystancji obciążenia
B. z jak najmniejszą rezystancją wewnętrzną
C. z jak największą rezystancją wewnętrzną
D. z rezystancją wewnętrzną o dowolnej wielkości, ponieważ nie wpływa ona na rezultaty pomiaru
Wybór amperomierza z rezystancją wewnętrzną równą rezystancji odbiornika jest mylny, ponieważ takie podejście prowadzi do sytuacji, w której amperomierz nie będzie w stanie dokładnie odzwierciedlić rzeczywistego natężenia prądu płynącego przez odbiornik. W rzeczywistości, jeśli rezystancja wewnętrzna amperomierza jest porównywalna z rezystancją odbiornika, to znaczna część prądu popłynie przez amperomierz, co zniekształci pomiar. Kolejnym błędem jest przekonanie, że rezystancja wewnętrzna amperomierza może być dowolna i nie wpływa na wynik pomiaru. Tego typu myślenie nie uwzględnia fundamentalnego faktu, że przyrządy pomiarowe zawsze wpływają na badany obwód. Zastosowanie amperomierza z dużą rezystancją wewnętrzną w obwodzie o niskiej impedancji spowoduje, że pomiar będzie znacząco zaniżony, a wyniki staną się nieprzydatne. Przykładem mogą być układy zasilające silniki elektryczne, gdzie niewłaściwy dobór amperomierza może prowadzić do nieprawidłowej analizy stanu pracy silnika, a w konsekwencji do jego uszkodzenia. W praktyce, aby uniknąć takich problemów, należy kierować się zasadą, że amperomierze powinny być projektowane z jak najmniejszą rezystancją wewnętrzną, co zapewnia ich prawidłowe działanie i wiarygodność wyników.

Pytanie 32

Z wykorzystaniem równania F_u = η ∙ S ∙ p oblicz powierzchnię S tłoka siłownika, w przypadku gdy siłownik generuje siłę czynną F_u = 1,6 kN przy ciśnieniu p = 1 MPa oraz współczynniku sprawności η = 0,8.

A. 2000 mm2
B. 3000 mm2
C. 1000 mm2
D. 1500 mm2
Aby obliczyć powierzchnię S tłoka siłownika, możemy skorzystać z podanej zależności Fu = η ∙ S ∙ p. Wstawiając znane wartości: Fu = 1,6 kN (co odpowiada 1600 N), p = 1 MPa (co odpowiada 1 000 000 Pa) oraz η = 0,8, możemy przekształcić równanie, aby znaleźć S. Wyrażenie przyjmuje postać S = Fu / (η ∙ p). Podstawiając wartości, otrzymujemy S = 1600 N / (0,8 ∙ 1 000 000 Pa) = 0,002 m2, co odpowiada 2000 mm2. Tak obliczona powierzchnia tłoka jest zgodna z praktykami inżynieryjnymi i standardami branżowymi, które podkreślają znaczenie precyzyjnych obliczeń w projektowaniu siłowników hydraulicznych. W praktyce, takie obliczenia są kluczowe dla zapewnienia efektywności i bezpieczeństwa działania maszyn, w których używane są siłowniki. Przykładem zastosowania może być projektowanie systemów hydraulicznych w maszynach budowlanych, gdzie odpowiednia powierzchnia tłoka bezpośrednio wpływa na osiąganą siłę i efektywność działania siłownika.

Pytanie 33

Do metod oceny stanu łożysk tocznych nie zalicza się pomiaru

A. prędkości
B. ciepłoty
C. wibracji
D. hałasów
Pomiar prędkości to nie najlepsza metoda do oceny stanu łożysk tocznych. W praktyce zazwyczaj korzysta się z analizy drgań, szumów i temperatury. Analiza drgań to fajna technika, bo monitorując drgania, można zauważyć, czy coś jest nie tak, na przykład, czy łożysko ma luz albo jest uszkodzone. Z kolei pomiar szumów daje nam dodatkowe info o stanie łożysk, bo zmieniające się dźwięki mogą wskazywać na problemy. A co do temperatury — jeśli zaczyna rosnąć, to może być znak, że coś się dzieje, jak na przykład zbyt duże tarcie lub słabe smarowanie. W przemyśle, na przykład motoryzacyjnym czy w transporcie kolejowym, regularne sprawdzanie drgań i temperatury łożysk jest mega ważne, żeby maszyny działały sprawnie i bezawaryjnie. Ustalenie norm dla tolerancji drgań i temperatur dla różnych typów łożysk to standardy, które pomagają w zarządzaniu utrzymaniem ruchu, co zresztą potwierdzają normy ISO 10816.

Pytanie 34

Przyczyną uszkodzenia regulatora jest błąd w obwodzie czujnika temperatury odniesienia. Kod błędu to

Nr błęduPrzyczynaŚrodek zaradczy
ErANiespełnione warunki samonastrajaniaNaciśnij dowolny przycisk. Sprawdź czy wartość mierzona jest mniejsza o 20% od wartości zadanej i czy nie zmienia się więcej niż 1% na minutę.
Er1Zwarcie czujnikaSprawdź i popraw podłączenie czujnika.
Er2Rozwarcie czujnikaSprawdź i popraw podłączenie czujnika.
Er3Błąd w obwodzie termoelementu - czujnika temperatury odniesieniaSprawdź i ewentualnie wymień czujnik.

A. ErA
B. Er1
C. Er3
D. Er2
Odpowiedź 'Er3' jest poprawna, gdyż zgodnie z dokumentacją techniczno-ruchową regulatora, kod 'Er3' wskazuje na błąd w obwodzie termoelementu, który jest odpowiedzialny za pomiar temperatury odniesienia. W praktyce, błędy w obwodzie czujnika temperatury mogą prowadzić do nieprawidłowych pomiarów, co z kolei może skutkować niewłaściwym funkcjonowaniem całego systemu automatyki. Zarówno w przemyśle, jak i w aplikacjach domowych, prawidłowy pomiar temperatury jest kluczowy dla zapewnienia efektywności energetycznej i bezpieczeństwa. Należy regularnie sprawdzać stan czujników oraz dokonywać ich kalibracji, aby unikać sytuacji, w których błędne odczyty mogą prowadzić do awarii sprzętu lub zagrożeń dla użytkowników. Zgodnie z dobrą praktyką, warto również wdrożyć procedury monitorowania i diagnostyki systemów, co pozwala na wczesne wykrycie potencjalnych usterek.

Pytanie 35

Jak można zweryfikować, czy przewód elektryczny jest w pełni sprawny?

A. omomierz
B. amperomierz
C. woltomierz
D. induktor
Induktor, amperomierz i woltomierz to urządzenia pomiarowe, które mają inne zastosowania i nie są odpowiednie do sprawdzania ciągłości przewodów elektrycznych. Induktor jest elementem pasywnym stosowanym w obwodach elektrycznych do magazynowania energii w polu magnetycznym, jednak jego rola nie obejmuje pomiaru oporu elektrycznego. Użycie induktora w kontekście diagnozowania przerwy w przewodzie jest niewłaściwe, gdyż nie dostarcza informacji o ciągłości przewodów. Amperomierz, z kolei, służy do pomiaru natężenia prądu w obwodzie. Pomimo że jego działanie może być pomocne w określaniu, czy prąd płynie przez dany obwód, nie dostarcza informacji o oporze i przerwach w przewodach, co czyni go nieodpowiednim narzędziem do tego celu. Woltomierz mierzy napięcie elektryczne, a jego użycie w kontekście sprawdzania przewodów również nie jest właściwe, ponieważ nie wskazuje on na problemy związane z oporem elektrycznym. Osoby, które wybierają te urządzenia do diagnozowania przerw w przewodach, mogą natrafić na pułapki myślowe, takie jak błędne założenia dotyczące ich funkcji i zastosowania, co prowadzi do nieefektywnego rozwiązywania problemów z instalacją elektryczną. Aby skutecznie diagnozować uszkodzenia przewodów, kluczowe jest zrozumienie funkcji każdego z urządzeń pomiarowych oraz ich właściwego zastosowania w praktyce.

Pytanie 36

Niewielkie, drobne zarysowania na tłoczysku hydraulicznego siłownika eliminuje się za pomocą

A. napawania
B. lutowania
C. spawania
D. polerowania
Polerowanie to skuteczna metoda usuwania drobnych, niewielkich rys na tłoczysku siłownika hydraulicznego, ponieważ pozwala na wygładzenie powierzchni metalowej bez potrzeby dodawania materiału. W procesie polerowania wykorzystuje się różne materiały ścierne, takie jak pasty polerskie czy materiały ścierne o drobnych ziarnach, co umożliwia osiągnięcie wysokiej jakości wykończenia. Przykładem zastosowania polerowania w praktyce jest konserwacja siłowników hydraulicznych w maszynach budowlanych, gdzie ich długowieczność oraz niezawodność są kluczowe. Polerowanie nie tylko poprawia estetykę, ale również minimalizuje ryzyko dalszego uszkodzenia, zmniejszając tarcie i zużycie materiału. W branży hydraulicznej standardy jakości, takie jak ISO 9001, zalecają regularne kontrolowanie stanu tłoczysk i ich polerowanie w celu zapewnienia optymalnej wydajności oraz bezpieczeństwa operacyjnego urządzeń hydraulicznych. Warto również wspomnieć, że polerowanie przyczynia się do poprawy właściwości tribologicznych powierzchni, co wpływa na efektywność pracy siłowników.

Pytanie 37

Która budowa siłownika hydraulicznego umożliwia uzyskanie największego skoku przy niewielkiej długości cylindra?

A. Teleskopowa
B. Tłokowa z jednostronnym tłoczyskiem
C. Tłokowa z dwustronnym tłoczyskiem
D. Nurnikowa
Nurnikowe siłowniki hydrauliczne, w odróżnieniu od teleskopowych, mają jedną, prostą konstrukcję z jednym cylindrem, co ogranicza ich zdolność do osiągania dużych skoków przy małych długościach. Ich konstrukcja jest prostsza, co może prowadzić do błędnych wniosków, że są bardziej efektywne w każdym zastosowaniu. W rzeczywistości, ich zastosowanie jest ograniczone do sytuacji, gdzie skok nie jest kluczowy, a siła działania jest priorytetem. Tłokowa konstrukcja z dwustronnym tłoczyskiem również nie jest optymalna, gdyż wymaga znacznej długości cylindra, aby osiągnąć duży skok, co czyni ją nieodpowiednią w prostych przestrzeniach. Z kolei tłokowa konstrukcja z jednostronnym tłoczyskiem, pomimo że może być bardziej kompaktowa, również nie osiąga skoku porównywalnego z teleskopowym rozwiązaniem. Często występuje mylne przekonanie, że każda konstrukcja może być używana zamiennie, co prowadzi do błędnych decyzji w doborze siłowników do konkretnego zastosowania. W przemyśle hydrauliki, dobrą praktyką jest zawsze analizowanie specyfikacji i potrzeb danego projektu, co pozwala na skuteczne dopasowanie siłowników do wymagań.

Pytanie 38

Jaka jest objętość oleju w cylindrze siłownika o powierzchni roboczej 20,3 cm2 oraz skoku 200 mm?

A. 406,00 cm3
B. 40,60 cm3
C. 4060,00 cm3
D. 4,06 cm3
Wielu użytkowników może pomylić się w obliczeniach objętości cylindra siłownika, co często wynika z niepełnego zrozumienia wzoru na objętość V = A * h. Niepoprawne odpowiedzi, takie jak 4060,00 cm3, 40,60 cm3 czy 4,06 cm3, mogą być wynikiem błędnych przeliczeń lub nieodpowiedniego przeliczenia jednostek. Na przykład, przy odpowiedzi 4060,00 cm3, użytkownik może błędnie założyć, że skok cylindra powinien być bezpośrednio dodany jako wartość w cm, nie przeliczywszy milimetrów na centymetry. Z kolei 40,60 cm3 może sugerować, że użytkownik źle zinterpretował powierzchnię roboczą, być może myląc jednostki lub pomijając istotne przeliczenia. Natomiast odpowiedź 4,06 cm3 jest rażąco nieadekwatna, co może świadczyć o pominięciu kluczowych elementów w procesie obliczeń. Kluczowym krokiem jest prawidłowe zrozumienie i przeliczenie jednostek, co jest niezbędne dla uzyskania właściwych wyników. W praktyce, właściwe obliczenia objętości siłownika mają znaczenie dla wydajności hydrauliki, a ich błędy mogą prowadzić do niewłaściwego doboru komponentów, co w efekcie może wpłynąć na całościową efektywność systemu oraz jego bezpieczeństwo operacyjne.

Pytanie 39

W systemie przygotowania sprężonego powietrza elementy są instalowane w następującej kolejności:

A. filtr powietrza, reduktor, smarownica
B. reduktor, smarownica, filtr powietrza
C. reduktor, filtr powietrza, smarownica
D. smarownica, filtr powietrza, reduktor
Odpowiedź "filtr powietrza, reduktor, smarownica" jest poprawna, ponieważ kolejność montażu tych elementów ma kluczowe znaczenie dla efektywności oraz żywotności układu sprężonego powietrza. Filtr powietrza jest pierwszym elementem, który powinien być zainstalowany, ponieważ jego zadaniem jest usunięcie zanieczyszczeń i wilgoci z powietrza atmosferycznego, co zapobiega uszkodzeniom pozostałych komponentów systemu. Następnie montowany jest reduktor ciśnienia, który reguluje ciśnienie powietrza dostarczanego do urządzeń roboczych, zapewniając optymalne warunki pracy. Na końcu montowana jest smarownica, która dostarcza odpowiednią ilość oleju do narzędzi pneumatycznych, co wpływa na ich skuteczność oraz wydajność. Zgodnie z normami branżowymi, takimi jak ISO 8573, zachowanie tej kolejności pozwala na utrzymanie wysokiej jakości powietrza oraz minimalizację kosztów eksploatacji, co jest kluczowe w wielu zastosowaniach przemysłowych.

Pytanie 40

Wartość natężenia oświetlenia podczas wykonywania precyzyjnych zadań powinna wynosić

A. 300 lx
B. 100 lx
C. 600 lx
D. 800 lx
Wybór natężenia oświetlenia mniejszego niż 800 lx w kontekście precyzyjnych prac wiąże się z wieloma niebezpiecznymi konsekwencjami. Natężenie 600 lx, 300 lx czy 100 lx może wydawać się wystarczające w mniej wymagających warunkach, jednak w przypadku zadań wymagających dużej dokładności, takich jak montaż komponentów elektronicznych lub prace laboratoryjne, zbyt niskie oświetlenie może prowadzić do poważnych błędów. Przykładowo, oświetlenie na poziomie 600 lx może nie dostarczyć wystarczającej widoczności, co zwiększa ryzyko popełnienia błędów, które mogą skutkować uszkodzeniem delikatnych części lub złożeniem wadliwych produktów. Natężenie 300 lx to wartość, która w praktyce jest stosowana w biurach, ale nie jest to poziom odpowiedni dla precyzyjnych prac, gdzie każdy detal ma znaczenie. Natomiast 100 lx to wartość, która mogłaby być tolerowana w pomieszczeniach magazynowych, ale nie w sytuacjach wymagających szczególnej uwagi. Z tego względu, przy podejmowaniu decyzji o poziomie oświetlenia, ważne jest, aby kierować się standardami i zaleceniami branżowymi, które jasno określają wymagania w tej dziedzinie. Nieprawidłowe oszacowanie natężenia oświetlenia może prowadzić do nieefektywności pracy oraz zwiększenia ryzyka wypadków. Z tego względu, dla zapewnienia bezpieczeństwa i jakości, zawsze należy dążyć do osiągnięcia optymalnych warunków oświetleniowych.