Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 24 maja 2025 22:05
  • Data zakończenia: 24 maja 2025 22:25

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Podczas działania silnika prądu stałego zauważono intensywne iskrzenie na komutatorze spowodowane nagromadzeniem pyłu ze szczotek. Aby naprawić tę awarię, należy wyłączyć silnik, a następnie

A. wykonać szlifowanie komutatora
B. przetrzeć komutator olejem
C. umyć komutator wodą
D. posmarować olejem szczotki
Przetrwanie komutatora olejem, umycie go wodą lub smarowanie szczotek olejem to podejścia, które nie adresują podstawowego problemu, jakim jest iskrzenie spowodowane zanieczyszczeniami. Przetarcie komutatora olejem może chwilowo zmniejszyć tarcie, jednak nie eliminuje zanieczyszczeń, a wręcz może prowadzić do ich utrwalenia, co pogarsza sytuację. Woda, choć skutecznie usunie brud, nie jest odpowiednia do czyszczenia komutatorów silników elektrycznych, ponieważ może spowodować korozję oraz uszkodzić izolację. Dodatkowo, wprowadzenie wilgoci do wnętrza silnika może prowadzić do poważnych uszkodzeń. Smarowanie szczotek olejem również nie jest właściwym rozwiązaniem, ponieważ olej może osadzać się na komutatorze, co z kolei zwiększa ryzyko iskrzenia. To podejście pomija fundamentalny problem, jakim jest niewłaściwe działanie komutatora. Istotne jest zrozumienie, że każdy z wymienionych sposobów nie eliminuje problemu z iskrzeniem, a jedynie maskuje objawy, co może prowadzić do dalszego zużycia i uszkodzeń. Kluczowe w konserwacji silników prądu stałego jest regularne sprawdzanie stanu komutatora oraz jego szlifowanie, co jest uznawane za najlepszą praktykę w branży.

Pytanie 2

Aby zachować odpowiedni poziom ciśnienia w systemach hydraulicznych, wykorzystuje się zawory

A. rozdzielające
B. odcinające
C. redukujące
D. dławiące
Zawory redukcyjne odgrywają kluczową rolę w zarządzaniu ciśnieniem w układach hydraulicznych. Ich głównym zadaniem jest obniżenie ciśnienia roboczego na określonym poziomie, co jest istotne w wielu zastosowaniach przemysłowych. Zawory te działają poprzez automatyczne regulowanie przepływu cieczy, co pozwala na utrzymanie stabilnych warunków pracy w układzie. Na przykład, w systemach hydraulicznych zasilających maszyny produkcyjne, zawory redukcyjne zapewniają, że ciśnienie nie przekracza wartości określonej przez producenta, co zapobiega uszkodzeniom i zwiększa bezpieczeństwo operacji. Dobre praktyki w branży hydraulicznej zalecają regularne sprawdzanie i konserwację zaworów redukcyjnych, aby zapewnić ich prawidłowe funkcjonowanie. Dodatkowo, zgodność z normami takimi jak ISO 4414 dotycząca bezpieczeństwa w hydraulice, podkreśla wagę stosowania właściwych zaworów w celu minimalizacji ryzyka awarii systemów hydraulicznych.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Wzmacniacz charakteryzuje się pasmem przepustowym wynoszącym w = 12 750 Hz oraz częstotliwością górną fg= 13 500 Hz. Jaką minimalną wartość częstotliwości fd w zakresie przenoszenia sygnałów należy osiągnąć, aby były one wzmacniane?

A. Od 6 750 Hz
B. Od 750 Hz
C. Od 6 375 Hz
D. Od 350 Hz
Odpowiedź "Od 750 Hz" jest prawidłowa, ponieważ szerokość pasma przepustowego wzmacniacza jest określona jako różnica między częstotliwością górną fg a częstotliwością dolną fd. W tym przypadku szerokość pasma wynosi 12 750 Hz, a częstotliwość górna wynosi 13 500 Hz. Aby znaleźć częstotliwość dolną, możemy skorzystać z równania: fg - fd = w. Przekształcając to równanie, uzyskujemy fd = fg - w, co daje fd = 13 500 Hz - 12 750 Hz = 750 Hz. Oznacza to, że sygnały o częstotliwości 750 Hz i wyższej będą wzmacniane przez wzmacniacz. Praktyczne zastosowanie tej wiedzy jest kluczowe w wielu dziedzinach elektronicznych, takich jak audio, telekomunikacja czy systemy przetwarzania sygnałów, gdzie zrozumienie pasma przenoszenia urządzenia pozwala na optymalne dobieranie sygnałów. Właściwe zrozumienie parametrów wzmacniaczy umożliwia również projektowanie bardziej efektywnych układów elektronicznych, spełniających określone wymagania jakościowe i techniczne.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Który z poniższych czujników jest elementem serwomechanizmu sterującego ruchem ramienia robota?

A. Pirometr
B. Mostek tensometryczny
C. Przepływomierz powietrza
D. Enkoder
Enkoder jest elementem pomiarowym, który odgrywa kluczową rolę w systemach serwomechanizmów, szczególnie w aplikacjach związanych z robotyką. Jego główną funkcją jest precyzyjne określanie pozycji oraz prędkości obrotowej silnika, co jest niezbędne do dokładnego sterowania ruchem ramion robota. Enkodery mogą być optyczne, magnetyczne lub mechaniczne, każdy rodzaj ma swoje zastosowania w zależności od wymagań projektu. W praktyce, enkoder zastosowany w ramieniu robota pozwala na precyzyjne pozycjonowanie, co jest szczególnie istotne w zadaniach wymagających wysokiej dokładności, takich jak montaż komponentów elektronicznych czy operacje chirurgiczne. W kontekście standardów branżowych, stosowanie enkoderów w robotach przemysłowych jest zgodne z normami ISO 10218, które określają wymagania dotyczące bezpieczeństwa robotów. To sprawia, że enkodery są nie tylko niezawodne, ale także kluczowe dla zapewnienia jakości i bezpieczeństwa w automatyzacji procesów przemysłowych.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Mocno podgrzana ciecz hydrauliczna wytwarza podczas awarii w słabo wentylowanym pomieszczeniu tzw. "mgłę olejową", która może prowadzić do różnych schorzeń

A. układu słuchu
B. dermatologicznych
C. układu pokarmowego
D. układu sercowego
Zrozumienie wpływu rozgrzanej cieczy hydraulicznej na zdrowie człowieka wymaga znajomości mechanizmów działania substancji chemicznych oraz ich skutków zdrowotnych. Odpowiedzi dotyczące narządu słuchu i serca są mylące, ponieważ mgła olejowa głównie działa na skórę, a nie na te narządy. Problemy ze słuchem mogą być wynikiem hałasu w środowisku pracy, nie zaś kontaktu z mgłą olejową. Mylne jest również myślenie, że mgła olejowa wpływa na serce; skutki zdrowotne związane z substancjami chemicznymi, takimi jak oleje hydrauliczne, nie są bezpośrednio związane z układem sercowo-naczyniowym. Do najczęstszych dolegliwości związanych z narażeniem na oleje i smary należą problemy dermatologiczne, związane z podrażnieniem skóry. Problemy z przewodem pokarmowym w tym kontekście także są nieprawidłowe, ponieważ substancje te nie są wprowadzane do organizmu doustnie, a ich wpływ na układ pokarmowy nie jest bezpośredni. Odpowiedź wskazująca na problemy dermatologiczne uwzględnia natomiast rzeczywiste ryzyko zdrowotne, które może wystąpić w wyniku kontaktu ze szkodliwymi substancjami w formie mgły olejowej.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jakie urządzenie powinno być wykorzystane do weryfikacji szczelności instalacji pneumatycznej?

A. Detektor gazów
B. Optyczny detektor nieszczelności
C. Ultradźwiękowy wykrywacz nieszczelności
D. Detektor z lampą UV
Detektor z lampą ultrafioletową nie jest odpowiednim narzędziem do wykrywania nieszczelności w instalacjach pneumatycznych. To urządzenie jest zazwyczaj stosowane w diagnostyce wycieków substancji organicznych, takich jak oleje czy płyny hydrauliczne, które po nałożeniu specjalnego barwnika fluorescencyjnego mogą być identyfikowane pod wpływem promieniowania UV. W przypadku gazów czy powietrza, które nie mają zdolności do fluorescencji, metoda ta jest nieefektywna. Optyczny wykrywacz nieszczelności również nie jest najlepszym wyborem, ponieważ polega on na optycznym wykrywaniu zmian w strukturze materiału, co w przypadku gazów i powietrza nie przynosi pożądanych rezultatów. Detektory gazowe, choć mogą identyfikować obecność niektórych gazów, nie są w stanie precyzyjnie lokalizować nieszczelności w instalacjach pneumatycznych. Często prowadzi to do błędnych przekonań, że wystarczy wykryć obecność danego gazu, aby ocenić szczelność instalacji. W rzeczywistości, nieszczelności mogą być bardzo małe i trudne do wykrycia przy użyciu tych metod. Dlatego kluczowe jest zastosowanie odpowiednich technologii, takich jak ultradźwiękowe wykrywacze nieszczelności, które są bardziej precyzyjne i skuteczne w lokalizowaniu problemów w instalacjach pneumatycznych.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Rysunek przedstawia symbol graficzny bramki

Ilustracja do pytania
A. Ex-NOR
B. Ex-OR
C. NAND
D. NOR
Wybór niewłaściwej bramki logicznej może wynikać z nieporozumienia dotyczącego podstaw działania różnych typów bramek. Na przykład, bramka NOR w rzeczywistości generuje stan wysoki tylko wtedy, gdy wszystkie jej wejścia są niskie, co jest całkowicie przeciwne do działania bramki Ex-OR. Takie błędne rozumienie przyczyny i skutku stanu na wyjściu może prowadzić do pomyłek w projektowaniu układów cyfrowych. Z kolei bramka NAND działa odwrotnie do AND, generując stan wysoki, dopóki nie wszystkie jej wejścia są wysokie. Mylenie NAND z bramką Ex-OR może wynikać z nieprecyzyjnego pojmowania, jak różne bramki łączą wejścia, aby uzyskać różne wyniki. Przykładowo, bramka Ex-OR, dzięki swojej unikalnej charakterystyce, jest niezwykle użyteczna w operacjach arytmetycznych, takich jak dodawanie w systemach binarnych, gdzie istotne jest, aby zrozumieć, że generuje ona wynik tylko wtedy, gdy stany wejściowe są różne. Ostatecznie, kluczowym błędem jest nie zrozumienie roli dodatkowej linii na wejściu bramki Ex-OR, co stanowi podstawową cechę odróżniającą ją od innych bramek. Rozważając te różnice, można lepiej zrozumieć, jak projektować układy cyfrowe oparte na logicznych interakcjach między różnymi bramkami.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Podczas użytkowania urządzenia zaobserwowano wzrost hałasu spowodowany przez łożysko toczne. Naprawa sprzętu polega na

A. wymianie osłony łożyska
B. wymianie całego łożyska
C. redukcji nadmiaru smaru w łożysku
D. zmniejszeniu luzów łożyska
Wymiana całego łożyska jest właściwą odpowiedzią w kontekście zwiększonego hałasu, który wskazuje na problemy z łożyskiem tocznym. W przypadku uszkodzenia łożyska, jego wymiana jest najlepszym rozwiązaniem, ponieważ usunięcie i zastąpienie uszkodzonego elementu zapewnia długotrwałą efektywność działania urządzenia. Standardy branżowe, takie jak ISO 1940, wskazują na potrzebę wymiany łożysk, gdy wykazują one znaczące zużycie lub uszkodzenie, co może prowadzić do awarii mechanizmu. Przykładem może być sytuacja w przemyśle motoryzacyjnym, gdzie wymiana łożysk w silnikach oraz układach napędowych jest kluczowym elementem zapewniającym ich niezawodność. Dodatkowo, regularna kontrola stanu łożysk oraz ich wymiana zgodnie z zaleceniami producenta sprzętu są najlepszą praktyką, co przekłada się na wydłużenie cyklu życia maszyn i zmniejszenie ryzyka awarii.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Tensomer foliowy powinien być zamocowany do podłoża

A. klejem
B. zszywką
C. nitem
D. śrubą
Tensomer foliowy to naprawdę ważny materiał w budownictwie i przemyśle, więc jego mocowanie do podłoża za pomocą kleju ma sens z kilku powodów. Klej tworzy trwałe i elastyczne połączenie, co jest mega istotne, bo folia może się kurczyć lub rozciągać w zależności od temperatury czy wilgotności. Ważne, żeby używać odpowiednich klejów – najlepiej takich, które są dopasowane do folii i podłoża. Na przykład, kleje poliuretanowe czy akrylowe dobrze się sprawdzają, bo mają dobrą przyczepność i są odporne na warunki atmosferyczne. Przy klejeniu trzeba też dobrze przygotować powierzchnię – czyli usunąć kurz i tłuszcz, żeby to wszystko trzymało się jak należy. Generalnie, mocowanie folii klejem to norma w branży, bo to zapewnia długotrwałą stabilność, co się później opłaca, jeżeli chodzi o koszty.

Pytanie 26

Podczas inspekcji systemu podnośnika hydraulicznego zauważono, że olej się spienia i jest wydobywany przez odpowietrznik zbiornika. Co może być przyczyną tej usterki?

A. Wytarte pierścienie uszczelniające rozdzielaczy
B. Nieszczelność w przewodzie ssawnym pompy
C. Wytarte pierścienie uszczelniające tłokowe
D. Nieszczelność zaworu bezpieczeństwa
Nieszczelność w przewodzie ssawnym pompy jest kluczową przyczyną spieniania się oleju w układzie hydraulicznym. Gdy przewód ssawny jest nieszczelny, powietrze dostaje się do układu, co powoduje, że olej nie jest prawidłowo zasysany przez pompę. W efekcie powietrze miesza się z olejem, co prowadzi do jego spienienia i wytworzenia bąbelków powietrza. To zjawisko obniża wydajność hydrauliczną systemu oraz może prowadzić do uszkodzenia pompy i innych komponentów. W praktyce, aby zapobiec takim problemom, należy regularnie kontrolować stan przewodów ssawnych oraz ich połączeń, zgodnie z zaleceniami producentów maszyn i norm branżowych. Dobrą praktyką jest również stosowanie systemów monitorujących, które informują o ewentualnych nieszczelnościach lub spadkach ciśnienia. Właściwe uszczelnienie przewodów jest kluczowe dla zapewnienia długotrwałej i efektywnej pracy układu hydraulicznego, co jest istotne w zastosowaniach przemysłowych oraz budowlanych, gdzie niezawodność sprzętu jest priorytetem.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Jakie narzędzie powinno się zastosować do przygotowania przewodu LgY 0,75 mm2 przed jego montażem w listwie zaciskowej?

A. Klucz dynamometryczny
B. Zaciskarkę tulejek
C. Zaciskarkę konektorów
D. Klucz płaski
Zaciskarka tulejek jest narzędziem przeznaczonym do trwałego łączenia przewodów z różnymi typami konektorów, co jest kluczowe w procesie przygotowania przewodu LgY 0,75 mm² do montażu w listwie zaciskowej. Użycie zaciskarki pozwala na uzyskanie solidnego i niezawodnego połączenia, które jest zgodne z normami bezpieczeństwa oraz standardami branżowymi, takimi jak PN-EN 60352. Przykładem zastosowania zaciskarki tulejek jest łączenie przewodów w instalacjach elektrycznych, gdzie wymagane jest zapewnienie wysokiej jakości połączeń elektrycznych, zwłaszcza w sytuacjach, gdy przewody są narażone na wibracje lub zmiany temperatury. Przeprowadzenie prawidłowego zaciskania pozwala na uzyskanie niskiej rezystancji połączenia, co jest kluczowe dla efektywności energetycznej oraz bezpieczeństwa użytkowania instalacji. Korzystając z dobrej jakości zaciskarki, można również uniknąć problemów związanych z luźnymi połączeniami, które mogą prowadzić do przegrzewania się przewodów i potencjalnych zagrożeń pożarowych.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Korzystając z danych zamieszczonych w tabeli, określ klasę jakości oleju, który można zastosować do urządzeń pracujących przy wysokim ciśnieniu i w stałej temperaturze otoczenia?

Klasa jakości
ISO 6743/4
Charakterystyka olejuZastosowanie olejuZawartość dodatków
%
HHoleje bez dodatków uszlachetniającychdo słabo obciążonych systemów0
HLoleje z inhibitorami utlenienia i korozjido umiarkowanie obciążonych systemówOk. 0,6
HRoleje z inhibitorami utlenienia i korozji oraz modyfikatorami lepkoścido umiarkowanie obciążonych systemów pracujących w zmiennych temperaturach otoczeniaOk. 8,0
HMoleje z inhibitorami utlenienia dodatkami przeciwzużyciowymido systemów pracujących przy wysokim ciśnieniuOk. 1,2
HVoleje z inhibitorami utlenienia i korozji, dodatkami przeciwzużyciowymi oraz modyfikatorami lepkoścido systemów pracujących przy wysokim ciśnieniu w zmiennych temperaturach otoczeniaOk. 8,0

A. HM
B. HR
C. HL
D. HH
Wybór odpowiedzi HL, HH lub HR jest błędny, ponieważ każda z tych klas olejów nie spełnia wymogów dotyczących pracy w warunkach wysokiego ciśnienia. Olej klasy HL jest przeznaczony do zastosowań, gdzie występują niższe ciśnienia i nie zawiera dodatków przeciwzużyciowych, co czyni go niewłaściwym do intensywnych aplikacji hydraulicznych. Olej klasy HH, mimo że zawiera dodatkowe właściwości, nie jest odpowiedni do zastosowań wymagających wysokiej stabilności w trudnych warunkach, jakimi są systemy hydrauliczne operujące pod wysokim ciśnieniem. Klasa HR jest z kolei przeznaczona do aplikacji, w których kluczowe jest utrzymywanie wysokiej odporności na utlenianie, ale jej właściwości przeciwzużyciowe mogą być niewystarczające w porównaniu do olejów klasy HM. Wybierając niewłaściwy olej, ryzykujesz nie tylko wydajność, ale również bezpieczeństwo i długoterminową niezawodność urządzeń. Dlatego ważne jest, aby dokładnie analizować właściwości olejów oraz ich zastosowanie w zgodzie z rekomendacjami producentów oraz normami branżowymi.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jakie jest moment obrotowy na wale silnika synchronicznego o mocy 3,14 kW przy prędkości obrotowej 3000 obr/min?

A. 9 420 Nm
B. 1 Nm
C. 986 Nm
D. 10 Nm
Obliczenie momentu obrotowego na wale silnika synchronicznego można przeprowadzić za pomocą wzoru: M = P / (2 * π * n), gdzie M to moment obrotowy w niutonometrach (Nm), P to moc w watach (W), a n to prędkość obrotowa w obrotach na minutę (obr/min). W przypadku mocy 3,14 kW, co odpowiada 3140 W, oraz prędkości obrotowej 3000 obr/min, obliczenia wyglądają następująco: M = 3140 W / (2 * π * (3000/60)) = 10 Nm. Wynik ten jest zgodny z praktycznymi zastosowaniami silników synchronicznych, które często znajdują zastosowanie w aplikacjach przemysłowych. Silniki te charakteryzują się wysoką efektywnością oraz stabilną prędkością obrotową, co czyni je idealnym wyborem do napędu maszyn wymagających precyzyjnej kontroli prędkości. W kontekście standardów branżowych, takie obliczenia są istotne dla prawidłowego doboru silników oraz ich efektywnego wykorzystania w różnych aplikacjach.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Jakie rozwiązanie pozwala na zwiększenie prędkości ruchu tłoka w siłowniku pneumatycznym?

A. zawór zwrotny
B. zawór podwójnego sygnału
C. przełącznik obiegu
D. zawór szybkiego spustu
Zawór szybkiego spustu to naprawdę ważny element w systemach pneumatycznych. Jego główną rolą jest szybkie obniżenie ciśnienia w siłownikach. Dzięki temu tłok porusza się znacznie szybciej. Działa to tak, że sprężone powietrze ma szybki ujście, co pozwala na błyskawiczne zwolnienie siłownika. W praktyce, takie zawory są super przydatne, na przykład w przemyśle motoryzacyjnym czy automatyzacji produkcji, gdzie czas reakcji jest mega istotny. Zgodnie z normami ISO 4414, odpowiednio zainstalowany zawór szybkiego spustu powinien być standardem w każdej instalacji pneumatycznej, żeby zwiększyć wydajność i bezpieczeństwo. Jeżeli system jest dobrze zaprojektowany i wykorzystuje te zawory, to może to znacznie poprawić efektywność produkcji, a przy okazji obniżyć zużycie energii i skrócić czas cyklu procesów.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

W aplikacjach sterujących, wykonywanych przy użyciu sterownika PLC, do zapisywania sygnałów impulsowych oraz ich konwersji na sygnały trwałe (włączanie z samopodtrzymaniem) wykorzystuje się moduły

A. rejestrów licznikowych
B. filtrów komparatorowych
C. zegarów czasowych
D. przerzutników
Funkcje czasowe, komparatory i liczniki są ważnymi elementami w automatyce, ale nie pełnią one funkcji związanych z zapamiętywaniem i przetwarzaniem sygnałów impulsowych w sposób, w jaki robią to przerzutniki. Funkcje czasowe, takie jak timery, są wykorzystywane do wprowadzenia opóźnień w działaniu systemów, ale nie mogą same w sobie utrzymywać stanu bez ciągłego sygnału wejściowego. Z kolei komparatory służą do porównywania wartości napięcia lub sygnałów, co jest istotne w kontekście regulacji, ale nie odnoszą się do przechowywania stanów. Liczniki, z drugiej strony, mają zastosowanie głównie do zliczania impulsów, co jest przydatne w zastosowaniach takich jak monitorowanie liczby cykli produkcyjnych, ale również nie mogą same w sobie przechowywać stanu w długim okresie. Typowym błędem myślowym jest mylenie funkcji liczników i przerzutników, ponieważ oba te elementy operują na sygnałach, ale różnią się zasadniczo w sposobie ich działania oraz zastosowania. Zrozumienie tych różnic jest kluczowe dla projektowania efektywnych systemów automatyki i sterowania. Właściwy dobór elementów w zależności od wymagań aplikacji jest niezbędny do osiągnięcia niezawodności i efektywności systemów sterujących.