Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 30 maja 2025 17:53
  • Data zakończenia: 30 maja 2025 18:03

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z protokołów przesyłania danych umożliwia transmisję różnicową sygnałów?

A. GPIB
B. RS-232
C. I2C
D. RS-485
RS-485 to standard komunikacji szeregowej, który umożliwia różnicową transmisję sygnałów, co oznacza, że dane są przesyłane za pomocą dwóch przewodów, co pozwala na eliminację zakłóceń elektrycznych. W przeciwieństwie do RS-232, który przesyła sygnały jako pojedynczy sygnał względem masy, RS-485 wykorzystuje różnicę napięć pomiędzy dwoma przewodami, co zapewnia lepszą odporność na zakłócenia i możliwość dłuższych połączeń. Przykłady zastosowań RS-485 obejmują systemy automatyki przemysłowej, sieci czujników oraz kontrolę dostępu, gdzie wymagana jest komunikacja na dużych odległościach, nawet do 1200 metrów, oraz obsługa wielu urządzeń w jednej sieci. Standard RS-485 jest szczególnie ceniony w aplikacjach, gdzie istotne jest zachowanie integralności danych w trudnych warunkach elektromagnetycznych. Dobrą praktyką w projektowaniu systemów opartych na RS-485 jest stosowanie odpowiednich terminacji na końcach linii transmisyjnej, co minimalizuje odbicia sygnału i poprawia jakość komunikacji.

Pytanie 2

Wykonano pomiar napięcia stałego za pomocą woltomierza cyfrowego w zakresie 20 V, uzyskując wynik 5 V. Błąd przyrządu wynosi ± 1 % ± 2 D, a pole odczytowe miernika to 3,5 cyfry. Która forma zapisu wyniku pomiaru jest właściwa?

A. U = (5,00 ± 0,05) V
B. U = (5,00 ± 0,02) V
C. U = (5,00 ± 0,01) V
D. U = (5,00 ± 0,07) V
Odpowiedź U = (5,00 ± 0,07) V jest prawidłowa, ponieważ uwzględnia zarówno błąd procentowy, jak i błąd stały przyrządu. Błąd przyrządu wynosi ± 1 % ± 2 D, co oznacza, że dla odczytu 5 V obliczamy błąd procentowy jako 1 % z 5 V, co daje 0,05 V. Dodatkowo, zaokrąglając błąd stały do jednego miejsca po przecinku, mamy ± 0,02 V. Wartość 0,07 V uwzględnia sumę tych dwóch błędów, uwzględniając ich wpływ na dokładność pomiaru. W praktyce, podczas wykonywania pomiarów elektrycznych, ważne jest, aby poprawnie zrozumieć i obliczyć błędy pomiarowe, ponieważ dokładność sprzętu pomiarowego wpływa na jakość wyników. W przypadku pomiarów w inżynierii elektrycznej, standardy takie jak ISO 10012 określają wymagania dotyczące dokładności i niepewności pomiarowej. Dlatego odpowiedź 3 nie tylko jest poprawna, ale również pokazuje, jak istotne jest precyzyjne określenie błędów w pomiarach, co jest kluczowe w praktycznych zastosowaniach, takich jak projektowanie obwodów, kalibracja instrumentów czy analiza systemów elektronicznych.

Pytanie 3

Jakie typy złączy są stosowane w kamerach IP w systemach monitoringu?

A. RJ11
B. BNC
C. RJ45
D. SMA
Złącza SMA, BNC i RJ11, mimo że są powszechnie używane w różnych aplikacjach technologicznych, nie są odpowiednie w kontekście kamer IP. Złącze SMA jest stosowane głównie w systemach komunikacji bezprzewodowej, jako złącze antenowe, co czyni je nieprzydatnym dla kamer, które wymagają połączenia Ethernetowego do przesyłania danych. Z kolei złącze BNC jest przestarzałym rozwiązaniem stosowanym głównie w analogowych systemach wideo, takich jak kamery CCTV, gdzie obraz jest przesyłany w postaci sygnału analogowego. W systemach IP, które przesyłają dane w formie cyfrowej, wykorzystanie BNC nie jest zalecane, ponieważ nie obsługuje standardów transmisji IP. Złącze RJ11, znane jako złącze telefoniczne, również nie jest odpowiednie dla kamer IP, ponieważ jego zastosowanie ogranicza się do systemów telefonicznych i nie oferuje wystarczającej przepustowości ani możliwości przesyłania sygnału wideo. Wybór niewłaściwego złącza w systemie monitoringu może prowadzić do problemów z jakością obrazu, opóźnieniami oraz brakiem stabilności połączenia, co jest kluczowe w zabezpieczeniach i monitoringu obiektów.

Pytanie 4

MAN to termin odnoszący się do typu sieci komputerowej

A. masowej
B. lokalnej
C. rozległej
D. miejskiej
MAN (Metropolitan Area Network) to rodzaj sieci komputerowej, która obejmuje obszar miejskiej aglomeracji. Głównym celem takiej sieci jest zapewnienie szybkiej komunikacji między różnymi lokalizacjami w obrębie miasta, co może obejmować zarówno biura, instytucje edukacyjne, jak i inne obiekty użyteczności publicznej. W praktyce MAN-y są często wykorzystywane do łączenia lokalnych sieci (LAN) w większe struktury, umożliwiając efektywne zarządzanie zasobami oraz dostęp do Internetu. Standardy techniczne, takie jak Ethernet, są często stosowane w MAN-ach, co pozwala na uzyskanie dużej przepustowości przy stosunkowo niskich kosztach. Dzięki ich elastyczności, MAN-y umożliwiają również implementację różnych technologii komunikacyjnych, co czyni je atrakcyjnym rozwiązaniem dla organizacji miejskich. Przykładowo, wiele miast korzysta z MAN-ów do integracji systemów transportowych, monitoringu czy inteligentnych rozwiązań miejskich. W ten sposób MAN przyczynia się do efektywnego zarządzania zasobami miejskimi oraz podniesienia jakości życia mieszkańców.

Pytanie 5

W tabeli przedstawiono parametry techniczne

tryb pracy: pentaplex
wyświetlanie do 8 obrazów w rozdzielczości maksymalnej 1920x1080 p
kompresja H.264
każdy kanał może nagrywać z prędkością 25 kl/s w 1080 p
każdy kanał można odtwarzać z prędkością 25 kl/s w 1080 p
jednoczesna praca wyjść HDMI/VGA
zaawansowana wideo detekcja: detekcja ruchu, zanik obrazu
archiwizacja: 2x HDD Sata III (max. 6TB), 2x USB2.0
interfejs sieciowy: 1x RJ-45 Ethernet (10/100M)
wejścia i wyjścia alarmowe: 8/1
wbudowany web server, obsługa przez BCS View Manager

A. odtwarzacza DVD
B. rejestratora DVR
C. nadajnika TV
D. odbiornika TV
Rejestrator DVR (Digital Video Recorder) to urządzenie, którego parametry techniczne w tabeli są zgodne z jego funkcjami. Tryb pracy pentaplex, który pozwala na jednoczesne nagrywanie, odtwarzanie, podgląd na żywo oraz zdalne zarządzanie, jest kluczowy w kontekście monitoringu oraz zabezpieczeń. Kompresja H.264 zapewnia efektywne przechowywanie danych wideo, co jest istotne w kontekście ograniczonej pojemności dysków twardych. Możliwość nagrywania z prędkością 25 kl/s w rozdzielczości 1080p świadczy o wysokiej jakości nagrania, co jest wymogiem w profesjonalnych systemach CCTV. Wyjścia HDMI i VGA umożliwiają podłączenie do nowoczesnych monitorów i telewizorów, co zwiększa wszechstronność urządzenia. Obsługa przez dedykowane oprogramowanie, takie jak BCS View Manager, pozwala na łatwe zarządzanie nagraniami oraz konfigurację urządzenia. Znajomość tych parametrów jest kluczowa dla profesjonalistów zajmujących się systemami monitoringu wizyjnego.

Pytanie 6

Który rodzaj kondensatora wymaga zachowania polaryzacji podczas jego wymiany?

A. Powietrzny
B. Ceramiczny
C. Elektrolityczny
D. Foliowy
Kondensatory elektrolityczne są elementami, które wymagają zachowania polaryzacji podczas wymiany, co jest kluczowym aspektem ich użytkowania. Są one zaprojektowane z wykorzystaniem elektrody, która jest wytwarzana z materiału przewodzącego, oraz dielektryka, który jest elektrolitem. Polaryzacja oznacza, że kondensator ma określoną biegunowość - jeden terminal działa jako anoda, a drugi jako katoda. W przypadku zamiany miejscami tych biegunów może dojść do uszkodzenia kondensatora, a nawet wybuchu. W praktycznych zastosowaniach, kondensatory elektrolityczne są powszechnie używane w zasilaczach, filtrach i układach audio, gdzie ich zdolność do przechowywania dużych ładunków sprawia, że są niezbędne. Ważne jest również stosowanie norm, takich jak IEC 60384, które regulują parametry kondensatorów elektrolitycznych, aby zapewnić ich niezawodność i bezpieczeństwo w aplikacjach. Wymieniając te komponenty, należy zawsze upewnić się, że nowe kondensatory mają odpowiednią biegunowość, aby uniknąć poważnych problemów.

Pytanie 7

W układzie sterowania automatyki przemysłowej został uszkodzony tyrystor BT138-600. Na podstawie parametrów przedstawionych w tabeli dobierz tyrystor zastępczy.

TypUDRMIT(RMS)ITSMIGTUGT
VAAmAV
BT136-500500425351,5
BT138-6006001290351,5
BT138-8008001290351,5
BT138-500F5001290351,5
BTA16-800B80016160501,5

A. BT136-500
B. BTA16-800B
C. BT138-800
D. BT138-500F
Tyrystor BT138-800 to doskonały wybór jako zamiennik dla uszkodzonego BT138-600, ponieważ charakteryzuje się parametrami, które są nie tylko równorzędne, ale wręcz lepsze. Przede wszystkim, maksymalne napięcie UDRM dla BT138-800 wynosi 800 V, co przewyższa 600 V uszkodzonego tyrystora. Taki parametr jest kluczowy, ponieważ zapewnia większą odporność na przebicia oraz stabilność w pracy w warunkach obciążenia. Dodatkowo, zachowanie identycznych wartości prądu oraz temperatury pracy oznacza, że BT138-800 będzie idealnie współpracował z resztą układu, co jest istotne dla zachowania ciągłości działania i bezpieczeństwa systemu. W praktyce, dobór odpowiednich tyrystorów do układów automatyki przemysłowej powinien opierać się na analizie danych katalogowych, co jest zgodne z zaleceniami branżowymi. Wybierając zamiennik, należy również zwrócić uwagę na producenta oraz oferowaną jakość komponentów, aby uniknąć problemów z kompatybilnością oraz niezawodnością, które mogą prowadzić do awarii całego systemu.

Pytanie 8

Którego rodzaju kabel dotyczy termin STP?

A. Światłowodowego
B. Skrętki ekranowanej
C. Koncentrycznego
D. Skrętki nieekranowanej
Wybierając odpowiedź, która nie odnosi się do skrętki ekranowanej, można łatwo popełnić błąd w zrozumieniu terminologii związanej z kablami sieciowymi. Skrętka nieekranowana, mimo że również jest powszechnie używana, nie posiada dodatkowej warstwy ekranu, co czyni ją bardziej podatną na zakłócenia. Kable światłowodowe, chociaż są niezwykle szybkie i odporne na zakłócenia, działają na zupełnie innej zasadzie optycznej i nie są klasyfikowane jako skrętki, co czyni tę odpowiedź mylną. Kable koncentryczne, choć kiedyś popularne w telekomunikacji i telewizji kablowej, różnią się znacznie od skrętek i nie stosuje się ich w nowoczesnych sieciach komputerowych, gdzie dominuje technologia Ethernet. Typowe błędy myślowe prowadzące do niepoprawnych odpowiedzi mogą wynikać z nieznajomości różnic między różnymi typami kabli oraz ich zastosowaniami. Warto znać właściwości każdego z tych typów, aby móc efektywnie dobierać rozwiązania sieciowe, które będą najlepsze dla konkretnej aplikacji. Uwzględniając standardy branżowe oraz praktyki, można zrozumieć, dlaczego znajomość właściwych terminów i ich zastosowania jest kluczowa w projektowaniu i implementacji infrastruktury sieciowej.

Pytanie 9

Skrętka bez ekranowania folią jest oznaczana jako

A. U/FTP
B. F/UTP
C. F/FTP
D. U/UTP
Wybór odpowiedzi jak F/UTP, U/FTP czy F/FTP może wynikać z pewnych nieporozumień odnośnie kabli sieciowych. F/UTP, czyli "Foiled Unshielded Twisted Pair", to kabel, który ma folię jako dodatkowe ekranowanie, ale nie jest on całkowicie osłonięty. To znaczy, że nie daje takiej ochrony przed zakłóceniami jak pełne ekranowanie. Spoko, może się przydać tam, gdzie jest dużo zakłóceń elektromagnetycznych, ale to nie jest klasyka dla U/UTP. Z drugiej strony, U/FTP, czyli "Unshielded Foiled Twisted Pair", to kabel, w którym każda para przewodów jest ekranowana, ale cały kabel nie ma ogólnego ekranu. To może prowadzić do sytuacji z zakłóceniami pomiędzy parami, co wpływa na jakość sygnału. A F/FTP, czyli "Foiled Foiled Twisted Pair", to już całkiem inna bajka, bo ma ekran dla każdej pary i ogólny ekran dla całego kabla. To daje super ochronę przed zakłóceniami, a to już nie pasuje do definicji skrętki nieekranowanej. Dlatego wybierając te opcje, może być problem z rozumieniem zasad klasyfikacji kabli i ich zastosowaniem. Najważniejsze jest, żeby przy wyborze odpowiedniego kabla brać pod uwagę, w jakim środowisku będzie używany, oraz normy branżowe, żeby uniknąć problemów z jakością transmisji danych.

Pytanie 10

Brak uziemiającej opaski na nadgarstku pracownika podczas montażu układów CMOS może prowadzić do

A. uszkodzenia układów scalonych
B. uszkodzenia sprzętu lutowniczego
C. porażenia prądem elektrycznym
D. poparzenia gorącym spoiwem
Brak opaski uziemiającej na przegubie ręki podczas montażu układów CMOS to spory błąd, bo może prowadzić do uszkodzenia tych układów przez gromadzenie się ładunków elektrostatycznych. Układy CMOS są na to mega wrażliwe, co może skutkować ich trwałym uszkodzeniem, na przykład zmianami w ich właściwościach elektrycznych. Dlatego właśnie używanie opaski jest super ważne w miejscach, gdzie pracuje się z delikatnymi komponentami elektronicznymi. Opaska ta sprawia, że ładunek jest odprowadzany i przez to zmniejsza się ryzyko uszkodzeń. Z własnego doświadczenia wiem, że przestrzeganie norm jak ANSI/ESD S20.20 czy IEC 61340-5-1, które mówią o najlepszych praktykach w ochronie przed ESD, naprawdę się opłaca, jeśli chcemy mieć pewność co do jakości naszych produktów. Regularne szkolenia dla pracowników oraz stosowanie odpowiednich środków ochrony jak maty ESD czy opaski są kluczowe, by zminimalizować ryzyko przy montażu wrażliwych komponentów.

Pytanie 11

Jakie urządzenie należy zastosować do pomiaru rezystancji w układzie elektronicznym?

A. woltomierza
B. omomierza
C. amperomierza
D. częstotliwościomierza
Omomierz to specjalistyczne urządzenie pomiarowe, które służy do pomiaru rezystancji. Jego działanie opiera się na zasadzie pomiaru napięcia i prądu w obwodzie, co pozwala obliczyć wartość rezystancji zgodnie z prawem Ohma. W praktyce, omomierz jest niezbędny w diagnostyce elektronicznych układów, ponieważ umożliwia identyfikację uszkodzonych komponentów, takich jak rezystory, diody czy tranzystory. W kontekście instalacji elektronicznych, omomierz pozwala na sprawdzenie ciągłości połączeń oraz identyfikację ewentualnych przerw czy zwarć w obwodzie. Używanie omomierza jest zgodne z najlepszymi praktykami w branży, które zalecają regularne testowanie komponentów w celu zapewnienia ich poprawnego działania oraz bezpieczeństwa. Cały proces pomiaru powinien być przeprowadzany z zachowaniem odpowiednich środków ostrożności, aby uniknąć uszkodzenia sprzętu oraz zapewnić dokładność pomiarów.

Pytanie 12

Aby uzyskać najlepszą precyzję pomiaru napięcia wynoszącego około 110 mV, należy ustawić woltomierz na zakres

A. 100 mV
B. 1000 mV
C. 150 mV
D. 300 mV
Ustawienie zakresu woltomierza na 150 mV dla pomiaru napięcia o wartości około 110 mV zapewnia optymalne warunki do uzyskania najwyższej dokładności pomiaru. Woltomierze mają różne zakresy, które determinują ich czułość oraz dokładność. Ustawiając zakres na 150 mV, jesteśmy w stanie skorzystać z pełnej rezolucji instrumentu, co oznacza, że pomiar 110 mV będzie dokładnie reprezentowany w skali woltomierza. W praktyce, jeśli napięcie jest bliskie granicy zakresu, na przykład 100 mV, instrument może nie być w stanie dokładnie zarejestrować drobnych zmian w napięciu. Kolejnym aspektem jest minimalizacja błędów pomiarowych, które mogą występować przy pomiarze na wyższych zakresach, np. 1000 mV, gdzie rozdzielczość jest niższa, a pomiar może być obarczony większymi błędami. Takie podejście jest zgodne z dobrą praktyką pomiarową, która zaleca, aby zakres pomiarowy był jak najbliższy rzeczywistemu wartościowanemu napięciu, co pozwala na uzyskanie lepszej jakości pomiaru oraz precyzji.

Pytanie 13

Protokół internetowy, który pozwala na pobieranie wiadomości e-mail z serwera na komputer, to

A. FTP
B. ARP
C. DHCP
D. POP3
POP3, czyli Post Office Protocol version 3, to standardowy protokół używany do odbierania poczty elektronicznej z serwera do klienta e-mail. Jego głównym celem jest umożliwienie użytkownikom pobierania wiadomości e-mail z serwera, co jest kluczową funkcjonalnością w codziennej komunikacji elektronicznej. POP3 działa na zasadzie pobierania wiadomości na lokalny komputer, co oznacza, że po ich pobraniu z serwera, są one zazwyczaj usuwane z serwera (choć można skonfigurować klienta, aby pozostawiał je na serwerze). Przykładem zastosowania POP3 jest sytuacja, gdy użytkownik korzysta z klienta pocztowego, takiego jak Microsoft Outlook, aby zyskać dostęp do swojej poczty, jednocześnie umożliwiając odczyt wiadomości offline. Protokół działa głównie na porcie 110, a dla szyfrowanej wersji, czyli POP3S, na porcie 995. POP3 jest zgodny z normami IETF, co czyni go częścią zbioru protokołów standardowych, zapewniając interoperacyjność między różnymi systemami i aplikacjami pocztowymi.

Pytanie 14

Jakie czynności należy podjąć w pierwszej kolejności, udzielając pomocy osobie porażonej prądem elektrycznym?

A. wykonać masaż serca
B. zadzwonić po pomoc medyczną
C. odciąć porażonego od źródła prądu
D. przeprowadzić sztuczne oddychanie
Odpowiedź "uwolnić porażonego spod napięcia" jest prawidłowa, ponieważ w przypadku porażenia prądem elektrycznym najważniejszym krokiem jest zapewnienie bezpieczeństwa zarówno osobie poszkodowanej, jak i osobie udzielającej pomocy. Bezpośredni kontakt z prądem może prowadzić do poważnych obrażeń, a nawet śmierci, dlatego należy najpierw usunąć źródło zagrożenia. Można to zrobić poprzez odłączenie zasilania, użycie narzędzi izolowanych lub, w przypadku braku takiej możliwości, przesunięcie porażonego na bezpieczną odległość za pomocą przedmiotu nieprzewodzącego. Po uwolnieniu osoby z niebezpiecznej sytuacji, można przejść do oceny jego stanu zdrowia i, w razie potrzeby, wezwać pomoc medyczną. Zgodnie z wytycznymi Stowarzyszenia Czerwonego Krzyża, kluczowe jest działanie w taki sposób, aby nie narażać siebie ani innych na dodatkowe niebezpieczeństwo. W praktyce, znajomość procedur udzielania pierwszej pomocy w przypadku porażenia prądem elektrycznym może uratować życie, dlatego ważne jest, aby regularnie brać udział w szkoleniach z zakresu pierwszej pomocy.

Pytanie 15

Czego nie uwzględnia się w dokumentacji dotyczącej montażu elektronicznego?

A. współrzędnych podzespołów (pick&place)
B. pełnej listy materiałowej (BOM)
C. zestawu rysunków montażowych (odnoszących się do wszystkich faz produkcji)
D. dokumentacji techniczno-ruchowej (DTR)
Dokumentacja montażu elektronicznego obejmuje szereg kluczowych elementów, które są niezbędne do efektywnego i prawidłowego złożenia urządzeń elektronicznych. Na przykład, kompletny zestaw rysunków montażowych jest fundamentalny, ponieważ przedstawia szczegółowe instrukcje dotyczące położenia i sposobu montażu poszczególnych komponentów na płytce drukowanej. Współrzędne elementów są równie istotne, gdyż umożliwiają automatyzację procesu montażu za pomocą maszyn pick-and-place, co znacząco zwiększa efektywność produkcji. Lista materiałów (BOM) to kolejny element fundamentalny, który nie tylko dostarcza informacji o potrzebnych komponentach, ale także pozwala na zarządzanie zapasami i planowanie zakupów, co jest kluczowe dla każdej linii produkcyjnej. Typowym błędem myślowym jest mylenie celu DTR z dokumentacją montażową; podczas gdy DTR koncentruje się na funkcjonowaniu i konserwacji już zmontowanego urządzenia, dokumentacja montażowa zapewnia informacje niezbędne do złożenia tego urządzenia. Niezrozumienie tej różnicy może prowadzić do nieprawidłowego dobierania dokumentów w procesach produkcji, co w konsekwencji wpływa na jakość i efektywność całego procesu montażu. W praktyce, zawsze należy dostarczać odpowiednią dokumentację montażową, aby zapewnić, że proces produkcji odbywa się zgodnie z ustalonymi standardami i najlepszymi praktykami w branży.

Pytanie 16

Jaki układ powinien być zastosowany, aby zestawić badane napięcie z napięciem odniesienia i w zależności od różnicy uzyskać na wyjściu układu sygnał logiczny 0 lub 1?

A. Demultiplekser
B. Multiplekser
C. Komparator
D. Stabilizator
Wybór niewłaściwego układu, takiego jak multiplekser, demultiplekser czy stabilizator, jest wynikiem mylnych przekonań na temat ich funkcji. Multiplekser to układ, który umożliwia wybór jednej z wielu linii wejściowych i przesyłanie jej na wyjście. Jego głównym celem jest manipulacja danymi, a nie bezpośrednie porównywanie napięć, co czyni go nieodpowiednim do zadania porównania napięć. Z kolei demultiplekser działa w przeciwny sposób – rozdziela sygnał z jednego źródła na wiele wyjść, co również nie odpowiada na potrzeby porównawcze. Stabilizator natomiast ma za zadanie utrzymanie stałego napięcia na wyjściu, niezależnie od zmian w napięciu wejściowym lub obciążeniu, co również jest inną funkcjonalnością. Te błędne wybory wynikają często z nieporozumień dotyczących podstawowych funkcji tych układów. Na przykład, mylenie roli komparatora z funkcją multipleksera może prowadzić do sytuacji, w której użytkownik szuka rozwiązania dla problemu porównania napięć, używając układu, który nie jest w stanie wykonać tej operacji. Aby uniknąć takich błędów, ważne jest zrozumienie różnic między tymi układami oraz ich zastosowań w praktyce, co jest kluczowe w projektowaniu systemów elektronicznych.

Pytanie 17

W instalacji naściennej w budynku mieszkalnym jednokondygnacyjnym przewody powinny być prowadzone

A. najkrótszą trasą
B. wyłącznie w pionie
C. w pionie oraz poziomie
D. tylko w poziomie
Instalacja natynkowa w jednokondygnacyjnym budynku mieszkalnym wymaga prowadzenia przewodów zarówno w pionie, jak i w poziomie, co jest zgodne z ogólnymi zasadami projektowania instalacji elektrycznych. W praktyce oznacza to, że instalatorzy muszą uwzględniać różnorodne czynniki, takie jak dostępność punktów zasilających, rozmieszczenie gniazdek i włączników oraz estetykę wykończenia wnętrza. Prowadzenie przewodów w pionie umożliwia wygodne podłączenie urządzeń na różnych poziomach, a poziome prowadzenie jest kluczowe dla łatwego dostępu do zasilania w obrębie pomieszczeń. Ponadto, zgodnie z normą PN-HD 60364, instalacje elektryczne powinny być wykonywane w sposób zapewniający bezpieczeństwo użytkowania oraz łatwość konserwacji. Przykładowo, w przypadku montażu instalacji w kuchni, odpowiednie prowadzenie przewodów w poziomie i pionie zapewnia optymalne połączenia z urządzeniami AGD, minimalizując jednocześnie ryzyko przeciążeń elektrycznych oraz uszkodzeń mechanicznych. Ostatecznie, elastyczność w projektowaniu instalacji pozwala na lepsze dostosowanie do indywidualnych potrzeb mieszkańców budynku.

Pytanie 18

Switch w sieci LAN

A. odczytuje adresy IP
B. przydziela adresy IP
C. posiada serwer DNS
D. przekazuje sygnał do PC
Przełącznik w sieci LAN (Local Area Network) odgrywa kluczową rolę w przetwarzaniu danych między urządzeniami. Jego główną funkcją jest przekazywanie sygnałów między komputerami, co odbywa się na poziomie drugiego poziomu modelu OSI (Data Link Layer). Przełączniki działają na podstawie adresów MAC (Media Access Control), co pozwala im efektywnie kierować ruch sieciowy do odpowiednich urządzeń. Przykładem zastosowania przełącznika jest konfiguracja sieci biurowej, gdzie wiele komputerów i urządzeń, takich jak drukarki, są podłączone do jednego przełącznika, umożliwiając im wzajemną komunikację. W praktyce, jeżeli komputer A chce wysłać dane do komputera B, przełącznik odczytuje adres MAC komputera B i kieruje pakiety danych wyłącznie do niego, co zwiększa wydajność sieci i zmniejsza ruch niepotrzebny. Dobre praktyki zalecają stosowanie przełączników zarządzanych, które oferują zaawansowane funkcje, takie jak VLANy, QoS oraz monitorowanie ruchu, co przyczynia się do lepszego zarządzania siecią i zwiększenia jej bezpieczeństwa.

Pytanie 19

Zakres regularnego kontrolowania oraz testowania zasilających instalacji urządzeń elektronicznych nie obejmuje

A. pomiaru rezystancji przewodów
B. pomiaru poboru mocy przez zasilane odbiorniki
C. badania ciągłości przewodów ochronnych
D. próby działania urządzeń różnicowoprądowych
Prawidłowa odpowiedź wskazuje, że zakres okresowego sprawdzania i prób instalacji zasilającej urządzenie elektroniczne nie obejmuje pomiaru poboru mocy przez zasilane odbiorniki. W praktyce, to badanie koncentruje się na zapewnieniu bezpieczeństwa i niezawodności instalacji elektrycznej, a nie na analizie wydajności energetycznej odbiorników. Zgodnie z normą PN-EN 60204-1 oraz innymi wytycznymi, istotne jest, aby sprawdzano aspekty takie jak ciągłość przewodów ochronnych, rezystancję przewodów oraz działanie urządzeń różnicowoprądowych, aby upewnić się, że instalacja elektryczna nie stanowi zagrożenia dla użytkowników. Przykładem może być badanie ciągłości przewodów ochronnych, które jest kluczowe dla ochrony przed porażeniem prądem. Pomiar poboru mocy, choć ważny dla oceny efektywności energetycznej, nie jest częścią podstawowych kontrolnych procedur związanych z bezpieczeństwem instalacji.

Pytanie 20

W kablowej telewizji magistrale optyczne wykorzystywane są do przesyłania sygnałów na znaczne odległości?

A. drogą radiową
B. skretkami telefonicznymi
C. łączami światłowodowymi
D. kablami koncentrycznymi
Odpowiedzi 'skrótkami telefonicznymi', 'drogą radiową' oraz 'kabli koncentrycznymi' są nieprawidłowe, ponieważ każda z tych technologii nie jest odpowiednia do przesyłania sygnałów na duże odległości w telewizji kablowej. Skrętki telefoniczne, choć stosowane w telekomunikacji, mają ograniczoną przepustowość i są podatne na zakłócenia elektromagnetyczne. W praktyce, ich użycie w transmisji telewizyjnej na dużą skalę wiązałoby się z znacznymi stratami sygnału i nieefektywnością. Z kolei transmisja drogą radiową, mimo że może być użyteczna w niektórych zastosowaniach, wymaga silnych sygnałów i widoczności linii, co utrudnia stabilne przesyłanie sygnału w gęsto zaludnionych obszarach miejskich, gdzie przeszkody terenowe mogą prowadzić do znacznych strat jakości. Kable koncentryczne, chociaż były szeroko stosowane w telewizji kablowej, mają swoje ograniczenia w kontekście wydajności na dużych odległościach. Przesyłają sygnały analogowe lub cyfrowe, ale przy większych odległościach doświadczają znacznych spadków sygnału. Dodatkowo, kable koncentryczne są bardziej podatne na zakłócenia i interferencje w porównaniu z systemami światłowodowymi. Zrozumienie tych różnic jest kluczowe w kontekście wyboru odpowiedniej technologii dla efektywnej transmisji sygnału w nowoczesnych systemach telewizyjnych.

Pytanie 21

Warystor to komponent, który zabezpiecza urządzenia elektroniczne przed skutkami działania

A. promieniowania X.
B. niskich temperatur.
C. opadów deszczu.
D. wyładowań atmosferycznych.
Warystor, znany również jako rezystor nieliniowy, to element elektroniczny, który chroni urządzenia przed przepięciami, zwłaszcza wyładowaniami atmosferycznymi. Działa na zasadzie zmiany swojej rezystancji w zależności od napięcia, co pozwala na skuteczne odprowadzanie nadmiaru energii. W praktyce warystory są powszechnie stosowane w zasilaczach, urządzeniach elektronicznych oraz systemach telekomunikacyjnych, gdzie mogą zapobiegać uszkodzeniom spowodowanym nagłymi wzrostami napięcia. Standardy takie jak IEC 61000-4-5 dotyczą ochrony przed przepięciami, a warystory są kluczowymi komponentami w spełnianiu tych norm. Dzięki swoim właściwościom, warystory mogą znacznie zwiększyć niezawodność sprzętu, co jest szczególnie istotne w branżach, gdzie przerwy w działaniu mogą prowadzić do dużych strat finansowych. Warto również zauważyć, że odpowiedni dobór warystora do konkretnej aplikacji, w tym jego napięcia przebicia i charakterystyki prądowej, ma kluczowe znaczenie dla skuteczności ochrony.

Pytanie 22

Kolejność czynności przy montażu anteny satelitarnej powinna być następująca:

A. złożenie anteny, przymocowanie anteny w wyznaczonym miejscu, wykonanie instalacji kablowej, ustawienie kąta elewacji oraz azymutu
B. złożenie anteny, wykonanie instalacji kablowej, ustawienie kąta elewacji oraz azymutu, przymocowanie anteny w wyznaczonym miejscu
C. złożenie anteny, ustawienie kąta elewacji oraz azymutu, przymocowanie anteny w wyznaczonym miejscu, wykonanie instalacji kablowej
D. ustawienie kąta elewacji oraz azymutu, złożenie anteny, przymocowanie anteny w wyznaczonym miejscu, wykonanie instalacji kablowej
Wybór innej kolejności czynności montażowych może prowadzić do wielu problemów związanych z jakością sygnału oraz ogólną funkcjonalnością anteny satelitarnej. Ustawienie kąta elewacji i azymutu przed zamocowaniem anteny w odpowiednim miejscu jest błędnym podejściem, ponieważ może okazać się, że antena nie jest stabilnie umocowana, co może prowadzić do jej przemieszczania się pod wpływem wiatru lub innych czynników atmosferycznych. Zmontowanie anteny, a następnie instalacja kablowej bez wcześniejszego zamocowania anteny jest kolejnym błędem, ponieważ może spowodować problemy z właściwym podłączeniem kabli, co w konsekwencji wpłynie na jakość odbioru sygnału. W praktyce, każde z tych działań powinno być przeprowadzane w odpowiedniej kolejności, aby zminimalizować ryzyko błędów. Ignorowanie tej zasady może prowadzić do sytuacji, w której konieczne będzie wielokrotne dostosowywanie i korygowanie ustawień anteny, co zabiera czas i zwiększa koszty związane z montażem. Co więcej, takie podejście może narazić na szwank gwarancję produktów, jeżeli nie zostaną one zainstalowane zgodnie z instrukcją producenta. Dlatego ważne jest, aby przestrzegać ustalonej kolejności montażu, co jest elementem dobrej praktyki w branży instalacji satelitarnych.

Pytanie 23

Urządzenie pozwalające na podłączenie większej ilości czujników do systemu alarmowego nosi nazwę

A. ekspandera wejść
B. modułu GSM
C. modułu ETHM
D. ekspandera wyjść
Ekspander wejść jest urządzeniem, które umożliwia podłączenie do centrali alarmowej większej liczby czujników, co jest kluczowe w rozbudowanych systemach zabezpieczeń. Jego głównym zadaniem jest zwiększenie liczby dostępnych wejść, umożliwiając tym samym jednoczesne monitorowanie różnych stref lub obiektów. W praktyce, jeśli mamy do czynienia z obiektem o dużym metrażu, gdzie standardowa centrala alarmowa nie ma wystarczającej liczby wejść, wykorzystanie ekspandera wejść pozwala na łatwe i efektywne dostosowanie systemu do indywidualnych potrzeb. W kontekście standardów branżowych, ekspandery są zgodne z normami EN 50131, które regulują bezpieczeństwo systemów alarmowych. Dodatkowo, ich zastosowanie w systemach inteligentnego budynku umożliwia integrację z innymi urządzeniami, co zwiększa funkcjonalność oraz elastyczność całego systemu zabezpieczeń. Przykładem może być sytuacja, w której dodatkowe czujniki ruchu są instalowane w różnych pomieszczeniach, co pozwala na skuteczniejsze monitorowanie i szybsze reagowanie na potencjalne zagrożenia.

Pytanie 24

Aby stworzyć niewidoczną dla ludzkiego oka barierę świetlną, należy zastosować

A. zestaw składający się z diody LED emitującej światło widzialne oraz fotodiody
B. transoptor
C. zestaw składający się z diody LED emitującej światło podczerwone oraz fotodiody
D. fototranzystor
Zestaw złożony z diody LED emitującej światło podczerwone i fotodiody jest idealnym rozwiązaniem do tworzenia niewidocznych dla oka ludzkiego barier świetlnych. Dioda LED podczerwonego emituje fale świetlne, które są niewidoczne dla ludzkiego oka, co pozwala na instalowanie systemów detekcji bez zauważalnych elementów. Fotodioda działa jako detektor, rejestrując światło podczerwone tylko wtedy, gdy obiekt zakłóca ten wiązkę. Takie rozwiązania są szeroko stosowane w systemach alarmowych, automatyce domowej oraz w przemyśle do wykrywania obecności ludzi lub przedmiotów. Zastosowanie podczerwieni zwiększa niezawodność systemu, minimalizując ryzyko fałszywych alarmów wywołanych przez światło dzienne. Dodatkowo, standardy dotyczące bezpieczeństwa i efektywności energetycznej wymagają użycia takich technologii w nowoczesnych instalacjach, co czyni tę metodę zgodną z dobrymi praktykami branżowymi.

Pytanie 25

Jak silne zachmurzenie wpływa na działanie odbiorników GPS?

A. Poprawia warunki funkcjonowania odbiornika.
B. Modyfikuje zakres częstotliwości filtra w.cz.
C. Pogarsza warunki pracy odbiornika.
D. Aktywuje filtr fal odbitych w odbiorniku.
Duże zachmurzenie ma negatywny wpływ na pracę odbiorników GPS, ponieważ sygnały satelitarne są osłabiane przez warstwy chmur oraz związane z nimi czynniki atmosferyczne. Gdy sygnał GPS przemieszcza się przez atmosferę, odbija się od cząsteczek wody w chmurach, co prowadzi do opóźnień i zniekształceń. Jak pokazują badania, w przypadku intensywnego zachmurzenia, zwłaszcza w chmurach deszczowych, jakość sygnału może ulec znacznemu pogorszeniu. Przykładem zastosowania tej wiedzy jest planowanie misji lotniczych lub morskich, gdzie precyzyjne wskazania GPS są kluczowe. Odbiorniki GPS mogą również korzystać z technik takich jak różnicowanie sygnału (DGPS), aby zwiększyć dokładność położenia pomimo zakłóceń spowodowanych atmosferą. W praktyce operatorzy powinni być świadomi, że w trudnych warunkach pogodowych, jak zachmurzenie, mogą wystąpić większe błędy w pomiarach, co powinno być uwzględnione w analizach ryzyka i podczas podejmowania decyzji operacyjnych. Ponadto, zgodnie z wytycznymi organizacji zajmujących się nawigacją satelitarną, istotne jest monitorowanie warunków atmosferycznych w celu optymalizacji pracy systemów GPS.

Pytanie 26

Jaką wartość napięcia sinusoidalnego mierzy woltomierz cyfrowy w trybie AC?

A. Maksymalną
B. Chwilową
C. Skuteczną
D. Średnią
Woltomierz cyfrowy w trybie AC wskazuje wartość skuteczną napięcia sinusoidalnego, która jest miarą równoważną wartości stałej, powodującą takie samo wydzielanie ciepła w rezystorze. Wartość skuteczna (rms) jest obliczana jako pierwiastek kwadratowy średniej arytmetycznej kwadratów chwilowych wartości napięcia w czasie, co pozwala na właściwe oszacowanie energii, jaka jest dostarczana do obciążenia. W zastosowaniach praktycznych, takich jak instalacje elektryczne, projektowanie układów zasilania czy analiza jakości energii, wartość skuteczna jest kluczowa, ponieważ pozwala określić, jaki prąd lub napięcie będą działać w danym obwodzie. Dobrą praktyką jest również zrozumienie różnicy między wartościami skutecznymi a maksymalnymi, ponieważ napięcie maksymalne (szczytowe) jest zazwyczaj wyższe niż wartość skuteczna o czynnik pierwiastek z dwóch (około 1,41 razy). Wartości skuteczne są szeroko stosowane w normach i przepisach dotyczących bezpieczeństwa i efektywności energetycznej, w tym w normach IEC oraz w wytycznych dotyczących projektowania systemów elektrycznych.

Pytanie 27

Jak określa się poziom sygnału w gniazdku abonenckim telewizji naziemnej?

A. dBµV
B. dBmA
C. dBmW
D. dBµΩ
Poprawna odpowiedź to dBµV, co oznacza decybele mikrovoltów. Jest to jednostka miary, która pozwala na określenie poziomu sygnału w systemach telekomunikacyjnych, w tym w telewizji naziemnej. Wartość poziomu sygnału w dBµV jest kluczowa dla oceny jakości odbioru sygnału telewizyjnego, gdyż zbyt niski poziom może prowadzić do zakłóceń w odbiorze, a w rezultacie do utraty jakości obrazu i dźwięku. Z przeprowadzonych badań wynika, że optymalny poziom sygnału w gniazdku abonenckim powinien wynosić od 60 do 80 dBµV, co zapewnia stabilny odbiór sygnału bez zakłóceń. W praktyce, technicy często korzystają z mierników sygnału, które umożliwiają precyzyjne określenie poziomu sygnału w dBµV, co jest niezbędne podczas instalacji i konserwacji systemów antenowych. Zgodnie z normami branżowymi, monitorowanie poziomu sygnału w tej jednostce jest standardem w projektowaniu i eksploatacji infrastruktury telewizyjnej.

Pytanie 28

W instalacji antenowej, która ma być używana w warunkach podwyższonej wilgotności oraz zmiennych temperaturach, powinny być zastosowane kable

A. z linką nośną
B. w płaszczu polietylenowym (PE)
C. w płaszczu PCV
D. z oplotem miedzianym
Wybór odpowiedzi niezwiązanych z płaszczem polietylenowym może prowadzić do poważnych problemów w kontekście instalacji antenowych. Odpowiedź "z oplotem miedzianym" sugeruje, że miedź zapewnia ochronę przed wilgocią i zmiennymi temperaturami, co jest mylnym założeniem. Miedź, choć doskonała w przewodnictwie elektrycznym, jest podatna na korozję w warunkach wilgotnych, co może prowadzić do degradacji przewodów i utraty jakości sygnału. Odpowiedź "z linką nośną" odnosi się do aspektu konstrukcyjnego, ale nie dotyczy materiału izolacyjnego, co w kontekście ochrony przed wilgocią oraz temperaturą jest kluczowe. Linka nośna może pomóc w utrzymaniu przewodu w odpowiedniej pozycji, ale nie zapewnia odpowiedniej ochrony przed czynnikami zewnętrznymi. Z kolei opcja "w płaszczu PCV" jest nieodpowiednia, ponieważ chociaż PCV jest materiałem odpornym na starzenie, może nie wytrzymać ekstremalnych warunków temperaturowych i wysokiej wilgotności, co prowadzi do pęknięć i utraty elastyczności. Wybierając przewody do systemów antenowych, kluczowe jest kierowanie się nie tylko ich właściwościami elektrycznymi, ale również odpornością na warunki środowiskowe, co jest istotnym błędem, który należy unikać.

Pytanie 29

Aby oczyścić soczewkę lasera w napędzie CD, należy zastosować

A. benzynę ekstrakcyjną
B. wodę destylowaną
C. izopropanol
D. denaturat
Izopropanol jest powszechnie używanym rozpuszczalnikiem do czyszczenia soczewek lasera w napędach CD, ponieważ skutecznie usuwa zanieczyszczenia, takie jak pył, odciski palców czy inne substancje organiczne, nie pozostawiając resztek. W przeciwieństwie do innych substancji, izopropanol szybko paruje, co minimalizuje ryzyko uszkodzenia wrażliwych komponentów podzespołów. W przemyśle elektronicznym i serwisach zajmujących się naprawą sprzętu audio-wideo, izopropanol jest standardem w procesach konserwacyjnych. Zaleca się stosować roztwór o stężeniu co najmniej 91%, aby zapewnić maksymalną efektywność w usuwaniu zanieczyszczeń. Przykładowo, podczas konserwacji napędu, należy nawilżyć bawełnianą szmatkę izopropanolem i delikatnie przetrzeć soczewkę, co nie tylko przywróci jej czystość, ale również poprawi jakość odczytu danych. Dobrą praktyką jest unikanie nadmiaru cieczy oraz stosowanie odpowiednich narzędzi, aby nie uszkodzić delikatnych komponentów napędu.

Pytanie 30

Aby zrealizować instalację telewizyjną podtynkową, należy

A. układać przewody w dowolny sposób, pamiętając, aby trasy przewodów się nie krzyżowały
B. układać przewody tylko w kierunku pionowym i poziomym, uwzględniając kąt zgięcia kabla
C. układać przewody wyłącznie po najkrótszej trasie
D. układać przewody w pionie i poziomie, dociskając je do ściany
Analizując błędne odpowiedzi, warto zwrócić uwagę na kilka kluczowych kwestii. Prowadzenie przewodów „dowolnie” z założeniem, że im bardziej skomplikowana trasa, tym lepiej, jest podejściem, które może prowadzić do wielu problemów. Taka koncepcja ignoruje podstawowe zasady organizacji instalacji, co może skutkować nieefektywną transmisją sygnału oraz zwiększonym ryzykiem zakłóceń. Przewody telewizyjne są wrażliwe na zmiany w otoczeniu, a ich trasy powinny być starannie zaplanowane, aby uniknąć niepotrzebnych skrzyżowań. Niespójne prowadzenie przewodów może prowadzić do interferencji, które pogarszają jakość odbioru sygnału. Dodatkowo, prowadzenie przewodów „wyłącznie najkrótszą drogą” również nie jest optymalne, ponieważ pomija ważne aspekty związane z odpowiednim zabezpieczeniem przed czynnikami zewnętrznymi oraz wygodą użytkowania. W praktyce, najlepsze podejście wymaga równowagi między efektywnością a bezpieczeństwem, co oznacza, że przewody powinny być prowadzone w sposób dostosowany do warunków lokalnych oraz z uwzględnieniem przyszłych potrzeb. Nie można również zapominać o dobrej praktyce polegającej na dociskaniu przewodów do ściany, co może wprowadzać dodatkowe napięcia i prowadzić do uszkodzeń. Zrozumienie tych zasad jest kluczowe dla efektywnej i trwałej instalacji telewizyjnej.

Pytanie 31

Jak należy przeprowadzać kontrolę układów scalonych w uszkodzonym telewizorze?

A. poddając je sztucznemu schłodzeniu i obserwując obraz na ekranie
B. porównując napięcia oraz oscylogramy na poszczególnych wyprowadzeniach z informacjami zawartymi w instrukcji serwisowej przy wyłączonym telewizorze
C. porównując napięcia oraz oscylogramy na poszczególnych wyprowadzeniach z informacjami zawartymi w instrukcji serwisowej przy załączonym telewizorze
D. poddając je sztucznemu podgrzaniu i obserwując obraz na ekranie
Właściwe sprawdzanie układów scalonych w uszkodzonym odbiorniku telewizyjnym polega na porównaniu napięć oraz oscylogramów na poszczególnych wyprowadzeniach z danymi zawartymi w instrukcji serwisowej przy załączonym odbiorniku. Taki proces diagnostyki pozwala na dokładną ocenę pracy układów scalonych w ich normalnych warunkach operacyjnych. Włączony odbiornik umożliwia obserwację działania układu w czasie rzeczywistym, co jest kluczowe dla identyfikacji potencjalnych usterek. Pomiar napięć i analiza oscylogramów dostarczają informacji o tym, czy sygnały są poprawne, a także pozwalają na identyfikację uszkodzeń, które mogą nie być widoczne gołym okiem. Dobre praktyki serwisowe wymagają posiadania instrukcji serwisowej, która zawiera wartości referencyjne, co daje technikowi możliwość szybkiej i efektywnej diagnozy. Przykładowo, w przypadku stwierdzenia nietypowych napięć na wyprowadzeniach, technik może podjąć decyzję o wymianie układu scalonego, co jest bardziej efektywne, niż bazowanie na obserwacji wizualnej.

Pytanie 32

Jakie urządzenie pozwala na podłączenie anteny o impedancji falowej 300 Ω do odbiornika, który ma gniazdo antenowe o impedancji 75 Ω?

A. rozdzielacz
B. konwerter
C. symetryzator
D. zwrotnica
Rozgałęźnik, przemiennik oraz zwrotnica to urządzenia, które mają inne funkcje i nie są odpowiednie do konwersji impedancji w tej konkretnej sytuacji. Rozgałęźnik służy do dzielenia sygnału na wiele wyjść, co może prowadzić do osłabienia sygnału, jednak nie jest w stanie dostosować impedancji sygnału, co jest kluczowe w przypadku podłączania anteny o różnych impedancjach. Przemiennik z kolei zmienia częstotliwość sygnału, ale nie wpływa na jego impedancję, co sprawia, że nie nadaje się do zastosowań związanych z dopasowaniem impedancji anten. Znalezienie odpowiedniego dopasowania impedancji jest istotne dla osiągnięcia wysokiej efektywności energetycznej i uniknięcia strat sygnałowych. Zwrotnica, chociaż jest użytecznym urządzeniem w systemach audio i radiowych, ma za zadanie kierowanie sygnałów do właściwych torów, ale nie ma funkcji przystosowania impedancji. Typowym błędem myślowym jest mylenie tych urządzeń z symetryzatorem, co prowadzi do niewłaściwego doboru sprzętu i w efekcie do pogorszenia jakości sygnału lub całkowitych problemów z odbiorem. W kontekście standardów branżowych, każda z tych funkcji wymaga odrębnych podejść i rozwiązań, dlatego kluczowe jest zrozumienie właściwego zastosowania danego urządzenia w systemie transmisji sygnałów.

Pytanie 33

Oznaczenie RG6 odnosi się do typu kabla

A. symetrycznego
B. współosiowego
C. głośnikowego
D. ethernetowego
Wybór odpowiedzi dotyczącej kabla ethernetowego jest błędny, ponieważ kable ethernetowe, takie jak kategoria 5e (Cat 5e) czy 6 (Cat 6), są zaprojektowane do przesyłania danych w sieciach komputerowych, a nie do transmisji sygnałów telewizyjnych. Kable te składają się z kilku par skręconych przewodów, które minimalizują zakłócenia elektromagnetyczne i zapewniają wysoką prędkość transmisji, ale nie są stosowane w kontekście analogowego lub cyfrowego sygnału wideo. Ponadto, wybór odpowiedzi odnoszącej się do kabla głośnikowego jest również mylny; kable głośnikowe są zaprojektowane do przesyłania sygnałów audio w systemach audio i nie mają zastosowania w transmisji sygnałów telewizyjnych. Z kolei kable symetryczne, stosowane głównie w audio i telekomunikacji, różnią się konstrukcją, ponieważ składają się z dwóch przewodników, które przesyłają sygnały w przeciwnych fazach, co minimalizuje zakłócenia. Pomieszanie tych typów kabli wynika często z braku znajomości ich zastosowań oraz specyfikacji technicznych. Kluczowe jest zrozumienie, że każdy typ kabla ma swoje dedykowane zastosowania i powinien być wykorzystywany zgodnie z jego przeznaczeniem, co zapewnia optymalną jakość przesyłanego sygnału oraz minimalizuje problemy związane z zakłóceniami.

Pytanie 34

Maksymalne rozciągnięcie kabla UTP w gniazdku użytkownika nie powinno przekraczać

A. 20 mm
B. 12 mm
C. 3 mm
D. 30 mm
Wybór niewłaściwej długości maksymalnego rozszycia, np. 20 mm, 30 mm lub 3 mm, wiąże się z poważnymi konsekwencjami w kontekście jakości sygnału i stabilności połączenia. Rozszycie o długości 20 mm lub 30 mm przekracza zalecany limit, co może prowadzić do zwiększonego crosstalku, czyli zakłóceń między parami przewodów w kablu UTP. Taki wzrost długości naraża sygnał na większe zakłócenia z otoczenia, co obniża jakość transmisji danych i może skutkować spadkiem wydajności sieci. Z kolei wybór 3 mm jako maksymalnego rozszycia, choć wydaje się mniejszy, może być niepraktyczny w kontekście wygodnej instalacji i późniejszych ewentualnych modyfikacji. Praktyka pokazuje, że zbyt krótka długość może ograniczać możliwości podłączenia urządzeń, co jest szczególnie istotne w dynamicznie zmieniających się środowiskach biurowych czy w warunkach, gdzie często dokonuje się przestawień sprzętu. Dlatego standardowe podejście do instalacji kabli UTP, zgodne z wytycznymi, zaleca maksymalne rozszycie na poziomie 12 mm, aby zbalansować funkcjonalność i jakość sygnału.

Pytanie 35

W oscyloskopie dwukanałowym do wejścia CH-B podłączono sygnał o znanej częstotliwości, natomiast do wejścia CH-A sygnał, który jest przedmiotem analizy. W jaki sposób należy ustawić oscyloskop, aby korzystając z krzywych Lissajous, oszacować częstotliwość sygnału analizowanego?

A. ADD
B. X-Y
C. DUAL
D. SINGLE

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Tryb X-Y w oscyloskopie to naprawdę ważna sprawa, jeśli chodzi o analizowanie krzywych Lissajous. Dzięki temu można wyświetlać dwa sygnały jednocześnie. Gdy podłączysz sygnał o znanej częstotliwości do CH-B, a ten badany do CH-A, to przestawienie oscyloskopu w tryb X-Y pozwala zobaczyć, jak te sygnały się mają do siebie. Krzywe Lissajous są super do określania, jak częstotliwości i fazy sygnałów się między sobą porównują. Na przykład, jak masz sygnał referencyjny o częstotliwości 1 kHz, a badany o 2 kHz, to krzywa Lissajous będzie miała taki charakterystyczny kształt, który mówi, że sygnał badany jest w jakichś relacjach z referencyjnym. Jak się pracuje w laboratorium elektroniki czy inżynierii, to te analizy są na porządku dziennym. Warto mieć to na uwadze podczas pracy z oscyloskopem.

Pytanie 36

Mechanizmem zabezpieczającym przed porażeniem elektrycznym, który automatycznie przerywa zasilanie w przypadku wystąpienia nadmiernego prądu doziemnego, jest

A. uziemienie ochronne
B. wyłącznik różnicowoprądowy
C. zerowanie
D. uziemienie robocze
Wyłącznik różnicowoprądowy (RCD) to urządzenie, które ma na celu automatyczne odłączenie zasilania w przypadku wystąpienia nadmiernego prądu doziemnego. Działa na zasadzie monitorowania różnicy między prądem wpływającym a wpływającym do obwodu. W momencie, gdy ta różnica przekroczy ustalony próg (zazwyczaj 30 mA dla obwodów ochrony), wyłącznik natychmiast przerywa obwód, co znacząco redukuje ryzyko porażenia prądem elektrycznym. RCD jest szczególnie istotny w miejscach, gdzie używane są urządzenia elektryczne w wilgotnym lub mokrym otoczeniu, takich jak łazienki czy kuchnie. W stosunku do standardów, takich jak norma PN-EN 61008, wyłączniki różnicowoprądowe są zalecane do stosowania w instalacjach elektrycznych jako element zwiększający bezpieczeństwo użytkowników. W praktyce montaż RCD może być również wymagany podczas przeglądów technicznych i modernizacji instalacji elektrycznych, co podkreśla jego znaczenie w zapewnieniu bezpieczeństwa elektrycznego.

Pytanie 37

Podczas instalacji którego z elementów elektronicznych nie trzeba zwracać uwagi na jego polaryzację?

A. Kondensatora ceramicznego
B. Fotodiody
C. Diody prostowniczej
D. Kondensatora elektrolitycznego
Kondensatory ceramiczne to jedna z najczęściej stosowanych rodzin kondensatorów, która charakteryzuje się brakiem polaryzacji. Oznacza to, że ich montaż nie wymaga szczególnej uwagi na kierunek podłączenia, co znacznie upraszcza proces instalacji w obwodach elektronicznych. Przykładowo, kondensatory ceramiczne są często stosowane w układach filtrujących oraz w aplikacjach, w których wymagana jest stabilność w szerokim zakresie temperatur i częstotliwości. Warto również zauważyć, że ich niewielkie rozmiary oraz niska cena sprawiają, że są one idealne do zastosowań w urządzeniach mobilnych oraz innych produktach, gdzie przestrzeń i koszt mają kluczowe znaczenie. Zgodnie z najlepszymi praktykami w branży, zaleca się stosowanie kondensatorów ceramicznych w miejscach, gdzie nie występuje ryzyko wystąpienia dużych napięć, co może prowadzić do niepożądanych efektów. Znajomość właściwości tych komponentów jest kluczowa dla projektantów elektroniki, którzy dążą do tworzenia niezawodnych i efektywnych układów elektronicznych.

Pytanie 38

Przyrząd, który pozwala na pomiar wartości międzyszczytowej szumów na wyjściu wzmacniacza, to

A. oscyloskop jednokanałowy
B. miernik zniekształceń
C. analyzer widma
D. woltomierz cyfrowy
Woltomierz cyfrowy, mimo że jest narzędziem użytecznym w pomiarach napięcia, nie jest odpowiedni do analizy międzyszczytowych wartości szumów na wyjściu wzmacniacza. Woltomierz mierzy średnią wartość napięcia AC, co nie dostarcza wystarczających informacji na temat charakterystyki sygnału szumowego. W praktyce, na przykład w aplikacjach audio, bardzo ważne jest śledzenie nie tylko wartości RMS, ale także kształtu przebiegu, co woltomierz nie jest w stanie zaoferować. Miernik zniekształceń również ma swoje ograniczenia, ponieważ jest zaprojektowany głównie do oceny jakości sygnału, a nie do bezpośredniego pomiaru szumów. Chociaż może dostarczać informacji o zniekształceniach, nie jest w stanie precyzyjnie zidentyfikować wartości szumów na wyjściu wzmacniacza. Przyrząd taki, jak analizator widma, może być przydatny do oceny szumów, jednak jego zastosowanie wymaga bardziej zaawansowanej analizy częstotliwościowej, co nie jest konieczne w przypadku prostego pomiaru międzyszczytowego. W rzeczywistości, wiele osób popełnia błąd, myląc różne funkcje przyrządów pomiarowych, co prowadzi do niewłaściwych wyników i wniosków. Aby skutecznie mierzyć szumy, niezbędne jest korzystanie z oscyloskopu, który dostarcza kompletnych informacji o zachowaniu sygnału.

Pytanie 39

Aby móc obejrzeć wybrany film z platformy IPLA, konieczne jest posiadanie telewizora z funkcją SMART?

A. zestawić z tunerem satelitarnym.
B. włożyć nośnik USB.
C. połączyć go z Internetem.
D. spiąć z odtwarzaczem Blu-ray.
Aby oglądać filmy z serwisu IPLA, konieczne jest posiadanie dostępu do Internetu, ponieważ IPLA jest usługą streamingową, która wymaga ciągłego połączenia z siecią, aby przesyłać dane w czasie rzeczywistym. Podłączenie telewizora z funkcją SMART do Internetu można zrealizować za pomocą Wi-Fi lub przewodowego połączenia Ethernet. Po nawiązaniu połączenia użytkownik może zainstalować aplikację IPLA na swoim telewizorze i cieszyć się dostępem do bogatej biblioteki filmów i programów. Przykładem może być korzystanie z telewizora, który automatycznie aktualizuje aplikacje po podłączeniu do sieci, co pozwala na łatwy dostęp do najnowszych treści. Dobrą praktyką jest również regularne sprawdzanie połączenia internetowego i prędkości, aby zapewnić optymalne warunki do odtwarzania, co jest kluczowe dla uniknięcia opóźnień i buforowania podczas oglądania.

Pytanie 40

Jaką rolę w systemie antenowym TV-SAT odgrywa konwerter?

A. Tłumi i zmienia częstotliwość sygnału antenowego.
B. Zwiększa i przekształca częstotliwość sygnału z anteny.
C. Dostarcza antenie napięcie stałe.
D. Dostarcza antenie napięcie przemienne.
Wybór innych odpowiedzi może wynikać z nieporozumienia dotyczącego funkcji konwertera w instalacji antenowej. Przykładowo, zasilać antenę napięciem przemiennym jest niepoprawne, ponieważ konwerter zasilany jest napięciem stałym, co jest typowe dla technologii satelitarnych. Zasila go odbiornik, który przesyła odpowiednie napięcie zasilające przez kabel koncentryczny. Odpowiedzi dotyczące tłumienia sygnału są również mylące; konwerter nie tłumi sygnału, ale go wzmacnia. Tłumienie sygnału jest zjawiskiem negatywnym, które objawia się spadkiem jakości sygnału, co jest przeciwieństwem działania konwertera. W rzeczywistości konwerter powinien maksymalizować jakość sygnału, aby zapewnić wydajność odbioru. Właściwe zrozumienie funkcji konwertera jest ważne dla efektywnego zaprojektowania systemu antenowego. W praktyce, nieprawidłowe wybory komponentów lub ich nieodpowiednie instalacje mogą prowadzić do znacznego obniżenia jakości odbioru telewizji satelitarnej. Kluczowe jest zatem zaznajomienie się z zasadami działania konwertera oraz jego właściwościami, aby uniknąć typowych błędów w instalacjach satelitarnych.