Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 13 maja 2025 14:26
  • Data zakończenia: 13 maja 2025 14:36

Egzamin niezdany

Wynik: 9/40 punktów (22,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Zaprawa murarska powstaje z połączenia wody, dodatków lub domieszek oraz spoiwa

A. nieorganicznego i kruszywa drobnego
B. organicznym i kruszywa drobnego
C. nieorganicznym i kruszywa grubego
D. organicznym i kruszywa grubego
Zrozumienie, z czego składa się zaprawa murarska, to naprawdę ważna sprawa, jeśli chcemy, żeby nasze konstrukcje były trwałe. Często ludzie się mylą i nie rozumieją, jak dobierać materiały. Jeśli ktoś myśli, że w zaprawie mogą być spoiwa organiczne, to się myli, bo w tradycyjnych zaprawach używa się spoiw nieorganicznych, a to one właściwie zapewniają wytrzymałość i odporność na różne czynniki zewnętrzne. Pamiętaj, że kruszywo drobne, a nie grube, jest kluczowe dla dobrej konsystencji zaprawy. Jak użyjesz kruszywa grubego, to może się okazać, że w strukturze będą ubytki, co jest kiepskie dla trwałości. Nieodpowiedni skład zaprawy to też szansa na osłabienie całej konstrukcji, co wynika z braku zrozumienia, jak działają te składniki. Standardy budowlane są jasno określone, więc lepiej stosować się do nich, żeby nie mieć problemów później.

Pytanie 2

Na podstawie przedstawionej receptury roboczej oblicz, ile piasku należy dodać do sporządzenia mieszanki betonowej, jeżeli na jeden zarób użyto 50 kg cementu.

Receptura robocza
składniki 1 m³ mieszanki betonowej
Beton C8/10
cement:250 kg
piasek:410 dm³
żwir:783 dm³
woda:165 dm³

A. 82 dm3
B. 165 dm3
C. 165 kg
D. 82 kg
Odpowiedzi 165 dm3 oraz 165 kg mogą wydawać się logiczne na pierwszy rzut oka, jednak bazują na niepoprawnych założeniach dotyczących proporcji materiałów w mieszance betonowej. Aby zrozumieć, dlaczego są one błędne, warto przyjrzeć się, jak oblicza się ilości składników. Każdy materiał budowlany ma swoje specyficzne właściwości, a ich skuteczne połączenie jest kluczowe dla jakości betonu. W przypadku obliczeń, które nie uwzględniają odpowiednich proporcji, może dojść do poważnych konsekwencji, w tym do osłabienia struktury. Odpowiedzi te mogą wynikać z błędnego założenia, że ilość piasku powinna być wyższa, co jest często mylone z ilościami innych składników, takich jak kruszywo. W rzeczywistości, nieodpowiednie proporcje mogą prowadzić do problemów z odpornością na działanie wilgoci, a także do obniżenia wytrzymałości mechanicznej. W budownictwie kluczowe jest stosowanie się do standardów branżowych, które wskazują optymalne proporcje dla różnych rodzajów betonu. Kiedy nie zastosujesz się do tych reguł, ryzykujesz, że beton nie osiągnie wymaganych parametrów i trwałości, co może mieć poważne konsekwencje dla całego projektu budowlanego.

Pytanie 3

Jakiego spoiwa powinno się użyć do realizacji tynku zewnętrznego w obszarach narażonych na wilgoć?

A. Wapna hydraulicznego
B. Wapna pokarbidowego
C. Gipsu budowlanego
D. Gipsu szpachlowego
Wybór gipsu budowlanego jako spoiwa do tynków zewnętrznych w miejscach narażonych na wilgoć jest niewłaściwy, ponieważ gips nie jest materiałem odpornym na działanie wody. Gips budowlany ma ograniczoną odporność na wilgoć, co sprawia, że w warunkach zewnętrznych, szczególnie w obszarach narażonych na intensywne opady deszczu, może ulegać degradacji. Tynki gipsowe są bardziej odpowiednie do wnętrz, gdzie nie są narażone na bezpośrednie działanie wody. Gips szpachlowy, podobnie jak gips budowlany, również nie nadaje się do zastosowań zewnętrznych, ponieważ jego właściwości nie pozwalają na skuteczne wypełnianie szczelin i pęknięć w warunkach dużej wilgotności. W przypadku wapna pokarbidowego, choć ma pewne właściwości, które mogą przyciągać uwagę, nie jest to materiał preferowany w aplikacjach zewnętrznych, ponieważ nie oferuje odpowiedniej odporności na wilgoć, co prowadzi do ryzyka powstawania grzybów i pleśni. W praktyce budowlanej niezwykle ważne jest stosowanie materiałów zgodnych z ich przeznaczeniem oraz warunkami, w jakich będą eksploatowane. Dlatego, aby uniknąć problemów związanych z trwałością i bezpieczeństwem konstrukcji, zaleca się korzystanie z materiałów sprawdzonych w specyficznych zastosowaniach, co jest zgodne z zasadami dobrych praktyk budowlanych.

Pytanie 4

Dźwięk o głuchym brzmieniu, który można usłyszeć podczas opukiwania tynku lekkim młotkiem, sugeruje

A. dobrą przyczepność tynku do podłoża
B. brak przylegania tynku do podłoża
C. nieobecność pęknięć w obrębie tynku
D. niewystarczającą grubość tynku
Nieprawidłowe rozumienie dźwięku generowanego podczas opukiwania tynku może prowadzić do szeregu błędnych wniosków. Odpowiedzi sugerujące, że głuchy dźwięk wskazuje na dobre związanie tynku z podłożem, braki spękań wewnętrznych lub niewłaściwą grubość tynku, opierają się na mylnych przesłankach. Dobre związanie tynku z podłożem zazwyczaj skutkuje dźwięcznym odgłosem, co jest odwrotnością tego, co opisuje pytanie. Ponadto, brak spękań wewnętrznych tynku nie jest jednoznacznie związany z charakterystyką dźwiękową, ponieważ spękania mogą występować niezależnie od stanu związania. Co więcej, zbyt mała grubość tynku nie jest bezpośrednio związana z dźwiękiem, jaki wydaje tynk podczas opukiwania, ponieważ grubość tynku wpływa na inne właściwości, takie jak izolacyjność i wytrzymałość. W praktyce budowlanej projektanci i wykonawcy powinni zwracać uwagę na jakość wykonania oraz związanie tynku z podłożem, zgodnie z normami budowlanymi, takimi jak PN-EN 13914-1. Ignorowanie tych zasad może prowadzić do poważnych usterek budowlanych, co podkreśla istotność rozumienia zjawisk akustycznych w kontekście jakości materiałów budowlanych.

Pytanie 5

Który z rodzajów tynków jest stosowany do finalizacji powierzchni elewacji podczas ocieplania budynku płytami styropianowymi w systemie BSO (Bezspoinowym Systemie Ocieplania)?

A. Gipsowo-wapienny
B. Cementowy
C. Akrylowy
D. Cementowo-wapienny
Wybór tynków cementowo-wapiennych, cementowych czy gipsowo-wapiennych w kontekście ocieplania budynków płytami styropianowymi nie jest odpowiedni z kilku powodów. Tynki cementowo-wapienne i cementowe, mimo że są powszechnie stosowane w budownictwie, nie oferują takiej elastyczności jak tynki akrylowe. Ich twarda struktura może prowadzić do pęknięć w momencie, gdy budynek poddawany jest ruchom, a zmiany temperatury mogą wpływać na integralność tynku. Tynki gipsowo-wapienne, z kolei, nie są zalecane do zastosowań zewnętrznych, ponieważ gips jest materiałem higroskopijnym, co oznacza, że wchłania wilgoć, co może prowadzić do osłabienia struktury tynku. Dodatkowo, tynki te mają ograniczoną odporność na czynniki atmosferyczne. W przypadku elewacji, gdzie wymagana jest nie tylko estetyka, ale także trwałość i odporność na działanie warunków zewnętrznych, tynki akrylowe pojawiają się jako jedyne sensowne rozwiązanie. Często popełniany błąd to założenie, że każdy typ tynku jest uniwersalny i można go stosować w każdej sytuacji; w rzeczywistości, wybór odpowiedniego tynku powinien być dokładnie dostosowany do specyfiki budynku i jego lokalizacji.

Pytanie 6

Przed nałożeniem tynku na stalowe belki dwuteowe należy

A. zmyć wodą z dodatkiem mydła
B. owinąć stalową siatką
C. oczyścić z rdzy metalową szczotką
D. odtłuścić rozpuszczalnikiem organicznym
Owijanie stalowych belek stropowych stalową siatką przed otynkowaniem jest kluczowym krokiem w procesie zabezpieczania elementów konstrukcyjnych. Ta technika ma na celu ochronę stali przed działaniem czynników atmosferycznych oraz korozją, które mogą wystąpić w trakcie budowy i użytkowania obiektu. Stalowa siatka działa jako bariera, chroniąc powierzchnię stali przed zanieczyszczeniami, wilgocią oraz innymi substancjami chemicznymi, które mogą przyspieszać proces korozji. Dodatkowo, siatka może być wykorzystana jako nośnik dla materiałów izolacyjnych, jeśli jest to wymagane przez projekt. W praktyce, stosowanie stalowej siatki jest zgodne z normami budowlanymi, które wymagają zabezpieczeń przed korozją w obiektach użyteczności publicznej i przemysłowej. Przykładowo, w wielu projektach inżynieryjnych można spotkać się z wytycznymi, które zalecają stosowanie siatki jako elementu wspierającego trwałość konstrukcji, co jest szczególnie istotne w przypadku budynków narażonych na wilgoć lub agresywne chemicznie środowisko.

Pytanie 7

Czym jest spoiwo w betonie zwykłym?

A. cement
B. asfalt
C. gips
D. wapno
Beton zwykły to materiał budowlany, w którego skład wchodzi kilka kluczowych komponentów, z których najważniejsze to kruszywo, woda oraz spoiwo. Spoiwem w betonie zwykłym jest cement, który pełni rolę wiążącą i umożliwia tworzenie trwałych konstrukcji. Cement, będący produktem spalania wapienia i gliny w wysokotemperaturowych piecach, po zmieszaniu z wodą tworzy zaczyn, który twardnieje i wiąże kruszywa. Dzięki temu powstaje struktura betonu, która może osiągać różne właściwości w zależności od stosunku składników oraz rodzaju użytego cementu. W praktyce, cement stosowany w betonie jest zgodny z normami PN-EN 197-1, które określają wymagania dotyczące jego klasy i jakości. Ponadto, cement jest podstawowym składnikiem dla wielu różnych zastosowań budowlanych, w tym fundamentów, ścian, stropów, a także elementów prefabrykowanych. Jego zdolność do uzyskiwania wysokiej wytrzymałości na ściskanie oraz odporności na czynniki atmosferyczne sprawia, że jest niezbędnym materiałem w nowoczesnym budownictwie.

Pytanie 8

Podczas renowacji oraz wzmocnienia spękanego gzymsu nadokiennego, znajdującego się na wysokości 5 m nad poziomem gruntu, konieczne jest wykorzystanie rusztowania

A. na wysuwnicach
B. kozłowe
C. na stojakach teleskopowych
D. stolikowe
Inne typy rusztowań, takie jak stolikowe, na stojakach teleskopowych czy kozłowe, nie są odpowiednie do zadań związanych z pracami na wysokości 5 m, szczególnie w kontekście wzmacniania gzymsów nadokiennych. Rusztowanie stolikowe, choć może być stosowane w niektórych zastosowaniach, jest zazwyczaj przeznaczone do pracy na niewielkich wysokościach i w ograniczonym zakresie. Jego konstrukcja nie zapewnia odpowiedniej stabilności i bezpieczeństwa przy większych wysokościach, co jest kluczowe w kontekście prac budowlanych. Z kolei rusztowania na stojakach teleskopowych, mimo że oferują możliwość regulacji wysokości, mogą być mniej stabilne w porównaniu do konstrukcji wysuwniczych, co zwiększa ryzyko wypadków. Kozłowe rusztowania, z drugiej strony, są przeznaczone głównie do prac wewnętrznych lub na niższych poziomach, a ich zastosowanie na wysokości 5 m nie spełnia wymogów bezpieczeństwa. Praktyka na budowach pokazuje, że niewłaściwy wybór rusztowania często prowadzi do niebezpiecznych sytuacji, wypadków oraz dodatkowych kosztów związanych z naprawą uszkodzeń mienia czy obrażeń pracowników. Dlatego kluczowe jest, aby przy doborze sprzętu kierować się nie tylko wymogami projektowymi, ale także zasadami bezpieczeństwa oraz normami branżowymi, które jednoznacznie wskazują na odpowiednie metody pracy na wyższych wysokościach.

Pytanie 9

Proces naprawy wilgotnego tynku powinien rozpocząć się od

A. eliminacji źródła zawilgocenia
B. nałożenia środka gruntującego
C. osuchania powierzchni tynku
D. zlikwidowania nalotów pleśni
W przypadku podejmowania działań w celu naprawy zawilgoconego tynku, wybór pierwszego kroku jest kluczowy, a wprowadzenie nieefektywnych metod może prowadzić do długotrwałych problemów. Osuszenie powierzchni tynku jako pierwsza reakcja jest często mylone z rzeczywistym rozwiązaniem problemu. Choć usunięcie widocznej wilgoci może przynieść chwilową ulgę, to nie eliminuje ono źródła problemu, co może prowadzić do dalszych uszkodzeń i ponownego zawilgocenia. Pokrycie środkiem gruntującym również nie jest odpowiednią strategią, ponieważ takie działanie nie adresuje przyczyny wilgoci, a jedynie maskuje objawy. Zastosowanie gruntów w sytuacji, gdy przyczyna zawilgocenia nie została usunięta, może spowodować, że wilgoć zostanie uwięziona w tynku, co prowadzi do powstawania pleśni i grzybów, a także innego rodzaju uszkodzeń strukturalnych. Usuwanie nalotów pleśni może być krokiem koniecznym, ale powinno być traktowane jako działanie wspierające, a nie zastępujące fundamentalną konieczność wyeliminowania źródła wilgoci. Innymi słowy, kluczowym błędem jest skupienie się na powierzchownych rozwiązaniach, które nie prowadzą do długotrwałej poprawy sytuacji, co jest sprzeczne z najlepszymi praktykami w zakresie konserwacji budynków.

Pytanie 10

Do pomiaru objętościowego kruszywa oraz wody powinno się użyć

A. taczki
B. wiadra z podziałką
C. czerpaka szufelkowego
D. łopatę
Wybór wiadra z podziałką do objętościowego dozowania kruszywa i wody jest uzasadniony ze względu na precyzję oraz łatwość w użyciu. Wiadro z podziałką pozwala na dokładne odmierzenie objętości materiałów sypkich oraz cieczy, co jest kluczowe w procesach budowlanych i inżynieryjnych, gdzie precyzyjne proporcje są niezbędne do uzyskania pożądanych właściwości mieszanki betonowej. Przykładowo, przy przygotowywaniu betonu, niewłaściwe proporcje wody do kruszywa mogą prowadzić do obniżenia wytrzymałości i trwałości gotowego produktu. Zastosowanie wiadra z podziałką umożliwia również łatwe utrzymanie standardów jakości, co jest wymagane w wielu regulacjach budowlanych. Dobrą praktyką jest korzystanie z narzędzi, które zapewniają powtarzalność dozowania, co sprawia, że wiadro z podziałką spełnia te wymagania, a jego użycie może być dostosowane do różnych projektów budowlanych. Pozwala to na zachowanie spójności w mieszankach, co jest kluczowe dla uzyskania wysokiej jakości konstrukcji.

Pytanie 11

Jakie kruszywo wykorzystuje się do produkcji betonów lekkich?

A. Pospółkę
B. Żwir
C. Baryt
D. Keramzyt
Pospółka, baryt oraz żwir to kruszywa, które nie są odpowiednie do produkcji betonów lekkich. Pospółka, będąca mieszaniną różnych frakcji kruszywa, jest zbyt ciężka, aby mogła być uznana za materiał do betonu lekkiego. Użycie pospółki w mieszance betonowej prowadzi do uzyskania dużych gęstości, co jest sprzeczne z definicją betonu lekkiego. Z kolei baryt jest kruszywem ciężkim, stosowanym głównie w zastosowaniach, gdzie wymagana jest wysoka masa, na przykład w budownictwie ochronnym lub w przemysłowych zastosowaniach wiertniczych. Jego gęstość znacznie przewyższa normy dla materiałów lekkich, co czyni go nieodpowiednim do wytwarzania betonów lekkich. Żwir, choć jest powszechnie stosowany w budownictwie, również nie spełnia kryteriów dla kruszywa lekkiego, gdyż jego gęstość również jest zbyt wysoka. W praktyce, błędne wybory kruszywa mogą prowadzić do obniżenia jakości betonu, co w efekcie wpływa na trwałość oraz bezpieczeństwo konstrukcji. Dlatego tak ważne jest zrozumienie właściwości różnych materiałów, aby podejmować świadome decyzje w procesie projektowania i budowy.

Pytanie 12

Betonowe podłoże, które ma być tynkowane, powinno charakteryzować się równą powierzchnią oraz

A. suche i gładkie
B. zwilżone i gładkie
C. zwilżone i chropowate
D. suche i chropowate
Odpowiedzi, które sugerują, że podłoże powinno być suche, są nieprawidłowe, ponieważ sucha powierzchnia nie zapewnia odpowiedniego przyczepności tynku. W przypadku podłoża suchego, tynk może nie przywierać właściwie, co prowadzi do jego odspajania się z powierzchni betonu. To zjawisko jest szczególnie widoczne w warunkach, gdy wykończenie jest narażone na zmienne warunki atmosferyczne, takie jak wilgoć czy zmiany temperatury. Ponadto, odpowiedzi wskazujące na gładkie podłoże mogą prowadzić do błędnego wniosku, że tynk nie wymaga chropowatej struktury dla dobrej przyczepności. Gładkie podłoża nie stwarzają odpowiednich warunków dla mechanicznego wiązania, co może skutkować powstawaniem pęknięć i deformacji w wyniku obciążeń mechanicznych. W praktyce, tynkowanie na gładkich powierzchniach wymaga zastosowania dodatkowych metod zapewniających przyczepność, co zwiększa koszty i czas pracy. Zrozumienie znaczenia przygotowania podłoża betonowego jest kluczowe dla uzyskania trwałych i estetycznych efektów pracy, w oparciu o zasady zawarte w normach budowlanych, takich jak PN-EN 13914, które podkreślają rolę chropowatości i wilgotności w kontekście aplikacji tynków.

Pytanie 13

Jaką wytrzymałość ma klasa zaprawy na

A. rozciąganie
B. ugięcie
C. przesuwanie
D. ściśnięcie
Odpowiedzi dotyczące zginania, rozciągania oraz ścinania nie są zgodne z definicją klasy zaprawy, ponieważ te parametry wytrzymałościowe nie odzwierciedlają głównych właściwości zapraw murarskich. Wytrzymałość na zginanie, chociaż istotna w kontekście materiałów budowlanych, nie jest kluczowym czynnikiem dla zapraw, które są projektowane głównie do wytrzymywania obciążeń ściskających. Zaprawy, takie jak cementowe czy wapienne, są używane w sposób, który nie angażuje ich do pracy w warunkach zginania. Rozciąganie dotyczy głównie materiałów elastycznych, takich jak stal, które są umieszczane w konstrukcjach jako zbrojenie, podczas gdy zaprawy pełnią rolę spoiwa, co czyni je mniej podatnymi na ten typ obciążenia. Ścinanie z kolei odnosi się do sił działających równolegle do powierzchni materiału, co jest ważne np. w kontekście połączeń, ale nie definiuje klasy zaprawy. Te aspekty mogą prowadzić do nieporozumień, zwłaszcza w kontekście projektowania i wyboru materiałów budowlanych, dlatego kluczowe jest zrozumienie, że klasyfikacja zaprawy opiera się głównie na zastosowaniach związanych z jej wytrzymałością na ściskanie oraz jej rolą w zapewnieniu integralności strukturalnej budowli.

Pytanie 14

Z jakiego surowca wykonane są komponenty systemu YTONG?

A. Z żelbetonu
B. Z polistyrenu
C. Z gipsobetonowej masy
D. Z betonu komórkowego
Wybór materiałów budowlanych jest kluczowy w kontekście trwałości, efektywności energetycznej i funkcjonalności budynków. Styropian jest stosowany głównie jako materiał izolacyjny, a nie jako element strukturalny nośny. Jego zastosowanie ogranicza się do ociepleń budynków, gdzie pełni rolę izolatora, ale nie jest w stanie unieść ciężaru budowli. Gipsobeton, z drugiej strony, jest materiałem o większej masie, często stosowanym do produkcji płyt gipsowo-kartonowych lub do wykonywania podłóg, ale nie jest głównym materiałem konstrukcyjnym, jak beton komórkowy. Żelbet, czyli beton zbrojony stalą, jest stosowany w konstrukcjach wymagających wysokiej wytrzymałości, takich jak fundamenty czy stropy, jednak również nie jest materiałem YTONG. Istotnym błędem myślowym jest mylenie tych materiałów z betonem komórkowym, który jest unikalny dzięki swojej strukturze kompozytowej. Zrozumienie różnic między tymi materiałami jest kluczowe dla inżynierów i architektów, aby mogli dobierać odpowiednie materiały do konkretnych zastosowań budowlanych, zachowując normy oraz dobre praktyki w branży budowlanej.

Pytanie 15

Tynk klasy II to tynk

A. doborowy o powierzchni równej i gładkiej
B. pospolity o powierzchni równej i szorstkiej
C. pospolity o powierzchni równej i gładkiej
D. doborowy o powierzchni równej i szorstkiej
Tynk kategorii II, określany jako pospolity, jest materiałem budowlanym charakteryzującym się powierzchnią równą i szorstką. Tynki tej kategorii są szeroko stosowane w budownictwie, szczególnie w obszarach, gdzie wymagane jest uzyskanie dobrej przyczepności dla dalszych warstw wykończeniowych, takich jak farby czy tynki dekoracyjne. Dzięki swojej strukturze, tynki pospolite są bardziej odporne na zmiany atmosferyczne, co czyni je odpowiednimi do zastosowań zewnętrznych. Przykładem zastosowania tynków kategorii II mogą być elewacje budynków, które wymagają zarówno estetyki, jak i trwałości. Warto również zauważyć, że tynki te muszą spełniać określone normy jakości, takie jak PN-EN 998-1, które regulują ich właściwości mechaniczne oraz odporność na czynniki zewnętrzne. Dzięki zastosowaniu tynków kategorii II, można uzyskać nie tylko funkcjonalność, ale także estetykę, co jest istotne w projektach architektonicznych.

Pytanie 16

Gąbkowanie gipsowego tynku, które polega na nawilżeniu tynku rozproszonym strumieniem wody oraz wygładzaniu pacą gąbkową, jest przeprowadzane w celu

A. wstępnego wyrównania nawierzchni tynku
B. zebrania nadmiaru zaprawy
C. przygotowania powierzchni do finalnego wygładzenia
D. usunięcia nadmiaru drobnoziarnistego kruszywa
W analizie gąbkowania powierzchni tynku gipsowego warto zauważyć, że odpowiedzi sugerujące wstępne wyrównanie powierzchni tynku lub usunięcie nadmiaru kruszywa drobnoziarnistego są mylnymi interpretacjami procesu. Wstępne wyrównanie powierzchni tynku to proces, który zazwyczaj wymaga zastosowania specjalistycznych narzędzi, takich jak łaty lub mirety, a gąbkowanie nie jest jego odpowiednikiem. Gąbkowanie nie ma na celu eliminacji kruszywa, gdyż drobnoziarniste materiały są integralną częścią tynku, które wpływają na jego właściwości i wytrzymałość. Usunięcie nadmiaru zaprawy również jest procesem, który powinien być realizowany w inny sposób, zazwyczaj za pomocą szpachli lub innych narzędzi, a nie przy pomocy gąbkowania. Gąbkowanie polega na zroszeniu wody i zacieraniu, co nie prowadzi do usunięcia nadmiaru materiału, a wręcz przeciwnie, sprzyja ujednoliceniu powierzchni. Typowe błędy myślowe, które mogą prowadzić do takich niepoprawnych wniosków, obejmują mylenie działań związanych z obróbką tynku oraz nieprawidłowe postrzeganie roli wody i gąbki w procesie przygotowania powierzchni. Istotne jest, aby zrozumieć, że każdy etap tynkowania wymaga precyzyjnych działań, które mają na celu osiągnięcie wysokiej jakości końcowej, co jest kluczowym elementem w budownictwie i wykończeniach wnętrz.

Pytanie 17

Szczeliny powietrzne w murach murowanych wprowadza się, aby poprawić

A. izolacyjność termiczną ściany
B. ognioodporność ściany
C. izolacyjność akustyczną
D. grubość ściany
Izolacyjność akustyczna, grubość ściany oraz ognioodporność to istotne aspekty konstrukcyjne, jednak nie mają bezpośredniego związku z zastosowaniem szczelin powietrznych w ścianach murowanych. Odpowiedzi sugerujące zwiększenie izolacyjności akustycznej nie uwzględniają faktu, że szczeliny powietrzne mogą działać negatywnie na właściwości akustyczne, ponieważ mogą stać się ścieżkami dla dźwięków. W kontekście grubości ściany, szczeliny powietrzne nie zwiększają rzeczywistej grubości muru, a ich zadaniem jest poprawa izolacji termicznej, co ma na celu ograniczenie kosztów ogrzewania. Ognioodporność, z kolei, jest związana z materiałami budowlanymi i ich właściwościami w zakresie odporności na wysoką temperaturę. Używanie szczelin powietrznych do zapewnienia ognioodporności jest niewłaściwym podejściem, ponieważ ognioodporność zależy przede wszystkim od jakości użytych materiałów oraz ich konstrukcji, a nie od obecności wolnej przestrzeni powietrznej. Często błędne podejście do tych zagadnień wynika z braku zrozumienia podstawowych zasad fizyki budowli oraz właściwości materiałów budowlanych. Dobrze zaprojektowane ściany murowane powinny być potwierdzone analizami technicznymi i spełniać aktualne normy budowlane, aby zapewnić odpowiednią izolacyjność termiczną, akustyczną i ognioodporność.

Pytanie 18

Jak przeprowadza się ocenę gładkości tynków zwykłych w trakcie odbioru prac tynkarskich?

A. Uderzając w powierzchnię delikatnym młotkiem
B. Zarysowując powierzchnię przy pomocy gwoździa
C. Pocierając powierzchnię tynku dłonią
D. Przesuwając gąbką po tynku
Prawidłowa odpowiedź opiera się na metodzie oceny gładkości tynków, która polega na bezpośrednim pocieraniu powierzchni dłonią. Ta technika pozwala na bezpośrednie odczucie ewentualnych nierówności, chropowatości czy innych defektów, które mogą być niewidoczne dla oka. Umożliwia to sprawdzenie, czy tynk spełnia wymagania w zakresie estetyki i funkcjonalności, które są kluczowe w branży budowlanej. W praktyce, podczas odbioru robót tynkarskich, inspektorzy często stosują tę metodę, aby szybko ocenić jakość wykonania. Gdy powierzchnia jest gładka, tynk jest zazwyczaj uznawany za właściwie nałożony, co jest zgodne ze standardami branżowymi określającymi dopuszczalne odchylenia i wymagania dotyczące gładkości. Warto również zauważyć, że odpowiednia gładkość tynków ma wpływ na późniejsze procesy malarskie czy tapetowania, dlatego kontrola ta jest niezbędna w każdym etapie budowy.

Pytanie 19

Z jakiego materiału można budować przewody dymowe i wentylacyjne?

A. cegły dziurawki
B. pustaków żużlobetonowych
C. cegły pełnej
D. cegły wapienno-piaskowej
Cegła wapienno-piaskowa, cegła dziurawka oraz pustaki żużlobetonowe są materiałami, które nie nadają się do budowy przewodów dymowych i wentylacyjnych z kilku kluczowych powodów. Cegła wapienno-piaskowa, mimo że ma dobre właściwości mechaniczne, nie wykazuje wystarczającej odporności na wysokie temperatury, co może prowadzić do deformacji i utraty funkcjonalności przewodów. Wysoka zawartość wapnia w cegle wapienno-piaskowej sprawia, że pod wpływem wysokiej temperatury może ona łatwo ulegać degradacji. Cegła dziurawka, charakteryzująca się licznymi otworami w swojej strukturze, co czyni ją lekką, nie jest w stanie skutecznie zatrzymać wysokich temperatur ani działań chemicznych, a także ma obniżoną wytrzymałość na ściskanie. Zastosowanie jej w przewodach dymowych może zatem stwarzać zagrożenie pożarowe. Pustaki żużlobetonowe, mimo że są często stosowane w budownictwie, nie są odpowiednie do budowy przewodów dymowych z uwagi na ich porowatą strukturę oraz właściwości termiczne. Ich zastosowanie w tym kontekście mogłoby prowadzić do poważnych problemów z odprowadzaniem spalin i bezpieczeństwem, co jest całkowicie niezgodne z obowiązującymi normami budowlanymi. Kluczowe jest, aby przy wyborze materiałów budowlanych do przewodów dymowych kierować się nie tylko ich właściwościami mechanicznymi, ale także ich odpornością na działanie wysokich temperatur oraz ich zdolnością do zachowania integralności w trudnych warunkach eksploatacyjnych.

Pytanie 20

Która z poniższych zapraw jest odporna na wysokie temperatury?

A. Silikatowa
B. Krzemionkowa
C. Cementowa
D. Wapienna
Zaprawy silikatowe, wapienne i cementowe różnią się znacznie pod względem właściwości ogniotrwałych. Zaprawy silikatowe, mimo że są często wykorzystywane w budownictwie, nie są uważane za ogniotrwałe, ponieważ ich skład chemiczny zawiera znaczną ilość składników, które mogą się topnieć lub deformować w wysokich temperaturach. Stosowanie ich w miejscach narażonych na intensywne ciepło może prowadzić do ich uszkodzenia, co jest szczególnie istotne w kontekście konstrukcji przemysłowych oraz pieców. W przypadku zapraw wapiennych, chociaż mogą one być używane w różnych zastosowaniach budowlanych, ich odporność na wysoką temperaturę jest ograniczona. Wysoka zawartość węglanu wapnia sprawia, że w warunkach podwyższonej temperatury następuje ich rozkład, co prowadzi do utraty struktury i wytrzymałości. Z kolei zaprawy cementowe, mimo że są powszechnie stosowane ze względu na swoją wytrzymałość, również nie są odpowiednie do zastosowań ogniotrwałych, ponieważ w warunkach ekstremalnych mogą doświadczać pęknięć i deformacji spowodowanych skurczem termicznym. Wiele osób popełnia błąd myślowy, zakładając, że każdy rodzaj zaprawy, który wydaje się być wytrzymały, będzie również odporny na ciepło. Kluczowe jest zrozumienie różnic pomiędzy materiałami budowlanymi oraz ich specyfiką zastosowania, aby uniknąć problemów konstrukcyjnych w przyszłości.

Pytanie 21

Izolacje przeciwwilgociowe lekki typ dla ściany piwnicy powinny być wykonane

A. z dwóch warstw lepiku asfaltowego
B. z pojedynczej warstwy folii PVC
C. z folii kubełkowej
D. z papy asfaltowej
Izolacje w piwnicach to naprawdę istotna sprawa, bo źle zrobione mogą prowadzić do problemów. Folia PVC niby jest wodoodporna, ale w piwnicach, gdzie woda gruntowa jest cały czas obecna, nie jest najlepszym rozwiązaniem. Moim zdaniem, może spowodować nieszczelności. Folia kubełkowa też jest popularna, ale nie jest to to samo co lepik asfaltowy. Często się myli, że jedna warstwa lepiku wystarczy, ale tak naprawdę dwie warstwy dają dużo lepszą ochronę przed wilgocią. Papa asfaltowa, mimo że można ją stosować, to nie jest tak skuteczna jak lepik w warunkach wysokiej wilgotności i wody gruntowej. Ważne jest, żebyśmy rozumieli, że dobór materiałów wpływa nie tylko na koszty, ale też na długowieczność budynku.

Pytanie 22

Warstwę wierzchnią tynków kamieniarskich realizuje się przy użyciu zaprawy

A. cementowej
B. gipsowo-wapiennej
C. wapiennej
D. cementowo-glinianej
Wybór zaprawy wapiennej jako materiału na wierzchnią warstwę tynków kamieniarskich może wydawać się sensowny, jednak ma swoje ograniczenia. Zaprawa wapienna, mimo że jest elastyczna i dobrze związana z podłożem, jest mniej odporna na zawilgocenie i nie zapewnia tak wysokiej wytrzymałości, jak zaprawa cementowa. To sprawia, że w kontekście tynków kamieniarskich, gdzie trwałość i odporność są kluczowe, nie jest najlepszym wyborem. Z kolei zaprawa cementowo-glinianej, pomimo iż dobrze działa w przypadku naturalnych materiałów, nie jest odpowiednia do tynków kamieniarskich. Często prowadzi to do problemów z kruszeniem się i pękaniem w wyniku zmieniających się warunków atmosferycznych. Gipsowo-wapienna zaprawa ma swoje miejsce w budownictwie, ale jest stosowana głównie do wnętrz, gdzie nie występuje tak intensywna ekspozycja na warunki zewnętrzne. Jej ograniczona odporność na wilgoć sprawia, że nie jest odpowiednia do wierzchniej warstwy tynków kamieniarskich. Kluczowym błędem w rozumieniu tego zagadnienia jest pomijanie specyfiki warunków, w jakich tynki są stosowane, oraz właściwości materiałów, które istotnie wpływają na trwałość i estetykę powierzchni. Wybór niewłaściwego rodzaju zaprawy może prowadzić do nieodwracalnych uszkodzeń w strukturze budynku.

Pytanie 23

Do produkcji tynków akrylowych wykorzystuje się jako spoiwo

A. wapno hydratyzowane
B. żywice syntetyczne
C. szkło wodne
D. cementy portlandzkie
Cementy portlandzkie są klasycznym materiałem budowlanym, jednak ich zastosowanie jako spoiwo w tynkach akrylowych jest niewłaściwe. Cement w tynkach ma tendencję do skurczania się podczas wiązania, co prowadzi do pojawiania się rys i pęknięć. Z tego powodu tynki na bazie cementu są bardziej odpowiednie dla zastosowań wewnętrznych lub w miejscach mniej narażonych na działanie zmiennych warunków atmosferycznych. Szkło wodne jest substancją o właściwościach klejących, ale nie jest odpowiednim spoiwem w tynkach akrylowych, ponieważ może powodować trudności w aplikacji oraz nie zapewnia odpowiedniej elastyczności i trwałości wymaganego w tynkach zewnętrznych. Wapień hydratyzowany, pomimo swoich zalet, takich jak naturalne połączenie i łatwość użycia, również nie nadaje się do tynków akrylowych, gdyż brakuje mu elastyczności i odporności na pogodę. Wiele osób może błędnie sądzić, że tynki akrylowe mogą być wykonane na bazie tradycyjnych materiałów budowlanych, lecz ważne jest zrozumienie, że specyfika akrylu wymaga nowoczesnych rozwiązań technologicznych, takich jak żywice syntetyczne, które zapewniają długowieczność i estetykę powierzchni. Zastosowanie niewłaściwych spoiw może prowadzić do poważnych problemów z konstrukcją i estetyką budynku.

Pytanie 24

Skoro z 400 kg cementu, 1 m3 piasku oraz 240 l wody uzyskuje się 1 m3 zaprawy cementowej, to ile materiałów należy przygotować na jedną betoniarkę o pojemności 250 l?

A. 100 kg cementu, 0,50 m3 piasku, 120 l wody
B. 200 kg cementu, 0,50 m3 piasku, 120 l wody
C. 100 kg cementu, 0,25 m3 piasku, 60 l wody
D. 300 kg cementu, 0,70 m3 piasku, 180 l wody
Podawane odpowiedzi zawierają błędy w obliczeniach i doborze składników, co prowadzi do nieprawidłowych proporcji w zaprawie cementowej. Niektóre propozycje sugerują zbyt dużą ilość cementu lub niewłaściwe ilości piasku i wody. Na przykład, odpowiedź sugerująca 200 kg cementu na 250 l betoniarki przekracza proporcje materiałów, ponieważ 1 m3 zaprawy wymaga tylko 100 kg cementu w przypadku użycia 0,25 m3. Wysoka ilość cementu może prowadzić do nadmiernego utwardzenia zaprawy, co jest niepożądane w kontekście elastyczności i przyczepności. Kolejne nieprawidłowe podejście to dobór 0,50 m3 piasku, co nie zgadza się z zasadą zachowania proporcji, ponieważ w 1 m3 zaprawy mamy tylko 1 m3 piasku, co w przypadku 0,25 m3 powinno odpowiadać 0,25 m3. Ponadto, woda jest kluczowym składnikiem, a niewłaściwe jej dozowanie, na przykład 120 l dla 0,25 m3, prowadzi do zbyt mokrej mieszanki, co wpływa na czas schnięcia i wytrzymałość zaprawy. W praktyce, zachowanie odpowiednich proporcji materiałów jest kluczowe dla uzyskania właściwych właściwości mechanicznych zaprawy, co jest zgodne z normami budowlanymi i najlepszymi praktykami w branży budowlanej.

Pytanie 25

Jeśli koszty robocizny na demontaż lm2 ceglanej ścianki działowej wynoszą 0,61 r-g, to ile czasu zajmie rozebranie 5 takich ścianek, z których każda ma powierzchnię 10 m2?

A. 30,0 r-g
B. 30,5 r-g
C. 81,9 r-g
D. 61,0 r-g
Błędne odpowiedzi mogą wynikać z różnych nieporozumień dotyczących sposobu przeliczania nakładów robocizny na całkowity czas potrzebny do wykonania zadania. Na przykład, osoby, które wskazały odpowiedzi takie jak 61,0 r-g, mogą mylnie założyć, że całkowity czas robocizny odpowiada sumie jednostkowych nakładów na każdą ściankę, co prowadzi do pomylenia jednostek. W rzeczywistości, aby uzyskać prawidłowy wynik, należy uwzględnić całkowitą powierzchnię do rozbiórki oraz jednostkowe nakłady robocizny przypadające na m2. Ekspert budowlany powinien zwracać uwagę na to, jak ważne jest posługiwanie się właściwymi wzorami i zrozumienie, że całkowity czas robocizny jest sumą nakładów na każdy metr kwadratowy pomnożoną przez łączną powierzchnię. Ponadto, błędne interpretacje takich zadań mogą być wynikiem braku zrozumienia pojęcia efektywności robocizny oraz nieprawidłowego przeliczenia powierzchni na jednostki robocze. Kluczowe jest również, aby wziąć pod uwagę, że różne materiały budowlane mogą mieć różne nakłady robocizny, co wymaga od specjalisty znajomości szczegółowych danych o wydajności pracy w zależności od konkretnego materiału i metody roboczej. Ostatecznie, umiejętność dokładnego obliczania nakładów robocizny jest nie tylko ważna dla oszacowania kosztów, ale również dla planowania harmonogramów robót budowlanych, co jest niezbędne w każdym przedsięwzięciu budowlanym.

Pytanie 26

Fabrycznie przygotowane tynki akrylowe w pojemnikach wymagają przed zastosowaniem

A. dodania pigmentu
B. dodania utwardzacza
C. wymieszania bez dodatków
D. wymieszania z wodą
Tynki akrylowe, które są dostępne w pojemnikach i przygotowywane fabrycznie, są zaprojektowane w taki sposób, że po otwarciu wymagają jedynie wymieszania, aby uzyskać jednolitą konsystencję. Wymieszanie bez dodatków pozwala na zachowanie właściwości chemicznych i fizycznych materiału, co jest kluczowe dla uzyskania optymalnej przyczepności oraz wytrzymałości na różne czynniki atmosferyczne. Dobre praktyki zalecają, aby przed aplikacją tynków akrylowych stosować mikser mechaniczny, co umożliwia dokładne wymieszanie produktu, eliminując ryzyko pojawienia się grudek lub nierówności. W przypadku dodawania utwardzacza, pigmentu lub wody, mogłoby to prowadzić do zmiany właściwości tynku, co w konsekwencji mogłoby wpłynąć na trwałość i estetykę powłoki. Właściwe przygotowanie tynku akrylowego jest kluczowe, by zapewnić długotrwały efekt estetyczny oraz efektywność krycia, co jest zgodne z normami obowiązującymi w branży budowlanej i malarskiej.

Pytanie 27

Na podstawie danych zawartych w tabeli podaj, ile wody należy dodać do 20 kg suchej mieszanki, aby sporządzić zaprawę lekką Termor?

Specyfikacja zapraw lekkich Termor
WłaściwościWymagania
Uziarnienie wypełniaczydo 4 mm
Gęstość nasypowa w stanie suchymnie większa niż 565 kg/m3
Przydatność suchej mieszanki do stosowanianie mniej niż 3 miesiące
Konsystencja7÷8,5 cm
Proporcje mieszania suchej mieszanki z wodą2:1
Czas zachowania właściwości roboczychnie mniej niż 3 godziny

A. 401
B. 301
C. 101
D. 201
W twojej odpowiedzi widać kilka typowych błędów. Zobacz, coś jak 201, 301 czy 401 litrów to efekt nieporozumienia co do proporcji. Mieszanka budowlana wymaga dokładnych obliczeń, a rozumienie stosunku składników jest mega ważne. Jeśli pominiesz zasadę 2:1, to możesz się wprowadzić w błąd. Wydaje ci się, że więcej wody to lepsza konsystencja, ale to pułapka. Przez takie błędy za dużo używasz wody, co potem wpływa na wytrzymałość zaprawy, a to mogą być poważne problemy w trakcie aplikacji. No i jeszcze różnice w jednostkach miary, bo w odpowiedziach było mówione o litrach, co mogło zamieszać. Jak tego nie rozumiesz, to można się pomylić z wymaganiami budowlanymi i normami. Zanim przejdziesz do obliczeń, dobrze zapoznaj się z podstawowymi zasadami proporcji w budownictwie.

Pytanie 28

Przed nałożeniem tynku na ścianę murowaną z bloczków gazobetonowych konieczne jest

A. pokrycie stalową siatką i zwilżenie wodą
B. zagruntowanie oraz pokrycie stalową siatką
C. usunięcie grudek zaprawy oraz zwilżenie wodą
D. oczyszczenie wodą z detergentem i porysowanie
Pierwsza z niepoprawnych odpowiedzi, dotycząca okrycia stalową siatką i zwilżenia wodą, jest błędna, ponieważ stalowa siatka nie jest zalecana jako pierwszy krok przed tynkowaniem bloczków gazobetonowych. Jej zastosowanie jest właściwe w kontekście wzmacniania tynków w przypadku podłoży o niskiej przyczepności lub w miejscach narażonych na większe obciążenia mechaniczne. Jednak w przypadku idealnie przygotowanej powierzchni, jaką powinny być bloczki gazobetonowe, nie jest to konieczne. Druga odpowiedź, sugerująca zmywanie wodą z detergentem i porysowanie, jest niewłaściwa, ponieważ użycie detergentów może pozostawić na powierzchni resztki chemiczne, które negatywnie wpłyną na przyczepność tynku. Ostatnia z opcji, mówiąca o zagruntowaniu i okryciu stalową siatką, nie uwzględnia kluczowego etapu, jakim jest oczyszczenie podłoża. Zagruntowanie jest istotne, ale powinno mieć miejsce po dokładnym przygotowaniu ściany. Najczęstsze błędy w myśleniu związane z tymi odpowiedziami wynikają z niepełnego zrozumienia procesu przygotowania podłoża i roli, jaką odgrywają poszczególne etapy pracy budowlanej. Odpowiednia kolejność działań, w tym dokładne oczyszczenie, jest fundamentem trwałego i efektywnego tynkowania.

Pytanie 29

Maksymalna dopuszczalna ilość plastyfikatora w zaprawie murarskiej to 5% w stosunku do masy cementu. Jaką ilość tej domieszki można dodać do jednego zarobu zaprawy cementowej, w którym znajduje się 50 kg cementu?

A. 3 kg
B. 4 kg
C. 5kg
D. 2kg
Odpowiedzi 4 kg, 5 kg i 3 kg opierają się na nieprawidłowych założeniach dotyczących maksymalnej ilości plastyfikatora w zaprawie murarskiej. W przypadku dodania 4 kg, 5 kg lub 3 kg plastyfikatora do 50 kg cementu, przekracza się dozwoloną dawkę 5%. Tego rodzaju błędy mogą wynikać z mylenia pojęć dotyczących proporcji składników w zaprawach. W branży budowlanej, istotne jest, aby znać ograniczenia dotyczące stosowania dodatków, ponieważ ich nadmiar może prowadzić do osłabienia struktury zaprawy, zmniejszenia jej wytrzymałości na ściskanie oraz zwiększenia podatności na pęknięcia. Typowym błędem jest także niewłaściwe założenie, że więcej plastyfikatora zawsze oznacza lepszą jakość zaprawy. W rzeczywistości, każdy dodatek powinien być stosowany zgodnie z zaleceniami producenta oraz potrzebami konkretnego projektu budowlanego. Kiedy proporcje są nieprawidłowe, może to prowadzić do problemów podczas aplikacji, takich jak trudności w rozprowadzaniu zaprawy lub jej zbyt szybkie wysychanie. Dlatego kluczowe jest, aby pamiętać o właściwych proporcjach i ich wpływie na właściwości zaprawy, co w dłuższej perspektywie przekłada się na jakość i trwałość realizowanych projektów budowlanych.

Pytanie 30

Oblicz całkowity koszt realizacji tynku maszynowego gipsowego na obu bokach ściany o wymiarach 7×3 m, jeśli koszt robocizny wynosi 19,00 zł/m2, a wydatki na materiały to 7,00 zł/m2?

A. 546,00 zł
B. 945,00 zł
C. 1092,00 zł
D. 1386,00 zł
Niepoprawne odpowiedzi mogą wynikać z błędnych założeń dotyczących obliczeń powierzchni lub kosztów. Na przykład, jeśli ktoś obliczy tylko jedną stronę ściany, mogą uzyskać koszt całkowity równy kosztowi tynku dla 21 m² zamiast 42 m². Dodatkowo, zignorowanie kosztu materiałów lub robocizny może prowadzić do znacznych niedoszacowań. Przykładowo, jeśli ktoś pomyli się w obliczeniach i weźmie pod uwagę tylko koszty robocizny, może uzyskać kwotę 798,00 zł, co jest błędne, ponieważ całkowity koszt musi uwzględniać oba składniki. Kolejnym typowym błędem jest nieprawidłowe pomnożenie jednostkowych kosztów przez całkowitą powierzchnię. Warto pamiętać, że w kosztorysach budowlanych, zgodnie z dobrymi praktykami, należy zawsze wyliczać sumy dla wszystkich części projektu, aby uniknąć nieporozumień i nieprzewidzianych wydatków. Zrozumienie, jak poprawnie obliczać koszty i jakie różne czynniki należy uwzględnić, jest kluczowe dla każdego specjalisty w branży budowlanej, ponieważ pozwala to na efektywne zarządzanie zasobami i kontrolowanie wydatków.

Pytanie 31

Rozpoczęcie docieplania ściany metodą lekką suchą polega na zamontowaniu

A. wełny mineralnej
B. kratek odpowietrzających
C. izolacji wiatrowej
D. rusztu konstrukcyjnego
Montaż izolacji wiatrowej, kratek odpowietrzających czy wełny mineralnej jako pierwszych elementów w systemie dociepleń jest nieprawidłowy, ponieważ nie uwzględnia podstawowych zasad budowy rusztu konstrukcyjnego. Izolacja wiatrowa, która ma na celu ochronę przed wpływem wiatru, jest stosowana zwykle na etapie finalnym, aby zminimalizować straty ciepła, jakie mogą wynikać z nieszczelności. Kratki odpowietrzające są elementami, które mają za zadanie umożliwić wentylację i odpływ skroplin, co jest istotne w kontekście dbałości o materiał izolacyjny, ale nie są pierwszym krokiem w procesie docieplenia. Wełna mineralna, jako materiał izolacyjny, powinna być umieszczona na ruszcie po jego zainstalowaniu, ponieważ bez odpowiedniego wsparcia strukturalnego nie będzie w stanie spełniać swoich funkcji. Kluczowym błędem myślowym jest przekonanie, że można pominąć etapy montażu konstrukcji nośnej, co prowadzi do nieprawidłowego rozkładu obciążeń i potencjalnych uszkodzeń systemu ociepleń. W związku z tym, każda inwestycja w ocieplenie budynku powinna być realizowana zgodnie z ustalonymi standardami i technologią, aby zapewnić jej efektywność i trwałość.

Pytanie 32

Do jakich zastosowań należy używać zapraw szamotowych?

A. do łączenia ceramicznych elementów palenisk
B. do wykonywania posadzek na gruncie
C. do realizacji tynków w pomieszczeniach sanitarnych
D. do mocowania izolacji termicznych w ścianach
Wybór innych odpowiedzi może wynikać z niepełnego zrozumienia specyfiki zapraw szamotowych oraz ich zastosowań. Zaprawy stosowane do mocowania izolacji termicznych ścian nie są odpowiednie, gdyż do tych celów stosuje się materiały o innych właściwościach, takie jak zaprawy cementowe lub specjalistyczne kleje, które zapewniają dobrą przyczepność i odpowiednią izolacyjność. Co więcej, wykonywanie posadzek na gruncie wymaga zastosowania zapraw, które zapewniają wytrzymałość obciążeniową i odporność na wilgoć. Zaprawy szamotowe nie spełniają tych wymagań, gdyż ich główną funkcją jest łączenie elementów narażonych na wysokie temperatury, a nie typowe zastosowania budowlane. Z kolei stosowanie zapraw szamotowych do tynków w pomieszczeniach sanitarnych jest niewłaściwe, ponieważ w takich warunkach mamy do czynienia z wymogami dotyczącymi odporności na wilgoć, pleśnie i grzyby, co wymaga zastosowania tynków przeznaczonych do użytku w wilgotnych pomieszczeniach. Użycie zaprawy szamotowej w takich zastosowaniach byłoby nieefektywne i mogłoby prowadzić do uszkodzeń strukturalnych oraz obniżenia funkcjonalności pomieszczenia. W związku z tym, kluczowe jest, aby znać i stosować odpowiednie materiały budowlane zgodnie z ich przeznaczeniem oraz wymaganiami technicznymi, co zapewnia długowieczność i stabilność konstrukcji.

Pytanie 33

Do przygotowywania zapraw tynkarskich, bez wcześniejszych badań dotyczących składu i właściwości, można wykorzystać wodę

A. z wodociągu
B. z rzek i jezior
C. ze zbiorników podziemnych
D. odzyskaną z produkcji betonu
Woda z wodociągu to najlepsza opcja, jeśli chodzi o przygotowanie zaprawy tynkarskiej. Ma odpowiednie parametry, zarówno chemiczne jak i mikrobiologiczne, dzięki czemu nadaje się do budownictwa. Co ciekawe, regularnie ją badają, więc mamy pewność, że nie ma w niej żadnych szkodliwych substancji, które mogłyby zaszkodzić jakości tynków. Poza tym, są normy budowlane, jak PN-EN 1008, które jasno mówią, że woda do betonu musi być czysta i w ogóle bez zanieczyszczeń. W praktyce oznacza to, że używając wody z wodociągu, dostajemy lepszą stabilność i jednorodność zaprawy, co jest ważne przy dalszych etapach budowy. Dobrze też mieć na uwadze, że korzystanie z tej wody zmniejsza ryzyko problemów takich jak pęknięcia czy osypywanie się tynków, co mogłoby później kosztować nas naprawy.

Pytanie 34

Jakie materiały wykorzystuje się do łączenia warstw papy asfaltowej stosowanych jako izolacja ław fundamentowych?

A. roztworem asfaltowym
B. kitem asfaltowym
C. lepikiem asfaltowym
D. emulsją asfaltową
Emulsja asfaltowa, roztwór asfaltowy i kit asfaltowy to materiały, które mają różne właściwości i zastosowania, ale nie są odpowiednie do łączenia warstw papy asfaltowej na ławach fundamentowych. Emulsja asfaltowa jest zawiesiną cząstek asfaltu w wodzie z dodatkiem emulgatorów, co sprawia, że jest bardziej odpowiednia do aplikacji na wilgotne powierzchnie, lecz nie zapewnia tak silnej przyczepności jak lepik. Roztwór asfaltowy, z kolei, jest produktem na bazie rozpuszczonego asfaltu, często stosowanym do naprawy i impregnacji, ale nie stanowi idealnego rozwiązania do łączenia warstw, ponieważ może nie zapewniać odpowiedniej szczelności w długoterminowym użytkowaniu. Kit asfaltowy, będący materiałem uszczelniającym, choć skuteczny w pewnych zastosowaniach, nie jest tak trwały przy wysokich obciążeniach, jakie mogą występować w fundamentach. Użycie tych materiałów zamiast lepika asfaltowego może prowadzić do niewłaściwego zamocowania papy, co zwiększa ryzyko uszkodzeń hydroizolacji i wnikania wody do konstrukcji. Wybór niewłaściwego materiału do łączenia papy asfaltowej może spowodować poważne problemy, takie jak zawilgocenie fundamentów, co z kolei prowadzi do konieczności kosztownych napraw.

Pytanie 35

Izolację poziomą w budynku bez piwnicy powinno się wykonać

A. na górnej powierzchni fundamentu i na poziomie terenu
B. pod fundamentem i na górnej powierzchni ściany fundamentowej
C. na górnej powierzchni fundamentu i na górnej powierzchni ściany fundamentowej
D. pod fundamentem i na poziomie podłogi na gruncie
Realizacja izolacji na poziomie ławy fundamentowej jest kluczowym elementem zapewnienia właściwej ochrony budynku przed skutkami działania wód gruntowych. Wybór niewłaściwego miejsca dla wykonania izolacji, tak jak sugeruje pierwsza odpowiedź, może prowadzić do nieefektywnej ochrony. Izolacja pod ławą fundamentową nie jest wystarczająca, aby zablokować przenikanie wilgoci, ponieważ woda może gromadzić się w innych obszarach fundamentu, co prowadzi do zjawisk takich jak podsiąkanie wody. Z kolei umiejscowienie izolacji na wysokości poziomu terenu, jak w przypadku trzeciej odpowiedzi, stwarza ryzyko, że woda opadowa lub gruntowa z łatwością przedostanie się do wnętrza budynku, powodując uszkodzenia konstrukcji i problemy z wilgocią. Odpowiedź dotycząca izolacji na wysokości podłogi na gruncie jest również błędna, ponieważ nie uwzględnia praktyczne aspekty zarządzania wodami gruntowymi w danym miejscu. Właściwe podejście powinno opierać się na zasadach hydroizolacji fundamentów, które wskazują na konieczność zabezpieczenia zarówno ławy, jak i ścian fundamentowych w celu stworzenia skutecznej bariery przed wodą. Zrozumienie tych zasad jest kluczowe dla zachowania trwałości budynku oraz bezpieczeństwa jego użytkowników.

Pytanie 36

Cementowa zaprawa wyróżnia się wysoką

A. odpornością na skurcz
B. kapilarnością
C. higroskopijnością
D. wytrzymałością na ściskanie
Zaprawa cementowa charakteryzuje się dużą wytrzymałością na ściskanie, co czyni ją materiałem o kluczowym znaczeniu w budownictwie. Wytrzymałość na ściskanie definiuje zdolność materiału do przenoszenia obciążeń bez deformacji czy zniszczenia. W przypadku zapraw cementowych, wartość ta jest wynikiem odpowiednich proporcji składników, takich jak cement, woda i kruszywo. Przykładowo, zaprawy stosowane w murach nośnych muszą spełniać normy PN-EN 998-1, które precyzują minimalne wartości wytrzymałościowe zależnie od zastosowania. W praktyce, wytrzymałość zaprawy na ściskanie jest kluczowa w kontekście budowy ścian, fundamentów, oraz wszelkich innych konstrukcji, gdzie obciążenia są znaczące. Dodatkowo, odpowiednie dobranie klasy cementu oraz techniki mieszania i aplikacji zaprawy wpływa na jej trwałość i odporność na czynniki atmosferyczne, co jest istotne dla długowieczności obiektów budowlanych.

Pytanie 37

Cena realizacji 1 m2 tynku cementowo-wapiennego to 15,50 zł, natomiast przygotowanie 1 m2 podłoża pod tynk wymaga wydatku 7,70 zł. Oblicz całkowity koszt otynkowania ścian o łącznej powierzchni 250 m2.

A. 2 900,00 zł
B. 3 875,00 zł
C. 1 925,00 zł
D. 5 800,00 zł
Obliczanie całkowitego kosztu otynkowania ścian wymaga precyzyjnego uwzględnienia wszystkich składowych, co nie zostało zrobione w przypadku innych odpowiedzi. Często, przy błędnych obliczeniach, naiwne podejście do kosztów prowadzi do pominięcia istotnych elementów, takich jak przygotowanie podłoża, co zazwyczaj prowadzi do zaniżenia całkowitych kosztów. W praktyce, przy wycenie prac budowlanych, kluczowe jest, aby dokładnie wyliczyć koszty materiałów i robocizny, a także wszelkie dodatkowe wydatki związane z przygotowaniem powierzchni. Przykładowo, niektóre odpowiedzi mogły wykazać jedynie koszt tynku, co jest niewystarczające, ponieważ nie uwzględniają one kosztów przygotowania podłoża, które są nieodłącznym elementem procesu tynkarskiego. Licząc jedynie na podstawie kosztów tynku, można dojść do błędnych wniosków, co w dłuższym okresie prowadzi do problemów finansowych na projekcie budowlanym. W branży budowlanej, dokładność w wycenach jest kluczowa, aby uniknąć nieprzewidzianych wydatków, które mogą znacznie przekroczyć pierwotny budżet. Dlatego, przy obliczaniu kosztów, zawsze należy uwzględniać wszystkie etapy, co w tym przypadku zostało zrobione prawidłowo tylko w jednej z odpowiedzi.

Pytanie 38

W jakiej temperaturze najlepiej wykonywać prace tynkarskie?

A. < 10o
B. 15o - 20o
C. 25o - 30o
D. w dowolnej
Pytanie o temperaturę prowadzenia robót tynkarskich jest kluczowe dla jakości i trwałości wykonanych prac, jednak niektóre z proponowanych odpowiedzi wskazują na istotne nieporozumienia w tej kwestii. Wybór temperatury poniżej 10o jako odpowiedniej do robót tynkarskich jest błędny, ponieważ niskie temperatury powodują, że zaprawa nie osiąga wymaganego wiązania i przyczepności do podłoża. W takich warunkach może dochodzić do odwodnienia zaprawy, co prowadzi do osłabienia i pęknięć. Z kolei odpowiedź sugerująca, że tynkowanie można prowadzić w temperaturze 25o - 30o, również jest myląca. Chociaż w takich warunkach tynk może być łatwiejszy w aplikacji, zbyt wysoka temperatura powoduje szybkie parowanie wody, co skutkuje powstawaniem rys oraz słabszym wiązaniem materiału. Ostatecznie, wskazanie, że prace tynkarskie mogą być prowadzone w dowolnej temperaturze, jest skrajnie nieodpowiedzialne. Tego rodzaju podejście może prowadzić do poważnych problemów z jakością wykonania, a w skrajnych przypadkach do odpadania tynku. Zrozumienie wpływu temperatury na proces tynkowania jest niezbędne do zapewnienia właściwego wykonania i długowieczności prac budowlanych, dlatego tak istotne jest przestrzeganie zalecanych zakresów temperaturowych.

Pytanie 39

W budynkach z cegły ceramicznej z użyciem zaprawy cementowo-wapiennej, dylatacje należy umieszczać co ile?

A. 50 m
B. 40 m
C. 25 m
D. 60 m
Przerwy dylatacyjne w budynkach murowanych z cegły ceramicznej na zaprawie cementowo-wapiennej powinny być rozmieszczane co 60 m, zgodnie z obowiązującymi normami budowlanymi. Dylatacje mają na celu kompensację ruchów termicznych, wilgotnościowych oraz osiadania konstrukcji. W przypadku dużych budowli, zwłaszcza o dużych powierzchniach, brak odpowiednich dylatacji może prowadzić do powstawania pęknięć i uszkodzeń strukturalnych, co przyczynia się do kosztownych napraw. Na przykład w przypadku budynków przemysłowych, takich jak magazyny czy hale produkcyjne, które charakteryzują się dużymi przeszklonymi powierzchniami, stosowanie dylatacji co 60 m minimalizuje ryzyko wystąpienia deformacji konstrukcji. Warto również podkreślić, że rozmieszczenie dylatacji powinno uwzględniać lokalne warunki klimatyczne oraz charakterystykę materiałów, co jest istotne dla zapewnienia długowieczności i stabilności budowli.

Pytanie 40

Do sporządzenia zaprawy cementowo-wapiennej odmiany E zaplanowano użycie 100 dm3 cementu. Korzystając z informacji zawartych w tabeli określ, ile pozostałych składników należy przygotować do jej wykonania.

Proporcje składników
(mierzone objętościowo)
Symbol
odmiany
Zaprawy cementoweodmiana 1 : 2A
odmiana 1 : 3B
odmiana 1 : 4C
Zaprawy cementowo-wapienneodmiana 1 : 0,25 : 3D
odmiana 1 : 0,5 : 4E
odmiana 1 : 1 : 6F
odmiana 1 : 2 : 9G
Zaprawy wapienneodmiana 1 : 1,5H
odmiana 1 : 2I
odmiana 1 : 4J

A. 50 dm3 piasku i 400 dm3 wapna.
B. 50 dm3 piasku i 200 dm3 wapna.
C. 50 dm3 wapna i 400 dm3 piasku.
D. 50 dm3 wapna i 200 dm3 piasku.
Wybór niewłaściwych proporcji składników do zaprawy cementowo-wapiennej może prowadzić do znacznych problemów związanych z jakością i wytrzymałością gotowego materiału. Propozycje, takie jak użycie 200 dm3 wapna czy 200 dm3 piasku wbrew wskazanym wymaganiom, świadczą o nieporozumieniu w zakresie proporcji, które są kluczowe dla uzyskania odpowiednich parametrów zaprawy. W przypadku nadmiaru wapna, może dojść do obniżenia wytrzymałości mechanicznej, co prowadzi do ryzyka rozwarstwienia się zaprawy oraz powstawania pęknięć. Z kolei zbyt duża ilość piasku w stosunku do innych składników może skutkować niską spójnością mieszanki, co negatywnie wpłynie na jej zdolność do przenoszenia obciążeń. Kluczowym aspektem jest również zrozumienie, że właściwe proporcje są oparte na przepisach i normach branżowych, które definiują wymagania dla poszczególnych typów zapraw. Aby uniknąć błędów, istotne jest zrozumienie, jakie właściwości chcemy uzyskać z zaprawy oraz jak różne składniki wpływają na jej zachowanie w czasie. Zastosowanie niewłaściwych proporcji nie tylko zwiększa ryzyko uszkodzeń strukturalnych, ale także prowadzi do nadmiernych kosztów związanych z poprawkami i przystosowaniem struktury budowlanej do wymagań technicznych.