Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 26 kwietnia 2025 21:16
  • Data zakończenia: 26 kwietnia 2025 21:44

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Piktogram nie jest konieczny dla

A. substancji, które powodują korozję metali
B. substancji, które działają drażniąco na skórę
C. substancji, które mają działanie drażniące na oczy
D. mieszanin samoreaktywnych typu G
Wybór substancji działających drażniąco na oczy oraz substancji działających drażniąco na skórę jako odpowiedzi na pytanie o piktogramy jest oparty na niewłaściwym zrozumieniu wymogów dotyczących klasyfikacji chemikaliów. Substancje te, zgodnie z regulacjami CLP, wymagają jednoznacznego oznakowania za pomocą piktogramów, ponieważ ich działanie na organizm człowieka jest dobrze udokumentowane i klasyfikowane jako niebezpieczne. Piktogramy mają na celu zapewnienie szybkiego i jasnego przekazu informacji o zagrożeniach dla osób pracujących z tymi substancjami. Osoby zajmujące się bezpieczeństwem chemicznym często popełniają błąd, nie rozróżniając pomiędzy różnymi kategoriami substancji oraz ich właściwościami niebezpiecznymi. Dodatkowo, wybór substancji powodujących korozję metali również nie jest trafny, ponieważ substancje te również wymagają odpowiednich piktogramów, aby ostrzegać o ich agresywnym działaniu na materiały. Powszechnym błędem jest myślenie, że jeśli substancja nie jest bezpośrednio niebezpieczna dla zdrowia, to nie wymaga oznakowania. W rzeczywistości, każda substancja, która ma potencjalne działanie szkodliwe, powinna być klasyfikowana i odpowiednio oznaczana, co jest kluczowe dla bezpieczeństwa w miejscu pracy oraz ochrony środowiska.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Na etykiecie kwasu siarkowego(VI) znajduje się piktogram pokazany na rysunku. Oznacza to, że substancja ta jest

Ilustracja do pytania
A. rakotwórcza.
B. mutagenna.
C. żrąca.
D. nieszkodliwa.
Odpowiedź "żrąca" jest poprawna, ponieważ piktogram na etykiecie kwasu siarkowego(VI) jednoznacznie oznacza substancje, które mogą powodować ciężkie uszkodzenia tkanek. W systemie GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) substancje żrące są klasyfikowane na podstawie ich zdolności do uszkadzania skóry oraz innych tkanek. Kwas siarkowy(VI) jest silnym kwasem, który ma zdolność do reagowania z wodą, co dodatkowo potęguje jego żrące właściwości. W praktyce, kontakt z kwasem siarkowym(VI) może prowadzić do poważnych oparzeń chemicznych, które wymagają natychmiastowej interwencji medycznej. W laboratoriach i przemyśle chemicznym niezwykle istotne jest przestrzeganie zasad bezpieczeństwa związanych z obsługą substancji żrących, takich jak stosowanie odpowiednich środków ochrony osobistej (PPE), w tym rękawic, okularów ochronnych oraz odzieży odpornych na działanie chemikaliów. Zgodność z normami bezpieczeństwa, takimi jak OSHA i CLP, jest kluczowa dla minimalizacji ryzyka związanego z narażeniem na substancje żrące.

Pytanie 4

Technika kwartowania (ćwiartkowania) pozwala na redukcję masy próbki ogólnej

A. ciekłej
B. półciekłej
C. stałej
D. gazowej
Metoda kwartowania, czyli ćwiartkowanie, to sposób, który wykorzystuje się w laboratoriach, żeby zmniejszyć masę próbki stałej. Dzięki temu można ją analizować, nie tracąc przy tym jej reprezentatywności. Po prostu dzielimy próbkę na cztery równe części i wybieramy dwie przeciwległe, co daje nam mniejszą próbkę do pracy. To jest ważne zwłaszcza w chemii, gdzie zachowanie proporcji składników ma duże znaczenie. Na przykład, jeśli mamy dużą próbkę gleby i chcemy ją przeanalizować, kwartowanie pozwala nam na zmniejszenie jej do rozmiaru, który jest bardziej odpowiedni do badań, np. mikrobiologicznych czy chemicznych. Dla próbek stałych, takich jak minerały czy różne odpady, kwartowanie jest standardem, bo pozwala nam na uzyskanie reprezentatywnej próbki, a jednocześnie ogranicza straty materiału. Warto też pamiętać, że normy ISO w analizie próbek podkreślają znaczenie uzyskiwania prób reprezentatywnych, co jest kluczowe w wielu badaniach w laboratoriach i przemyśle.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

W chemicznym laboratorium apteczka pierwszej pomocy powinna zawierać

A. leki przeciwbólowe
B. spirytus salicylowy
C. środki opatrunkowe
D. leki nasercowe
Środki opatrunkowe są niezbędnym elementem apteczki pierwszej pomocy w laboratorium chemicznym, ponieważ ich podstawową funkcją jest zabezpieczenie ran oraz ochrona przed zakażeniem. W przypadku wystąpienia urazów, takich jak skaleczenia czy oparzenia, odpowiednie opatrunki umożliwiają szybkie udzielenie pomocy i zmniejszają ryzyko późniejszych powikłań. Na przykład, w sytuacji, gdy pracownik ma do czynienia z chemikaliami, niektóre z nich mogą powodować podrażnienia lub oparzenia. Szybkie zastosowanie opatrunku może złagodzić skutki i przyspieszyć proces gojenia. Dodatkowo, zgodnie z wytycznymi organizacji takich jak OSHA (Occupational Safety and Health Administration) oraz NFPA (National Fire Protection Association), każda przestrzeń robocza w laboratoriach powinna być odpowiednio wyposażona w materiały opatrunkowe, aby zapewnić bezpieczeństwo pracowników. Warto również pamiętać o regularnym przeglądaniu oraz uzupełnianiu apteczki, aby zawsze była gotowa do użycia, gdy zajdzie taka potrzeba.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Które spośród substancji wymienionych w tabeli pozwolą pochłonąć wydzielający się tlenek węgla(IV)?

IIIIIIIVV
Ca(OH)2(aq)NaOH(s)HNO3(stęż)CuO(s)CaO(s)

A. I, II, IV.
B. I, III, IV.
C. I, II, V
D. II, IV, V.
W przypadku wyboru odpowiedzi, która nie obejmuje substancji I, II i V, można zauważyć, że nie uwzględnia się kluczowych właściwości reakcji chemicznych między tlenkiem węgla(IV) a substancjami, które są zasadami. Takie podejście prowadzi do nieporozumień dotyczących chemii gazów i ich interakcji z zasadami. Odpowiedzi zawierające substancje III (HNO3) i IV (CuO) są w rzeczywistości błędne, ponieważ HNO3 jest kwasem azotowym, który nie ma zdolności do reakcji z CO2 w sposób, który prowadziłby do jego absorpcji; zamiast tego reaguje on z zasadami, a jego właściwości jako kwasu oznaczają, że nie będzie on efektywnym reagentem w kontekście usuwania CO2. CuO, czyli tlenek miedzi(II), również nie jest substancją, która mogłaby reagować z CO2, a jego zastosowanie koncentruje się bardziej na reakcjach utleniania i redukcji metali, co nie ma związku z pochłanianiem tego gazu. Zrozumienie właściwości substancji chemicznych oraz ich reakcji jest kluczowe do prawidłowego wyboru reagentów w procesach przemysłowych. Ignorowanie tych faktów może prowadzić do nieefektywnych rozwiązań w kontekście zarządzania emisją CO2, co jest szczególnie istotne w dobie globalnych wysiłków na rzecz ochrony środowiska oraz zrównoważonego rozwoju.

Pytanie 9

Aby przygotować 250 cm3 0,2-molowego roztworu wodorotlenku sodu, należy odważyć

MNaOH = 40g / mol

A. 25,0 g stałego NaOH.
B. 2,00 g stałego NaOH.
C. 0,05 g stałego NaOH.
D. 2,50 g stałego NaOH.
Aby przygotować 250 cm3 0,2-molowego roztworu wodorotlenku sodu (NaOH), konieczne jest zrozumienie podstawowych zasad obliczania masy substancji chemicznych. W przypadku NaOH, jego masa molowa wynosi 40 g/mol. Przygotowując roztwór o stężeniu 0,2 mola w 250 cm3, obliczamy ilość moli, co daje nam 0,05 mola NaOH (0,2 mol/l * 0,25 l). Następnie, aby obliczyć potrzebną masę, stosujemy wzór: masa = liczba moli * masa molowa. Czyli, 0,05 mola * 40 g/mol = 2 g NaOH. W praktyce, takie obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów ma dużą wagę. Używając tej wiedzy, można z sukcesem przygotowywać różnorodne roztwory, co jest istotne w wielu dziedzinach nauki i przemysłu, takich jak chemia analityczna, synergia materiałów czy wytwarzanie farmaceutyków. Zrozumienie tych podstawowych zasad pozwoli na bardziej efektywne i bezpieczne przeprowadzanie eksperymentów chemicznych.

Pytanie 10

Podczas pomiaru masy substancji w naczyniu wagowym na wadze technicznej, dla zrównoważenia ciężaru na szalce umieszczono odważniki: 20 g, 2 g, 500 mg, 200 mg, 20 mg, 10 mg, 10 mg oraz 5 g. Całkowita masa substancji z naczynkiem wyniosła

A. 22,745 g
B. 27,740 g
C. 27,745 g
D. 22,740 g
Obliczenie masy substancji na wadze technicznej to tak naprawdę zrównoważenie masy tego, co ważymy, z masą odważników, które mamy. W tym przypadku mamy odważniki, które razem dają 27,740 g. Wchodzą w to: 20 g, 5 g, 2 g, 500 mg (czyli 0,5 g), 200 mg (czyli 0,2 g), 20 mg (0,02 g), 10 mg (0,01 g) oraz jeszcze raz 10 mg (0,01 g). Jakbyśmy to wszystko zliczyli: 20 g + 5 g + 2 g + 0,5 g + 0,2 g + 0,02 g + 0,01 g + 0,01 g to właśnie daje nam 27,740 g. W laboratoriach ważenie substancji jest mega ważne, żeby mieć pewność, że wyniki są wiarygodne. Wagi techniczne są wykorzystywane w różnych branżach, jak chemia czy farmacja, gdzie dokładność to klucz. Żeby wszystko dobrze wyważyć, trzeba używać odpowiednich odważników i ich dokładnie posumować. To nie tylko zapewnia precyzję, ale i powtarzalność wyników, co jest istotne.

Pytanie 11

Gęstość próbki cieczy wyznacza się przy użyciu

A. spektrofotometru
B. piknometru
C. biurety
D. refraktometru
Prawidłowa odpowiedź to piknometr, który jest instrumentem służącym do pomiaru gęstości cieczy. Działa na zasadzie porównania masy próbki cieczy z jej objętością. Piknometr jest precyzyjnym narzędziem wykorzystywanym w laboratoriach chemicznych do określania gęstości różnych substancji, co jest kluczowe w wielu dziedzinach, takich jak chemia analityczna, petrochemia, a także w przemyśle spożywczym. Na przykład, w przemyśle naftowym, znajomość gęstości olejów jest niezbędna do oceny ich jakości oraz do obliczeń dotyczących transportu. Piknometr jest zgodny z normami ASTM D287 oraz ISO 3507, co zapewnia wiarygodność wyników. Warto również zwrócić uwagę, że pomiar gęstości za pomocą piknometrów jest często preferowany ze względu na jego wysoką dokładność i powtarzalność wyników, w porównaniu do innych metod, takich jak pomiar przy użyciu hydrometru, który może być mniej precyzyjny w przypadku cieczy o złożonej strukturze chemicznej.

Pytanie 12

Proces oddzielania składników jednorodnej mieszaniny, polegający na eliminacji jednego lub większej ilości składników z roztworu lub substancji stałej przy użyciu odpowiednio wybranego rozpuszczalnika, to

A. adsorpcja
B. rektyfikacja
C. destylacja
D. ekstrakcja
Rektyfikacja, adsorpcja i destylacja to różne procesy, które chociaż są używane do rozdzielania składników, to jednak nie nadają się do tego, co opisano w pytaniu o ekstrakcję. Rektyfikacja to technika, gdzie wielokrotnie skrapla się i odparowuje ciecz, co sprawdza się zazwyczaj przy separacji składników o podobnych temperaturach wrzenia. Jest to popularne w przemyśle petrochemicznym i przy produkcji alkoholi, ale nie chodzi tu o to, żeby selektywnie usuwać składniki z roztworu przez rozpuszczalnik. Adsorpcja z kolei, to proces, gdzie cząsteczki substancji przywierają do powierzchni ciała stałego i stosuje się go w filtracji oraz oczyszczaniu gazów, ale to jednak różni się od ekstrakcji, bo nie polega na rozpuszczaniu składników. Natomiast destylacja separuje składniki cieczy na podstawie różnic w temperaturach wrzenia, co znów mija się z pytaniem o rozpuszczalnik do usuwania składników. Te pojęcia często się mylą, bo wszystkie odnoszą się do procesów separacyjnych, ale ich działanie i zastosowanie są zupełnie różne. Kluczowy błąd to zakładanie, że wszystkie metody separacji są zamienne, co sprawia, że mogą wystąpić nieporozumienia w laboratoriach czy przemyśle.

Pytanie 13

Dekantacja to metoda

A. oddzielania cieczy lub gazu od cząstek ciała stałego, które są w nich zawieszone, polegająca na przepuszczeniu zawiesiny przez przegrodę filtracyjną
B. oddzielania cieczy od osadu, która polega na zlaniu cieczy znad osadu
C. opadania cząstek ciała stałego w wyniku działania siły ciężkości, które są rozproszone w cieczy
D. oddzielania cieczy od osadu, która polega na odparowaniu cieczy
Dekantacja to taki sposób oddzielania cieczy od osadu, polegający na tym, że wlewasz ciecz znad osadu do innego naczynia. Jest super popularna w laboratoriach chemicznych i w różnych branżach, szczególnie przy oczyszczaniu i separacji. Głównym celem tego procesu jest zdobycie czystej cieczy i pozbycie się osadu, który ląduje na dnie. Przykłady? No to na przykład wino – dekantuje się je, żeby oddzielić osad, który powstaje przy fermentacji. W laboratoriach też często używają dekantacji, żeby pozbyć się osadu po reakcjach chemicznych. To prosta i skuteczna metoda, co czyni ją jedną z podstawowych technik w chemii. Ważne jest, żeby robić to ostrożnie, żeby nie zmieszać cieczy z osadem. Dobrze jest też używać odpowiednich naczyń, które pomogą ci w precyzyjnym zlaniu cieczy.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Na podstawie danych zawartych w tabeli wskaż, który dodatek należy zastosować, w celu konserwacji próbek wody przeznaczonych do oznaczania jej twardości.

Tabela. Techniki konserwacji próbek wody
Stosowany dodatek
lub technika
Rodzaje próbek, do których dodatek lub technika jest stosowana
Kwas siarkowy(VI)zawierające węgiel organiczny, oleje lub tłuszcze, przeznaczone do oznaczania ChZT, zawierające aminy lub amoniak
Kwas azotowy(V)zawierające związki metali
Wodorotlenek soduzawierające lotne kwasy organiczne lub cyjanki
Chlorek rtęci(II)zawierające biodegradowalne związki organiczne oraz różne formy azotu i fosforu
Chłodzenie w
temperaturze 4°C
zawierające mikroorganizmy, barwę, zapach, organiczne formy węgla, azotu i fosforu, przeznaczone do określenia kwasowości, zasadowości oraz BZT

A. Wodorotlenek sodu.
B. Chlorek rtęci(II).
C. Kwas azotowy(V).
D. Kwas siarkowy(VI).
Wybór innych dodatków do konserwacji próbek wody na oznaczanie twardości może prowadzić do istotnych błędów w analizie. Kwas siarkowy(VI) jest substancją, która w przypadku dodatku do próbek wody, może wprowadzać zmiany w składzie chemicznym próbek, prowadząc do zniekształcenia wyników analizy. Jego działanie na jony metaliczne, takie jak wapń i magnez, może prowadzić do powstawania złożonych soli, co zafałszuje wyniki oznaczeń twardości. Z kolei chlorek rtęci(II) jest związkiem toksycznym i nieodpowiednim do stosowania w konserwacji próbek wody, ponieważ może wchodzić w interakcje z metalami, co prowadzi do ich osadzania się i zmiany stężenia badanych jonów. Ponadto, wodorotlenek sodu, będący silną zasadą, może zmienić pH próbki, co również zakłóci proces analizy twardości wody. Zastosowanie niewłaściwego dodatku może powodować błędne interpretacje, co jest sprzeczne z dobrymi praktykami w laboratoriach analitycznych. W kontekście standardów jakości, takich jak ISO 17025, ważne jest, aby stosować substancje, które nie wpłyną na właściwości chemiczne analizowanych próbek, co potwierdza konieczność stosowania kwasu azotowego(V) w tym przypadku.

Pytanie 16

Jakie urządzenie wykorzystuje się do określania lepkości płynów?

A. kolorymetr
B. wiskozymetr
C. piknometr
D. areometr
Wiskozymetr to całkiem fajne urządzenie, które mierzy lepkość cieczy. Lepkość to taki parametr, który mówi nam, jak bardzo ciecz jest 'gęsta' w swoim zachowaniu, co jest istotne w różnych dziedzinach jak chemia, inżynieria materiałowa czy technologie procesów. Lepkość ma ogromne znaczenie, szczególnie gdy myślimy o tym, jak ciecz przepływa przez rury lub jak jest używana w przemyśle i laboratoriach. Wiskozymetry dzielą się na różne typy – mamy na przykład wiskozymetry dynamiczne, które badają lepkość przy różnych prędkościach, albo kinematyczne, które skupiają się na czasie przepływu cieczy przez określoną objętość. Warto wspomnieć, że w przemyśle spożywczym, kontrolowanie lepkości soków czy sosów jest mega ważne, żeby uzyskać dobrą konsystencję i jakość. Dodatkowo, istnieją standardy, jak na przykład ASTM D445, które określają, jak mierzyć lepkość, dzięki czemu wyniki są spójne i wiarygodne w różnych laboratoriach.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Które równanie przedstawia reakcję otrzymywania mydła?

CH3COOH + NaOH →CH3COONa + H2O
2 CH3COOH + Na2O →2 CH3COONa + H2O
2 C2H5COOH + 2 Na →2 C2H5COONa + H2
C17H35COOH + NaOH →C17H35COONa + H2O

A. C17H35COOH + NaOH → C17H35COONa + H2O
B. 2 C2H5COOH + 2 Na → 2 C2H5COONa + H2↑
C. 2 CH3COOH + Na2O → 2 CH3COONa + H2O
D. CH3COOH + NaOH → CH3COONa + H2O
No, ta reakcja, którą podałeś, to super przykład zmydlania, a więc procesu, w którym kwasy tłuszczowe reagują z zasadami, w tym przypadku z wodorotlenkiem sodu. Z tego powodu powstaje sól kwasu tłuszczowego, czyli mydło, a przy okazji mamy jeszcze wodę. Zmydlanie to absolutny must-have w produkcji mydeł, które wszyscy używamy w domach czy w kosmetykach. Przykład? Naturalne mydła, które można robić z olejów, np. kokosowego albo oliwy z oliwek. Ważne, żeby trzymać się dobrych proporcji kwasu tłuszczowego do zasady, bo to wpływa na to, jak twarde będzie mydło, jak się pieni i jak nawilża. Zmydlanie jest też ważnym procesem w chemii, bo używa się go do produkcji różnych substancji chemicznych. Jak widać, to istotna sprawa!

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Aby odróżnić urządzenia w laboratorium chemicznym, rury do próżni maluje się w kolorze

A. żółtym
B. czerwonym
C. niebieskim
D. szarym
Wybór koloru rury do próżni jest kluczowy dla bezpieczeństwa i efektywności pracy w laboratoriach chemicznych. Czerwony, choć często kojarzony z ostrzeżeniem lub niebezpieczeństwem, nie jest standardowym kolorem dla rur do próżni. W rzeczywistości czerwony kolor zazwyczaj wskazuje na instalacje związane z gazami łatwopalnymi lub substancjami niebezpiecznymi, co może prowadzić do nieporozumień w identyfikacji systemów. Żółty kolor z kolei często jest używany do oznaczania rur związanych z mediami, które zawierają substancje chemiczne, które mogą być toksyczne lub żrące. Takie użycie koloru żółtego mogłoby wprowadzać w błąd w kontekście rur do próżni, które nie mają takiego samego ryzyka. Niebieski to kolor, który z reguły jest przypisany do instalacji związanych z wodą lub innymi cieczy, co również wprowadzałoby zamieszanie, gdyż nie odnosi się do systemów próżniowych. Oznaczenie rur do próżni w nieadekwatny sposób stwarza niebezpieczeństwo dla użytkowników laboratorium, którzy mogą nieprawidłowo zidentyfikować systemy, co prowadzi do poważnych konsekwencji. Dlatego tak ważne jest przestrzeganie norm i standardów branżowych dotyczących oznaczania instalacji, aby zminimalizować ryzyko pomyłek i zagwarantować bezpieczeństwo pracy w laboratoriach chemicznych.

Pytanie 22

Ogólna próbka, jednostkowa lub pierwotna powinna

A. być tym mniejsza, im większa jest niejednorodność składu produktu
B. być tym większa, im bardziej niejednorodny jest skład produktu
C. mieć masę 1-10 kg dla produktów stałych lub objętość 1-10 dm3 dla cieczy
D. być tym większa, im bardziej jednorodny jest skład produktu
Wielkość próbki nie jest kwestią prostego przydzielenia wartości według jednorodności składu. Odpowiedzi sugerujące, że próbka powinna być mniejsza im bardziej niejednorodny jest skład produktu, mylnie zakładają, że zmniejszenie rozmiaru próbki będzie korzystne w takich sytuacjach. W rzeczywistości, mniejsze próbki mogą prowadzić do zniekształcenia wyników, ponieważ nie będą w stanie oddać pełnego obrazu zróżnicowanego materiału. Na przykład, w przypadku materiałów budowlanych, jeśli pobierzemy zbyt małą próbkę z betonu, która nie uwzględnia wszystkich składników, może to prowadzić do błędnych analiz wytrzymałościowych. Podobnie, założenie, że próbka powinna być większa im bardziej jednorodny jest skład, jest również mylne. W rzeczywistości, w przypadku materiałów o jednolitym składzie, odpowiednia próbka może być mniejsza, ponieważ nie wymaga angażowania różnorodności składników. Takie podejście wzmacnia myślenie o próbkach jako o reprezentatywnych dla całego produktu. W procesach analitycznych istotne jest, aby stosować odpowiednie metody pobierania próbek, które są zgodne z normami takim jak ISO 8655 czy ISO 15189, co zapewnia rzetelność i wiarygodność analiz. Użytkownicy powinni być świadomi, że dobór wielkości próbki jest kluczowy dla jakości wyników analitycznych i powinien być oparty na teorii statystycznej oraz praktycznych zaleceniach, aby uniknąć błędów w ocenie jakości badanych materiałów.

Pytanie 23

Z kolby miarowej o pojemności 1 dm3, zawierającej roztwór HCl o stężeniu 0,1 mol/dm3, pobrano pipetą 2,5 cm3, a następnie przeniesiono do kolby miarowej o pojemności 20 cm3 i rozcieńczono wodą "do kreski" miarowej. Jakie stężenie ma otrzymany roztwór?

A. 0,1250 mol/dm3
B. 0,0125 mol/dm3
C. 0,0500 mol/dm3
D. 0,0005 mol/dm3
Nieprawidłowe odpowiedzi mogą wynikać z kilku typowych błędów obliczeniowych i nieporozumień dotyczących zasad rozcieńczania roztworów. Na przykład, wybór stężenia 0,0005 mol/dm³ może być konsekwencją błędnego przeliczenia objętości lub liczby moli, gdzie użytkownik mógł zaniżyć wyniki przez omyłkowe zastosowanie niewłaściwych jednostek. Odpowiedź 0,0500 mol/dm³ sugeruje, że osoba myślała o stężeniu przed rozcieńczeniem, nie uwzględniając faktu, że dodanie wody do roztworu zmienia całkowitą objętość. W przypadku stężenia 0,1250 mol/dm³, błąd może wynikać z mylenia stężenia początkowego z końcowym, co jest częstym błędem w obliczeniach chemicznych. Tego rodzaju nieprawidłowości mogą prowadzić do poważnych konsekwencji w praktycznych zastosowaniach chemicznych, takich jak niepoprawne przygotowanie odczynników do doświadczeń czy analiz, które mogą skutkować błędnymi wynikami. Dlatego w laboratoriach niezwykle istotne jest stosowanie odpowiednich procedur obliczeniowych oraz dokładne sprawdzanie wszystkich obliczeń, aby uniknąć takich pomyłek, które mogą wpłynąć na jakość i dokładność prowadzonych badań.

Pytanie 24

Jakie jest stężenie roztworu NaOH, który zawiera 4 g wodorotlenku sodu w 1 dm3 (masa molowa NaOH = 40 g/mol)?

A. 0,01 mol/dm3
B. 0,1 mol/dm3
C. 1 mol/dm3
D. 0,001 mol/dm3
Stężenie roztworu NaOH wyliczamy dzieląc liczbę moli substancji przez objętość roztworu w decymetrach sześciennych. W przypadku 4 g wodorotlenku sodu, najpierw musimy policzyć, ile mamy moli, korzystając z masy molowej NaOH, która to wynosi 40 g/mol. To wygląda tak: 4 g podzielone przez 40 g/mol daje nam 0,1 mola. A ponieważ nasze objętość roztworu wynosi 1 dm³, stężenie okaże się 0,1 mol / 1 dm³, co daje 0,1 mol/dm³. Te obliczenia są super ważne w laboratoriach chemicznych, bo precyzyjne przygotowywanie roztworów jest kluczowe dla dobrej jakości wyników eksperymentów. W praktyce stężenie roztworu oddziałuje na reakcje chemiczne, ich tempo i efektywność, więc rozumienie tych zasad leży u podstaw chemii analitycznej i w różnych aplikacjach przemysłowych, jak synteza chemiczna czy proces oczyszczania.

Pytanie 25

Sączenie osadów kłaczkowatych odbywa się przy użyciu sączków

A. twarde
B. rzadkie
C. średnio gęste
D. bardzo gęste
Wybór gęstych lub średnio gęstych sączków do filtracji osadów kłaczkowatych jest nieprawidłowy, ponieważ te materiały nie są przystosowane do skutecznego oddzielania tego rodzaju zanieczyszczeń. Gęste sączki, posiadające bardzo małe pory, mogą prowadzić do zatykania się, co spowoduje zwiększenie ciśnienia i zmniejszenie efektywności procesu filtracji. Użytkownicy mogą błędnie zakładać, że gęstsze materiały będą bardziej efektywne w usuwaniu osadów, co jest mylące, ponieważ nie uwzględniają, że osady kłaczkowate mogą mieć różne rozmiary oraz kształty, które mogą nie przechodzić przez małe pory, a tym samym zablokować filtr. Ponadto, twarde sączki również nie będą właściwie pełnić swojej roli, ponieważ ich struktura nie pozwala na odpowiednią elastyczność niezbędną do dobrze uformowanej filtracji. Również sączki rzadkie są preferowane w kontekście analitycznym, gdzie wymagane jest szybkie usunięcie osadów bez pociągania za sobą ryzyka kontaminacji próbki. Zastosowanie nieodpowiednich sączków może prowadzić do błędnych wyników analitycznych, co jest niezgodne z praktykami laboratoriami, które dążą do zapewnienia wysokiej jakości wyników zgodnych z regulacjami i standardami branżowymi, takimi jak GLP (Dobre Praktyki Laboratoryjne) i ISO 17025.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jakie są zalecenia dotyczące postępowania z odpadowymi roztworami kwasów oraz zasad?

A. Roztwory kwasów i zasad należy mocno zagęścić i zobojętnić stężonymi roztworami NaOH oraz HCl, aby uzyskać odpady w postaci stałych soli
B. Roztwory kwasów i zasad można umieścić bez neutralizacji w tym samym pojemniku, gdzie będą się wzajemnie neutralizowały
C. Roztwory kwasów i zasad należy rozcieńczyć, zobojętnić zgodnie z procedurą, a następnie umieścić w osobnych pojemnikach
D. Roztwory kwasów i zasad można wylewać do kanalizacji, przepłukując silnym strumieniem wody w celu maksymalnego rozcieńczenia
Podawane koncepcje, wskazujące na możliwość mieszania roztworów kwasów i zasad bez neutralizacji, są nieprawidłowe. W rzeczywistości, choć teoretycznie takie mieszanie może prowadzić do ich wzajemnego zobojętnienia, w praktyce niesie ze sobą wiele zagrożeń. Po pierwsze, niekontrolowane łączenie silnych kwasów z mocnymi zasadami może prowadzić do gwałtownych reakcji, wydzielania dużych ilości ciepła oraz potencjalnego rozprysku niebezpiecznych substancji. Mieszanie powinno być przeprowadzane w kontrolowanych warunkach, z odpowiednim sprzętem ochronnym i w pojemnikach przeznaczonych do tego celu. Kolejnym błędem jest sugerowanie, że odpady te można wylewać do kanalizacji, co jest absolutnie niedopuszczalne. Wylanie roztworów chemicznych do kanalizacji może spowodować zanieczyszczenie wód gruntowych oraz systemu wodociągowego, co jest sprzeczne z przepisami ochrony środowiska. Również stwierdzenie, że odpady należy silnie zatężyć i zobojętniać stężonymi roztworami NaOH i HCl jest niebezpieczne. Tego typu praktyki mogą prowadzić do powstawania niebezpiecznych oparów oraz reakcji egzotermicznych, które mogą być trudne do kontrolowania. Aby zapewnić bezpieczeństwo i zgodność z przepisami, najlepiej jest stosować procedury ustalone przez organizacje zajmujące się ochroną zdrowia i środowiska, które przewidują odpowiednie metody neutralizacji i przechowywania odpadów chemicznych.

Pytanie 28

Do szklanych narzędzi laboratoryjnych wielomiarowych używanych w analizach ilościowych należy

A. pipeta Mohra
B. cylinder z podziałką
C. kolba stożkowa
D. zlewka
Cylinder z podziałką jest jednym z kluczowych elementów sprzętu laboratoryjnego wykorzystywanego w analizie ilościowej, ze względu na swoją zdolność do precyzyjnego pomiaru objętości cieczy. Oferuje on wyraźne podziały, które pozwalają na dokładne odczytanie objętości, co jest niezbędne w wielu eksperymentach chemicznych i biologicznych. Użycie cylindra z podziałką jest standardem w laboratoriach, gdzie wymagana jest wysoka dokładność i powtarzalność pomiarów. Przykładowo, w analizie stężenia roztworu chemicznego, cylinder umożliwia odmierzenie dokładnej ilości reagentów, co jest kluczowe dla uzyskania wiarygodnych wyników. W praktyce laboratoryjnej, zgodnie z normami ISO, korzystanie z odpowiednich narzędzi pomiarowych, takich jak cylinder z podziałką, jest wymogiem, który zapewnia jakość i rzetelność wyników badań. Ponadto, cylinder z podziałką jest łatwy w użyciu i czyszczeniu, co czyni go praktycznym wyborem w codziennej pracy laboratoryjnej.

Pytanie 29

Czy odpady laboratoryjne zawierające jony metali ciężkich powinny zostać poddane obróbce przed umieszczeniem ich w odpowiednio oznaczonej pojemności?

A. zasypać wodorowęglanem sodu
B. rozcieńczyć wodą destylowaną
C. zneutralizować kwasem solnym lub zasadą sodową
D. przeprowadzić w trudnorozpuszczalne związki i odsączyć
Neutralizowanie odpadów laboratoryjnych kwasem solnym lub zasadą sodową to podejście, które może wydawać się logiczne, jednak nie jest to skuteczna metoda w przypadku odpadów zawierających metale ciężkie. Metale te, takie jak ołów, rtęć czy kadm, nie reagują w sposób, który pozwalałby na ich bezpieczne usunięcie za pomocą prostych reakcji kwas-zasada. Ponadto, takie działania mogą prowadzić do powstawania niebezpiecznych gazów, które mogą być toksyczne. Przykładowo, reakcja z kwasem solnym może uwolnić chlorowodór, co stwarza dodatkowe zagrożenie dla zdrowia. Zasypywanie odpadów wodorowęglanem sodu to kolejna niewłaściwa metoda, ponieważ nie prowadzi do skutecznego usuwania metali ciężkich, a jedynie może neutralizować pH, co nie eliminuje problemu samego zanieczyszczenia. Rozcieńczanie wodą destylowaną to kolejna strategia, która nie rozwiązuje problemu, a jedynie rozcieńcza substancje toksyczne, co może prowadzić do ich dalszego rozprzestrzeniania się w środowisku. W kontekście dobrych praktyk laboratoryjnych, istotne jest zrozumienie, że odpady powinny być najpierw klasyfikowane, a następnie poddawane odpowiednim procesom unieszkodliwiania, które zapewnią ich bezpieczne i ekologiczne usunięcie. Laboratoria muszą przestrzegać regulacji dotyczących gospodarki odpadami, takich jak ustawy o ochronie środowiska, które wymagają od nich podejmowania świadomych decyzji w sprawie zarządzania odpadami niebezpiecznymi.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

W parownicy porcelanowej, w której znajduje się 2,5 g naftalenu, umieść krążek bibuły z niewielkimi otworami oraz odwrócony lejek szklany. Zatyczkę lejka zrób z korka z waty. Parownicę umieść w płaszczu grzejnym. Po delikatnym ogrzaniu parownicy, pary substancji przechodzą przez otwory w bibule i kondensują na wewnętrznych ściankach lejka... Powyższy opis dotyczy metody oczyszczania naftalenu przez

A. sublimację
B. ługowanie
C. resublimację
D. krystalizację
Odpowiedź "sublimację" jest prawidłowa, ponieważ opisany proces polega na bezpośredniej przemianie naftalenu z fazy stałej w fazę gazową bez przechodzenia przez stan ciekły. W opisanym eksperymencie, po łagodnym ogrzaniu parownicy, naftalen sublimuje, a jego pary przechodzą przez otwory w bibule, a następnie kondensują na ściankach lejka szklanego. Sublimacja jest wykorzystywana w przemyśle chemicznym do oczyszczania substancji o niskich temperaturach topnienia oraz do separacji związków chemicznych. Przykładem zastosowania sublimacji w praktyce jest oczyszczanie substancji organicznych, takich jak jod czy naftalen, gdzie proces ten pozwala na uzyskanie czystszych produktów. W kontekście standardów laboratoryjnych, sublimacja jest uznawana za metodę o wysokiej skuteczności, zapewniającą minimalne straty materiałowe i pozwalającą na zachowanie właściwości chemicznych oczyszczanej substancji.

Pytanie 32

Jakie środki ochronne należy zastosować podczas sporządzania 1M roztworu zasady sodowej ze stężonego roztworu NaOH, na opakowaniu którego widnieje oznaczenie S/36/37/39?

Numer zwrotu SWarunki bezpiecznego stosowania
S36Używać odpowiedniej odzieży ochronnej
S37Używać odpowiednich rękawic
S38W przypadku niewystarczającej wentylacji używać sprzętu do oddychania
S39Używać okularów lub maski ochronnej

A. Odzież ochronną i maskę tlenową.
B. Odzież ochronną, rękawice i okulary ochronne.
C. Fartuch ochronny, rękawice i maskę tlenową.
D. Gumowe rękawice i maskę ochronną.
Odpowiedź 'Odzież ochronną, rękawice i okulary ochronne.' jest poprawna, ponieważ zgodnie z oznaczeniami S/36/37/39 na opakowaniu NaOH, wymagane są wymienione środki ochrony osobistej. Oznaczenie S36 wskazuje na obowiązek noszenia odzieży ochronnej, co ma na celu minimalizację kontaktu skóry z substancją chemiczną, która może być silnie żrąca. S37 sugeruje stosowanie rękawic ochronnych, które chronią dłonie przed skutkami kontaktu z niebezpiecznymi substancjami, a S39 odnosi się do konieczności używania okularów ochronnych lub maski, aby zapobiec dostaniu się substancji do oczu. W praktyce, stosowanie tych środków ochrony jest kluczowe podczas pracy z chemikaliami, aby zminimalizować ryzyko urazów i zapewnić bezpieczeństwo w laboratorium. Przykładowo, w laboratoriach chemicznych zaleca się także regularne szkolenia z zakresu BHP, które podkreślają znaczenie odpowiednich środków ochrony osobistej.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Substancje pomocnicze wykorzystywane do realizacji podstawowych analiz jakościowych i ilościowych, które nie wymagają wysokiej czystości, są oznaczane na opakowaniach symbolem

A. cz.d.a.
B. cz.ch.
C. techn.
D. cz.
Odpowiedzi "cz.ch.", "techn." oraz "cz.d.a." są błędne w kontekście pytania, ponieważ każda z tych terminologii odnosi się do innych klas substancji. Termin "cz.ch." odnosi się do substancji czystych chemicznie, które muszą spełniać wysokie standardy czystości i są używane w bardziej wymagających analizach, gdzie nawet najmniejsze zanieczyszczenia mogą wpływać na wyniki. W kontekście analiz jakościowych i ilościowych, wybór substancji czystych chemicznie w sytuacjach, gdy nie jest to wymagane, nie tylko zwiększa koszty, ale również komplikuje procedury laboratoryjne. Z kolei "techn." odnosi się do substancji technicznych, które mogą być używane w procesach przemysłowych, ale ich standardy czystości również mogą nie być odpowiednie dla analiz laboratoryjnych. Używanie takich substancji w analizach może prowadzić do zafałszowań wyników, co jest absolutnie niedopuszczalne w kontekście rzetelnych badań. Termin "cz.d.a." odnosi się do czystości dla analizy, co również oznacza wyższe wymagania dotyczące czystości, a więc nie pasuje do koncepcji substancji pomocniczych, które nie muszą spełniać tych standardów. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków to niepełne zrozumienie różnic w wymaganiach czystości oraz niewłaściwe przypisywanie terminów do kontekstu ich zastosowania w analizach chemicznych.

Pytanie 35

Na skutek krystalizacji 18 g kwasu benzoesowego uzyskano 8 g czystego produktu. Jaką wydajność miała ta krystalizacja?

A. 44,44%
B. 44,44 g
C. 2,25%
D. 2,25 g
Wydajność procesu krystalizacji oblicza się jako stosunek masy uzyskanego produktu do masy surowca, wyrażony w procentach. W tym przypadku, otrzymując 8 g czystego kwasu benzoesowego z 18 g użytego surowca, wydajność wynosi: (8 g / 18 g) * 100% = 44,44%. Taka wydajność jest ważna w kontekście procesów technologicznych, ponieważ pozwala ocenić, jak efektywnie surowce zostały wykorzystane. W praktyce, wysoka wydajność jest pożądana, ponieważ obniża koszty materiałowe i zwiększa rentowność produkcji. W kontekście przemysłu farmaceutycznego lub chemicznego, osiągnięcie wysokiej wydajności krystalizacji jest kluczowe dla zapewnienia czystości i jakości produktów końcowych, co odpowiada standardom takim jak GMP (Good Manufacturing Practices). Dodatkowo, analiza wydajności może pomóc w identyfikacji potencjalnych problemów w procesie produkcyjnym i dostosowywaniu parametrów, aby zoptymalizować proces.

Pytanie 36

Aby odcedzić galaretowaty osad, konieczne jest użycie sączka

A. średni
B. sztywny
C. utwardzony
D. miękki
Odpowiedź 'miękki' jest prawidłowa, ponieważ do przesączania galaretowatego osadu najlepiej zastosować sączek o właściwościach umożliwiających skuteczne oddzielanie cieczy od stałych cząstek. Miękkie sączki charakteryzują się zdolnością do wchłaniania większych cząstek, co czyni je odpowiednim wyborem w przypadku substancji o konsystencji galaretowatej. Przykładem sączków miękkich są te wykonane z papieru filtracyjnego, które mają wysoką porowatość i są w stanie zatrzymać cząstki, jednocześnie pozwalając na przepływ cieczy. W zastosowaniach laboratoryjnych, takie jak analiza chemiczna lub mikrobiologiczna, użycie odpowiednich sączków jest kluczowe dla uzyskania czystych i precyzyjnych wyników. Ponadto, użycie miękkiego sączka minimalizuje ryzyko uszkodzenia delikatnych cząstek, co jest istotne w przypadku analizy próbek, w których struktura materiału jest istotna dla dalszych badań. Zgodnie z normami ISO i dobrą praktyką laboratoryjną, dobór odpowiedniego sączka jest kluczowym etapem procesu filtracji.

Pytanie 37

Naczynia z roztworem kwasu siarkowego(VI) o dużym stężeniu nie powinny być pozostawiane otwarte nie tylko za względów bezpieczeństwa, ale także dlatego, że kwas

A. zmniejszy swoją masę, ponieważ jest higroskopijny
B. zwiększy swoje stężenie, ponieważ wyparuje woda
C. zwiększy swoją masę, ponieważ jest higroskopijny
D. zmniejszy swoją masę, ponieważ jest lotny
Odpowiedź jest poprawna, ponieważ stężony roztwór kwasu siarkowego(VI) jest substancją higroskopijną, co oznacza, że ma zdolność do absorbowania wilgoci z otoczenia. Gdy naczynie z takim roztworem jest otwarte, kwas siarkowy może wchłaniać pary wodne z powietrza, co prowadzi do zwiększenia jego masy. Jest to istotne z perspektywy bezpieczeństwa, ponieważ przyrost masy roztworu może wpływać na jego stężenie oraz właściwości chemiczne. Na przykład, w praktyce laboratoryjnej, jeżeli kwas siarkowy jest przechowywany w otwartych naczyniach, może dojść do niezamierzonego wzrostu stężenia kwasu, co zwiększa ryzyko reakcji niepożądanych. W przemyśle chemicznym, gdzie kwas siarkowy jest powszechnie stosowany, kluczowe jest przestrzeganie odpowiednich norm i procedur przechowywania, aby uniknąć niebezpiecznych sytuacji. Dobrą praktyką jest stosowanie szczelnych pojemników oraz regularne monitorowanie właściwości roztworów, co pozwala na zapewnienie ich stabilności i bezpieczeństwa użytkowania.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Do filtracji osadów drobnokrystalicznych wykorzystuje się filtry

A. sztywne, o najmniejszych porach
B. elastyczne, o najmniejszych porach
C. sztywne, o największych porach
D. elastyczne, o największych porach
Sączki twarde o najmniejszych porach są optymalnym wyborem do sączenia osadów drobnokrystalicznych, ponieważ ich struktura zapewnia skuteczne oddzielanie cząstek stałych od cieczy. Twardość materiału sączka pozwala na zachowanie stabilności mechanicznej podczas procesu filtracji, co jest kluczowe w wielu zastosowaniach laboratoryjnych i przemysłowych. Przykładowo, w laboratoriach chemicznych, gdzie często stosowane są różne metody analityczne, takie jak chromatografia czy spektroskopia, twarde sączki umożliwiają precyzyjne oczyszczanie próbek, eliminując drobne zanieczyszczenia, co wpływa na dokładność uzyskiwanych wyników. Dodatkowo, stosowanie sączków o najmniejszych porach jest zgodne z normami filtracji, które wymagają wykorzystania materiałów o odpowiednich właściwościach mechanicznych i chemicznych, aby zapewnić wysoką efektywność procesu oczyszczania i minimalizację straty substancji. W praktyce, sączki te są wykorzystywane w różnych branżach, w tym w farmacji, biotechnologii oraz przemysłach spożywczym, gdzie czystość produktu finalnego jest absolutnie kluczowa.

Pytanie 40

Aby przygotować 0,5 dm3 roztworu HCl o stężeniu 0,2 mol/dm3, jaką kolbę miarową o pojemności należy wykorzystać?

A. 500 cm3 oraz fiksanal zawierający 0,2 mol HCl
B. 1000 cm3 oraz dwa fiksanale zawierające po 0,1 mola HCl
C. 500 cm 3 oraz fiksanal zawierający 0,1 mola HCl
D. 0,5 dm3 oraz dwa fiksanale zawierające po 0,2 mola HCl
Odpowiedź jest poprawna, ponieważ przygotowanie 0,5 dm3 roztworu HCl o stężeniu 0,2 mol/dm3 wymaga zastosowania odpowiednich zasad obliczeń chemicznych. W tym przypadku, aby otrzymać roztwór o pożądanej objętości i stężeniu, musimy najpierw obliczyć liczbę moli kwasu chlorowodorowego potrzebnych do przygotowania takiego roztworu. Liczba moli obliczana jest ze wzoru: n = C × V, gdzie n to liczba moli, C to stężenie, a V to objętość. Dla tego zadania: n = 0,2 mol/dm3 × 0,5 dm3 = 0,1 mola. Zastosowanie kolby miarowej o pojemności 500 cm3, równoważnej 0,5 dm3, jest zatem odpowiednie, ponieważ po rozmieszaniu fiksanalu, który zawiera dokładnie 0,1 mola HCl, uzyskamy wymagane stężenie. Takie przygotowania są zgodne z dobrą praktyką laboratoryjną, zapewniając dokładność oraz powtarzalność wyników, co jest kluczowe w chemii analitycznej.