Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 7 kwietnia 2025 09:43
  • Data zakończenia: 7 kwietnia 2025 10:04

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W trakcie udzielania pierwszej pomocy, zgodnie z zasadą ABC (ang. Airways, breath, circulation), co należy wykonać w pierwszej kolejności?

A. masaż serca
B. sztuczne oddychanie
C. układanie w pozycji bocznej
D. udrożnienie dróg oddechowych
Udrożnienie dróg oddechowych jest kluczowym krokiem w udzielaniu pierwszej pomocy, zgodnym z regułą ABC, która podkreśla kolejność podejmowanych działań w sytuacjach zagrożenia życia. Drugi i trzeci element, czyli wentylacja i krążenie, są nieefektywne, jeśli drogi oddechowe są zablokowane. W praktyce, aby udrożnić drogi oddechowe, można zastosować technikę przechylania głowy do tyłu i unoszenia bródki, co ułatwia przepływ powietrza. W przypadku pacjentów nieprzytomnych, istotne jest również zastosowanie manewru żuchwy, aby usunąć wszelkie przeszkody, takie jak ciała obce. Standardy resuscytacji, takie jak wytyczne American Heart Association, jednoznacznie wskazują na to, iż przed rozpoczęciem wentylacji lub masażu serca, należy zawsze upewnić się, że drogi oddechowe są udrożnione. Takie podejście zwiększa szansę na skuteczną pomoc i minimalizuje ryzyko powikłań, takich jak niedotlenienie mózgu. W sytuacjach kryzysowych, gdzie każda sekunda ma znaczenie, umiejętność szybkiego i skutecznego udrożnienia dróg oddechowych jest nieoceniona.

Pytanie 2

Aby uzyskać najlepszą precyzję pomiaru napięcia wynoszącego około 110 mV, należy ustawić woltomierz na zakres

A. 300 mV
B. 150 mV
C. 1000 mV
D. 100 mV
Ustawienie zakresu woltomierza na 150 mV dla pomiaru napięcia o wartości około 110 mV zapewnia optymalne warunki do uzyskania najwyższej dokładności pomiaru. Woltomierze mają różne zakresy, które determinują ich czułość oraz dokładność. Ustawiając zakres na 150 mV, jesteśmy w stanie skorzystać z pełnej rezolucji instrumentu, co oznacza, że pomiar 110 mV będzie dokładnie reprezentowany w skali woltomierza. W praktyce, jeśli napięcie jest bliskie granicy zakresu, na przykład 100 mV, instrument może nie być w stanie dokładnie zarejestrować drobnych zmian w napięciu. Kolejnym aspektem jest minimalizacja błędów pomiarowych, które mogą występować przy pomiarze na wyższych zakresach, np. 1000 mV, gdzie rozdzielczość jest niższa, a pomiar może być obarczony większymi błędami. Takie podejście jest zgodne z dobrą praktyką pomiarową, która zaleca, aby zakres pomiarowy był jak najbliższy rzeczywistemu wartościowanemu napięciu, co pozwala na uzyskanie lepszej jakości pomiaru oraz precyzji.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Ochrona podstawowa (przed bezpośrednim kontaktem) w urządzeniach elektrycznych polega na użyciu

A. bezpieczników topikowych
B. transformatora separującego
C. izolowania części czynnych
D. wyłączników nadprądowych
Odpowiedzi takie jak zastosowanie bezpieczników topikowych, wyłączników nadprądowych czy transformatora separującego dotyczą różnych aspektów zabezpieczeń elektrycznych, ale nie są właściwym rozwiązaniem w kontekście ochrony podstawowej przed dotykiem bezpośrednim. Bezpieczniki topikowe pełnią funkcję ochrony przed przeciążeniem i zwarciem, jednak ich zadaniem nie jest izolacja części czynnych. Ich działanie opiera się na przepalaniu się elementu bezpiecznika w momencie, gdy prąd przekroczy określony poziom, co nie zapobiega bezpośredniemu kontaktowi z częściami pod napięciem. Wyłączniki nadprądowe również mają na celu ochronę przed skutkami zwarć i przeciążeń, ale znowu, nie izolują one części czynnych. Z kolei transformatory separujące są stosowane do galwanicznego oddzielenia obwodów, co może zwiększać bezpieczeństwo, ale nie jest to mechanizm ochrony przed dotykiem bezpośrednim. Często błędnym założeniem jest mylenie różnych form ochrony elektrycznej - niektórzy mogą sądzić, że jakiekolwiek zabezpieczenie przed przeciążeniem wystarczy do zminimalizowania ryzyka, podczas gdy kluczowym aspektem, który rzeczywiście chroni użytkownika przed bezpośrednim porażeniem, jest fizyczna separacja części czynnych za pomocą odpowiedniej izolacji. W profesjonalnym podejściu do projektowania układów elektrycznych, zgodnie z normami bezpieczeństwa, izolacja jest fundamentem, na którym opiera się cała koncepcja bezpiecznego użytkowania urządzeń elektrycznych.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Brak obrazu na ekranie wideodomofonu może być spowodowany

A. usterką podświetlaczy IRED kamery
B. zwarciem przewodu sygnałowego
C. awarią elektrozaczepu
D. polem elektromagnetycznym w okolicy sprzętu
Usterka elektrozaczepu nie ma bezpośredniego wpływu na przesyłanie sygnału wideo. Elektrozaczep odpowiada za otwieranie zamków i nie wpływa na działanie kamery ani monitorów wideodomofonu. Dlatego myślenie, że problemy z obrazem mogą wynikać z awarii elektrozaczepu, jest błędne i pokazuje brak zrozumienia prawidłowych funkcji poszczególnych komponentów systemu wideodomofonu. Jeśli chodzi o podświetlacze IRED kamery, ich usterka może spowodować gorszą widoczność w nocy, ale nie spowoduje całkowitego braku obrazu. W przypadku, gdy kamera nie jest w stanie przechwycić obrazu z powodu defektu podświetlaczy, zazwyczaj obraz będzie ciemny lub nieczytelny, a nie całkowicie nieobecny. Pole elektromagnetyczne w pobliżu urządzenia może wpływać na działanie niektórych elementów elektronicznych, jednak nie jest to typowa przyczyna braku obrazu na monitorze. W praktyce, zakłócenia elektromagnetyczne mogą powodować jedynie problemy z jakością sygnału, podczas gdy całkowite zablokowanie sygnału jest bardziej związane z uszkodzeniami w obwodach przesyłowych, jak w przypadku zwarcia kabla sygnałowego. Dlatego ważne jest, aby rozumieć, że różne elementy systemu wideodomofonu pełnią określone funkcje i ich awarie mają różne skutki.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Który z poniższych elementów elektronicznych jest najbardziej podatny na uszkodzenia w trakcie wymiany, jeśli osoba wymieniająca nie użyje opaski uziemiającej?

A. Tranzystor bipolarny
B. Dioda prostownicza
C. Tranzystor z izolowaną bramką
D. Rezystor mocy
Rezystory mocy, diody prostownicze i tranzystory bipolarne są mniej wrażliwe na uszkodzenia spowodowane wyładowaniami elektrostatycznymi w porównaniu do tranzystorów z izolowaną bramką. Rezystory mocy są zaprojektowane do rozpraszania dużych ilości energii i nie mają złożonej struktury elektronicznej jak IGBT, dlatego ich uszkodzenie wskutek ESD jest mniej prawdopodobne. Dioda prostownicza, choć również istotna w obwodach, ma prostą budowę i jest odporna na uszkodzenia statyczne, co czyni ją bardziej odporną na przypadkowe uszkodzenia podczas wymiany. Tranzystory bipolarne, mimo że mogą być uszkodzone przez ESD, nie są tak wrażliwe jak IGBT, ponieważ mają mniej skomplikowane struktury. Warto jednak pamiętać, że brak odpowiednich środków ochrony, takich jak opaski uziemiające, oznacza ryzyko uszkodzeń dla wszystkich komponentów elektronicznych. Użytkownicy powinni być świadomi znaczenia ESD i stosować odpowiednie procedury ochronne, aby uniknąć przypadkowych uszkodzeń, co jest zgodne z najlepszymi praktykami w branży elektronicznej.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

W telewizji używa się kabli o impedancji falowej wynoszącej

A. 100 Ω
B. 50 Ω
C. 120 Ω
D. 75 Ω
Kabel 75 Ω to taki standard w telewizji, zwłaszcza do przesyłania wideo. Dzięki wysokiej impedancji te kable mają mniejsze straty sygnału i lepiej się dopasowują, co jest istotne, gdy obraz leci na dużą odległość. Używa się ich w praktycznie każdym systemie telewizyjnym – od anten po różne urządzenia, nawet w instalacjach satelitarnych. Generalnie, jeśli chodzi o wysoka jakość sygnału, to kabli 75 Ω powinniśmy używać do przesyłania sygnałów wideo, aby zmniejszyć zakłócenia. Warto też pamiętać, że odpowiedni kabel ma ogromne znaczenie w telewizji, a normy międzynarodowe, jak IEC 61169, potwierdzają, że trzeba ich przestrzegać.

Pytanie 15

Stabilizator o symbolu LM7812 charakteryzuje się

A. nieregulowanym ujemnym napięciem na wyjściu
B. regulowanym dodatnim napięciem na wyjściu
C. regulowanym ujemnym napięciem na wyjściu
D. nieregulowanym dodatnim napięciem na wyjściu
Stabilizator LM7812 jest typowym stabilizatorem napięcia, który zapewnia stałe wyjściowe napięcie dodatnie o wartości 12V. Jest to model nieregulowany, co oznacza, że użytkownik nie ma możliwości dostosowania jego napięcia wyjściowego. Stabilizatory tego typu są powszechnie stosowane w różnych aplikacjach elektronicznych, gdzie wymagane jest zasilanie układów o stałym napięciu, takich jak mikroprocesory, moduły komunikacyjne, czy systemy zasilania w projektach DIY. LM7812 charakteryzuje się dużą prostotą w użyciu, a jego podłączenie wymaga jedynie kilku dodatkowych komponentów, jak kondensatory filtrujące na wejściu i wyjściu, które stabilizują napięcie i zapewniają odpowiednią jakość sygnału. Zgodnie z dobrymi praktykami, stabilizatory takie jak LM7812 są często wykorzystywane w zasilaczach laboratoryjnych, zasilaczach do projektów hobbystycznych oraz w urządzeniach przemysłowych, co czyni je niezawodnym wyborem dla inżynierów i konstruktorów.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

W trakcie diagnozowania awarii sprzętu RTV zasilanego prądem, należy korzystać z narzędzi

A. charakteryzujących się wysoką odpornością na uszkodzenia mechaniczne
B. posiadających adekwatną izolację dla napięcia
C. wykazujących odporność na wysokie temperatury
D. stworzonych z materiałów ze stali chromoniklowej
Odpowiednia izolacja napięciowa narzędzi używanych podczas diagnostyki sprzętu RTV pod napięciem jest kluczowa dla zapewnienia bezpieczeństwa technika oraz dla właściwego przeprowadzania prób i pomiarów. Narzędzia te powinny posiadać odpowiednie certyfikaty, które potwierdzają ich zdolność do pracy przy określonym napięciu. Na przykład, przy pracy z urządzeniami o napięciu do 1000 V, narzędzia muszą posiadać izolację o napięciu co najmniej 1000 V. Stosowanie narzędzi izolowanych minimalizuje ryzyko porażenia prądem, co jest zgodne z zaleceniami norm międzynarodowych, takich jak IEC 60900, dotyczących narzędzi ręcznych do pracy pod napięciem. Ważne jest, aby technicy pamiętali o regularnym sprawdzaniu stanu izolacji narzędzi, ponieważ ich uszkodzenie, np. pęknięcia lub zużycie, może znacznie zwiększyć ryzyko wypadków. Przykładem mogą być izolowane śrubokręty, które pozwalają na bezpieczne dokonywanie napraw bez ryzyka kontaktu z elementami pod napięciem.

Pytanie 18

Wykonano pomiar napięcia stałego za pomocą woltomierza cyfrowego w zakresie 20 V, uzyskując wynik 5 V. Błąd przyrządu wynosi ± 1 % ± 2 D, a pole odczytowe miernika to 3,5 cyfry. Która forma zapisu wyniku pomiaru jest właściwa?

A. U = (5,00 ± 0,05) V
B. U = (5,00 ± 0,01) V
C. U = (5,00 ± 0,02) V
D. U = (5,00 ± 0,07) V
Niepoprawne odpowiedzi wykazują pomyłki w obliczaniu błędów pomiarowych oraz ich interpretacji. W przypadku pierwszej koncepcji, błąd ± 0,05 V nie uwzględnia błędu stałego, co prowadzi do niedoszacowania niepewności wyniku. Przyjęcie tylko błędu procentowego na poziomie 1 % przy odczycie 5 V to niewystarczające podejście, ponieważ rzeczywisty błąd instrumentu obejmuje również komponent stały, który nie może być pominięty. W drugiej opcji, ± 0,02 V nie odzwierciedla rzeczywistej sytuacji, ponieważ jest to tylko błąd wynikający z błędu stałego, podczas gdy błąd procentowy nadal pozostaje ważny i musi być uwzględniony. Z kolei w trzeciej odpowiedzi podano zbyt niski błąd, co wynika z nieprawidłowych obliczeń, które nie sumują błędów w sposób właściwy. Wysoka jakość pomiarów wymaga uwzględnienia wszystkich źródeł niepewności, co jest kluczowym elementem standardów metrologicznych. Bez prawidłowego zrozumienia tych koncepcji, pomiary mogą prowadzić do błędnych wniosków oraz decyzji, co w profesjonalnych zastosowaniach, takich jak inżynieria, może mieć poważne konsekwencje. Kluczowe jest, aby każdy pomiar był dokumentowany z uwzględnieniem pełnej charakterystyki błędów, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 19

Która forma transmisji sygnału jest najbardziej odporna na zakłócenia elektromagnetyczne?

A. kabla koncentrycznego
B. skrętki ekranowanej
C. światłowodu
D. skrętki nieekranowanej
Skrętka nieekranowana, mimo że jest powszechnie stosowana w sieciach lokalnych, nie jest odpowiednia w kontekście odporności na zakłócenia elektromagnetyczne. Przewody te są podatne na różnego rodzaju interferencje, które mogą znacząco pogorszyć jakość sygnału. Ekranowana skrętka, choć lepsza od nieekranowanej, nie eliminuje całkowicie problemu zakłóceń, a jedynie ogranicza ich wpływ. W przypadku kabli koncentrycznych, choć oferują one lepszą ochronę przed zakłóceniami dzięki zastosowaniu ekranu, to ich konstrukcja i ograniczone możliwości transmisji danych sprawiają, że nie są one równie efektywne jak światłowody. Typowym błędem myślowym jest przekonanie, że ekranowanie wystarczy do zapewnienia odporności na zakłócenia, podczas gdy w rzeczywistości zakłócenia elektromagnetyczne mogą przenikać przez ekran i wpływać na sygnał. Również niektórzy użytkownicy mogą mylić wytrzymałość na zakłócenia z innymi parametrami, takimi jak koszt czy łatwość instalacji, co prowadzi do niepoprawnych wniosków o odpowiednich technologiach dla danego zastosowania. W środowiskach o wysokim poziomie zakłóceń, decyzja o wyborze odpowiedniej technologii transmisji powinna opierać się na dokładnej analizie wymagań oraz warunków, a światłowody stanowią najskuteczniejsze rozwiązanie w takich sytuacjach.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Podczas wymiany uszkodzonego kondensatora filtrującego w zasilaczu sieciowym, tak aby uniknąć zwiększenia tętnień na wyjściu oraz ryzyka uszkodzenia kondensatora z powodu przebicia, można wybrać element o

A. mniejszej pojemności i większym napięciu znamionowym
B. większej pojemności i większym napięciu znamionowym
C. większej pojemności i mniejszym napięciu znamionowym
D. mniejszej pojemności i mniejszym napięciu znamionowym
Wybór kondensatora o większej pojemności oraz o wyższym napięciu znamionowym w kontekście zasilaczy sieciowych jest zgodny z najlepszymi praktykami w dziedzinie elektroniki. Zwiększona pojemność kondensatora filtrującego poprawia zdolność do wygładzania napięcia wyjściowego, co jest kluczowe w zasilaczach przetwornicowych i liniowych, gdzie stabilność napięcia jest istotna dla prawidłowego działania podłączonych urządzeń. Przykład zastosowania to sytuacja, w której wymiana kondensatora w zasilaczu audio może poprawić jakość dźwięku przez redukcję tętnień. Ponadto, wyższe napięcie znamionowe zapewnia margines bezpieczeństwa, co zmniejsza ryzyko przebicia dielektryka kondensatora, szczególnie w aplikacjach, gdzie mogą występować skoki napięcia. Jakiekolwiek zmiany w parametrach kondensatorów filtrujących powinny być zgodne z wytycznymi producentów oraz normami, takimi jak IEC 60384, aby zapewnić bezpieczeństwo i niezawodność systemów elektronicznych.

Pytanie 23

Którą z poniższych czynności nie uznaje się za element konserwacji systemów alarmowych?

A. Montaż manipulatora
B. Sprawdzanie czujników
C. Weryfikacja powiadamiania
D. Zamiana akumulatora
Wymiana akumulatora, testowanie czujników oraz kontrola powiadamiania to działania, które są integralną częścią konserwacji instalacji alarmowych. Wymiana akumulatora jest kluczowa, ponieważ zapewnia zasilanie systemu w przypadku awarii zasilania głównego. Bez sprawnego akumulatora system alarmowy nie będzie mógł działać w sytuacjach kryzysowych, co zagraża bezpieczeństwu. Testowanie czujników jest równie istotne, ponieważ może ujawnić problemy z ich działaniem, takie jak zanieczyszczenia czy uszkodzenia mechaniczne. Regularne testy pozwalają również na weryfikację, czy czujniki reagują odpowiednio na bodźce, co jest kluczowe dla skuteczności systemu. Kontrola powiadamiania to także istotny aspekt, który zapewnia, że wszystkie elementy systemu komunikacyjnego działają prawidłowo, co jest kluczowe w sytuacjach alarmowych. Ignorowanie tych czynności konserwacyjnych może prowadzić do poważnych usterek systemu i osłabienia jego funkcji ochronnych. Zatem, mylne jest myślenie, że montaż manipulatora może być porównywany z tymi działaniami konserwacyjnymi, gdyż jest to czynność związana z instalacją, a nie z bieżącym utrzymaniem systemu w należytym stanie operacyjnym.

Pytanie 24

W jaki sposób należy zrealizować połączenie uszkodzonego kabla koncentrycznego, który prowadzi do odbiornika sygnału telewizyjnego, aby miejsce złączenia wprowadzało minimalne tłumienie?

A. Skręcając żyłę sygnałową i ekran w miejscu uszkodzenia
B. Łącząc żyłę sygnałową i ekran przy użyciu tulejek zaciskowych
C. Lutując żyłę sygnałową i ekran w miejscu uszkodzenia
D. Łącząc żyłę sygnałową i ekran przy pomocy złącza typu F
Lutowanie rdzenia i oplotu w miejscu przerwania, choć może wydawać się praktycznym rozwiązaniem, nie jest zalecane w przypadku kabli koncentrycznych. Lutowanie może wprowadzić dodatkowe tłumienie sygnału z powodu zmian w impedancji, które mogą wystąpić na skutek niewłaściwego lutowania lub nieodpowiednich materiałów. Ponadto, w miejscach lutowania mogą pojawiać się zjawiska termiczne, które wpływają na jakość połączenia, w tym na trwałość samego kabla. Skręcanie rdzenia i oplotu to kolejna metoda, która, mimo że może być szybka i łatwa w zastosowaniu, prowadzi do niestabilnych połączeń. Takie połączenie jest bardziej narażone na zakłócenia elektromagnetyczne oraz wpływ warunków atmosferycznych, co może znacząco obniżyć jakość sygnału. Użycie tulejek zaciskowych również nie jest optymalne, ponieważ nie zapewnia odpowiedniego kontaktu elektrycznego, co może prowadzić do utraty sygnału w czasie. Rekomendowane standardy w branży telekomunikacyjnej, takie jak normy IEC dotyczące instalacji antenowych, wskazują na używanie złączy typu F jako najlepszego rozwiązania, co powinno skłonić profesjonalistów do unikania innych metod łączenia kabli koncentrycznych. W kontekście praktycznym, dobór odpowiedniej metody łączenia może znacząco wpłynąć na jakość odbioru sygnału telewizyjnego, dlatego warto stosować najnowsze standardy i technologie w celu zapewnienia optymalnej wydajności.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Podczas instalacji kabla krosowego w przyłączach gniazd nie można pozwolić na rozkręcenie par przewodów na odcinku większym niż 13 mm, ponieważ

A. nastąpi wzrost jego impedancji
B. zredukowana zostanie jego impedancja
C. kabel stanie się źródłem intensywniejszego pola elektromagnetycznego
D. może to prowadzić do obniżenia odporności na zakłócenia
Odpowiedź prawidłowa wskazuje, że rozkręcanie par przewodów na odcinku większym niż 13 mm może doprowadzić do zmniejszenia odporności na zakłócenia. W przypadku kabli krosowych, które są stosowane w systemach telekomunikacyjnych i sieciach komputerowych, ważne jest, aby zachować odpowiednią długość skręcenia przewodów w parze. Skręcenie przewodów w parze ma na celu zminimalizowanie wpływu zakłóceń elektromagnetycznych, które mogą pochodzić z otoczenia lub innych urządzeń. Dobre praktyki zalecają, aby długość rozkręcenia nie przekraczała 13 mm, ponieważ dłuższe odcinki mogą prowadzić do zwiększenia indukcyjności i zmniejszenia zdolności do tłumienia zakłóceń. W kontekście standardów, takich jak TIA/EIA-568, istotne jest, aby stosować się do takich wytycznych, aby zapewnić wysoką jakość transmisji danych i zminimalizować ryzyko utraty sygnału. Przykładem zastosowania tych zasad jest instalacja sieci LAN w biurze, gdzie właściwe skręcenie przewodów zapewnia stabilny i szybki transfer danych.

Pytanie 28

Aby podłączyć monitor do jednostki centralnej, należy użyć interfejsu

A. USB
B. SATA
C. D-SUB 15
D. IDE
Interfejs D-SUB 15, znany również jako VGA (Video Graphics Array), jest standardowym złączem stosowanym do przesyłania sygnału wideo z jednostki centralnej do monitora. To złącze umożliwia przesyłanie analogowego sygnału wideo, co czyni je jednym z najczęściej stosowanych rozwiązań w przypadku starszych monitorów oraz projektorów. D-SUB 15 jest zaprojektowany do obsługi rozdzielczości do 640x480 pikseli przy 60 Hz, a w przypadku nowszych technologii może obsługiwać wyższe rozdzielczości, chociaż z ograniczeniami wynikającymi z analogowej natury sygnału. W praktyce, aby prawidłowo podłączyć monitor z interfejsem D-SUB 15, użytkownik powinien upewnić się, że zarówno jednostka centralna, jak i monitor mają odpowiednie złącza. D-SUB 15 jest powszechnie stosowany w różnych zastosowaniach, takich jak prezentacje multimedialne czy w biurach, gdzie starsze technologie nadal są w użyciu.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Zjawiska elektryczne w atmosferze mogą powodować indukowanie niepożądanych napięć, które mają wpływ na parametry anteny, co skutkuje

A. zmianą długości oraz powierzchni skutecznej
B. spadkiem impedancji wejściowej
C. zniekształceniem charakterystyki kierunkowej
D. spadkiem rezystancji promieniowania
Wiele osób może mylnie utożsamiać wpływ wyładowań atmosferycznych na anteny z innymi parametrami, takimi jak impedancja wejściowa czy rezystancja promieniowania. Zmniejszenie impedancji wejściowej anteny nie jest bezpośrednio związane z wpływem wyładowań, ponieważ te zmiany są zazwyczaj wynikiem modyfikacji konstrukcyjnych lub zmiany materiałów, z których antena jest zbudowana. Rezystancja promieniowania odnosi się do efektywności radia w promieniowaniu sygnału, co również nie jest bezpośrednio dotknięte przez wyładowania atmosferyczne. Zmiany długości i powierzchni skutecznej anteny mogą wystąpić w wyniku fizycznych uszkodzeń, ale nie są typowym wynikiem oddziaływań elektrycznych. Typowym błędem myślowym jest zrozumienie wyładowań atmosferycznych jako wpływających na parametry statyczne anteny, podczas gdy w rzeczywistości ich głównym efektem jest dynamiczne zniekształcanie charakterystyki kierunkowej, co zmienia sposób, w jaki antena odbiera lub emituje sygnał. Dlatego kluczowe jest, aby specjalista w dziedzinie telekomunikacji rozumiał mechanizmy wpływu zjawisk atmosferycznych na systemy antenowe i wiedział, jak stosować odpowiednie zabezpieczenia zgodne z najlepszymi praktykami branżowymi.

Pytanie 31

Co należy zrobić jako pierwsze, gdy u pacjenta występuje zatrzymanie akcji serca oraz brak oddechu?

A. umożliwić położenie na boku
B. podać leki
C. sprawdzić drożność dróg oddechowych
D. wykonać sztuczne oddychanie oraz masaż serca
Nieprawidłowe podejście do sytuacji zatrzymania akcji serca i braku oddechu, takie jak umożliwienie leżenia na boku, brakuje kluczowego elementu pierwszej pomocy, którym jest zapewnienie drożności dróg oddechowych. Pozycja na boku, mimo że może być stosowana w innych przypadkach, nie jest odpowiednia w sytuacji, gdy osoba nie oddycha i ma zatrzymaną akcję serca. Kiedy osoba jest nieprzytomna i nie oddycha, kluczowe jest natychmiastowe udrożnienie dróg oddechowych, co jest niezbędne dla skutecznej wentylacji. Wiele osób myli również kolejność działań, sądząc, że sztuczne oddychanie i masaż serca powinny być wykonywane bezpośrednio, zanim drożność dróg oddechowych zostanie zapewniona. Jednak w rzeczywistości, jeśli drogi oddechowe są zablokowane, sztuczne oddychanie nie przyniesie oczekiwanego efektu, a masaż serca również nie będzie skuteczny. Podawanie leków w takiej sytuacji jest również błędne, ponieważ w przypadku zatrzymania akcji serca natychmiastowe działania mają na celu przywrócenie krążenia i wentylacji, a leki mogą być stosowane dopiero po tych podstawowych czynnościach. Wreszcie, kluczowym błędem myślowym w takich sytuacjach jest niedocenianie znaczenia wstępnej oceny stanu poszkodowanego przed podjęciem decyzji o dalszych krokach, co jest fundamentalną częścią standardów resuscytacji.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Czy światło słoneczne może doprowadzić do utraty danych w pamięci rodzaju

A. EPROM
B. DRAM
C. SDRAM
D. EEPROM
EPROM (Erasable Programmable Read-Only Memory) to rodzaj pamięci, która może być programowana oraz kasowana za pomocą światła ultrafioletowego. W przeciwieństwie do pamięci EEPROM czy DRAM, EPROM jest pamięcią nieulotną, co oznacza, że zachowuje swoje dane nawet po odłączeniu zasilania. Jednakże, jej zawartość można usunąć poprzez wystawienie na działanie promieniowania UV. To sprawia, że EPROM jest stosunkowo łatwa do kasowania i programowania, co jest przydatne w aplikacjach, gdzie dane muszą być często aktualizowane, ale również wymagają długoterminowego przechowywania. Przykład zastosowania EPROM to w systemach wbudowanych, gdzie może być używana do przechowywania oprogramowania, które wymaga aktualizacji. W branży elektronicznej, standardy zalecają stosowanie pamięci EPROM w urządzeniach, które nie wymagają częstej wymiany danych, ale potrzebują elastyczności w programowaniu. Cały proces programowania i kasowania jest zgodny z dobrymi praktykami inżynierskimi, zapewniając długowieczność i niezawodność sprzętu.

Pytanie 34

Na diagramie blokowym struktury wewnętrznej mikroprocesora symbol ALU oznacza

A. zewnętrzną pamięć operacyjną
B. jednostkę arytmetyczno-logiczną
C. mikroprocesor wykonany w technologii krzemowo-aluminiowej
D. rejestr akumulatora
Odpowiedź 'jednostka arytmetyczno-logiczna' (ALU) jest prawidłowa, ponieważ ALU stanowi kluczowy komponent mikroprocesora odpowiedzialny za wykonywanie operacji arytmetycznych, takich jak dodawanie i odejmowanie, oraz operacji logicznych, takich jak AND, OR i NOT. ALU przyjmuje dane wejściowe, wykonuje na nich odpowiednie operacje, a następnie zwraca wyniki. Przykładowo, w procesach obliczeniowych, takich jak obliczanie wartości matematycznych lub przetwarzanie logiki warunkowej w programach, ALU odgrywa nieodzowną rolę. Standardy projektowania mikroprocesorów, takie jak architektura von Neumanna, uwzględniają ALU jako centralny element, co podkreśla jego znaczenie w nowoczesnych systemach komputerowych. Również w kontekście programowania niskopoziomowego, zrozumienie działania ALU pozwala na efektywniejsze pisanie kodu maszynowego i optymalizację algorytmów obliczeniowych.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Maksymalny poziom natężenia dźwięku w biurze dla osoby zajmującej się projektowaniem układów elektronicznych, zgodnie z obowiązującymi normami, nie powinien przekraczać wartości

A. 25 dB
B. 35 dB
C. 45 dB
D. 55 dB
Wybór wartości 25 dB jako dopuszczalnego poziomu hałasu w biurze jest nieodpowiedni, ponieważ jest to wartość znacznie poniżej normy akceptowanej w kontekście biur. Poziom 25 dB odpowiada bardzo cichym pomieszczeniom, takim jak biblioteki czy ciche strefy w mieszkaniach, gdzie występuje minimalna akustyka. W środowisku biurowym, gdzie pracownicy korzystają z komputerów, prowadzą rozmowy telefoniczne lub współpracują z innymi, dźwięki te generują hałas, który naturalnie podnosi poziom hałasu do wartości powyżej 25 dB. Wartość 45 dB również jest nieadekwatna, ponieważ jest zbyt niska dla standardowego biura, w którym dźwięki mogą generować różne urządzenia biurowe oraz aktywność ludzi. Przyjęcie 35 dB jako dopuszczalnej wartości również nie uwzględnia realistycznych warunków biurowych, w których poziom hałasu często przekracza tę wartość, co może prowadzić do obniżonej efektywności pracy oraz dyskomfortu. Kluczowe jest, aby zrozumieć, że normy dotyczące hałasu w miejscu pracy są ustalane po to, aby promować zdrowe i sprzyjające efektywności środowisko pracy, gdzie wartości powyżej 55 dB są powszechnie akceptowane jako dopuszczalne w typowych biurach. Niezrozumienie tych standardów może prowadzić do nieodpowiednich warunków pracy oraz negatywnych skutków zdrowotnych dla pracowników.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Warystor to komponent, który zabezpiecza urządzenia elektroniczne przed skutkami działania

A. wyładowań atmosferycznych.
B. opadów deszczu.
C. niskich temperatur.
D. promieniowania X.
Warystor, znany również jako rezystor nieliniowy, to element elektroniczny, który chroni urządzenia przed przepięciami, zwłaszcza wyładowaniami atmosferycznymi. Działa na zasadzie zmiany swojej rezystancji w zależności od napięcia, co pozwala na skuteczne odprowadzanie nadmiaru energii. W praktyce warystory są powszechnie stosowane w zasilaczach, urządzeniach elektronicznych oraz systemach telekomunikacyjnych, gdzie mogą zapobiegać uszkodzeniom spowodowanym nagłymi wzrostami napięcia. Standardy takie jak IEC 61000-4-5 dotyczą ochrony przed przepięciami, a warystory są kluczowymi komponentami w spełnianiu tych norm. Dzięki swoim właściwościom, warystory mogą znacznie zwiększyć niezawodność sprzętu, co jest szczególnie istotne w branżach, gdzie przerwy w działaniu mogą prowadzić do dużych strat finansowych. Warto również zauważyć, że odpowiedni dobór warystora do konkretnej aplikacji, w tym jego napięcia przebicia i charakterystyki prądowej, ma kluczowe znaczenie dla skuteczności ochrony.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.