Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 14 maja 2025 07:15
  • Data zakończenia: 14 maja 2025 07:36

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Korzystając z danych zawartych w tabeli wskaż najmniejszą dopuszczalną grubość tynku z izolacją termiczną.

Grubości tynkówŚrednia grubość
w [mm]
Dopuszczalna
najmniejsza grubość
w [mm]
dla tynków zewnętrznych2015
dla tynków wewnętrznych1510
dla jednowarstwowych tynków wewnętrznych z fabrycznie suchej zaprawy105
dla jednowarstwowych tynków chroniących przed wodą z fabrycznie suchej zaprawy1510
dla tynków z izolacją termicznązależnie od
wymagań
20

A. 10 mm
B. 20 mm
C. 5 mm
D. 15 mm
Wybierając odpowiedź 20 mm, wskazujesz na zgodność z wymaganiami dotyczącymi tynków z izolacją termiczną. Zgodnie z danymi zawartymi w tabeli, ta wartość jest najmniejszą dopuszczalną grubością, co jest kluczowe dla zapewnienia odpowiednich właściwości izolacyjnych. Tynki o grubości 20 mm są zgodne z normami budowlanymi, które określają minimalne parametry dla zapewnienia efektywności energetycznej budynków. Przykładowo, w budownictwie pasywnym, odpowiednia grubość izolacji jest niezbędna do osiągnięcia niskiego zapotrzebowania na energię do ogrzewania. Warto także zwrócić uwagę na to, że zbyt cienkie warstwy tynku mogą prowadzić do mostków termicznych, co skutkuje stratami ciepła oraz zwiększonymi kosztami ogrzewania. Dlatego też, stosowanie tynków o grubości 20 mm jest zasadne z perspektywy zarówno efektywności energetycznej, jak i długoterminowej trwałości budynku.

Pytanie 2

Na podstawie danych zawartych w tabeli wskaż, ile wody należy użyć do przygotowania 2 m3 zaprawy wapiennej o proporcji objętościowej składników 1:3 z użyciem ciasta wapiennego.

Proporcje i ilość składników na 1 m3 zaprawy wapiennej
Stosunek objętościowy wapna do piaskuMarka zaprawy MPaCiasto wapienne m3Piasek m3Woda dm3
1 : 1,50,40,5100,76537
1 : 20,40,4300,86050
1 : 30,40,3200,960100
1 : 3,50,20,2800,980130
1 : 4,50,20,2241,010166

A. 100 dm3
B. 200 dm3
C. 50 dm3
D. 300 dm3
Wybór innej odpowiedzi może wynikać z błędnych założeń dotyczących proporcji składników zaprawy wapiennej. Na przykład, wybór 300 dm3 sugeruje, że użytkownik mógł pomyśleć, że potrzeba więcej wody niż w rzeczywistości, co może wskazywać na nieprawidłowe zrozumienie proporcji. W przypadku zaprawy o proporcji 1:3, gdzie wskazano, że na każdy metr sześcienny zaprawy przypada określona ilość wody, kluczowe jest, aby pamiętać, że zwiększenie objętości zaprawy o 100% wiąże się z proporcjonalnym zwiększeniem ilości wody. Z kolei odpowiedzi takie jak 50 dm3 lub 100 dm3 mogą wynikać z ogólnych błędów w obliczeniach, które mogą być spowodowane niezrozumieniem, jak ważne jest zachowanie proporcji przy tworzeniu zaprawy. Typowym błędem jest także nieodpowiednie sumowanie ilości wymaganych składników, co prowadzi do niewłaściwych wniosków. W praktyce budowlanej, właściwe obliczenia są kluczowe, aby uniknąć problemów z jakością zaprawy, co w dłuższej perspektywie może prowadzić do kosztownych napraw i przestojów w pracy. Aby uniknąć takich błędów, warto stosować się do dedykowanych norm i wytycznych, które precyzyjnie określają wymagane proporcje dla różnych typów zapraw.

Pytanie 3

Jaką ilość kg suchej mieszanki trzeba zakupić do realizacji tynku gipsowego o grubości 10 mm na powierzchni 15 m2, jeżeli zużycie wynosi 1 kg na m2 przy grubości 1 cm?

A. 1,5 kg
B. 15,0 kg
C. 25,0 kg
D. 2,5 kg
Aby obliczyć ilość suchej mieszanki potrzebnej do wykonania tynku gipsowego o grubości 10 mm na powierzchni 15 m2, należy zacząć od przeliczenia grubości tynku z milimetrów na centymetry. Grubość 10 mm to 1 cm. Znając zużycie mieszanki, które wynosi 1 kg na m2 przy grubości 1 cm, możemy łatwo obliczyć całkowite zużycie na 15 m2. Wzór jest następujący: 1 kg/m2 * 15 m2 = 15 kg. Takie obliczenie jest zgodne z obowiązującymi standardami budowlanymi i praktyką w zakresie tynkowania. Warto pamiętać, że dokładność w obliczeniach jest kluczowa, aby uniknąć niedoboru materiału, co mogłoby prowadzić do opóźnień w pracy. W praktyce często stosuje się również margines zapasu, zwłaszcza w przypadku większych projektów budowlanych, aby zminimalizować ryzyko przestojów związanych z brakiem materiałów. Dlatego, w tym przypadku, 15,0 kg to optymalna ilość do zakupu.

Pytanie 4

Jaki będzie koszt brutto produkcji 20 m3 mieszanki betonowej, jeżeli cena za 1 m3 wynosi 200 zł netto i obowiązuje podstawowa stawka VAT w wysokości 23%?

A. 4000 zł
B. 5412 zł
C. 4920 zł
D. 4400 zł
Aby obliczyć wartość brutto produkcji 20 m3 mieszanki betonowej, należy najpierw obliczyć koszt netto tej ilości. Koszt wyprodukowania 1 m3 mieszanki betonowej wynosi 200 zł, więc koszt netto dla 20 m3 wyniesie 200 zł/m3 * 20 m3 = 4000 zł. Następnie, aby uzyskać wartość brutto, należy dodać do kosztu netto podatek VAT wynoszący 23%. Obliczamy wartość VAT: 4000 zł * 0,23 = 920 zł. Wartość brutto to zatem: 4000 zł + 920 zł = 4920 zł. W praktyce, znajomość obliczania wartości brutto jest kluczowa w branży budowlanej, ponieważ pozwala na prawidłowe ustalanie kosztów projektów oraz wystawianie faktur. Dobrze jest mieć świadomość przepisów VAT, aby unikać problemów prawnych związanych z nieprawidłowym naliczaniem podatków. Warto także pamiętać, że błędne obliczenia mogą prowadzić do strat finansowych w firmach budowlanych.

Pytanie 5

W jakiej lokalizacji należy umieścić izolację cieplną przegrody w budynku mieszkalnym?

A. na tej stronie przegrody, gdzie przeważa wyższa temperatura
B. na tej stronie przegrody, gdzie przeważa niższa temperatura
C. na obydwu stronach przegrody
D. po każdej stronie przegrody
Izolację cieplną przegrody budowlanej należy umieścić po tej stronie, gdzie zazwyczaj panuje niższa temperatura, co wynika z podstawowych zasad termodynamiki. Celem izolacji jest ograniczenie wymiany ciepła pomiędzy wnętrzem budynku a jego otoczeniem. W praktyce oznacza to, że w zimie izolacja powinna być umieszczona od strony zewnętrznej, aby zminimalizować straty ciepła do chłodniejszego otoczenia. W lecie, natomiast, izolacja ma za zadanie chronić przed nagrzewaniem się wnętrza, dlatego również w tym przypadku ważne jest, aby znajdowała się po stronie, gdzie temperatura zewnętrzna jest wyższa. Przy projektowaniu budynków mieszkalnych kluczowe jest uwzględnienie lokalnych warunków klimatycznych oraz standardów budowlanych, takich jak norma PN-EN 13162, która określa wymagania dla materiałów izolacyjnych. Przykład praktyczny to domy jednorodzinne, w których stosowanie izolacji termicznej po stronie północnej, gdzie temperatura jest zazwyczaj niższa, pozwala na znaczną poprawę efektywności energetycznej budynku.

Pytanie 6

Czym jest spoiwo mineralne hydrauliczne?

A. gips hydrauliczny
B. cement hutniczy
C. wapno hydratyzowane
D. wapno dolomitowe
Cement hutniczy jest spoiwem mineralnym hydraulicznym, co oznacza, że ma zdolność do twardnienia pod wpływem wody, nawet w warunkach wilgotnych. Jest to szczególnie ważne w budownictwie oraz inżynierii lądowej, gdzie często mamy do czynienia z konstrukcjami narażonymi na działanie wody. Cement hutniczy, zwany również cementem żużlowym, powstaje z mieszania klinkieru cementowego z żużlem wielkopiecowym, co nadaje mu wyjątkowe właściwości, takie jak zwiększona odporność na działanie wody i chemikaliów. W praktyce, cement hutniczy jest stosowany do budowy fundamentów, konstrukcji podziemnych oraz obiektów hydrotechnicznych, takich jak tamy i zbiorniki. Ponadto, jego właściwości pozwalają na zmniejszenie emisji CO2 w procesie produkcji, co jest zgodne z aktualnymi trendami zrównoważonego budownictwa oraz standardami ekologicznymi. Wybór cementu hutniczego jako spoiwa hydraulicznego jest zatem uzasadniony zarówno z punktu widzenia technicznego, jak i ekologicznego.

Pytanie 7

Na podstawie danych zawartych w tabeli oblicz, ile worków zaprawy murarskiej będzie potrzebnych do wymurowania ściany o długości 4,0 m, wysokości 2,5 m i grubości 1 cegły.

Zużycie zaprawy z 25-kilogramowego worka
Rodzaj ścianyPowierzchnia ściany
dla grubości ściany (z cegły pełnej) 1/2 cok. 0,33 m²
grubości 1 cok.0,16 m²
grubości 1 ½cok. 0,11 m²
grubości 2 cok. 0,08 m²

A. 93 szt.
B. 40 szt.
C. 16 szt.
D. 63 szt.
Żeby policzyć, ile worków zaprawy murarskiej potrzebujemy do wymurowania ściany, najpierw musimy określić jej powierzchnię. Mamy ścianę, która ma 4,0 m długości i 2,5 m wysokości. Więc robimy obliczenia: 4,0 m * 2,5 m = 10 m². Następnie trzeba wiedzieć, ile m² pokryjemy z jednego worka zaprawy. Z reguły to około 0,16 m² z worka. Teraz dzielimy powierzchnię ściany przez to, co pokrywa jeden worek: 10 m² / 0,16 m², co daje 62,5. Ostatecznie zaokrąglamy to do 63 worków. To ważne, żeby dobrze to obliczyć, bo jak źle oszacujemy, to może być opóźnienie w pracy i dodatkowe koszty. Zastosowanie norm, jak PN-EN 998-2, daje pewność, że wszystko będzie solidne i trwałe. Wiedza o tym, jak obliczać materiały, jest ważna nie tylko dla wykonawców, ale także dla inwestorów, żeby dobrze planować budżet budowlany.

Pytanie 8

Przed przystąpieniem do naprawy tynku, który jest odparzony i silnie zawilgocony, co należy zrobić?

A. osuszyć miejsca zawilgocone oraz odparzone i zagruntować je emulsją gruntującą
B. pokryć całą powierzchnię tynku preparatem hydrofobowym
C. pokryć całą powierzchnię tynku mleczkiem cementowym
D. skuć tynk w miejscach zawilgoconych oraz odparzonych i osuszyć mur
Zastosowanie preparatów hydrofobowych na całej powierzchni tynku jest nieodpowiednią reakcją na problem zawilgocenia i odparzania. Tego typu środki są projektowane do zabezpieczania od zewnątrz, jednak w przypadku już uszkodzonego tynku nie zaadoptują się one do struktury, co może prowadzić do dalszych uszkodzeń. Hydrofobizacja nie usunie istniejącej wilgoci, a jedynie zatrzyma ją wewnątrz, co zwiększa ryzyko powstawania pleśni i grzybów. Z kolei pokrycie tynku mleczkiem cementowym może wydawać się rozwiązaniem, ale również nie rozwiązuje problemu wilgoci, a właściwie może prowadzić do zaparcia wilgoci w murze, co w dłuższej perspektywie prowadzi do zniszczenia struktury tynku. Dodatkowo, osuszanie miejsc zawilgoconych oraz odparzonych i gruntowanie ich emulsją gruntującą jest niewłaściwe, jeśli nie zostanie przeprowadzone skucie tynku. Tego typu podejście pomija kluczowy krok w procesie naprawy, jakim jest usunięcie uszkodzonej warstwy, a tym samym zwiększa ryzyko niepowodzenia całej reperacji. W praktyce budowlanej nie ma efektywnego sposobu na naprawę tynku bez wcześniejszego usunięcia jego zniszczonej warstwy.

Pytanie 9

Do jakich zastosowań należy używać zapraw szamotowych?

A. do wykonywania posadzek na gruncie
B. do mocowania izolacji termicznych w ścianach
C. do realizacji tynków w pomieszczeniach sanitarnych
D. do łączenia ceramicznych elementów palenisk
Zaprawy szamotowe są specjalistycznymi materiałami stosowanymi przede wszystkim w budowie pieców i kominków. Ich głównym zastosowaniem jest łączenie ceramicznych elementów palenisk, co jest kluczowe ze względu na wysokie temperatury, którym są one poddawane. Zaprawy te charakteryzują się doskonałą odpornością na działanie wysokich temperatur oraz na zmiany termiczne, co sprawia, że idealnie nadają się do stosowania w miejscach, gdzie występuje intensywne ciepło. W praktyce, zaprawy szamotowe często stosuje się w piecach kaflowych, gdzie łączą one elementy ceramiczne, zapewniając szczelność oraz trwałość konstrukcji. Dodatkowo, zgodnie z normami budowlanymi, zaprawy te muszą spełniać określone wymogi dotyczące odporności na ogień i trwałości, co czyni je niezastąpionymi w budownictwie kominkowym i piecowym. Warto również pamiętać, że stosując zaprawy szamotowe, należy przestrzegać zasad ich aplikacji, takich jak odpowiednie proporcje składników oraz techniki nakładania, co wpływa na ich efektywność i żywotność.

Pytanie 10

Aby zrealizować izolację termiczną ścian, należy wykorzystać

A. wełnę mineralną, masy bitumiczne
B. styropian, papę
C. styropian, wełnę mineralną
D. wełnę mineralną, emulsję asfaltową
Izolacja cieplna ścian jest kluczowym elementem skutecznego zarządzania energią w budynków. Wybór odpowiednich materiałów izolacyjnych, takich jak styropian i wełna mineralna, wynika z ich doskonałych właściwości termoizolacyjnych. Styropian, znany z niskiego współczynnika przewodzenia ciepła, jest lekki, łatwy w obróbce i stosunkowo tani. Jego zastosowanie w izolacji ścian zewnętrznych pozwala na znaczną redukcję strat ciepła, co przekłada się na niższe koszty ogrzewania. Wełna mineralna z kolei charakteryzuje się nie tylko dobrą izolacyjnością termiczną, ale również akustyczną, a także odpornością na ogień. Dzięki tym właściwościom, stosowanie obu materiałów w połączeniu pozwala na stworzenie kompleksowego systemu izolacji, który nie tylko poprawia komfort cieplny, ale także spełnia wymagania norm budowlanych i standardów efektywności energetycznej, takich jak np. normy PN-EN 13162 dla styropianu. W praktyce, użycie tych materiałów może być różnorodne, od prostych ścian jednowarstwowych po bardziej skomplikowane systemy ociepleń budynków wielokondygnacyjnych.

Pytanie 11

Czym jest spoiwo w betonie zwykłym?

A. cement
B. wapno
C. gips
D. asfalt
Wybór gipsu jako spoiwa w betonie zwykłym jest błędny z kilku powodów. Gips jest materiałem, który ma zastosowanie głównie w budownictwie wykończeniowym, głównie jako składnik mas szpachlowych oraz do produkcji płyt gipsowo-kartonowych. Jego właściwości wiążące są znacznie mniej trwałe niż cement, co ogranicza jego użycie w konstrukcjach, gdzie wymagana jest wysoka wytrzymałość. Asfalt, z drugiej strony, jest materiałem stosowanym głównie w nawierzchniach drogowych i nie ma zastosowania w betonie zwykłym. Jego funkcja polega na tworzeniu elastycznych warstw, które są odporne na ruch pojazdów, a nie na tworzenie trwałych elementów konstrukcyjnych. Wapno, mimo że jest spoiwem stosowanym w niektórych rodzajach betonu, nie jest odpowiednie dla betonu zwykłego, ponieważ nie zapewnia takiej samej wytrzymałości jak cement. Wapno reaguje z wodą w sposób, który jest bardziej odpowiedni dla materiałów o zastosowaniach dekoracyjnych lub w budownictwie tradycyjnym. Wybór niewłaściwego spoiwa może prowadzić do wielu problemów, takich jak pęknięcia, kruchość i skrócenie żywotności konstrukcji. Dlatego ważne jest, aby stosować materiały zgodne z aktualnymi normami budowlanymi oraz posiadające certyfikaty jakości, co jest kluczowe dla zapewnienia bezpieczeństwa i trwałości budowli.

Pytanie 12

Oblicz, ile cegieł dziurawek trzeba przygotować do budowy dwóch ścianek działowych o wymiarach 2,4×6,0 m i grubości 25 cm każda, jeśli norma zużycia tych cegieł to 93,40 szt./m2?

A. 2690 sztuk
B. 1401 sztuk
C. 1345 sztuk
D. 2801 sztuk
Podczas rozwiązywania tego zadania niektórzy mogą popełnić błędy w obliczeniach powierzchni. Na przykład, niewłaściwe zrozumienie wymiarów ściany, takie jak pomylenie jednostek (np. metry z centymetrami), może prowadzić do całkowicie błędnych wyników. Często myśli się, że wystarczy pomnożyć długość i wysokość pojedynczej ścianki, ale przy braku uwzględnienia normy zużycia cegieł, wyniki będą znacznie różnić się od rzeczywistości. Ponadto, niektórzy mogą nie zauważyć, że norma zużycia cegły jest kluczowym czynnikiem determinującym ilość materiału, dlatego pominięcie tego etapu w obliczeniach prowadzi do niedoszacowania potrzeb. Warto również zwrócić uwagę na fakt, że niektóre odpowiedzi mogą wynikać z zaokrągleń lub błędnych interpretacji norm budowlanych, co jest typowym błędem w obliczeniach materiałowych. Każda jednostka w obliczeniach ma znaczenie, dlatego kluczowe jest przemyślane podejście do kalkulacji, które uwzględnia wszystkie istotne parametry, aby zapewnić efektywną i prawidłową realizację projektu budowlanego.

Pytanie 13

Aby uzyskać zaprawę cementowo-wapienną M4, należy użyć składników w proporcjach objętościowych 1 : 1 : 6, co oznacza

A. 1 część wapna hydratyzowanego : 1 część piasku : 6 części cementu
B. 1 część cementu : 1 część piasku : 6 części wapna hydratyzowanego
C. 1 część cementu : 1 część wapna hydratyzowanego : 6 części piasku
D. 1 część cementu : 1 część wapna hydratyzowanego : 6 części wody
Proporcje objętościowe 1 : 1 : 6 w zaprawie cementowo-wapiennej M4 oznaczają, że do każdej części cementu przypada jedna część wapna hydratyzowanego oraz sześć części piasku. Taki skład jest zgodny z zaleceniami w branży budowlanej, które podkreślają znaczenie właściwego doboru proporcji, aby uzyskać optymalną wytrzymałość, plastyczność i trwałość zaprawy. Przykładowo, w praktyce budowlanej, odpowiednie przygotowanie zaprawy jest kluczowe przy murowaniu, gdzie właściwe proporcje zapewniają lepsze przyleganie cegieł oraz odporność na czynniki atmosferyczne. Warto zaznaczyć, że stosunek składników wpływa również na czas wiązania zaprawy, co jest istotne podczas wykonywania prac budowlanych w określonych warunkach. Standardy budowlane, takie jak PN-EN 998-1, podkreślają znaczenie właściwego stosowania zapraw w zależności od ich przeznaczenia, co w kontekście zaprawy M4 ma na celu zapewnienie wysokiej jakości i bezpieczeństwa konstrukcji budowlanych.

Pytanie 14

Jeśli koszty robocizny na demontaż lm2 ceglanej ścianki działowej wynoszą 0,61 r-g, to ile czasu zajmie rozebranie 5 takich ścianek, z których każda ma powierzchnię 10 m2?

A. 30,5 r-g
B. 30,0 r-g
C. 81,9 r-g
D. 61,0 r-g
Odpowiedź 30,5 r-g jest poprawna, ponieważ aby obliczyć czas potrzebny do rozebrania pięciu ścianek o powierzchni 10 m2 każda, należy najpierw określić całkowitą powierzchnię do rozebrania. Całkowita powierzchnia wynosi 5 ścianek x 10 m2 = 50 m2. Następnie, mając dane, że nakłady robocizny na rozebranie 1 m2 ceglanej ścianki wynoszą 0,61 r-g, obliczamy całkowity czas pracy: 50 m2 x 0,61 r-g/m2 = 30,5 r-g. Praktyczne zastosowanie tej wiedzy jest kluczowe w branży budowlanej, gdzie precyzyjne planowanie robocizny pozwala na optymalizację kosztów i czasu realizacji projektów. Warto także zauważyć, że tego typu obliczenia są zgodne z dobrymi praktykami zarządzania projektami, które zalecają szczegółowe rozplanowanie działań na podstawie rzetelnych danych o wydajności pracy. Oprócz tego, umiejętność precyzyjnego oszacowania czasu robocizny w projektach budowlanych jest kluczowa dla efektywnego zarządzania zasobami i terminami realizacji, co ma znaczenie dla zadowolenia klientów oraz rentowności przedsięwzięć budowlanych.

Pytanie 15

Na podstawie fragmentu specyfikacji technicznej określ, w których miejscach na elewacji budynku, nie należy wykonywać przerw technologicznych podczas wykonywania tynków mozaikowych.

n n n n n n n
n Specyfikacja techniczna wykonania i odbioru robót budowlanych
n Wykonanie tynków mozaikowych
n (fragment)n
n „(...) Materiał należy nakładać metodą „mokre na mokre", nie dopuszczając do zaschnięcia zatartej partii przed nałożeniem kolejnej. W przeciwnym razie miejsce tego połączenia będzie widoczne. Przerwy technologiczne należy z góry zaplanować na przykład: w narożnikach i załamaniach budynku, pod rurami spustowymi, na styku kolorów itp. Czas wysychania tynku zależnie od podłoża, temperatury i wilgotności względnej powietrza wynosi od ok. 12 do 48 godzin. W warunkach podwyższonej wilgotności i temperatury około +5°C czas wiązania tynku może być wydłużony. Podczas wykonywania i wysychania tynku min. temperatura otoczenia powinna wynosić +5°C, a max. +25°C.(...)"

A. Na styku kolorów.
B. W narożnikach budynku.
C. Na środku ściany.
D. W załamaniach budynku.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Na środku ściany" jest prawidłowa, ponieważ zgodnie z fragmentem specyfikacji technicznej, przerwy technologiczne powinny być planowane w miejscach, które są naturalnymi punktami podziału tynku, takimi jak narożniki budynków, załamania, odprowadzanie wody czy styki kolorów. Przerwy te są niezbędne, aby uniknąć pęknięć i deformacji, które mogą pojawić się w wyniku różnic w rozszerzalności termicznej oraz osiadania budynku. Na środku ściany, tworzenie przerw technologicznych może prowadzić do nieestetycznych połączeń i widocznych linii, które negatywnie wpływają na estetykę elewacji. W praktyce architektonicznej i budowlanej, ważne jest, aby przerwy były umieszczane w tak zwanych punktach krytycznych, które mogą zminimalizować ryzyko uszkodzeń tynku. Warto również zwrócić uwagę na zalecane praktyki, takie jak stosowanie odpowiednich materiałów do wypełnienia przerw, co zapewnia długowieczność i odporność na czynniki atmosferyczne.

Pytanie 16

Która zaprawa charakteryzuje się najlepszymi właściwościami plastycznymi?

A. Wapienna
B. Gipsowa
C. Cementowo-gliniana
D. Cementowo-wapienna
Wybór gipsowej zaprawy jako materiału budowlanego może wydawać się atrakcyjny ze względu na jej szybkie wiązanie i łatwość aplikacji, jednak jej właściwości plastyczne są znacznie gorsze w porównaniu do zaprawy wapiennej. Gips ma tendencję do szybkiego twardnienia, co ogranicza czas pracy z materiałem i sprawia, że jest mniej elastyczny. Z tego powodu, w przypadku ruchów konstrukcji, gipsowe zaprawy mogą pękać, co prowadzi do uszkodzeń. Z kolei zaprawy cementowo-wapienne, choć oferują lepsze właściwości mechaniczne, również nie osiągają poziomu plastyczności zapraw wapiennych. Cement może tworzyć bardzo twarde połączenia, ale jego sztywność jest wadą, gdyż nie pozwala na elastyczne dostosowanie się do zmian w strukturze. Ponadto, zaprawy cementowo-gliniane, mimo że mają swoje zastosowanie, nie dorównują plastycznością tradycyjnym zaprawom wapiennym. Typowe błędy myślowe polegają na myleniu wytrzymałości z plastycznością – wiele osób przyjmuje, że silniejsze materiały będą lepsze w każdej sytuacji, co nie zawsze jest prawdą. Właściwy wybór zaprawy powinien być uzależniony od specyficznych warunków budowy, a nie ogólnych założeń dotyczących materiałów. Dlatego, aby osiągnąć najlepsze rezultaty w budownictwie, kluczowe jest zrozumienie właściwości różnych zapraw oraz ich praktycznego zastosowania.

Pytanie 17

Jakiego spoiwa powinno się użyć do realizacji tynku zewnętrznego w obszarach narażonych na wilgoć?

A. Wapna hydraulicznego
B. Gipsu budowlanego
C. Wapna pokarbidowego
D. Gipsu szpachlowego
Wybór wapna hydraulicznego do wykonania tynku zewnętrznego w miejscach narażonych na działanie wilgoci jest uzasadniony jego właściwościami. Wapno hydrauliczne jest spoiwem, które w przeciwieństwie do wapna gaszonego, może twardnieć zarówno na powietrzu, jak i pod wodą, co czyni je idealnym do zastosowań na zewnątrz budynków. Działa to na korzyść trwałości tynku, który musi znosić zmienne warunki atmosferyczne, w tym deszcz i wilgoć. Przykładem zastosowania wapna hydraulicznego może być tynkowanie fundamentów budynków oraz murów piwnicznych, gdzie narażenie na wodę gruntową jest intensywne. W obiektach zabytkowych, gdzie zachowanie tradycyjnych metod budowlanych jest niezwykle istotne, wapno hydrauliczne jest również preferowane ze względu na swoje właściwości paroprzepuszczalne, co pozwala na odprowadzanie wilgoci bez uszkadzania struktury budynku. Warto również wspomnieć, że zgodnie z normami budowlanymi, stosowanie wapna hydraulicznego spełnia wymogi dotyczące ochrony przed wilgocią, co potwierdzają odpowiednie badania i certyfikaty. Dlatego wapno hydrauliczne stanowi najlepszy wybór do tynków w trudnych warunkach atmosferycznych.

Pytanie 18

Korzystając z danych zawartych w tabeli, wskaż najmniejszą dopuszczalną grubość jednowarstwowego tynku chroniącego przed wodą, wykonanego z fabrycznie suchej zaprawy.

Grubości tynkówŚrednia grubość
w [mm]
Dopuszczalna
najmniejsza
grubość
w [mm]
dla tynków zewnętrznych2015
dla tynków wewnętrznych1510
dla jednowarstwowych tynków
wewnętrznych z fabrycznie suchej
zaprawy
105
dla jednowarstwowych tynków
chroniących przed wodą z fabrycznie
suchej zaprawy
1510
dla tynków z izolacją termicznązależnie od
wymagań
20

A. 10 mm
B. 20 mm
C. 5 mm
D. 15 mm

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 10 mm jest poprawna, ponieważ zgodnie z obowiązującymi standardami budowlanymi oraz danymi zawartymi w tabeli, najmniejsza dopuszczalna grubość jednowarstwowego tynku, który ma chronić przed wodą, powinna wynosić właśnie 10 mm. Tego typu tynki są stosowane w budownictwie do ochrony elewacji przed działaniem wilgoci, co jest kluczowe dla zapewnienia długowieczności konstrukcji. Przy zbyt małej grubości, tynk nie wypełni swojej funkcji, co może prowadzić do wnikania wody, a w efekcie do uszkodzenia struktury budynku. W praktyce, stosowanie tynków o grubości minimum 10 mm jest zgodne z zasadami sztuki budowlanej oraz normami, co potwierdzają liczne badania i publikacje branżowe. Prawidłowe dobranie grubości tynku jest zatem kluczowe dla efektywności ochrony przed wilgocią.

Pytanie 19

Która z poniższych cech jest typowa dla nowo przygotowanej zaprawy?

A. Urabialność
B. Mrozoodporność
C. Podatność na ścieranie
D. Wytrzymałość na ściskanie
Urabialność świeżo zarobionej zaprawy jest kluczowym parametrem, który determinuje jej łatwość w obróbce i formowaniu. Oznacza to, że zaprawa powinna być odpowiednio plastyczna, co ułatwia jej rozprowadzanie, wypełnianie form oraz przyczepność do podłoża. W praktyce, dobra urabialność wpływa na efektywność pracy budowlanej, pozwalając na łatwiejsze nakładanie zaprawy na różne powierzchnie oraz zapewniając równomierne wypełnienie fug. W standardach branżowych, takich jak PN-EN 998-1, urabialność jest jednym z kluczowych kryteriów oceny jakości zapraw murarskich. Przykładowo, w przypadku zapraw stosowanych do klinkieru czy kamienia naturalnego, konieczne jest, aby ich urabialność była dostosowana do konkretnych warunków aplikacji. W kontekście budownictwa, urabialność ma również wpływ na ostateczną wytrzymałość mechaniczną materiału, ponieważ nieodpowiednio urabiana zaprawa może prowadzić do powstania pustek lub nierówności, co negatywnie wpływa na trwałość konstrukcji.

Pytanie 20

Nierównomierne osiadanie budynków może prowadzić do

A. zawilgocenia murów
B. korozji murów
C. pęknięcia murów
D. erozji fundamentów
Odpowiedź "pęknięcie murów" jest poprawna, ponieważ nierównomierne osiadanie budynków prowadzi do powstawania naprężeń w konstrukcji, co może skutkować pęknięciami murów. Gdy różne części budynku osiadają w różnym tempie, powstają siły działające na elementy nośne i ściany, które mogą przekraczać ich nośność. W praktyce, aby zminimalizować ryzyko pęknięć, zaleca się przeprowadzanie odpowiednich badań geotechnicznych przed budową oraz monitorowanie stanu obiektów w trakcie ich użytkowania. Dobrą praktyką jest także stosowanie fundamentów dostosowanych do warunków gruntowych, które mogą pomóc w równomiernym rozkładzie obciążeń. Przykładem zastosowania tej wiedzy może być użycie pali fundamentowych w gruntach o niskiej nośności, co zapewnia stabilność całej konstrukcji i minimalizuje ryzyko osiadania. W standardach budowlanych zwraca się uwagę na znaczenie odpowiedniego projektowania oraz regularnych przeglądów, aby w porę wykrywać i eliminować zagrożenia związane z osiadaniem.

Pytanie 21

Który sposób przygotowania cienkowarstwowej zaprawy murarskiej jest zgodny z przedstawioną instrukcją producenta?

Instrukcja producenta
Przygotowanie cienkowarstwowej zaprawy murarskiej
Zaprawę wsypać do odmierzonej ilości wody w proporcji 0,18 do 0,22 litra wody na 1 kg suchego proszku, następnie wymieszać mieszadłem mechanicznym do uzyskania jednorodnej masy. Odstawić na 3 do 5 minut i ponownie wymieszać. Zaprawę należy nakładać ręcznie pacą ząbkowaną lub innym narzędziem zwracając uwagę na dokładne wypełnienie spoin.

A. Do odmierzonej ilości wody wsypać odpowiednią ilość suchego proszku, wymieszać do uzyskania jednorodnej masy, odstawić na określony czas i ponownie wymieszać.
B. Wymieszać część suchego proszku z niewielką ilością wody, a następnie dodać pozostałą ilość wody oraz pozostałą ilość suchego proszku i ponownie wymieszać do uzyskania jednorodnej masy.
C. Wymieszać część suchego proszku z wodą, następnie do uzyskanej mieszanki wsypać pozostałą ilość suchego proszku i razem wymieszać.
D. Do odmierzonej ilości wody wsypać porcję suchego proszku, razem wymieszać do uzyskania jednorodnej masy, następnie dolać wody.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź opiera się na zaleceniach zawartych w instrukcji producenta, która jasno określa, że proces przygotowania zaprawy murarskiej powinien zaczynać się od odmierzenia odpowiedniej ilości wody. Następnie należy wsypać suchy proszek do wody, a całość dokładnie wymieszać, aby uzyskać jednorodną masę. Kluczowym krokiem jest odstawienie mieszanki na 3 do 5 minut, co pozwala na wchłonięcie wody przez proszek i aktywację składników chemicznych. Po tym czasie należy ponownie wymieszać zaprawę, aby zapewnić jej jednorodność. Praktyczne zastosowanie tej metody gwarantuje, że zaprawa uzyska właściwe parametry wytrzymałościowe oraz związki chemiczne będą właściwie aktywowane, co jest niezbędne dla osiągnięcia wysokiej jakości w trakcie murarskich prac budowlanych. Stosowanie odpowiednich proporcji wody do proszku potwierdzają także standardy budowlane, które zalecają staranność w przygotowaniach, aby uniknąć problemów z trwałością i stabilnością konstrukcji.

Pytanie 22

Do wymurowania ściany o wymiarach 10,0 x 5,0 m i grubości 0,24 m zaplanowano bloczki Ytong łączone na pióro i wpust. Korzystając z danych zawartych w tabeli wskaż, ile 20-kilogramowych worków zaprawy należy kupić, aby sporządzić potrzebną ilość zaprawy.

Zużycie na 1 m³ muru zaprawy do cienkich spoin Ytong
Bloczki gładkieBloczki z piórem i wpustemWielkość opakowania
20 kg15 kg20 kg

A. 8
B. 6
C. 7
D. 9

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 9 worków zaprawy, co wynika z precyzyjnych obliczeń związanych z wymiarami wymurowania ściany. Najpierw obliczamy objętość ściany, która wynosi 10,0 m x 5,0 m x 0,24 m, co daje 12 m³. W zależności od rodzaju bloczków oraz metody ich łączenia, zużycie zaprawy na 1 m³ muru jest różne. W przypadku bloczków Ytong łączonych na pióro i wpust, standardowo przyjmuje się, że na 1 m³ muru potrzeba około 0,1 m³ zaprawy. Dlatego całkowita ilość zaprawy potrzebna do wymurowania ściany wynosi 12 m³ x 0,1 m³/m³ = 1,2 m³ zaprawy. Jeśli jeden worek zaprawy waży 20 kg, a gęstość zaprawy wynosi 1,5 t/m³, to jeden worek odpowiada 0,013 m³. Wówczas liczba worków zaprawy to 1,2 m³ / 0,013 m³/worek = 92,3, co po zaokrągleniu daje 9 worków. Zastosowanie takiej metody obliczeniowej jest zgodne z zasadami sztuki budowlanej i zapewnia optymalne wykorzystanie materiałów budowlanych.

Pytanie 23

Do zbudowania nadproża sklepionego (łęku) należy użyć cegły

A. pełnej
B. dziurawki
C. szczelinówki
D. kratówki
Nadproża sklepione, czyli te łuki, są mega ważne w budowlance, bo przenoszą ciężar z góry na boki. W tym przypadku cegła pełna jest wręcz niezbędna, bo ma super właściwości. Jest gęsta i naprawdę wytrzymała na ściskanie, idealna do robienia nadproży, które muszą wytrzymać sporo ciężaru. Cegła pełna daje też lepszą izolację akustyczną i cieplną w porównaniu do innych cegieł. Przykładem mogą być stare budynki, gdzie często spotykamy nadproża z cegły pełnej – to zgodne z zasadami ochrony naszego dziedzictwa kulturowego, a przy tym dobre dla budowlanych praktyk. Normy budowlane też mówią, że trzeba używać materiałów o odpowiednich parametrach wytrzymałościowych w takich konstrukcjach nośnych.

Pytanie 24

Do pomiaru objętościowego kruszywa oraz wody powinno się użyć

A. czerpaka szufelkowego
B. taczki
C. łopatę
D. wiadra z podziałką
Wybór wiadra z podziałką do objętościowego dozowania kruszywa i wody jest uzasadniony ze względu na precyzję oraz łatwość w użyciu. Wiadro z podziałką pozwala na dokładne odmierzenie objętości materiałów sypkich oraz cieczy, co jest kluczowe w procesach budowlanych i inżynieryjnych, gdzie precyzyjne proporcje są niezbędne do uzyskania pożądanych właściwości mieszanki betonowej. Przykładowo, przy przygotowywaniu betonu, niewłaściwe proporcje wody do kruszywa mogą prowadzić do obniżenia wytrzymałości i trwałości gotowego produktu. Zastosowanie wiadra z podziałką umożliwia również łatwe utrzymanie standardów jakości, co jest wymagane w wielu regulacjach budowlanych. Dobrą praktyką jest korzystanie z narzędzi, które zapewniają powtarzalność dozowania, co sprawia, że wiadro z podziałką spełnia te wymagania, a jego użycie może być dostosowane do różnych projektów budowlanych. Pozwala to na zachowanie spójności w mieszankach, co jest kluczowe dla uzyskania wysokiej jakości konstrukcji.

Pytanie 25

Tynki szlachetne obejmują tynki

A. zmywane
B. pocienione
C. ciepłochronne
D. wodoszczelne
W kwestii tynków szlachetnych, odpowiedzi, które nie są zmywane, nie spełniają wymagań co do estetyki i funkcjonalności, które dziś są ważne. Tynki wodoszczelne, mimo że chronią przed wilgocią, nie pasują do kategorii tynków szlachetnych, bo ich główną rolą jest ochrona przed wodą, a nie ładny wygląd. Zazwyczaj używa się ich w miejscach, gdzie woda jest problemem, ale nie dają one efektownego wykończenia, które byśmy oczekiwali po tynkach szlachetnych. Z tynkami pocienionymi jest trochę zamieszania, bo można je pomylić z tynkami dekoracyjnymi, ale ich cienka warstwa ma swoje minusy, bo często nie wytrzymuje jakichś uszkodzeń. Ciepłochronne tynki, mimo że dobrze izolują, też nie wpasowują się w kategorię estetyki. Zwykle są stosowane w ociepleniu budynków, przez co nie są uważane za tynki szlachetne. Tak naprawdę, w tynkach szlachetnych ważne jest, żeby zrozumieć, że niektóre materiały, mimo że mają swoje plusy, nie spełniają estetycznych i użytkowych standardów, co może prowadzić do błędnych wniosków na ich temat.

Pytanie 26

Proces naprawy wilgotnego tynku powinien rozpocząć się od

A. zlikwidowania nalotów pleśni
B. osuchania powierzchni tynku
C. eliminacji źródła zawilgocenia
D. nałożenia środka gruntującego
Usunięcie przyczyny zawilgocenia tynku jest kluczowym krokiem w procesie naprawy, ponieważ bez rozwiązania podstawowego problemu, wszelkie dalsze działania, takie jak osuszanie czy pokrywanie gruntami, będą jedynie tymczasowe i nieefektywne. W praktyce oznacza to, że najpierw należy zidentyfikować źródło wilgoci, co może być spowodowane różnymi czynnikami, takimi jak nieszczelne rury, niewłaściwe odprowadzanie wody, czy też uszkodzenia fundamentów. Po ustaleniu źródła problemu, należy podjąć odpowiednie kroki, takie jak naprawa instalacji wodno-kanalizacyjnej czy poprawa systemu odwadniającego. Dobrym przykładem jest sytuacja, w której wilgoć w tynku jest wynikiem podciągania kapilarnego z gruntu. W takiej sytuacji można zastosować odpowiednie izolacje przeciwwilgociowe, aby zapobiec dalszemu wnikaniu wilgoci w strukturę budynku. Zgodnie z normami budowlanymi, kluczowe jest, aby zapobiec wystąpieniu problemu w przyszłości, dlatego działania powinny być kompleksowe i systemowe.

Pytanie 27

Izolacja przeciwwilgociowa podłogi na parterze budynku bez piwnicy jest układana

A. na warstwie chudego betonu
B. na warstwie izolacji cieplnej
C. bezpośrednio na ziemi
D. bezpośrednio na podsypce z piasku
Pozioma izolacja przeciwwilgociowa podłogi parteru w budynku niepodpiwniczonym jest kluczowym elementem ochrony przed wilgocią gruntową. Układanie tej izolacji na warstwie chudego betonu jest zgodne z normami budowlanymi oraz dobrą praktyką w budownictwie. Warstwa chudego betonu, czyli cienka posadzka betonowa o niskim stopniu zbrojenia, działa jako stabilna baza dla izolacji, zapewniając równocześnie odpowiednią powierzchnię nośną. Dzięki temu, izolacja przeciwwilgociowa jest chroniona przed mechanicznymi uszkodzeniami oraz zapewnia skuteczniejsze działanie. Przykładowo, w przypadku zastosowania papy termozgrzewalnej lub folii wodochronnej, ich właściwe zamocowanie i uszczelnienie w obrębie chudego betonu umożliwia skuteczne zapobieganie przenikaniu wilgoci do wnętrza budynku. Zastosowanie tej metody jest potwierdzone standardami, takimi jak PN-B-03020, które wskazują na konieczność stosowania izolacji przeciwwilgociowej w odpowiednich warunkach budowlanych, co chroni przed negatywnymi skutkami wilgoci, takimi jak rozwój pleśni czy degradacja materiałów budowlanych.

Pytanie 28

Na podstawie informacji podanych w instrukcji producenta oblicz, ile kg suchej zaprawy należy wsypać do 25 dm3 wody, aby zachować właściwe proporcje składników mieszanki.

Instrukcja producenta
Proporcje mieszania
woda/sucha mieszanka
0,2 dm3/kg
Wydajność1,5 kg/m2/mm
Czas zużycia zaprawyok. 2 godzin

A. 50 kg
B. 112,5 kg
C. 125 kg
D. 37,5 kg

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 125 kg, ponieważ zgodnie z instrukcją producenta, na każdy kilogram suchej zaprawy potrzeba 0,2 dm³ wody. Obliczając ilość potrzebnej suchej zaprawy, dzielimy objętość wody (25 dm³) przez proporcję wody do suchej zaprawy (0,2 dm³/kg). W ten sposób uzyskujemy 25 dm³ / 0,2 dm³/kg = 125 kg. Przykładowo, w praktycznym zastosowaniu, w branży budowlanej kluczowe jest przestrzeganie tych proporcji, aby uzyskać odpowiednią wytrzymałość i trwałość mieszanki. Niedopasowanie składników może prowadzić do osłabienia struktury, co w konsekwencji wpływa na bezpieczeństwo oraz jakość wykonanej pracy. Dobre praktyki zakładają zawsze dokładne przeliczenie ilości składników przed przystąpieniem do mieszania, aby uniknąć strat materiałowych oraz czasowych. Przestrzeganie tych zasad jest istotne nie tylko w budownictwie, ale także w innych dziedzinach przemysłu, gdzie precyzyjne proporcje składników mają kluczowe znaczenie dla uzyskania pożądanych właściwości finalnego produktu.

Pytanie 29

Abyzbudować ścianę o powierzchni 1 m2 zgodnie z KNR 2-02, wymaganych jest 8,20 szt. bloczków z betonu komórkowego. Na jednej palecie znajduje się 48 bloczków. Ile palet bloczków należy zamówić do zbudowania 75 m2 ścian?

A. 9
B. 13
C. 48
D. 75

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć liczbę palet bloczków potrzebnych do wymurowania 75 m² ścian, należy najpierw ustalić, ile bloczków potrzebujemy. Zgodnie z KNR 2-02, do wymurowania 1 m² ściany potrzeba 8,20 bloczków. Dlatego, dla 75 m², zapotrzebowanie wynosi 75 m² * 8,20 bloczków/m² = 615 bloczków. Skoro na jednej palecie mieści się 48 bloczków, to aby obliczyć liczbę palet, dzielimy 615 bloczków przez 48 bloczków/paleta, co daje nam 12,8125. Ponieważ nie możemy zamówić ułamkowej części palety, zaokrąglamy w górę do najbliższej całkowitej liczby, co daje 13 palet. Praktycznie, w takich obliczeniach zawsze zaokrąglamy w górę, aby zapewnić wystarczającą liczbę materiałów budowlanych, co jest zgodne z dobrymi praktykami w branży budowlanej oraz zarządzaniu projektami.

Pytanie 30

Jakie narzędzie powinno się zastosować do usunięcia nadmiaru zaprawy podczas ręcznego tynkowania?

A. Pacy
B. Czerpaka tynkarskiego
C. Łaty
D. Kielni murarskiej
Łata jest kluczowym narzędziem używanym podczas tynkowania ręcznego, ponieważ umożliwia równomierne i precyzyjne ściągnięcie nadmiaru zaprawy. Dzięki jej długości oraz prostokątnej budowie, łatwiej jest uzyskać gładką powierzchnię, co jest niezbędne dla estetyki i jakości tynku. Użycie łaty pozwala na jednoczesne kontrolowanie grubości nałożonej zaprawy oraz eliminację nierówności, co jest zgodne z najlepszymi praktykami w budownictwie. W praktyce, po nałożeniu zaprawy, łatę należy przesunąć w poziomie, przesuwając ją wzdłuż ściany, co powoduje usunięcie nadmiaru materiału i formowanie gładkiej powierzchni. Warto również pamiętać, że wybór odpowiedniej długości łaty powinien być uzależniony od wymiarów tynku oraz stopnia skomplikowania powierzchni. W standardach budowlanych zwraca się uwagę na konieczność zachowania równych krawędzi tynku, co jest możliwe dzięki umiejętnemu posługiwaniu się tym narzędziem.

Pytanie 31

Z ilustracji wynika, że szerokość filarka międzyokiennego wynosi 103 cm. Ile pełnych cegieł zmieści się na szerokości filarka?

A. 2
B. 4
C. 5
D. 3
Odpowiedź 4 to strzał w dziesiątkę, bo szerokość filarka, czyli 103 cm, dobrze się dzieli przez standardową szerokość cegły, która wynosi 25 cm. Jak podzielisz 103 przez 25, to dostajesz 4,12. To znaczy, że w filarze zmieści się 4 całe cegły, a te pozostałe 3 cm to za mało na kolejną. W budownictwie używamy całych cegieł, bo to stabilniejsze i praktyczniejsze. Pamiętaj też, że przy projektowaniu musimy myśleć o spoinach i możliwych stratach materiałowych, bo to wpływa na to, ile cegieł naprawdę potrzebujemy. Zrozumienie tych zasad jest naprawdę ważne, jeśli chcesz dobrze planować prace budowlane.

Pytanie 32

Cementową zaprawę wykorzystuje się do budowy ścian

A. nośnych wewnętrznych
B. działowych
C. fundamentowych
D. nośnych zewnętrznych
Zaprawa cementowa jest kluczowym materiałem budowlanym, szczególnie w kontekście murowania fundamentów. Jej zastosowanie w fundamentach wynika z konieczności zapewnienia stabilności i wytrzymałości konstrukcji. Zaprawy cementowe charakteryzują się dużą odpornością na działanie sił zewnętrznych oraz na wilgoć, co jest szczególnie istotne w przypadku fundamentów, które są narażone na działanie wód gruntowych i zmienne warunki atmosferyczne. W praktyce często stosuje się zaprawy o odpowiedniej klasie wytrzymałości, zgodnej z normami budowlanymi, co zapewnia ich długotrwałość. Ważnym aspektem jest również prawidłowe przygotowanie zaprawy, które powinno odbywać się zgodnie z zaleceniami producenta, aby osiągnąć optymalne właściwości mechaniczne i fizyczne. Dobrą praktyką jest również zastosowanie dodatków chemicznych, które mogą poprawić właściwości zaprawy, takie jak jej plastyczność czy odporność na wodę. Warto również zwrócić uwagę na techniki murowania, które mają kluczowe znaczenie dla trwałości i stabilności fundamentów.

Pytanie 33

Perlit to lekkie materiał budowlany, używany do wytwarzania zapraw

A. ciepłochronnych
B. kwasoodpornych
C. krzemionkowych
D. szamotowych
Perlit to materiał o doskonałych właściwościach izolacyjnych, który znajduje szerokie zastosowanie w budownictwie, zwłaszcza w produkcji zapraw ciepłochronnych. Dzięki swojej porowatej strukturze, perlit skutecznie zatrzymuje ciepło, co przyczynia się do poprawy efektywności energetycznej budynków. W praktyce, dodawanie perlitu do zapraw murarskich i tynków zwiększa ich zdolności izolacyjne, co jest szczególnie ważne w kontekście budownictwa pasywnego i energooszczędnego. Stosowanie perlitu w zaprawach ciepłochronnych pozwala także na redukcję masy materiału budowlanego, co przekłada się na łatwiejszy transport i aplikację. Ponadto, perlit jest materiałem niepalnym, co zwiększa bezpieczeństwo budynków. Warto podkreślić, że w branży budowlanej często korzysta się z norm i standardów dotyczących izolacji termicznej, takich jak PN-EN 13162, które uwzględniają właściwości materiałów izolacyjnych, w tym perlitu.

Pytanie 34

Jakiego typu tynkiem jest tynk kategorii 0 nazywany "rapowany"?

A. Zwykłym
B. Surowym
C. Wyborowym
D. Specjalistycznym
Tynk surowy, znany również jako tynk rapowany, jest tynkiem kategorii 0, który charakteryzuje się minimalnym przetworzeniem i brakiem dodatkowych dodatków chemicznych, co sprawia, że jest przyjazny dla środowiska. Tynki surowe są stosowane głównie w obiektach, gdzie estetyka powierzchni nie jest kluczowa, a głównym celem jest ochrona konstrukcji budynku przed wpływem wilgoci oraz innych czynników atmosferycznych. Dzięki swojej naturalnej strukturze, tynki te pozwalają na swobodne oddychanie murów, co z kolei przyczynia się do regulacji wilgotności w pomieszczeniach. W praktyce, tynk surowy jest często stosowany w budownictwie ekologicznym oraz w renowacji obiektów zabytkowych, gdzie zachowanie oryginalnych materiałów i technik budowlanych jest szczególnie ważne. Ponadto, tynk rapowany zapewnia dobrą przyczepność do późniejszych warstw wykończeniowych, co czyni go wszechstronnym rozwiązaniem w pracach budowlanych.

Pytanie 35

Rzeczywiste wymiary pomieszczenia biurowego wynoszą 8 x 5 m. Jakie będą jego wymiary na rysunku sporządzonym w skali 1:200?

A. 40,0 x 25,0 cm
B. 8,0 x 5,0 cm
C. 16,0 x 10,0 cm
D. 4,0 x 2,5 cm

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć wymiary pomieszczenia biurowego w skali 1:200, należy najpierw zrozumieć, że skala ta oznacza, iż 1 jednostka na rysunku odpowiada 200 jednostkom w rzeczywistości. Wymiary pomieszczenia wynoszą 8 m x 5 m, co w centymetrach daje 800 cm x 500 cm. Przy zastosowaniu skali 1:200, obliczamy wymiary na rysunku, dzieląc rzeczywiste wymiary przez 200. Tak więc: 800 cm / 200 = 4 cm, a 500 cm / 200 = 2,5 cm. Zatem wymiary przedstawione na rysunku wynoszą 4,0 x 2,5 cm. W praktyce, umiejętność przeliczania wymiarów na rysunkach technicznych jest kluczowa w architekturze, inżynierii i projektowaniu wnętrz. Przy projektowaniu biur, poprawne odwzorowanie wymiarów budynków w rysunkach technicznych zapewnia dokładność i zgodność z rzeczywistością, co jest zgodne z normami branżowymi i wspomaga procesy konstrukcyjne oraz weryfikację planów budowlanych.

Pytanie 36

Na podstawie danych zawartych w tabeli oblicz ilość żwiru potrzebnego do wykonania 0,5 m3mieszanki betonowej klasy C 16/20.

Receptury robocze na 1 m3 mieszanki betonowej
klasa betonucementżwirpiasekwoda
C 8/10341 kg661 l367 l216 l
C 12/16362 kg642 l351 l227 l
C 16/20367 kg770 l426 l223 l

A. 213 l
B. 770 l
C. 642 l
D. 385 l

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć ilość żwiru potrzebnego do wykonania 0,5 m³ mieszanki betonowej klasy C 16/20, należy skorzystać z proporcji podanej w tabeli dla 1 m³. Zgodnie z branżowymi standardami, dla mieszanki betonowej klasy C 16/20 typowe proporcje to: 1 część cementu, 2 części piasku i 4 części żwiru. Dzięki tym proporcjom można obliczyć, że dla 1 m³ mieszanki potrzeba 770 l żwiru. Skoro potrzebujemy jedynie 0,5 m³ mieszanki, musimy odpowiednio przeskalować wartość żwiru. Dlatego 770 l x 0,5 = 385 l, co jest poprawnym wynikiem. Tego typu kalkulacje są kluczowe w inżynierii budowlanej, aby zapewnić odpowiednie właściwości mieszanki betonowej, takie jak wytrzymałość i trwałość. Przykładowo, przy projektowaniu fundamentów budynków, dokładność w obliczeniach materiałowych wpływa na bezpieczeństwo konstrukcji. Znajomość proporcji oraz umiejętność ich przeskalowania do potrzeb projektu jest podstawą pracy każdego inżyniera budowlanego.

Pytanie 37

W trakcie prac remontowych, które obejmują wykonanie otworu dla przełożenia instalacji centralnego ogrzewania w betonie, powinno się wykorzystać

A. piły łańcuchowej
B. wiertarki o niskich obrotach
C. piły tarczowej
D. młota udarowego
Wykorzystanie młota udarowego do wykonania otworu w ścianie betonowej jest najlepszym wyborem w tym przypadku. Młot udarowy łączy w sobie funkcję wiercenia i udaru, co pozwala na skuteczne wnikanie w twarde materiały, takie jak beton. Dzięki zastosowanej technologii, narzędzie to generuje silne uderzenia, które rozbijają beton, co znacząco ułatwia pracę w porównaniu do innych urządzeń. Na przykład, używając młota udarowego, można szybko i efektywnie przebić się przez grube ściany, co jest niezbędne podczas instalacji rur centralnego ogrzewania. W standardach budowlanych oraz w branżowych praktykach remontowych, młot udarowy jest rekomendowany do tego typu zadań, ponieważ zapewnia szybkość oraz precyzję, minimalizując ryzyko uszkodzenia otaczających struktur. Dodatkowo, przy stosowaniu młota udarowego warto pamiętać o odpowiednich środkach ochrony osobistej, takich jak okulary ochronne i nauszniki, ponieważ praca z tym narzędziem generuje znaczny hałas oraz odpryski materiału.

Pytanie 38

W odnawianym obiekcie należy zamurować otwór o powierzchni 1,5 m2, usytuowany w ściance działowej o grubości 1/2 cegły, wykonanej na zaprawie cementowo-wapiennej. Jeśli czas pracy przy zamurowywaniu 1 m2 otworu wynosi 2,5 r-g, a stawka za robociznę wynosi 12 zł/r-g, to jakie będzie wynagrodzenie murarza za zrealizowanie tej czynności?

A. 45 zł
B. 30 zł
C. 48 zł
D. 60 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć wynagrodzenie murarza za zamurowanie otworu o powierzchni 1,5 m2, należy najpierw ustalić nakład robocizny. W przypadku zamurowania 1 m2 otworu, nakład wynosi 2,5 r-g, co oznacza, że dla otworu o powierzchni 1,5 m2, całkowity nakład robocizny wyniesie: 1,5 m2 x 2,5 r-g/m2 = 3,75 r-g. Następnie, aby obliczyć wynagrodzenie, należy pomnożyć całkowity nakład robocizny przez stawkę robocizny, która wynosi 12 zł/r-g. Zatem wynagrodzenie murarza wynosi: 3,75 r-g x 12 zł/r-g = 45 zł. Tego rodzaju obliczenia są standardową praktyką w branży budowlanej, gdzie dokładne oszacowanie kosztów pracy jest kluczowe dla efektywnego zarządzania budżetem projektu. Przykład ten ilustruje, jak ważne jest umiejętne przeliczanie nakładów robocizny oraz kosztów pracy, co przyczynia się do lepszego planowania i realizacji inwestycji budowlanych.

Pytanie 39

W czasie intensywnych upałów cegłę ceramiczną pełną należy przed wykorzystaniem do murowania

A. zgromadzić pod zadaszeniem
B. zagruntować gruntownikiem
C. nakryć plandeką
D. zamoczyć w wodzie
Zamoczenie cegły ceramicznej pełnej w wodzie przed jej użyciem do murowania jest kluczowym krokiem, szczególnie podczas upalnych dni. Cegły ceramiczne mają tendencję do absorbowania wilgoci z zaprawy murarskiej, co może prowadzić do tzw. 'wyciągania wody' z zaprawy, a tym samym do osłabienia jej właściwości wiążących. W wyniku tego proces murowania może być mniej skuteczny, a struktura muru może być osłabiona. Poprzez wcześniejsze zamoczenie cegły, zmniejszamy ryzyko nadmiernego wchłaniania wody z zaprawy, co pozwala na uzyskanie optymalnego połączenia między cegłami a zaprawą. W praktyce, stosując tę metodę, można również uniknąć pęknięć i innych uszkodzeń strukturalnych, które mogą wystąpić w wyniku nadmiernego wysychania na skutek wysokich temperatur. Dobrą praktyką jest zamoczenie cegły na co najmniej 30 minut przed rozpoczęciem murowania, co zapewni odpowiednią wilgotność cegły oraz zaprawy, co skutkuje mocniejszym i bardziej trwałym murem.

Pytanie 40

Do wykonywania prac na elewacjach wysokich budynków powinny być stosowane rusztowania

A. ruchome
B. wiszące
C. samojezdne
D. kozłowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rusztowania wiszące są specjalistycznymi konstrukcjami, które są szczególnie przydatne w robótkach elewacyjnych na budynkach wysokich. Umożliwiają one pracownikom swobodne poruszanie się wzdłuż elewacji, a ich konstrukcja pozwala na łatwe dostosowanie się do kształtów oraz wymagań budynku. Dzięki swoim właściwościom, rusztowania te minimalizują potrzebę zajmowania przestrzeni na gruncie, co jest istotne w gęsto zabudowanych obszarach miejskich. W praktyce, rusztowania wiszące są często wykorzystywane podczas malowania, czyszczenia elewacji, a także przy przeprowadzaniu prac remontowych, co pozwala na zwiększenie efektywności i bezpieczeństwa pracy. Warto również zwrócić uwagę, że zgodnie z normami PN-EN 12810 oraz PN-EN 12811, rusztowania muszą być odpowiednio zaprojektowane i użytkowane, aby zapewnić ich stabilność i bezpieczeństwo. Dobrze zaplanowane rusztowanie wiszące, z zastosowaniem odpowiednich mechanizmów blokujących, jest kluczowym elementem w zapewnieniu bezpieczeństwa pracowników na wysokości.