Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 4 kwietnia 2025 11:51
  • Data zakończenia: 4 kwietnia 2025 12:04

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

W przypadku urazu mechanicznego oka, pierwsza pomoc polega na

A. próbie usunięcia ciała obcego z oka
B. aplikacji kropli do oczu
C. nałożeniu jałowej gazy na oko i wezwaniu pomocy medycznej
D. spłukaniu oka
Nałożenie wyjałowionej gazy na oko i wezwanie pomocy lekarskiej to kluczowy krok w udzielaniu pierwszej pomocy przy urazie mechanicznym oka. W przypadku kontuzji, takich jak uraz mechaniczny, istotne jest, aby nie próbować samodzielnie usunąć ciała obcego ani nie stosować płukania, ponieważ może to prowadzić do dalszych uszkodzeń lub zakażeń. Wyjałowiona gaza służy jako bariera ochronna, chroniąca oko przed zanieczyszczeniami oraz minimalizująca ryzyko pogorszenia stanu. Po nałożeniu gazy niezbędne jest jak najszybsze wezwanie pomocy medycznej, ponieważ urazy oka mogą prowadzić do poważnych komplikacji, w tym do utraty wzroku. Warto również podkreślić, że w przypadku urazów oka, czas reakcji jest kluczowy; jak najszybsze udzielenie profesjonalnej pomocy zwiększa szansę na pozytywne rokowanie. W sytuacjach takich jak te, stosuje się wytyczne i standardy dotyczące pierwszej pomocy, które podkreślają znaczenie ochrony urazu oraz unikania działań mogących pogorszyć stan pacjenta.

Pytanie 3

Mechanik, który wymienia wahacze przedniej osi, ma możliwość dokręcenia

A. śruby/nakrętki sworznia dopiero po dokonaniu ustawienia zbieżności kół
B. śrub znajdujących się w poziomej płaszczyźnie wyłącznie w normalnej pozycji pracy zawieszenia
C. wszystkich śrub w dowolnym ustawieniu zawieszenia
D. śrub usytuowanych w pionowej płaszczyźnie tylko w normalnej pozycji pracy zawieszenia
Wymiana wahaczy osi przedniej jest kluczowym elementem w utrzymaniu prawidłowego funkcjonowania układu zawieszenia pojazdu. Odpowiedź wskazująca, że śruby umieszczone w płaszczyźnie poziomej mogą być dokręcane tylko w położeniu normalnej pracy zawieszenia jest poprawna, ponieważ zapewnia optymalne warunki do osiągnięcia właściwego momentu dokręcania. W położeniu roboczym zawieszenia, wszystkie elementy są w swojej naturalnej pozycji, co pozwala na precyzyjne i bezpieczne dokręcenie śrub. Niezastosowanie się do tej zasady może prowadzić do niewłaściwego naprężenia śrub, co w konsekwencji może powodować uszkodzenia wahaczy, a także negatywnie wpłynąć na stabilność i bezpieczeństwo jazdy. W praktyce, mechanicy powinni korzystać z odpowiednich narzędzi momentowych, aby zapewnić, że śruby są dokręcane zgodnie z wartościami podanymi przez producenta. Przykładem standardu branżowego jest przestrzeganie zaleceń producenta dotyczących momentów dokręcania, co jest kluczowe dla zachowania integralności układu zawieszenia i bezpieczeństwa pojazdu.

Pytanie 4

Sonda Lambda dokonuje pomiaru ilości

A. węgla
B. tlenu
C. sadzy
D. azotu
Sonda Lambda, znana również jako sonda tlenowa, jest kluczowym elementem systemu zarządzania silnikiem w pojazdach spalinowych. Jej głównym zadaniem jest pomiar stężenia tlenu w spalinach, co pozwala na optymalizację procesu spalania w silniku. Prawidłowy poziom tlenu w spalinach jest niezbędny do osiągnięcia efektywności energetycznej oraz redukcji emisji szkodliwych substancji. Na przykład, w silnikach z systemem wtrysku paliwa, sonda Lambda umożliwia dostosowanie wskazania mieszanki paliwowo-powietrznej do aktualnych warunków pracy silnika, co przekłada się na lepszą wydajność paliwową oraz mniejsze zanieczyszczenie środowiska. W praktyce oznacza to, że jeśli sonda wykryje zbyt niskie stężenie tlenu, system komputerowy silnika zwiększy ilość paliwa, a zbyt wysokie stężenie spowoduje jego redukcję. Dzięki tym działaniom, pojazdy spełniają normy emisji spalin, takie jak Euro 6, co jest istotne w kontekście ochrony środowiska i przepisów prawnych.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Badanie zadymienia spalin przeprowadza się w silnikach

A. zasilanych paliwem LPG
B. z zapłonem samoczynnym
C. zasilanych paliwem CNG
D. z zapłonem iskrowym
Pomiar zadymienia spalin to naprawdę ważna sprawa, szczególnie w silnikach Diesla, bo tam spalanie zachodzi inaczej niż w silnikach benzynowych. W silnikach z zapłonem samoczynnym, jak te dieslowskie, temperatura i ciśnienie są wyższe, co prowadzi do większej produkcji cząstek stałych. Dlatego normy emisji, takie jak Euro 6, mają tu swoje mocne restrykcje. Oprócz tego, monitorowanie zadymienia jest kluczowe dla diagnostyki silnika i może pomóc w optymalizacji spalania. Z własnego doświadczenia mogę powiedzieć, że dobrze przeprowadzone pomiary zadymienia nie tylko zmniejszają zużycie paliwa, ale też pomagają w walce z zanieczyszczeniami powietrza. Użycie odpowiednich analizatorów zadymienia to podstawa, żeby wszystko działało zgodnie z normami.

Pytanie 8

Zgodnie z klasyfikacją SAE (Society of Automotive Engineers) olej 10W to olej

A. zimowy
B. letni
C. specjalny
D. wielosezonowy
Wybór odpowiedzi niewłaściwej, takiej jak 'specjalny', 'wielosezonowy' lub 'letni', wskazuje na błędne zrozumienie klasyfikacji olejów silnikowych według SAE oraz ich właściwości. Olej oznaczony jako 'specjalny' nie ma formalnej klasyfikacji w ramach standardów SAE, co może prowadzić do nieprecyzyjnych wniosków na temat jego zastosowania. Oleje wielosezonowe, choć rzeczywiście posiadają oznaczenia z literą 'W', różnią się od olejów zimowych, ponieważ są zaprojektowane do pracy w szerokim zakresie temperatur, co nie odnosi się bezpośrednio do oleju 10W, który jest ściśle klasyfikowany jako olej zimowy. Z kolei olej 'letni' dotyczy wyłącznie oznaczeń, które nie zawierają litery 'W'; są one przeznaczone do użytkowania w wyższych temperaturach i nie są odpowiednie do pracy w mroźnych warunkach. Zrozumienie znaczenia oznaczeń lepkości i ich wpływu na wydajność silnika jest kluczowe, aby uniknąć nieodpowiednich wyborów, które mogą prowadzić do uszkodzeń silnika. Błędy w interpretacji mogą wynikać z braku wiedzy na temat wpływu temperatury na właściwości smarne oleju, co z kolei może wpłynąć na osiągi i żywotność jednostki napędowej. Właściwy dobór oleju to kluczowy element zapewnienia efektywności energetycznej i długowieczności silnika.

Pytanie 9

Jakiego rodzaju łożysko toczne wymaga dostosowania luzu montażowego?

A. Stożkowe
B. Oporowe
C. Promieniowe
D. Skośne
Łożyska promieniowe, skośne i oporowe nie muszą być regulowane tak jak te stożkowe. Generalnie, łożyska promieniowe mają prostszą konstrukcję i przenoszą obciążenia radialne, przez co zazwyczaj montuje się je bez dalszej regulacji. Ich elementy są dokładnie dopasowane, więc działają bez dodatkowych kroków. Z kolei łożyska skośne, które mogą przenosić obciążenia osiowe i radialne, czasami potrzebują trochę regulacji, ale to nie jest w takim stopniu jak te stożkowe. W mechanicznym świecie używa się ich, gdzie obciążenia są inne, ale luz montażowy ustala się na etapie produkcji. A łożyska oporowe, które zwykle przenoszą obciążenia wzdłużne, też nie wymagają regulacji luzu, bo tak są skonstruowane. Często pojawia się błędne myślenie o regulacji luzu w tych typach, bo porównuje się je z łożyskami stożkowymi, które działają na innych zasadach. Ważne, żeby zapamiętać, że każdy typ łożyska ma swoje specyficzne zastosowanie i wymagania, co jest istotne przy projektowaniu układów mechanicznych.

Pytanie 10

Jaką liczbę znaków zawiera numer VIN?

A. składa się z 10 znaków
B. składa się z 17 znaków
C. składa się z 12 znaków
D. składa się z 15 znaków
Numer VIN (Vehicle Identification Number) składa się z 17 znaków, co jest wynikiem standaryzacji wprowadzonej przez Międzynarodową Organizację Normalizacyjną (ISO) i przyjętej przez wiele krajów. VIN zawiera informacje o pojeździe, takie jak producent, model, typ nadwozia, rok produkcji, a także unikalny numer seryjny. Przykładowo, pierwsze trzy znaki VIN, znane jako WMI (World Manufacturer Identifier), identyfikują producenta pojazdu. Kolejne znaki dostarczają szczegółowych informacji na temat modelu, silnika oraz miejsca produkcji. Dzięki temu systemowi, każdy pojazd na świecie ma unikalny identyfikator, co jest niezbędne do rejestracji, ubezpieczenia oraz identyfikacji w przypadku kradzieży. Zrozumienie struktury i znaczenia numeru VIN jest kluczowe dla osób pracujących w branży motoryzacyjnej, a także dla właścicieli pojazdów, którzy chcą zadbać o swoje mienie.

Pytanie 11

W systemie chłodzenia silnika, ilość płynu krążącego w obiegu kontrolowana jest przez

A. wentylator chłodnicy
B. pompę cieczy
C. czujnik temperatury cieczy
D. termostat
Pojęcia związane z pompą cieczy, wentylatorem chłodnicy i czujnikiem temperatury cieczy często są mylone, co prowadzi do nieprawidłowych wniosków na temat regulacji ilości płynu w obiegu chłodzenia silnika. Pompa cieczy ma za zadanie przemieszczenie płynu chłodzącego w układzie, ale nie reguluje jej ilości. Działa jako element napędowy, zapewniając krążenie płynu, jednak nie jest odpowiedzialna za dostosowywanie jego przepływu do aktualnych warunków pracy silnika. Wentylator chłodnicy natomiast jest odpowiedzialny za zwiększenie przepływu powietrza przez chłodnicę, co wspomaga odprowadzanie ciepła, ale również nie reguluje ilości płynu chłodzącego w obiegu. Jego działanie jest uzależnione od temperatury płynu oraz obciążenia silnika, co sprawia, że jest to element wspierający, a nie regulujący. Czujnik temperatury cieczy zbiera dane o temperaturze płynu chłodzącego, które są następnie przesyłane do systemu zarządzania silnikiem, ale sam czujnik nie ma zdolności do regulowania przepływu płynu. Błędem jest mylenie tych komponentów z termostatem, który pełni funkcję regulacyjną. W praktyce, zrozumienie różnic między tymi elementami jest kluczowe dla diagnostyki i utrzymania sprawności układu chłodzenia silnika.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Podczas analizy układu korbowo-tłokowego zauważono zarysowanie tłoka w rejonie pierścieni. Uszkodzony tłok powinien zostać

A. naprawiony przez oszlifowanie uszkodzonego miejsca papierem ściernym
B. wymieniony na nowy
C. pozostawiony bez naprawy do dalszego użytkowania
D. zregenerowany metodą klejenia
Wymiana uszkodzonego tłoka na nowy jest kluczowym elementem zapewnienia prawidłowego funkcjonowania silnika. Zarysowanie w części pierścieniowej tłoka może prowadzić do nieszczelności, co z kolei skutkuje utratą kompresji i obniżeniem efektywności pracy silnika. Praktyka wskazuje, że stosowanie uszkodzonych komponentów zamiast ich wymiany może prowadzić do poważniejszych awarii, w tym uszkodzenia cylindrów. Dobrym przykładem jest procedura przeglądów silników wysokoprężnych, gdzie zaleca się wymianę tłoków w przypadku stwierdzenia jakichkolwiek uszkodzeń. Przemysłowy standard jakości dla silników, zwany ISO 9001, promuje zasadę wymiany uszkodzonych części w celu zapewnienia długoterminowej efektywności i niezawodności. Wymiana tłoka na nowy, zgodnie z producentem, zapewnia optymalne dopasowanie oraz wydajność, co jest niezbędne w przypadku serwisowania i naprawy silników.

Pytanie 15

Termin "mokra tuleja cylindrowa" odnosi się do

A. tulei cylindrowej silnika chłodzonego cieczą, oddzielonej cienką ścianką kadłuba od płynu chłodzącego
B. otworu stworzonego w jednoczęściowych odlewach kadłuba silnika lub bloku cylindrowego
C. tulei cylindrowej silnika chłodzonego powietrzem
D. tulei cylindrowej silnika chłodzonego cieczą kontaktującej się zewnętrzną powierzchnią z płynem chłodzącym
Mokra tuleja cylindrowa to naprawdę ważny element w silnikach spalinowych. Działa to tak, że jest otoczona cieczą chłodzącą, co pomaga w lepszym odprowadzaniu ciepła. W przeciwieństwie do silników chłodzonych powietrzem, w których tuleje nie mają kontaktu z cieczą, tutaj mamy dużo lepszą efektywność w utrzymywaniu właściwej temperatury silnika. Przykładowo, w autach osobowych czy ciężarowych często spotyka się tę konstrukcję. Moim zdaniem, dzięki mokrej tulei silniki są bardziej trwałe i efektywne energetycznie. Warto zwrócić uwagę, że takie rozwiązania są zgodne z tym, co inżynierowie uznają za najlepsze praktyki w branży. Krótko mówiąc, mokra tuleja cylindrowa to coś, co naprawdę robi różnicę w działaniu silnika.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Najistotniejszą informacją, która jest rejestrowana w zleceniu przyjęcia pojazdu do diagnostyki, stanowi

A. numer nadwozia
B. przebieg pojazdu
C. numer silnika
D. numer dowodu rejestracyjnego
Numer nadwozia, znany również jako VIN (Vehicle Identification Number), to unikalny identyfikator przypisany do każdego pojazdu, który jest kluczowy w procesie diagnostyki oraz identyfikacji pojazdu. Jest to standardowy zapis, który zawiera informacje o producencie, modelu, roku produkcji, a także cechach specyficznych dla danego pojazdu. W kontekście badań diagnostycznych, numer nadwozia jest niezwykle istotny, ponieważ pozwala na jednoznaczną identyfikację pojazdu, co jest szczególnie ważne w przypadku ustalania historii serwisowej, ewentualnych napraw, a także wszelkich zgłoszeń związanych z bezpieczeństwem. Przykładowo, przy przeglądach technicznych, mechanicy sprawdzają zgodność numeru VIN w dokumentach z numerem nadwozia umieszczonym na pojeździe. Dzięki temu można uniknąć oszustw związanych z kradzieżą pojazdów lub nieautoryzowanymi modyfikacjami. Znajomość i prawidłowe zapisanie numeru nadwozia w zleceniu przyjęcia pojazdu do badań diagnostycznych jest więc kluczowym elementem zapewniającym prawidłowość i bezpieczeństwo procedur serwisowych.

Pytanie 19

Aby ocenić efektywność amortyzatorów, stosuje się metodę, która polega na pomiarze

A. tłumienia amortyzatora
B. rozciągania amortyzatora
C. ściśnienia amortyzatora
D. ugniatania amortyzatora
Poprawna odpowiedź to "tłumienia amortyzatora", ponieważ skuteczność amortyzatorów polega przede wszystkim na ich zdolności do redukcji wibracji i drgań, które występują w pojazdach podczas jazdy. Amortyzatory tłumią ruchy zawieszenia, co przekłada się na poprawę komfortu jazdy oraz stabilność prowadzenia. Aby ocenić ich efektywność, przeprowadza się pomiary tłumienia, które zazwyczaj obejmują analizę charakterystyk tłumienia w różnych warunkach pracy. Przykładowo, podczas testów na torze lub w warunkach laboratoryjnych można zmierzyć czas reakcji amortyzatora na różne rodzaje drgań, co pozwala na określenie jego właściwości tłumiących. Dobre praktyki w branży motoryzacyjnej zalecają stosowanie urządzeń do pomiaru siły tłumienia, które zapewniają rzetelne dane do analizy. Uwzględniając normy ISO oraz standardy SAE, badania te są kluczowe dla oceny i rozwoju nowych konstrukcji amortyzatorów, co zwiększa bezpieczeństwo i komfort użytkowników pojazdów.

Pytanie 20

Ostatnia obróbka cylindra w silniku spalinowym to

A. honowanie
B. toczenie
C. planowanie
D. szlifowanie
Honowanie to naprawdę ważny proces, kiedy mówimy o końcowej obróbce cylindrów w silnikach spalinowych. Chodzi o to, żeby osiągnąć właściwą chropowatość i dokładne wymiary. Dzięki honowaniu, wewnętrzne ścianki cylindrów są gładkie i pozbawione malutkich niedoskonałości, co jest kluczowe, żeby pierścienie tłokowe dobrze przylegały. To z kolei wpływa na efektywność spalania i zmniejsza zużycie paliwa. Widziałem, że w nowoczesnych silnikach wyścigowych honowanie to standard, który pomaga uzyskać maksymalne osiągi. W motoryzacji mamy różne techniki honowania, jak honowanie na sucho czy na mokro, co zależy od materiałów i wymagań budowy. Dobre honowanie daje chropowatość Ra w granicach 0,2 - 0,5 μm, co jest naprawdę na poziomie najlepszych praktyk w branży.

Pytanie 21

Jakie narzędzie stosuje się do pomiaru wewnętrznych średnic cylindra?

A. sprawdzianu do otworów
B. średnicówki mikrometrycznej
C. średnicówki czujnikowej
D. suwmiarki uniwersalnej
Średnicówka mikrometryczna jest narzędziem pomiarowym, które umożliwia precyzyjny pomiar średnic wewnętrznych cylindrycznych otworów. Jej konstrukcja opiera się na użyciu mikrometrycznej skali, co pozwala na osiągnięcie wysokiej dokładności pomiaru, często do setnych części milimetra. Użycie średnicówki mikrometrycznej w inżynierii mechanicznej i produkcji jest zgodne z aktualnymi standardami metrologicznymi, które wymagają precyzyjnych pomiarów w procesach wytwarzania i kontroli jakości. W praktyce, średnicówki mikrometryczne są stosowane do pomiaru otworów w elementach takich jak wały, łożyska czy cylindry hydrauliczne. Przykładowo, w przypadku produkcji elementów silnikowych, dokładność pomiarów średnicowych jest kluczowa dla zapewnienia prawidłowego osadzenia i funkcjonowania części. Dodatkowo, średnicówki mikrometryczne mogą być wyposażone w różne końcówki pomiarowe, co zwiększa ich wszechstronność i zastosowanie w różnych materiałach oraz geometriach otworów.

Pytanie 22

Jaką funkcję pełni termostat w silniku spalinowym?

A. chłodzenia powietrza
B. regulowania obiegu cieczy chłodzącej
C. dopalania paliwa
D. wtrysku paliwa
Termostat w silniku spalinowym odgrywa kluczową rolę w regulacji obiegu cieczy chłodzącej, co jest niezbędne dla utrzymania optymalnej temperatury pracy silnika. W momencie, gdy silnik jest zimny, termostat pozostaje zamknięty, co pozwala na szybkie nagrzewanie się płynu chłodzącego. Gdy temperatura osiągnie ustawioną wartość, termostat otwiera się, umożliwiając przepływ cieczy chłodzącej przez chłodnicę, co zapobiega przegrzewaniu silnika. Przykładowo, w nowoczesnych silnikach stosuje się termostaty z elektroniczną kontrolą, które mogą dostosować otwarcie w zależności od warunków pracy silnika, co prowadzi do większej efektywności paliwowej i zmniejszenia emisji spalin. Ponadto, właściwe działanie termostatu wpływa na żywotność silnika oraz jego osiągi, co jest zgodne z najlepszymi praktykami inżynieryjnymi w branży motoryzacyjnej.

Pytanie 23

Masa własna pojazdu obejmuje

A. masę pojazdu oraz normalnego wyposażenia, a także kierowcy i pasażera
B. masę standardowego wyposażenia pojazdu, jednak bez kierowcy
C. masę pojazdu oraz wyposażenia, bez płynów eksploatacyjnych i bez kierowcy
D. masę pojazdu oraz standardowego wyposażenia z płynami eksploatacyjnymi, lecz bez kierowcy
Masa własna pojazdu odnosi się do całkowitej masy pojazdu, która obejmuje masę samego pojazdu, jego standardowego wyposażenia oraz wszelkich płynów eksploatacyjnych, takich jak olej silnikowy, płyn chłodzący czy paliwo. Kluczowym aspektem jest to, że masa własna nie uwzględnia kierowcy ani pasażerów. W praktyce, znajomość masy własnej pojazdu jest istotna dla określenia jego osiągów, takich jak przyspieszenie, zużycie paliwa oraz bezpieczeństwo. Normy branżowe, takie jak ISO 612, definiują metody pomiaru masy pojazdów, co pozwala na porównywanie różnych modeli pod kątem ich masy oraz efektywności. Ponadto, producenci pojazdów często podają masę własną w dokumentacji technicznej, co jest istotne dla użytkowników planujących przewóz towarów czy osób, a także dla osób zajmujących się tuningiem pojazdów. Ich świadomość odnośnie do masy własnej jest kluczowa dla zapewnienia bezpieczeństwa i legalności eksploatacji pojazdów na drogach publicznych.

Pytanie 24

W trakcie wymiany wtryskiwaczy konieczne jest również zastąpienie

A. przewodów paliwowych powrotnych
B. spinek zabezpieczających przewody powrotne
C. przewodów paliwowych wysokiego ciśnienia
D. pierścieni uszczelniających wtryskiwacze
Wymiana pierścieni uszczelniających wtryskiwaczy jest kluczowym elementem podczas serwisowania układu wtryskowego. Te niewielkie komponenty mają za zadanie zapewnienie szczelności połączenia pomiędzy wtryskiwaczem a głowicą cylindrów, co jest niezwykle istotne dla prawidłowego funkcjonowania silnika. Uszkodzone lub zużyte pierścienie mogą prowadzić do wycieków paliwa, co w efekcie może powodować nieefektywne spalanie, zwiększenie emisji spalin, a także uszkodzenia silnika. Standardy branżowe, takie jak SAE (Society of Automotive Engineers), zalecają regularne sprawdzanie i wymianę tych uszczelek podczas serwisowania wtryskiwaczy, aby zapewnić ich prawidłowe działanie oraz długowieczność całego układu. Ważne jest również, aby używać wysokiej jakości zamienników, które odpowiadają specyfikacjom producenta, co zminimalizuje ryzyko awarii i zapewni optymalne parametry pracy silnika. Przykładowo, podczas wymiany wtryskiwaczy w silniku Diesla, nieprzestrzeganie zaleceń dotyczących wymiany pierścieni uszczelniających może prowadzić do kosztownych napraw związanych z uszkodzeniem pompy wtryskowej lub systemu wtryskowego.

Pytanie 25

Przejazd autem przez płytę kontrolną w stacji diagnostycznej pozwala na dokonanie pomiaru

A. kąta wyprzedzenia sworznia zwrotnicy
B. pochylenia koła jezdnego
C. kąta pochylenia sworznia zwrotnicy
D. zbieżności całkowitej
Jak wiesz, jazda po płycie pomiarowej w stacji kontroli jest mega ważna dla sprawdzenia, jak dobrze ustawione są koła. Zbieżność całkowita to różnica w kącie kół przednich i to naprawdę wpływa na to, jak jedzie auto. Kiedy zbieżność jest źle ustawiona, opony szybciej się zużywają, auto gorzej się prowadzi, a paliwa idzie więcej. Na przykład, jeżeli zbieżność jest ujemna, to może się zdarzyć, że koła będą się ze sobą stykać, co jest niebezpieczne. Producent zawsze zaleca, żeby kontrolować te ustawienia regularnie, a szczególnie po wymianie opon czy naprawie zawieszenia. Dzięki tym pomiarom można wydłużyć życie opon i układu kierowniczego, co w dłuższej perspektywie się na pewno opłaca.

Pytanie 26

Aby przeprowadzić pomiar z precyzją 0,01 mm, należy zastosować

A. kątomierz uniwersalny.
B. suwmiarkę.
C. mikrometr.
D. liniał.
Mikrometr to przyrząd pomiarowy, który pozwala na niezwykle precyzyjne dokonywanie pomiarów z dokładnością do setnych części milimetra. Jest on często wykorzystywany w precyzyjnych operacjach mechanicznych oraz inżynieryjnych, gdzie wymagana jest wysoka dokładność. Mikrometry są powszechnie używane w laboratoriach metrologicznych, warsztatach mechanicznych oraz w produkcji elementów precyzyjnych, takich jak wały, łożyska czy elementy elektroniczne. W praktyce, aby zmierzyć średnicę małych przedmiotów, takich jak śruby czy osie, mikrometr może być użyty do łatwego odczytywania wartości na skali, co daje możliwość wykonania pomiaru z zyskiem na dokładności. Dobre praktyki w używaniu mikrometrów obejmują regularne kalibracje przyrządów oraz dbanie o ich czystość, co znacznie wpływa na jakość pomiarów. W kontekście norm metrologicznych, mikrometry są zgodne z wymogami standardów ISO dotyczących pomiarów długości, co czyni je niezastąpionym narzędziem w precyzyjnych pomiarach.

Pytanie 27

Najczęściej tarcze hamulcowe produkowane są z

A. stali
B. aluminiowych stopów
C. żeliwa
D. stopu miedzi
No, tarcze hamulcowe najczęściej robi się z żeliwa, bo ma ono super właściwości. Chodzi o to, że żeliwo świetnie przewodzi ciepło, co jest mega ważne podczas hamowania. Dzięki temu ciepło się rozprasza i mniejsze jest ryzyko, że coś nam się przegrzeje. Właśnie to sprawia, że hamowanie jest naprawdę skuteczne. Poza tym, żeliwo jest twarde i odporne na zużycie, więc tarcze z niego są trwałe i długo nam posłużą. W praktyce, wszyscy stosują żeliwne tarcze w osobówkach i ciężarówkach, a ich produkcja trzyma się norm ISO 9001, co oznacza, że są zazwyczaj dobrej jakości. Oczywiście w sportowych autach używa się też tarcz kompozytowych, ale w zwykłych pojazdach żeliwo wciąż rządzi.

Pytanie 28

Aby zamontować tłok z pierścieniami w cylindrze, należy użyć

A. opaski zaciskowej do pierścieni
B. szczypiec do pierścieni
C. prasy śrubowej
D. prasy hydraulicznej
Odpowiedź "opaskę zaciskową do pierścieni" jest prawidłowa, ponieważ montaż tłoka z pierścieniami w cylindrze wymaga zastosowania specjalistycznego narzędzia, które zapewnia ich prawidłowe umiejscowienie i uszczelnienie. Opaska zaciskowa do pierścieni pozwala na równomierne i kontrolowane wprowadzenie pierścieni do cylindra, co minimalizuje ryzyko ich uszkodzenia oraz zapewnia ich prawidłowe dopasowanie. W praktyce, aby zainstalować tłok, pierścienie należy najpierw włożyć do opaski, a następnie opaskę z pierścieniami wprowadza się do cylindra. To podejście jest zgodne z normami branżowymi, które zalecają używanie odpowiednich narzędzi w celu zapewnienia wysokiej jakości montażu. Dobrą praktyką jest także regularne sprawdzanie stanu pierścieni przed montażem oraz ich zgodności z wymaganiami producenta, co zapobiega problemom z uszczelnieniem w trakcie pracy silnika. Warto również zwrócić uwagę na odpowiednią smarowanie pierścieni, co zwiększa ich trwałość i wydajność.

Pytanie 29

Z zamieszczonego obok wydruku z analizy spalin pojazdu wynika, że stężenie tlenu w spalinach wynosi

RODZAJ PALIWA: Benzyna
POMIAR CIĄGŁY:
SILNIK T= 0°C ZA ZIMNY
obj< 20
CO = 0.76 % obj
CO2=12.68 % obj
O2 = 3.21 % obj
HC = 508 ppm obj
λ =1.141
NOx= 120 ppm obj

A. 508 ppm.
B. 3,21 %.
C. 12,60 %.
D. 1.141
Stężenie tlenu (O2) w spalinach, które wynosi 3,21% objętościowych, jest naprawdę istotnym wskaźnikiem, jeśli chodzi o efektywność spalania w silniku. Mówiąc prosto, pokazuje nam, ile tlenu zostało niezużyte podczas spalania paliwa, a to może znacząco wpłynąć na emisję spalin i wydajność całego silnika. W praktyce zbyt wysoka ilość tlenu może świadczyć o tym, że mieszanka paliwowo-powietrzna jest źle ustawiona albo że coś jest nie tak z układem wtryskowym. A to z kolei może prowadzić do większego zużycia paliwa oraz wyższej emisji zanieczyszczeń. W motoryzacji monitorowanie stężenia tlenu w spalinach to standard, który pozwala lepiej dostosować parametry pracy silnika i spełniać normy emisji. Przykładowo, w autach z systemami kontroli emisji, jak katalizatory czy układy recyrkulacji spalin, odpowiednie stężenie tlenu jest kluczowe, żeby wszystko działało jak należy.

Pytanie 30

Pojęcia takie jak: kąt wyprzedzenia osi sworznia zwrotnicy oraz kąt nachylenia osi sworznia zwrotnicy są powiązane z systemem

A. hamulcowym
B. jezdnym
C. napędowym
D. kierowniczym
Odpowiedź "kierowniczym" jest całkiem trafna, bo kąt wyprzedzenia osi sworznia zwrotnicy oraz kąt pochylenia osi sworznia to naprawdę ważne rzeczy w układzie kierowniczym. Kąt wyprzedzenia, znany też jako kąt caster, ma wpływ na to, jak stabilny jest pojazd podczas jazdy, a także jak dokładnie reaguje na ruchy kierownicą. Jak ten kąt jest dobrze ustawiony, to auto samo zaczyna prostować kierownicę po zakręcie, co jest mega przydatne. Kąt pochylenia osi sworznia zwrotnicy, czyli kąt camber, odnosi się do tego, jak koło nachyla się w stosunku do drogi. Właściwe ustawienie tego kąta jest super ważne, żeby opony się równomiernie zużywały i żeby lepiej trzymały się drogi w zakrętach. Mechanicy na co dzień używają specjalnych narzędzi do regulacji tego układu, by wszystko działało jak należy, co jest ważne dla bezpieczeństwa i komfortu jazdy. Takie regulacje to część przeglądów, które powinny być robione regularnie.

Pytanie 31

Podczas pomiaru ciśnienia oleju w silniku, mechanik zauważył zbyt wysokie ciśnienie przy zwiększonych obrotach silnika. Możliwą przyczyną podwyższenia ciśnienia może być

A. zbyt wysoki poziom oleju
B. zużycie łożysk głównych wału korbowego
C. uszkodzony zawór przelewowy pompy olejowej
D. zbyt wysoka temperatura pracy silnika
Zużycie łożysk głównych wału korbowego oraz zbyt wysoki poziom oleju mogą być mylnie postrzegane jako przyczyny wzrostu ciśnienia oleju, jednak analiza ich wpływu na ciśnienie w układzie smarowania skazuje te czynniki na błędne przypisanie. Zużycie łożysk powoduje luz, co w rzeczywistości prowadzi do zmniejszenia ciśnienia oleju, gdyż olej ma tendencję do uciekania przez nieszczelności, a nie do kumulacji ciśnienia. Wysokie ciśnienie związane z tymi uszkodzeniami może pojawić się tylko w skrajnych przypadkach, gdy nastąpi całkowite zatarcie, co jest już skutkiem zaawansowanego uszkodzenia. Wzrost ciśnienia nie jest zatem bezpośrednio związany z tym zjawiskiem. Zbyt wysoki poziom oleju może rzeczywiście prowadzić do problemów, takich jak napowietrzanie oleju, ale samo w sobie nie jest przyczyną permanentnego wzrostu ciśnienia, a raczej może wywoływać chwilowe skoki ciśnienia w momencie uruchamiania silnika lub w trakcie intensywnego eksploatowania silnika. Zbyt wysoka temperatura pracy silnika również nie powoduje wzrostu ciśnienia, a raczej może obniżać lepkość oleju, co przyczynia się do redukcji ciśnienia. Z tego powodu, kluczowe jest zrozumienie działania i roli zaworu przelewowego oraz precyzyjne diagnozowanie problemów w układzie smarowania, aby unikać mylnych wniosków i nieefektywnych napraw.

Pytanie 32

Podczas demontażu świec zapłonowych, mechanik zauważył na jednej z nich suchy czarny osad oraz występujący nagar. Opisane symptomy mogą wskazywać na

A. zbyt ubogą mieszankę paliwową
B. zbyt wysoki poziom oleju
C. uszkodzenie zaworów silnikowych
D. zbyt bogatą mieszankę paliwową
W przypadku zbyt wysokiego poziomu oleju, zaobserwowany czarny osad i nagar na świecach zapłonowych nie są typowymi symptomami. Zbyt wysoki poziom oleju w silniku może prowadzić do jego spienienia oraz zwiększenia ciśnienia, co wpływa na pracę silnika, lecz nie generuje charakterystycznych osadów w postaci nagaru na świecach. Zbyt uboga mieszanka paliwowa, z drugiej strony, prowadzi do nadmiernego nagrzewania się komory spalania, co może skutkować przegrzaniem świec, ale nie powoduje czarnego osadu. Uszkodzenie zaworów silnikowych również nie jest bezpośrednią przyczyną czarnego nagaru. Uszkodzone zawory mogą prowadzić do nieprawidłowego spalania lub utraty kompresji, ale nie generują specyficznego osadu, który opisał mechanik. Często błędne wnioski wynikają z niepełnego zrozumienia procesu spalania lub mylenia objawów z różnych usterek. Zrozumienie wpływu proporcji mieszanki paliwowej na pracę silnika oraz prawidłowe diagnozowanie problemów związanych ze świecami zapłonowymi jest kluczowe dla ich efektywnej eksploatacji i długowieczności. W praktyce, mechanicy powinni skupiać się na analizie danych z systemu diagnostycznego, aby precyzyjnie ustalić przyczyny problemów z układem zapłonowym.

Pytanie 33

Stan naładowania akumulatora ustalamy za pomocą pomiaru

A. masy elektrolitu
B. lepkości elektrolitu
C. gęstości elektrolitu
D. objętości elektrolitu
Pomiar objętości elektrolitu nie dostarcza informacji o stopniu naładowania akumulatora, ponieważ objętość pozostaje względnie stała, niezależnie od stanu naładowania. W przypadku akumulatorów kwasowo-ołowiowych, zmiany w ilości dostępnego elektrolitu mogą wynikać z odparowania lub wycieku, co nie jest bezpośrednio związane ze stanem naładowania. Lepkość elektrolitu oraz masa elektrolitu również nie są miarodajnymi wskaźnikami stanu naładowania. Lepkość może się zmieniać pod wpływem temperatury, ale nie wskazuje na ilość zgromadzonej energii. Masa elektrolitu, z kolei, jest stała dla danego akumulatora, a jej pomiar nie informuje o jakości czy efektywności akumulatora. Błędem w myśleniu jest założenie, że te parametry są w stanie zastąpić właściwy pomiar gęstości. Aby skutecznie ocenić stan akumulatora, należy kierować się sprawdzonymi metodami pomiarowymi, takimi jak wspomniany wcześniej pomiar gęstości elektrolitu, a nie polegać na parametrach, które nie są z nim bezpośrednio związane.

Pytanie 34

Jakie ciśnienie powinno panować w zbiorniku paliwa wysokiego ciśnienia w silniku wyposażonym w system zasilania Common Rail trzeciej generacji?

A. 1800 MPa
B. 180 MPa
C. 18 MPa
D. 1,8 MPa
Wybór ciśnienia 1,8 MPa jest znacznie poniżej wymaganych parametrów dla silników z układem zasilania Common Rail trzeciej generacji. Takie niskie ciśnienie mogłoby prowadzić do niewłaściwego wtrysku paliwa, co w konsekwencji skutkowałoby nieefektywnym spalaniem oraz zwiększonym zużyciem paliwa. W przypadku odpowiedzi 1800 MPa, wartość ta jest wręcz nierealna, ponieważ przekracza granice ciśnienia, które mogą być osiągnięte w praktycznych zastosowaniach w silnikach. Taki poziom ciśnienia mógłby prowadzić do uszkodzenia elementów układu paliwowego, co jest niezgodne z zasadami konstrukcji silników. Wybór 18 MPa również nie spełnia norm, jak i nie zapewnia odpowiedniej atomizacji paliwa, co jest kluczowe dla efektywności spalania. Należy pamiętać, że zmniejszenie ciśnienia paliwa może prowadzić do problemów z pracą silnika, takich jak nierównomierna praca, zwiększone emisje oraz spadek mocy. W silnikach nowoczesnych, spełniających rygorystyczne normy emisji, niezawodność układu paliwowego oparta jest na precyzyjnie określonych wartościach ciśnienia, które muszą być ściśle monitorowane i zarządzane. Dlatego kluczowe jest posługiwanie się odpowiednimi danymi technicznymi oraz standardami branżowymi, aby zapewnić prawidłową pracę silnika.

Pytanie 35

Współczesne bloki silników z zapłonem wewnętrznym przeważnie są produkowane z

A. nierdzewnej stali
B. stopów aluminium
C. węglowego staliwa
D. stopowego żeliwa
Wybór materiałów do produkcji bloków silników spalinowych jest kluczowym zagadnieniem inżynieryjnym i wymaga dokładnego zrozumienia właściwości różnych surowców. Stal węglowa, mimo że jest materiałem wytrzymałym, ma dużą masę, co negatywnie wpływa na efektywność energetyczną pojazdów. Intensywne dążenie do obniżania masy silników sprawia, że stal węglowa, ze względu na swoją ciężkość, nie jest preferowanym wyborem w nowoczesnym projektowaniu. Żeliwo stopowe, z drugiej strony, ma pewne korzystne właściwości, takie jak wysoka odporność na ścieranie, ale również jest cięższe od aluminium. W nowoczesnych zastosowaniach, gdzie liczy się każdy gram, jego użycie jest ograniczone. Stal nierdzewna, choć doskonała pod względem odporności na korozję, jest także znacznie cięższa i droższa, co czyni ją mniej praktyczną w kontekście masowej produkcji silników. Użycie tych materiałów może prowadzić do mylnych wniosków o ich przydatności w nowoczesnym przemysłowym zastosowaniu. Kluczem do zrozumienia wyboru materiałów w inżynierii silników spalinowych jest balans pomiędzy wytrzymałością, masą, a kosztami produkcji. Dlatego też, wybierając materiały do bloków silników, inżynierowie kierują się aktualnymi standardami, które preferują lżejsze i bardziej efektywne w kontekście energetycznym rozwiązania, takie jak stopy aluminium.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

W standardowym układzie napędowym do połączenia skrzyni biegów z tylnym mostem wykorzystywany jest

A. wał korbowy
B. wał napędowy
C. przegub kulowy
D. łącznik z tworzywa sztucznego
Wał napędowy jest kluczowym elementem w klasycznym układzie napędowym, który łączy skrzynię biegów z mostem napędowym. Jego główną rolą jest przenoszenie momentu obrotowego z silnika, który jest generowany przez skrzynię biegów, na koła pojazdu. Wał napędowy jest zazwyczaj wykonany z materiałów o wysokiej wytrzymałości, takich jak stal, aby wytrzymać duże obciążenia oraz drgania, które występują podczas pracy. W praktyce, wał napędowy jest także wyposażony w przeguby, które pozwalają na kompensację ruchów zawieszenia. Dzięki temu, nawet jeśli koła nie poruszają się na tej samej wysokości, wał napędowy może efektywnie przenosić moc. W nowoczesnych pojazdach stosuje się różne rozwiązania, takie jak wały o zmiennej długości czy systemy tłumienia drgań, które poprawiają komfort jazdy oraz wydajność układu napędowego. Standardy branżowe, takie jak ISO 9001, kładą nacisk na jakość materiałów oraz precyzję wykonania, co jest kluczowe dla bezpieczeństwa i efektywności działania wałów napędowych.

Pytanie 38

Samozapłon mieszanki powietrza i paliwa w silniku Diesla jest spowodowany

A. iskrą świecy zapłonowej
B. wysokim ciśnieniem wtryskiwanego paliwa
C. dużą gęstością sprężonego powietrza
D. wysoką temperaturą sprężonego powietrza
Samozapłon mieszanki paliwowo-powietrznej w silniku Diesla jest wynikiem wysokiej temperatury sprężonego powietrza. W silnikach Diesla proces zapłonu odbywa się bez użycia świec zapłonowych, co jest kluczowym elementem różniącym je od silników benzynowych. Podczas sprężania powietrza w cylindrze, jego temperatura znacznie wzrasta, a przy odpowiednim ciśnieniu sprężonego powietrza przekraczającym 500-800°C, paliwo wtryskiwane do komory spalania samoczynnie się zapala. Ta zasada działania opiera się na wysokiej efektywności termodynamicznej silników Diesla, które mogą osiągać wyższe ciśnienia sprężania, co prowadzi do lepszego wykorzystania energii. Przykładami zastosowania tej technologii są nowoczesne silniki diesel w pojazdach ciężarowych, gdzie efektywność paliwowa oraz moment obrotowy są kluczowe. Zrozumienie tego procesu jest niezbędne w kontekście projektowania silników oraz ich optymalizacji według norm emisji spalin, takich jak Euro 6, które wymagają innowacyjnych rozwiązań technologicznych.

Pytanie 39

Łożysko podtrzymujące wał może być stosowane w pojeździe

A. z tylnym układem napędowym zblokowanym
B. z przednim układem napędowym zblokowanym, z silnikiem ZS
C. z przednim układem napędowym zblokowanym, z silnikiem ZI
D. z klasycznym układem napędowym
Łożysko podparcia wału odgrywa kluczową rolę w klasycznym układzie napędowym, który charakteryzuje się zastosowaniem silnika umieszczonego w przedniej części pojazdu oraz napędu przekazywanego na koła tylne. W takim układzie, łożysko podparcia stabilizuje wał napędowy, co pozwala na minimalizację drgań oraz zwiększenie wydajności przekazywania momentu obrotowego. Przykładem zastosowania łożyska podparcia w klasycznym układzie napędowym można znaleźć w wielu pojazdach osobowych, gdzie jego obecność przekłada się na płynniejszą pracę całego układu napędowego i wydłuża żywotność komponentów. Dobre praktyki w zakresie projektowania układów napędowych zalecają stosowanie wysokiej jakości łożysk, aby zminimalizować tarcie oraz zużycie, co jest zgodne z normami branżowymi dotyczącymi efektywności energetycznej i trwałości pojazdów. Należy również zwrócić uwagę na regularną kontrolę stanu łożysk, co pozwala na wczesne wykrywanie potencjalnych problemów i zapobiega kosztownym awariom.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.