Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 16 czerwca 2025 21:04
  • Data zakończenia: 16 czerwca 2025 21:25

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W instalacji elektrycznej obwodu gniazd w przedpokoju wykorzystano przewód YDYt 3×2,5 mm2. Podczas wiercenia w murze pracownik przypadkowo przeciął przewód, uszkadzając jego dwie żyły. Jak należy prawidłowo usunąć tę usterkę?

A. Wyciągnąć jedynie uszkodzone żyły, zastępując je przewodem jednodrutowym.
B. Rozkuć tynk w miejscu uszkodzenia, zamontować dodatkową puszkę i w niej połączyć żyły.
C. Prowadzić nowy przewód pomiędzy najbliższymi puszkami, stosując pilota.
D. Rozkuć tynk w miejscu uszkodzenia, połączyć przewody, zaizolować taśmą, a następnie zatynkować ścianę.
W przypadku usunięcia usterki przewodu elektrycznego, ważne jest, aby unikać rozwiązań, które mogą prowadzić do dalszych problemów, a nawet zagrożeń dla bezpieczeństwa. Przeciąganie uszkodzonych żył przewodu YDYt 3×2,5 mm² z wykorzystaniem przewodu jednodrutowego jest nieodpowiednim podejściem. Tego rodzaju działania mogą skutkować obniżeniem wytrzymałości mechanicznej oraz zwiększeniem oporu elektrycznego, co może prowadzić do przegrzewania się przewodów i potencjalnych pożarów. Ponadto, wykorzystywanie jednodrutowych przewodów nie zapewnia odpowiedniego poziomu elastyczności, co jest kluczowe w przypadku instalacji w ścianach, gdzie przewody muszą być w stanie wytrzymać pewne ruchy. Z kolei opcja przeciągnięcia nowego przewodu pomiędzy puszkami za pomocą pilota, choć teoretycznie możliwa, w praktyce często prowadzi do problemów związanych z trudnością w uzyskaniu odpowiednich połączeń oraz zapewnieniem ich trwałości i bezpieczeństwa. Rozkuwanie tynku i łączenie przewodów poprzez izolację taśmą to również niezgodne z normami podejście, które nie gwarantuje bezpieczeństwa i może skutkować dalszymi uszkodzeniami. W każdej sytuacji związanej z usunięciem uszkodzenia instalacji elektrycznej, należy kierować się zasadą minimalizacji ryzyka oraz stosować rozwiązania zgodne z obowiązującymi normami, co w tym przypadku wymaga przeprowadzenia profesjonalnej naprawy z wykorzystaniem puszek instalacyjnych.

Pytanie 2

Która z wymienionych operacji jest związana z obsługą przepływu energii elektrycznej w urządzeniu napędowym klasy IV?

A. Weryfikacja ustawienia zabezpieczenia przed przeciążeniem
B. Zamiana uszkodzonego elementu w urządzeniu
C. Mierzenie napięcia zasilającego to urządzenie
D. Zatrzymanie urządzenia w przypadku awarii
Zrozumienie różnych działań przy obsłudze urządzeń napędowych to ważny element, ale nie zawsze są one związane z pilną reakcją w sytuacjach awaryjnych. Na przykład, sprawdzenie zabezpieczeń przeciążeniowych czy pomiar napięcia zasilającego to ważne rzeczy, ale nie są one bezpośrednio związane z natychmiastowym zatrzymywaniem urządzenia w kryzysowych momentach. Zabezpieczenie przeciążeniowe chroni silnik przed nadmiernym obciążeniem, ale jego sprawdzenie to nie to samo co szybka reakcja w awarii. Pomiar napięcia zasilającego to bardziej sprawdzanie, czy wszystko działa jak trzeba, a nie coś, co załatwia sprawę w przypadku zagrożenia. Wymiana uszkodzonego elementu też jest istotna, ale na pewno nie pomoże, jeśli już jest awaria. Często myśli się, że działania prewencyjne wystarczą, żeby uniknąć problemów, a to może prowadzić do chaosu i większego ryzyka. Dlatego w takich sytuacjach najlepiej skupić się na zatrzymaniu urządzenia – to jest podstawowe i naprawdę nie można tego bagatelizować.

Pytanie 3

Która z poniższych przyczyn powoduje nagły wzrost obrotów w trakcie działania silnika bocznikowego prądu stałego?

A. Zwarcie w uzwojeniu komutacyjnym
B. Przerwa w uzwojeniu wzbudzenia
C. Zwarcie w obwodzie twornika
D. Przerwa w obwodzie twornika
Przerwa w uzwojeniu wzbudzenia silnika bocznikowego prądu stałego prowadzi do nagłego wzrostu prędkości obrotowej, ponieważ uzwojenie wzbudzenia jest odpowiedzialne za generowanie pola magnetycznego, które współdziała z wirnikiem. Gdy uzwojenie wzbudzenia jest przerwane, pole magnetyczne gwałtownie słabnie, co skutkuje zmniejszeniem oporu elektromotorycznego. W efekcie, prąd w obwodzie twornika wzrasta, co prowadzi do przyspieszenia prędkości obrotowej wirnika. To zjawisko jest zgodne z zasadą działania silników prądu stałego, gdzie zmiana pola magnetycznego wpływa bezpośrednio na obroty silnika. W praktyce, takie nagłe zmiany mogą prowadzić do uszkodzenia silnika, a zatem w przypadku silników stosowanych w przemyśle, niezbędne jest monitorowanie stanu uzwojeń oraz stosowanie zabezpieczeń, takich jak urządzenia do detekcji przerwy w uzwojeniu, aby uniknąć niepożądanych skutków operacyjnych.

Pytanie 4

Jakie skutki dla instalacji mieszkalnej przyniesie zamiana przewodu YDY 3x1,5 mm2 na YADY 3 x 1,5 mm2?

A. Obciążalność długotrwała instalacji zostanie zmniejszona
B. Rezystancja przewodów ulegnie zmniejszeniu
C. Przewodność elektryczna przewodów ulegnie zwiększeniu
D. Wytrzymałość elektryczna izolacji wzrośnie
Wybór przewodu YADY 3x1,5 mm2 zamiast YDY 3x1,5 mm2 to nie byle co. Wiesz, te przewody mają różne właściwości, zwłaszcza jeśli chodzi o to, jak długo mogą wytrzymać przy dużym obciążeniu. Przewód YADY ma inną izolację, która po prostu nie znosi wysokich temperatur i uszkodzeń mechanicznych tak dobrze, jak YDY. Jak przewód YADY się nagrzeje, to może mieć problem z przenoszeniem prądu bezpiecznie. Takie sprawy reguluje norma PN-IEC 60364 i dobrze mieć to na uwadze przy projektowaniu. Inżynierowie i wykonawcy muszą więc dobrze przemyśleć, co wybierają, bo niewłaściwy przewód to ryzyko przegrzania i awarii, a to przecież może być niebezpieczne. Warto zainwestować w dobry wybór, żeby uniknąć kłopotów.

Pytanie 5

Jaką wartość powinien mieć prąd znamionowy bezpiecznika aparatowego zamontowanego w obwodzie uzwojenia pierwotnego transformatora jednofazowego, którego parametry to: U1N = 230 V, U2N = 13 V, używanego w ładowarce do akumulatorów, jeżeli przewidywany prąd obciążenia podczas ładowania akumulatorów wynosi 15 A?

A. 10 A
B. 6 A
C. 16 A
D. 1 A
Wybór wartości prądu znamionowego bezpiecznika aparaturowego jest kluczowy dla prawidłowego funkcjonowania obwodów elektrycznych. W przypadku analizowanej sytuacji, niewłaściwe odpowiedzi mogą wynikać z kilku błędnych koncepcji. Na przykład, wartość 6 A mogłaby sugerować nadmierne zabezpieczenie, które zmniejszyłoby efektywność działania transformatora, jednocześnie nie spełniając potrzeb obciążenia. Bezpiecznik o tej wartości mógłby nie zareagować odpowiednio na chwilowe przeciążenia, co prowadzi do ryzyka uszkodzenia transformatora. Z kolei odpowiedź 10 A wydaje się bliska, ale nadal jest wyższa niż rzeczywiste potrzeby, co może skutkować nadmiernym ryzykiem w przypadku wystąpienia zwarć. Podobnie, wybór 16 A jest niewłaściwy, ponieważ znacznie przekracza obliczony prąd obciążenia 15 A, co byłoby niezgodne z zasadą ochrony przed przeciążeniem i zwarciem. W praktyce, dobór wartości prądu znamionowego powinien być oparty na rzeczywistym obciążeniu, a także dostępnych normach dotyczących zabezpieczeń. Właściwy wybór nie tylko zapewnia bezpieczeństwo instalacji, ale także optymalizuje jej działanie, co ma kluczowe znaczenie w kontekście długotrwałej eksploatacji transformatorów w systemach ładowania akumulatorów.

Pytanie 6

Podczas pracy z urządzeniami elektrycznymi na wysokościach, jakiego środka ochrony indywidualnej należy użyć?

A. Rękawice ochronne
B. Buty robocze
C. Kask ochronny
D. Uprząż ochronna
Uprząż ochronna jest kluczowym elementem zabezpieczenia podczas pracy na wysokościach, szczególnie w przypadku pracy z urządzeniami elektrycznymi. Główne zadanie uprzęży to zapewnienie bezpieczeństwa użytkownikowi przez zapobieganie upadkom z wysokości. Praca na wysokościach wiąże się z ryzykiem, które może prowadzić do poważnych obrażeń lub nawet śmierci. Dlatego przestrzeganie norm BHP i stosowanie odpowiednich środków ochrony indywidualnej jest absolutnie niezbędne. Standardy w branży elektrycznej, takie jak normy EN 361, dokładnie określają wymagania dotyczące uprzęży, w tym ich wytrzymałość oraz sposób użycia. Ważne jest, aby uprzęże były prawidłowo dopasowane i regularnie kontrolowane pod kątem uszkodzeń. Dodatkowo, w kontekście pracy z elektryką, warto zwrócić uwagę na to, aby uprząż nie zawierała metalowych elementów, które mogłyby przewodzić prąd. Moim zdaniem, stosowanie uprzęży ochronnych to nie tylko wymóg prawny, ale przede wszystkim kwestia odpowiedzialności za własne życie i zdrowie.

Pytanie 7

W trakcie naprawy części instalacji elektrycznej zasilającej silnik indukcyjny, uszkodzone przewody aluminiowe zamieniono na przewody H07V-R o przekroju żyły 50 mm2. Jaki powinien być minimalny przekrój przewodu PE, aby warunek samoczynnego wyłączenia zasilania został spełniony?

A. 50 mm2
B. 35 mm2
C. 25 mm2
D. 20 mm2
Odpowiedź 25 mm2 jest poprawna, ponieważ zgodnie z normami PN-IEC 60364-5-54, minimalny przekrój przewodu ochronnego (PE) powinien być co najmniej równy 1,5 mm2 dla instalacji o maksymalnym prądzie znamionowym do 32 A. W przypadku instalacji z przewodami zasilającymi o znacznych przekrojach, takich jak 50 mm2 w przypadku przewodów H07V-R, wymagana jest zasada, że przekrój przewodu PE powinien wynosić co najmniej 50% przekroju przewodu fazowego w przypadku aluminium lub 25% w przypadku miedzi. Tutaj mamy do czynienia z przewodami aluminiowymi, więc obliczając 50% z 50 mm2, otrzymujemy 25 mm2. Taki przekrój zapewnia odpowiednią zdolność przewodu PE do przewodzenia prądu w przypadku awarii, co jest kluczowe dla ochrony ludzi oraz urządzeń. Przykładem zastosowania tej zasady może być instalacja elektryczna w przemyśle, gdzie wymagania bezpieczeństwa są szczególnie restrykcyjne.

Pytanie 8

Który z poniższych środków ostrożności nie jest wymagany dla zapewnienia bezpieczeństwa podczas realizacji prac przy linii napowietrznej, która została odłączona od zasilania?

A. Ogrodzenie terenu, na którym prowadzone są prace
B. Przyłączenie wyłączonej linii do uziemienia
C. Realizowanie pracy w zespole
D. Używanie sprzętu izolacyjnego
Wykonywanie prac zespołowo, ogrodzenie miejsca wykonywania pracy oraz uziemienie wyłączonej linii to kluczowe środki ostrożności, które są istotne w kontekście bezpieczeństwa przy pracach przy linii napowietrznej. Pracowanie w zespole pozwala na lepszą koordynację działań oraz szybszą reakcję w sytuacjach awaryjnych, co jest niezbędne w okolicznościach, gdzie ryzyko wypadku jest wyższe. Ogrodzenie miejsca pracy jest podstawowym działaniem w celu zabezpieczenia obszaru, co zapobiega nieautoryzowanemu dostępowi osób trzecich oraz minimalizuje ryzyko przypadkowych incydentów. Uziemienie wyłączonej linii jest fundamentalną praktyką, gdyż pozwala na odprowadzenie wszelkich ładunków elektrycznych, które mogą występować na linii, co znacząco zwiększa bezpieczeństwo pracowników. Ignorowanie tych praktyk może prowadzić do tragicznych konsekwencji, dlatego też każdy pracownik powinien być odpowiednio przeszkolony w zakresie zastosowania tych środków. W branży energetycznej nieprzestrzeganie zasad BHP i standardów, takich jak normy IEC, może skutkować poważnymi wypadkami, dlatego tak istotne jest, aby każdy pracownik był świadomy i przestrzegał ustalonych procedur.

Pytanie 9

W jaki sposób zareaguje trójfazowy silnik indukcyjny obciążony momentem znamionowym po podłączeniu zasilania, jeśli jeden z fazowych przewodów zasilających został odłączony od zacisku silnika?

A. Nie uruchomi się
B. Zacznie wirować w kierunku przeciwnym do spodziewanego
C. Rozbiegnie się
D. Zacznie obracać się z prędkością trzykrotnie niższą od znamionowej
Pojawiające się pomysły dotyczące możliwości uruchomienia silnika przy odłączeniu jednego z przewodów fazowych wskazują na niepełne zrozumienie zasad działania silników indukcyjnych. Stwierdzenie, że silnik zacznie obracać się z prędkością trzykrotnie niższą od znamionowej, jest błędne, ponieważ zasilanie jednofazowe nie jest w stanie wytworzyć odpowiedniego obrotowego pola magnetycznego, które jest niezbędne do działania silnika trójfazowego. Silnik nie ma możliwości samodzielnego generowania takiego pola w przypadku braku trzech faz. Koncepcja rozbiegania się silnika w sytuacji braku jednego z faz jest również nieprawidłowa. Silnik nie będzie w stanie osiągnąć wymaganego momentu obrotowego ani prędkości, co skutkuje tym, że nie dojdzie do rozruchu. Wspomnienie o wirowaniu w kierunku przeciwnym do oczekiwanego jest pomyłką, ponieważ bez stabilnego zasilania silnik nie będzie w stanie rozpocząć jakiegokolwiek ruchu. Tego typu błędne rozumowanie może wynikać z mylenia zasad działania silników jednofazowych z silnikami trójfazowymi. Silniki jednofazowe mogą w pewnych warunkach działać przy zasilaniu z jednej fazy, jednak w przypadku silników trójfazowych sytuacja jest inna i wymaga pełnego zasilania z trzech faz, aby mogły one pracować prawidłowo i bezpiecznie. Wiedza na temat odpowiedniego zasilania silników indukcyjnych jest kluczowa nie tylko w kontekście ich uruchamiania, ale także w aspekcie ich długotrwałej i efektywnej eksploatacji.

Pytanie 10

Skuteczność ochrony przeciwporażeniowej w sieci typu TN o napięciu 230/400 V jest zapewniona, gdy w czasie zwarcia L-PE (lub L-PEN) w odpowiednich warunkach środowiskowych dojdzie do

A. reakcji zabezpieczeń przednapięciowych
B. odłączenia obwodu przez przekaźnik termiczny
C. reakcji zabezpieczeń przeciwprzepięciowych
D. automatycznego wyłączenia zasilania
W przypadku sieci typu TN o napięciu 230/400 V, skuteczna ochrona przeciwporażeniowa w sytuacji zwarcia L-PE (lub L-PEN) polega na samoczynnym wyłączeniu zasilania. To działanie jest kluczowe dla minimalizacji ryzyka porażenia prądem elektrycznym, ponieważ szybkie odłączenie zasilania ogranicza czas narażenia ludzi na niebezpieczeństwo. W praktyce oznacza to, że w momencie wykrycia zwarcia, urządzenia zabezpieczające, takie jak wyłączniki różnicowoprądowe lub wyłączniki automatyczne, powinny natychmiast zareagować i przerwać dopływ prądu do obwodu. Zgodnie z normą PN-EN 60364, czas wyłączenia zasilania powinien być dostosowany do specyfiki instalacji oraz warunków środowiskowych. W wielu przypadkach czas reakcji zabezpieczeń powinien wynosić nie więcej niż 0,4 sekundy dla systemów zasilających o napięciu do 400 V. W praktyce, aby zapewnić bezpieczeństwo użytkowników, niezwykle istotne jest regularne sprawdzanie i konserwacja urządzeń zabezpieczających, co zapobiega ich niesprawności w sytuacjach awaryjnych. Samoczynne wyłączenie zasilania to więc fundamentalny element ochrony przeciwporażeniowej, który powinien być brany pod uwagę na etapie projektowania oraz eksploatacji instalacji elektrycznych.

Pytanie 11

Jak, w przybliżeniu, zmieni się moc wydobywana przez grzejnik elektryczny, jeśli jego spiralę grzejną skróci się o połowę, a napięcie zasilania pozostanie niezmienione?

A. Zwiększy się dwukrotnie
B. Zwiększy się czterokrotnie
C. Zmniejszy się czterokrotnie
D. Zmniejszy się dwukrotnie
Analizując błędne odpowiedzi, warto zauważyć, że wiele osób może mylić wpływ skrócenia spirali grzewczej na moc, koncentrując się na długości spirali, a nie na jej rezystancji. Odpowiedzi sugerujące zmniejszenie mocy dwukrotnie lub czterokrotnie mogą wynikać z nieporozumienia dotyczącego zasady działania rezystancji. Skrócenie spirali grzejnej nie prowadzi do zmniejszenia mocy, wręcz przeciwnie, zmniejszenie długości spirali skutkuje niższą rezystancją. Warto również zaznaczyć, że zrozumienie, iż moc jest funkcją napięcia i rezystancji, jest kluczowe dla analizy obwodów elektrycznych. W przypadku błędnych koncepcji, można zauważyć, że przyjęcie, iż skrócenie spirali o połowę prowadzi do zmniejszenia wydzielanej mocy, zaprzecza podstawowym zasadom fizyki elektrycznej. Stąd, błędne rozumienie relacji między napięciem, rezystancją i mocą, prowadzi do nieprawidłowych wniosków. W rzeczywistości, zmniejszenie rezystancji powoduje wzrost prądu, co w rezultacie zwiększa moc. W praktyce, takie myślenie może prowadzić do niewłaściwych decyzji w projektowaniu systemów grzewczych, co jest niezgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 12

Jaki przyrząd jest wykorzystywany do pomiarów rezystancji izolacyjnej kabli elektrycznych?

A. Pirometr
B. Megaomomierz
C. Waromierz
D. Anemometr
Megaomomierz to naprawdę ważne urządzenie, które pomaga mierzyć rezystancję izolacji, zwłaszcza w elektryce. Jego głównym zadaniem jest sprawdzanie, w jakim stanie są przewody, co jest mega istotne dla bezpieczeństwa naszych instalacji. Zazwyczaj działa przy napięciach od 250 do 5000 V, co daje nam pewność, że jakość izolacji jest na odpowiednim poziomie. Z mojego doświadczenia, regularne pomiary rezystancji izolacji są kluczowe. Powinno się to robić według norm, jak PN-EN 61557, bo to może pomóc w wykryciu problemów, takich jak zwarcia czy upływy prądu. Przecież nikt nie chce mieć nieprzyjemności związanych z awariami czy zagrożeniem dla bezpieczeństwa. Dobrze jest więc pamiętać o konserwacji i systematycznych kontrolach, bo to pozwala uniknąć drogich napraw i utrzymać instalację elektryczną w dobrym stanie.

Pytanie 13

Które z poniższych rozwiązań gwarantuje podstawową ochronę przed porażeniem w grzejniku elektrycznym działającym w systemie TN-S?

A. Izolacja robocza
B. Zastosowanie wyłącznika różnicowoprądowego w obwodzie zasilania
C. Zastosowanie wyłącznika instalacyjnego nadprądowego w obwodzie zasilania
D. Podłączenie obudowy do uziemienia ochronnego
Izolacja robocza jest kluczowym elementem zapewniającym podstawową ochronę przeciwporażeniową w urządzeniach elektrycznych, takich jak grzejniki elektryczne, pracujące w sieci TN-S. W tym systemie zasilania, który charakteryzuje się oddzieleniem przewodu neutralnego od przewodu ochronnego, odpowiednie zastosowanie izolacji roboczej ma na celu minimalizowanie ryzyka porażenia prądem w przypadku uszkodzenia urządzenia. Izolacja robocza to warstwa materiału izolacyjnego, która otacza przewody elektryczne i zapobiega ich kontaktowi z elementami metalowymi urządzenia, a tym samym z użytkownikiem. Przykładem praktycznego zastosowania izolacji roboczej jest użycie wysokiej jakości materiałów takich jak PVC lub guma, które są odporne na wysokie temperatury i działanie chemikaliów. Standardy takie jak IEC 60364 oraz normy krajowe dotyczące instalacji elektrycznych wskazują na konieczność stosowania izolacji roboczej, aby zapewnić bezpieczeństwo użytkowników. W praktyce, każdy grzejnik elektryczny powinien być zaprojektowany tak, aby spełniał wymagania dotyczące izolacji, co znacznie redukuje ryzyko wypadków związanych z porażeniem prądem.

Pytanie 14

Który z podanych łączników chroni przewody w systemach elektrycznych przed skutkami zwarć?

A. Odłącznik
B. Wyłącznik nadprądowy
C. Stycznik
D. Przekaźnik termiczny
Wyłącznik nadprądowy jest kluczowym elementem zabezpieczeń w instalacjach elektrycznych, którego głównym zadaniem jest ochrona przewodów przed skutkami zwarć oraz przeciążeń. Działa na zasadzie automatycznego przerwania obwodu, gdy prąd przekroczy określoną wartość nominalną. Dzięki temu minimalizuje ryzyko uszkodzenia instalacji oraz pożaru. W praktyce, wyłączniki nadprądowe są stosowane w różnych typach instalacji, od domowych po przemysłowe. Przykładem mogą być obwody zasilające urządzenia, które mogą generować nagłe skoki prądu, takie jak silniki elektryczne. Zgodnie z normą PN-EN 60898-1, wyłączniki nadprądowe powinny być dobierane w zależności od charakterystyki obciążenia oraz rodzaju zabezpieczanego obwodu, co zapewnia ich skuteczność i niezawodność w działaniu. Warto również wspomnieć, że stosowanie wyłączników nadprądowych jest częścią dobrych praktyk w zakresie projektowania instalacji elektrycznych, co znacząco przyczynia się do bezpieczeństwa użytkowania.

Pytanie 15

Jaki przyrząd jest przeznaczony do bezpośredniego pomiaru współczynnika mocy w silniku indukcyjnym?

A. Watomierz
B. Częstościomierz
C. Fazomierz
D. Waromierz
Wybór pozostałych mierników, takich jak watomierz, częstościomierz i waromierz, może prowadzić do nieporozumień dotyczących ich funkcji i zastosowań w kontekście pomiaru współczynnika mocy. Watomierz, mimo że mierzy zużycie energii, nie dostarcza informacji na temat relacji między mocą czynną a mocą pozorną. Jego pomiar koncentruje się na ilości energii przekazywanej w jednostce czasu, a więc nie bierze pod uwagę charakterystyki obciążenia indukcyjnego, co jest kluczowe przy ocenie współczynnika mocy. Częstościomierz z kolei mierzy częstotliwość sygnałów, co nie ma bezpośredniego związku z mocą, a więc nie może być użyty do analizy efektywności energetycznej silnika. Waromierz, używany do pomiaru wartości energii, również nie jest narzędziem adekwatnym do oceny współczynnika mocy, ponieważ jego zastosowanie ogranicza się głównie do analizy energii w kontekście statycznym, a nie dynamicznym. Typowym błędem myślowym jest założenie, że pomiar mocy elektrycznej i ocena współczynnika mocy są tożsame, co może prowadzić do wybierania niewłaściwych narzędzi pomiarowych i błędnej analizy wyników. Aby efektywnie zarządzać energią w instalacjach przemysłowych, kluczowe jest posługiwanie się odpowiednimi przyrządami, takimi jak fazomierz, które są zgodne z normami branżowymi i najlepszymi praktykami w dziedzinie inżynierii elektrycznej.

Pytanie 16

W instalacji trójfazowej prąd obciążenia w przewodach fazowych IB wynosi 21 A, natomiast obciążalność długotrwała tych przewodów Idd to 30 A. Który z wymienionych wyłączników nadprądowych powinien być użyty do zabezpieczenia tej instalacji?

A. B20
B. B10
C. B16
D. B25
Wybór wyłącznika nadprądowego z wartością nominalną poniżej obciążenia roboczego, takiego jak B20, B16 czy B10, jest niewłaściwy z kilku powodów. Najważniejszym czynnikiem jest to, że każdy z tych wyłączników posiada wartości nominalne, które są zbyt niskie w stosunku do prądu obciążenia wynoszącego 21 A. Dla wyłącznika B20 maksymalne obciążenie wynosi 20 A, co oznacza, że przy nominalnym obciążeniu 21 A wyłącznik ten będzie stale się wyłączał, co prowadzi do nieprzewidzianych przerw w dostawie prądu. Z kolei wyłączniki B16 i B10 mają jeszcze mniejsze wartości nominalne, co sprawia, że ich zastosowanie w tej instalacji byłoby jeszcze bardziej problematyczne. Niewłaściwy wybór wyłącznika nie tylko prowadzi do nieustannego wyzwalania, ale także może skutkować niebezpieczeństwem uszkodzenia urządzeń elektrycznych z powodu niestabilności dostaw energii. Warto również zaznaczyć, że zgodnie z normami IEC 60947-2, wyłączniki nadprądowe powinny być dobrane w taki sposób, aby ich nominalna wartość była dostosowana do przewidywanego obciążenia oraz długotrwałej obciążalności instalacji. Niezastosowanie się do tych zasad może prowadzić do poważnych konsekwencji, w tym zagrożeń dla bezpieczeństwa użytkowników oraz uszkodzeń instalacji elektrycznej.

Pytanie 17

W instalacji jednofazowej o częstotliwości 50 Hz oraz napięciu znamionowym 230 V, wartość napięcia pomiędzy przewodem fazowym a przewodem neutralnym nie powinna wynosić

A. więcej niż 253 V
B. mniej niż 213 V
C. mniej niż 230 V
D. więcej niż 243 V
'Większa niż 253 V' to faktycznie dobra odpowiedź. W instalacjach jednofazowych, gdzie mamy napięcie 230 V i częstotliwość 50 Hz, napięcie między fazą a neutralnym musi się mieścić w określonym zakresie. Z tego co pamiętam, normy mówią, że odchylenia napięcia mogą wynosić +/- 10%. W takim przypadku dolna granica to 207 V, a górna to 253 V. Jak widzisz, wszystko powyżej 253 V to już sporo za dużo. I to może być niebezpieczne dla urządzeń elektrycznych, mogą się przegrzewać i psuć. Dlatego w projektowaniu instalacji warto używać zabezpieczeń, jak wyłączniki nadprądowe czy ograniczniki przepięć, żeby chronić system. Monitorowanie napięcia to kluczowa sprawa, żeby wszystko działało długo i bezpiecznie.

Pytanie 18

Aby zabezpieczyć silnik o parametrach znamionowych podanych poniżej, należy dobrać wyłącznik silnikowy według oznaczenia producenta

Silnik 3~ Typ MAS063-2BA90-Z
0,25 kW 0,69 A Izol. F
IP 54 2755 obr/min cosφ 0,81
400 V (Y) 50 Hz


A. MMS-32S – 4A
B. MMS-32S – 1,6A
C. PKZM01 – 1
D. PKZM01 – 0,63
Wybór niewłaściwych wyłączników silnikowych często wynika z niepełnego zrozumienia zasad doboru urządzeń zabezpieczających dla silników elektrycznych. Na przykład, MMS-32S – 4A oferuje zbyt wysoki prąd znamionowy, co może prowadzić do braku skutecznej ochrony silnika. Taki wyłącznik nie zadziała w przypadku przeciążenia, co naraża silnik na uszkodzenia. Z kolei PKZM01 – 0,63, mimo że jest bliższy wymaganiom silnika, także nie spełnia norm, ponieważ jego maksymalny prąd jest zbyt niski w stosunku do prądu znamionowego silnika. Wybierając wyłączniki, należy pamiętać o odpowiednich marginesach prądowych, co oznacza, że wyłącznik powinien mieć wartość znamionową prądu większą niż prąd roboczy silnika, ale nie przeładowaną, aby nie doszło do fałszywych zadziałań. Niewłaściwy dobór wyłączników może prowadzić do poważnych konsekwencji, takich jak uszkodzenie silnika, a także potencjalne ryzyko pożaru z powodu przeciążeń. W związku z tym, kluczowe jest przestrzeganie norm dotyczących instalacji elektrycznych i zabezpieczeń, takich jak IEC 60947, które dostarczają wytycznych na temat bezpiecznego doboru urządzeń ochronnych dla silników. Zrozumienie tych zasad jest fundamentalne dla właściwego funkcjonowania systemów elektrycznych i ochrony sprzętu.

Pytanie 19

Przed rozpoczęciem wymiany uszkodzonych części instalacji elektrycznej do 1 kV, należy najpierw odłączyć napięcie, a następnie stosować się do zasad bezpieczeństwa w poniższej kolejności:

A. potwierdzić brak napięcia, uziemić instalację elektryczną, zabezpieczyć przed ponownym załączeniem
B. zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną, potwierdzić brak napięcia
C. zabezpieczyć przed ponownym załączeniem, potwierdzić brak napięcia, uziemić instalację elektryczną
D. potwierdzić brak napięcia, zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną
Przed przystąpieniem do wymiany uszkodzonych elementów instalacji elektrycznej do 1 kV, kluczowe jest przestrzeganie ustalonej procedury bezpieczeństwa. Po pierwsze, zabezpieczenie przed powtórnym załączeniem oznacza zastosowanie odpowiednich blokad lub zamknięć, które uniemożliwiają przypadkowe przywrócenie zasilania podczas prac. Po tym etapie, potwierdzenie braku napięcia jest niezbędne, aby upewnić się, że instalacja faktycznie jest de-energizowana. Można to osiągnąć za pomocą odpowiednich przyrządów pomiarowych, takich jak wskaźniki napięcia, które powinny być używane przez wykwalifikowany personel. Uziemienie instalacji elektrycznej jest kolejnym krokiem, który zapewnia, że wszelkie pozostałe ładunki elektryczne są bezpiecznie odprowadzane do ziemi, co minimalizuje ryzyko porażenia prądem. Cała ta procedura jest zgodna z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które określają zasady dotyczące eksploatacji instalacji elektrycznych.

Pytanie 20

Jakie oznaczenia powinien posiadać wyłącznik różnicowoprądowy RCD przeznaczony do ochrony obwodu gniazd jednofazowych w pracowni komputerowej, gdzie używane są 15 zestawy komputerowe?

A. 40/2/030-A
B. 63/4/300-A
C. 25/4/100-A
D. 16/2/010-A
Wyłącznik różnicowoprądowy RCD o oznaczeniu 40/2/030-A jest odpowiedni do zabezpieczenia obwodu gniazd jednofazowych w pracowni komputerowej z 15 zestawami komputerowymi z kilku istotnych powodów. Przede wszystkim, pierwsza liczba '40' oznacza nominalny prąd różnicowy, który wynosi 40 mA. Taki poziom jest zazwyczaj zalecany dla obwodów, które mogą być narażone na niebezpieczne sytuacje związane z upływem prądu, co jest szczególnie ważne w miejscach, gdzie pracuje wiele urządzeń elektronicznych. Druga liczba '2' wskazuje na liczbę faz, co w przypadku gniazd jednofazowych jest poprawne. Trzecia liczba '030' oznacza czas działania z różnicą prądową, który nie powinien przekraczać 30 ms. Ta wartość jest zgodna z normami bezpieczeństwa, które zalecają szybkie odłączenie zasilania w przypadku wykrycia prądu różnicowego, co jest kluczowe dla ochrony użytkowników. W praktyce, stosując RCD o tym oznaczeniu, można skutecznie zabezpieczyć użytkowników przed porażeniem prądem, co jest niezwykle istotne w środowisku biurowym, gdzie wiele urządzeń może być podłączonych jednocześnie.

Pytanie 21

Jaki stopień ochrony powinny mieć oprawy oświetleniowe w silnie zapylonych pomieszczeniach?

A. IP3X
B. IP5X
C. IP4X
D. IP2X
Stopień ochrony IP5X oznacza, że oprawa oświetleniowa jest pyłoszczelna, co jest kluczowe w pomieszczeniach mocno zapylonych. Oznaczenie IP (Ingress Protection) jest standardem międzynarodowym, który określa poziom ochrony urządzeń elektrycznych przed ciałami stałymi oraz cieczami. W przypadku IP5X urządzenie jest całkowicie chronione przed pyłem, co zapewnia jego niezawodność i długowieczność w trudnych warunkach. Przykładem zastosowania IP5X mogą być zakłady przemysłowe, magazyny, czy strefy produkcyjne, gdzie obecność pyłów może wpływać na działanie oświetlenia. Stosowanie opraw oświetleniowych z tym stopniem ochrony minimalizuje ryzyko uszkodzenia komponentów elektrycznych i zwiększa bezpieczeństwo pracy. Dodatkowo, zastosowanie opraw oświetleniowych z wysokim stopniem ochrony jest zgodne z normami takimi jak EN 60529, które regulują wymagania dotyczące stopni ochrony w sprzęcie elektrycznym. W praktyce, wybierając oświetlenie do zapylonych pomieszczeń, warto zawsze kierować się tymi standardami, aby zapewnić zarówno efektywność, jak i bezpieczeństwo działania urządzeń.

Pytanie 22

Aby zidentyfikować części silników w wersji przeciwwybuchowej, które mają podwyższoną temperaturę, przeprowadza się pomiary temperatury ich obudowy. W którym miejscu silnika nie powinno się przeprowadzać tych pomiarów?

A. Na tarczy łożyskowej, od strony napędowej w pobliżu pokrywy łożyska
B. Na końcu obudowy w rejonie napędu
C. W centralnej części obudowy blisko skrzynki przyłączeniowej
D. W sąsiedztwie pokrywy wentylatora
Pomiar temperatury silników w wykonaniu przeciwwybuchowym jest kluczowy dla zapewnienia ich bezpieczeństwa i niezawodności. Wybór odpowiedniego miejsca do pomiaru temperatury jest niezwykle istotny, ponieważ nieprawidłowe lokalizacje mogą prowadzić do błędnych odczytów oraz mogą nie uwzględniać rzeczywistych warunków pracy silnika. W przypadku podwyższonej temperatury obudowy silnika, pomiar w pobliżu pokrywy wentylatora jest niewłaściwy, gdyż to miejsce jest często narażone na wpływ zewnętrznych warunków atmosferycznych oraz może być miejscem intensywnego przepływu powietrza, co prowadzi do fałszywych wskazań. Standardy branżowe, takie jak IEC 60079, określają, że należy unikać pomiaru w tych miejscach, aby zapewnić dokładność i wiarygodność danych. Zamiast tego, pomiary powinny być wykonywane w miejscach, gdzie temperatura jest rzeczywiście reprezentatywna dla stanu silnika, na przykład pośrodku obudowy lub na tarczy łożyskowej, co pozwala na lepsze śledzenie potencjalnych problemów z przegrzewaniem.

Pytanie 23

Zespół elektryków ma wykonać na polecenie pisemne prace konserwacyjne przy urządzeniu elektrycznym.
Jak powinien postąpić kierujący zespołem w przypadku stwierdzenia niedostatecznego oświetlenia w miejscu pracy?

Wykonać zleconą pracęPowiadomić przełożonego
o niedostatecznym oświetleniu
A.TAKNIE
B.TAKTAK
C.NIETAK
D.NIENIE

A. B.
B. C.
C. D.
D. A.
Zrozumienie zasad bezpieczeństwa pracy jest kluczowe w każdej branży, w tym w elektryce. Odpowiedzi, które sugerują kontynuowanie pracy mimo stwierdzenia niedostatecznego oświetlenia, są nie tylko nieodpowiedzialne, ale także sprzeczne z podstawowymi zasadami ochrony zdrowia i życia w miejscu pracy. Podejście, w którym nie wskazuje się na konieczność zaprzestania prac, może wynikać z błędnego założenia, że pracownicy są w stanie samodzielnie zidentyfikować i zminimalizować zagrożenia. Takie myślenie jest niebezpieczne, ponieważ może prowadzić do lekceważenia problemów, które są widoczne tylko w pełnym świetle. Nieodpowiednie oświetlenie może prowadzić do błędów w ocenie sytuacji oraz zwiększać ryzyko wypadków, co podkreśla znaczenie natychmiastowego zgłaszania takich niedociągnięć przełożonym. Innym typowym błędem jest założenie, że efekty pracy można zrealizować w każdym kontekście, nawet w trudnych warunkach. W praktyce, ignorowanie zasad dotyczących oświetlenia jest nie tylko niezgodne z przepisami, ale również z normami zawartymi w kodeksie pracy oraz regulacjach BHP. Pracownicy powinni być świadomi, że ich bezpieczeństwo ma priorytet i że każdy problem związany z warunkami pracy musi być zgłaszany i rozwiązywany. Ignorowanie tych zasad może prowadzić do poważnych konsekwencji prawnych oraz zdrowotnych.

Pytanie 24

Jaką liczbę należy użyć do pomnożenia wartości znamionowego prądu silnika trójfazowego klatkowego, który napędza pompę, aby obliczyć maksymalną dopuszczalną wartość nastawy prądu na jego zabezpieczeniu termicznym?

A. 1,1
B. 0,8
C. 1,4
D. 2,2
Odpowiedź 1,1 jest poprawna, ponieważ przy obliczaniu maksymalnej dopuszczalnej wartości nastawy prądu na zabezpieczeniu termicznym silników trójfazowych, stosuje się współczynnik 1,1. Ten współczynnik uwzględnia zwiększone obciążenie silnika w przypadku jego rozruchu oraz wpływ na jego pracę w warunkach długotrwałego obciążenia. Przyjmuje się, że silniki trójfazowe mogą być obciążane do wartości 10% powyżej znamionowej przez krótki czas, co jest kluczowe dla ochrony silnika oraz zapewnienia jego efektywności. W praktyce oznacza to, że jeżeli znamionowy prąd silnika wynosi na przykład 10 A, to maksymalna wartość nastawy na zabezpieczeniu termicznym powinna wynosić 11 A. Zastosowanie tego współczynnika jest zgodne z normami IEC 60034 oraz wytycznymi producentów urządzeń, co jest kluczowe dla zabezpieczenia silników i zapewnienia ich prawidłowej pracy.

Pytanie 25

Która z podanych okoliczności powoduje obniżenie prędkości obrotowej silnika trójfazowego z pierścieniami w trakcie jego działania?

A. Przerwa w zasilaniu jednej fazy
B. Zwiększenie napięcia zasilającego
C. Zwarcie pierścieni ślizgowych
D. Zmniejszenie obciążenia silnika
Przerwa w zasilaniu jednej fazy w trójfazowym silniku pierścieniowym powoduje, że silnik zaczyna pracować w trybie niesymetrycznym. W takim przypadku moment obrotowy generowany przez silnik ulega znacznemu osłabieniu, co prowadzi do zmniejszenia prędkości obrotowej. Silniki te są zaprojektowane do pracy z równomiernym rozkładem napięcia w wszystkich trzech fazach. Kiedy jedna z faz jest przerwana, silnik nie jest w stanie uzyskać maksymalnej mocy, co skutkuje spadkiem prędkości obrotowej. W praktyce, może to prowadzić do przegrzewania się silnika, a w skrajnych przypadkach nawet do uszkodzenia wirnika lub stojana. Z tego powodu, monitorowanie zasilania i jego stabilności jest kluczowe w zastosowaniach przemysłowych. W branżowych standardach, takich jak IEC 60034, zwraca się uwagę na konieczność stosowania urządzeń zabezpieczających przed utratą jednego z faz, aby zapewnić ciągłość pracy silników oraz minimalizować ryzyko awarii.

Pytanie 26

W instalacjach oświetleniowych w mieszkaniach nie wolno używać opraw oświetleniowych stałych i regulowanych wykonanych w klasie ochronności

A. 0
B. I
C. III
D. II
Odpowiedź 0 jest ok, bo w mieszkaniach nie powinniśmy używać opraw oświetleniowych klasy ochronności 0. One nie mają żadnej dodatkowej izolacji, a to znaczy, że mogą być niebezpieczne, zwłaszcza gdy mówimy o kontaktach z prądem. Klasa ochronności 0 nie chroni przed prądami błądzącymi, a to niesie ryzyko, zwłaszcza tam, gdzie są wilgotne powierzchnie, jak w łazienkach. Z norm PN-IEC 61140 i PN-EN 60598 wynika, że najlepiej używać opraw przynajmniej klasy I, które mają uziemienie i dodatkowe zabezpieczenia. W praktyce, jeśli wybierzemy oprawy klasy I lub II, zwiększamy bezpieczeństwo, co w domowych warunkach jest bardzo ważne. W miejscach, gdzie może być woda, naprawdę warto postawić na oprawy odpowiedniej klasy, żeby zminimalizować ryzyko porażenia prądem.

Pytanie 27

Jakie działania mogą przyczynić się do poprawy współczynnika mocy?

A. Uzyskanie w Zakładzie Energetycznym wyższego przydziału mocy
B. Podniesienie kwalifikacji personelu obsługującego maszyny elektryczne
C. Wyłączenie silników oraz transformatorów działających przy niskim obciążeniu
D. Zwiększenie częstotliwości regularnych przeglądów urządzeń elektrycznych
Wyłączenie silników i transformatorów pracujących przy niewielkim obciążeniu jest kluczowym działaniem, które pozwala na poprawę współczynnika mocy. Współczynnik mocy (PF) odzwierciedla stosunek mocy rzeczywistej do mocy pozornej, a jego optymalizacja ma istotne znaczenie dla efektywności energetycznej. Silniki i transformatory, które działają przy niskich obciążeniach, mogą prowadzić do obniżenia PF, ponieważ wytwarzają dużą ilość mocy biernej. Wyłączenie tych urządzeń, gdy nie są potrzebne, zmniejsza zapotrzebowanie na moc bierną, co w rezultacie poprawia współczynnik mocy całego systemu. W praktyce, przedsiębiorstwa energetyczne często wykorzystują analizatory mocy do monitorowania PF i identyfikowania sprzętu, który można wyłączyć. Poprawa PF może również prowadzić do oszczędności w kosztach energii oraz zmniejszenia obciążeń dla systemu energetycznego, co jest zgodne z najlepszymi praktykami określonymi w normach ISO 50001 dotyczących zarządzania energią.

Pytanie 28

Jakie z wymienionych uszkodzeń można zidentyfikować podczas przeglądów podtynkowej instalacji elektrycznej?

A. Zerwanie w układzie przewodów ochronnych
B. Przekroczenie maksymalnego czasu reakcji RCD
C. Pogorszenie jakości izolacji przewodów instalacji
D. Uszkodzenia mechaniczne obudów oraz osłon urządzeń elektrycznych
Uszkodzenia mechaniczne obudów i osłon urządzeń elektrycznych są jednymi z najłatwiejszych do zidentyfikowania podczas oględzin podtynkowej instalacji elektrycznej. Obejmują one widoczne wgniecenia, pęknięcia oraz inne defekty zewnętrzne, które mogą negatywnie wpłynąć na bezpieczeństwo i funkcjonowanie instalacji. Obudowy urządzeń elektrycznych, takie jak skrzynki rozdzielcze czy osłony gniazdek, pełnią kluczową rolę w ochronie przed uszkodzeniami mechanicznymi oraz zapewnieniu bezpieczeństwa użytkowników. Regularne oględziny tych elementów są zalecane w ramach przeglądów okresowych, zgodnie z normami PN-EN 60204-1 dotyczącymi bezpieczeństwa maszyn oraz obowiązującymi przepisami prawa budowlanego. Przykładowo, w przypadku pękniętej obudowy gniazdka, istnieje ryzyko kontaktu z elementami przewodzącymi prąd, co może prowadzić do porażenia elektrycznego. Dlatego kluczowym jest, aby wszelkie uszkodzenia były niezwłocznie naprawiane, co podkreśla znaczenie systematycznych kontroli i odpowiednich działań prewencyjnych w zakresie utrzymania instalacji elektrycznych w dobrym stanie.

Pytanie 29

Jaką wkładkę topikową bezpiecznikową powinno się wykorzystać do ochrony silnika indukcyjnego przed skutkami zwarć?

A. WT/NH DC
B. WT-00 gF
C. WT/NHaM
D. WT-2gTr
Wkładka topikowa WT/NHaM została zaprojektowana specjalnie do ochrony silników indukcyjnych przed skutkami zwarć. Posiada ona właściwości, które pozwalają na szybkie odłączenie obwodu w przypadku wystąpienia zwarcia, co jest kluczowe dla ochrony zarówno samego silnika, jak i całej instalacji elektrycznej. Zastosowanie tej wkładki jest zgodne z normami IEC 60269, które definiują wymagania dotyczące wkładek bezpiecznikowych. W praktyce, wkładki WT/NHaM charakteryzują się niskimi wartościami prądu zwarciowego, co zapewnia ich efektywność w przypadku krótkotrwałych przeciążeń, typowych dla pracy silników. W przypadku, gdy w silniku dojdzie do zwarcia, wkładka ta reaguje w sposób błyskawiczny, co minimalizuje ryzyko uszkodzenia komponentów. Przykładem zastosowania może być przemysł, w którym silniki napędzają maszyny, a ich bezpieczne i niezawodne funkcjonowanie jest kluczowe dla ciągłości produkcji.

Pytanie 30

W miejscu pracy, gdzie wykonywana jest naprawa urządzenia grzewczego, działają równocześnie elektrycy oraz hydraulicy. Jeśli instalacja elektryczna urządzenia została odłączona od zasilania za pomocą głównego odłącznika, który znajduje się w innym pomieszczeniu niż naprawiane urządzenie, to aby zabezpieczyć się przed niezamierzonym włączeniem napięcia, należy

A. użyć dwóch kłódek do zablokowania odłącznika w pozycji otwartej, każdą z nich zakładając osobno przez różne zespoły pracowników
B. zablokować odłącznik w pozycji otwartej kłódką założoną przez ekipę hydraulików
C. pozostawić odłącznik w pozycji otwartej bez blokady, ale umieścić obok niego tabliczkę ostrzegawczą o zakazie włączania napięcia
D. zablokować odłącznik w pozycji otwartej kłódką założoną przez zespół elektryków
Propozycje, które zakładają pozostawienie odłącznika w stanie otwartym bez blokady bądź zabezpieczenie go jedną kłódką, są niewłaściwe i niezgodne z dobrymi praktykami bezpieczeństwa. Zostawienie odłącznika w stanie otwartym bez odpowiedniej blokady, nawet z tablicą ostrzegawczą, nie zapewnia rzeczywistej ochrony przed niekontrolowanym włączeniem napięcia. Tego typu ostrzeżenia mogą być ignorowane lub niedostrzegane przez innych pracowników, co stwarza realne zagrożenie. Ponadto, blokowanie odłącznika jedną kłódką, nawet jeśli jest to kłódka założona przez jedną z grup, nie zabezpiecza przed tym, że druga grupa mogłaby nieświadomie włączyć urządzenie. Na przykład, gdy elektryk zakłada jedną kłódkę, hydraulicy mogą nie być świadomi, że napięcie zostało wyłączone, co prowadzi do sytuacji, gdzie praca jest wykonywana w warunkach wysokiego ryzyka. Takie podejście do zabezpieczeń jest sprzeczne z zasadą wspólnej odpowiedzialności oraz współpracy pomiędzy zespołami, co jest kluczowe w kontekście bezpieczeństwa pracy. Dlatego ważne jest, aby stosować standardy takie jak LOTO, które zapewniają, że przed rozpoczęciem prac każda grupa musi zablokować zasilanie, co wymaga współpracy i komunikacji między wszystkimi zaangażowanymi stronami.

Pytanie 31

Który z poniższych przewodów powinien zastąpić uszkodzony przewód OW 4×2,5 mm2, który zasila silnik indukcyjny trójfazowy do napędu maszyny w warsztacie ślusarskim?

A. H03V2V2H2-F 2X2,5
B. H07RR-F 5G2,5
C. H03V2V2-F 3G2,5
D. H07VV-U 5G2,5
Odpowiedź H07RR-F 5G2,5 jest poprawna, ponieważ przewody te charakteryzują się odpowiednią konstrukcją oraz właściwościami mechanicznymi, które są niezbędne do zasilania silników indukcyjnych w warunkach warsztatowych. Przewód H07RR-F to elastyczny przewód gumowy, co oznacza, że jest odporny na zginanie i uszkodzenia mechaniczne. Dzięki temu idealnie nadaje się do pracy w miejscach o dużym ryzyku uszkodzenia, takich jak warsztaty, gdzie maszyny są często przemieszczane. Dodatkowo, przewód ten posiada pięć żył o przekroju 2,5 mm², co zapewnia odpowiednią nośność prądową oraz możliwość podłączenia do trójfazowych silników indukcyjnych. Zgodnie z normą IEC 60227, H07RR-F spełnia wszystkie wymagania dotyczące bezpieczeństwa oraz jakości, co czyni go odpowiednim wyborem w kontekście zasilania silników. W praktyce, stosując ten przewód, można zminimalizować ryzyko pożaru oraz awarii sprzętu, co jest kluczowe w każdej przestrzeni roboczej.

Pytanie 32

Jaką wartość prądu znamionowego powinien posiadać wyłącznik instalacyjny nadprądowy typu B, aby zabezpieczyć grzejnik jednofazowy o parametrach UN = 230 V oraz Py = 2,4 kW przed zwarciem?

A. 20A
B. 6A
C. 16A
D. 10A
Wybór wyłącznika instalacyjnego nadprądowego o charakterystyce typu B do zabezpieczenia grzejnika jednofazowego o parametrach UN = 230 V i Py = 2,4 kW jest kluczowy dla prawidłowego działania instalacji elektrycznej. Obliczając wartość prądu znamionowego, korzystamy ze wzoru: I = P / U, gdzie P to moc grzejnika, a U to napięcie zasilania. Zatem I = 2400 W / 230 V = 10,43 A. Wyłącznik nadprądowy powinien mieć wartość prądu znamionowego większą od prądu obliczonego, co w praktyce oznacza, że dla tego zastosowania odpowiedni będzie wyłącznik 16A, który pozwoli na swobodne działanie urządzenia, nie wyzwalając w normalnych warunkach pracy. Wyłączniki instalacyjne charakteryzujące się typem B są przeznaczone do ochrony obwodów zawierających urządzenia o charakterze rezystancyjnym, co jest typowe dla grzejników. Użycie wyłącznika o odpowiedniej charakterystyce minimalizuje ryzyko uszkodzeń instalacji elektrycznej oraz pożarów. W praktyce oznacza to, że dobór 16A jest zgodny z obowiązującymi normami, co wpływa na bezpieczeństwo i wiarygodność całej instalacji.

Pytanie 33

Jakie będą konsekwencje zmiany w instalacji elektrycznej w budynku mieszkalnym przewodów ADG 1,5 mm2 na przewody DY 1,5 mm2?

A. Zwiększenie obciążalności prądowej instalacji
B. Obniżenie napięcia roboczego
C. Zwiększenie rezystancji pętli zwarcia
D. Osłabienie wytrzymałości mechanicznej przewodów
Wymiana przewodów ADG 1,5 mm² na przewody DY 1,5 mm² w elektrycznej instalacji mieszkaniowej prowadzi do zwiększenia obciążalności prądowej instalacji. Przewody DY, w przeciwieństwie do przewodów ADG, charakteryzują się lepszymi właściwościami przewodzenia prądu oraz wyższą odpornością na wpływy mechaniczne i chemiczne. Dzięki zastosowaniu materiałów wysokiej jakości oraz odpowiedniej konstrukcji, przewody DY mogą przenieść większe obciążenia prądowe, co jest szczególnie istotne w kontekście rosnącego zapotrzebowania na energię elektryczną w nowoczesnych gospodarstwach domowych. Przykładem zastosowania przewodów DY może być zainstalowanie w domach systemów inteligentnego zarządzania energią, gdzie stabilność i wydajność przewodów mają kluczowe znaczenie. Warto zauważyć, że zgodnie z obowiązującymi normami, takich jak PN-IEC 60364, zaleca się użycie przewodów o wyższej obciążalności w instalacjach, w których przewiduje się duże obciążenia prądowe.

Pytanie 34

Poniżej przedstawiono wybrane parametry silnika trójfazowego. Jakie zakresy cewek prądowych oraz napięciowych watomierzy powinny być dobrane, aby w układzie Arona zmierzyć moc pobieraną przez silnik zasilany napięciem 3×400 V, 50 Hz i pracujący z obciążeniem znamionowym przy połączeniu w gwiazdę?

Silnik 3~ Typ IE2-90S-4 S1
1,1 kW 3,2/1,8 A Izol. F
IP 55 1420 obr/min cosφ 0,75
230/400 V 50 Hz


A. In = 2 A, Un = 400 V
B. In = 1 A, Un = 200 V
C. In = 1 A, Un = 400 V
D. In = 2 A, Un = 200 V
Wybór zakresów prądowych i napięciowych watomierzy jest kluczowy dla prawidłowego pomiaru mocy elektrycznej silników. W przypadku odpowiedzi, które sugerują mniejsze wartości prądów, jak In = 1 A, są one nieadekwatne do znamionowych parametrów silnika. Silnik o mocy 1,1 kW przy napięciu 3×400 V i prądzie 3,2 A wymaga zastosowania watomierzy, które mogą komfortowo mierzyć prąd powyżej tej wartości, co sprawia, że wybór 1 A jest niewłaściwy. Dodatkowo, odpowiedzi sugerujące napięcie Un = 200 V są błędne, ponieważ silnik jest zasilany napięciem 400 V w układzie trójfazowym, co z całą pewnością eliminuje możliwość zastosowania niższego napięcia. Typowymi błędami prowadzącymi do tych nieprawidłowych wniosków są nieprecyzyjne obliczenia oraz nieprawidłowe zrozumienie zasad połączeń w układach elektrycznych, w tym połączeń w gwiazdę, które wymagają dokładnej analizy parametrów znamionowych silnika. Ignorowanie tych zasad może prowadzić do nieefektywności w pomiarach oraz potencjalnie do uszkodzeń sprzętu pomiarowego, dlatego tak ważne jest stosowanie się do norm branżowych oraz dobrych praktyk inżynieryjnych.

Pytanie 35

Aby zapewnić ochronę przed porażeniem elektrycznym przy awarii użytkowników silnika elektrycznego klasy ochronności I, jego obudowa w układzie sieci TT powinna być

A. elektrycznie odizolowana od gruntu oraz przewodzącego podłoża
B. połączona z uziomem
C. elektrycznie odizolowana od uziomu za pomocą iskiernika
D. podłączona do przewodu neutralnego
Odpowiedź 'przyłączyć do uziomu' jest prawidłowa, ponieważ w systemie TT, który jest jedną z metod ochrony przeciwporażeniowej, uziemienie urządzenia elektrycznego ma kluczowe znaczenie dla bezpieczeństwa. W przypadku uszkodzenia izolacji silnika elektrycznego I klasy ochronności, potencjalne napięcie na obudowie może wzrosnąć, co stanowi zagrożenie dla użytkowników. Przyłączenie korpusu silnika do uziomu zapewnia, że wszelkie niebezpieczne napięcia zostaną odprowadzone do ziemi, minimalizując ryzyko porażenia. W praktyce, takie rozwiązanie jest zgodne z normami międzynarodowymi, jak np. IEC 60364, które określają zasady instalacji elektrycznych oraz środki ochrony przeciwporażeniowej. Uziemienie także pozwala na szybkie zadziałanie zabezpieczeń, takich jak wyłączniki różnicowoprądowe, co jest istotne w przypadku awarii. Dodatkowo, instalacje z poprawnie wykonanym uziemieniem mogą przyczynić się do zmniejszenia zakłóceń elektromagnetycznych, co jest istotne w kontekście wydajności urządzeń elektrycznych.

Pytanie 36

Jaką czynność powinno się wykonać w trakcie oględzin urządzenia napędowego z silnikiem pierścieniowym podczas jego pracy?

A. Ocena stanu szczotek i szczotkotrzymaczy
B. Sprawdzenie poziomu drgań
C. Sprawdzenie połączeń elementów urządzenia
D. Ocena stanu pierścieni ślizgowych
Sprawdzenie poziomu drgań jest kluczowym elementem oceny stanu technicznego urządzenia napędowego z silnikiem pierścieniowym. Drgania mogą być wskaźnikiem wielu problemów, takich jak niewyważenie wirnika, luzy w łożyskach czy nieprawidłowe ustawienie osi. Monitorowanie drgań podczas pracy urządzenia pozwala na wczesne wykrycie tych problemów i podjęcie działań naprawczych, co może znacznie wydłużyć żywotność maszyny. W praktyce, stosuje się różne metody pomiaru drgań, w tym analizatory drgań, które mogą dostarczyć szczegółowych informacji na temat amplitudy, częstotliwości oraz charakterystyki drgań. Zgodnie z normami ISO 10816, ocena drgań powinna być wykonywana regularnie, a wyniki należy porównywać z wartościami granicznymi, aby określić stan techniczny urządzenia. Dobra praktyka w branży mechanicznej zaleca prowadzenie dokumentacji pomiarów, co umożliwia śledzenie zmian w czasie i diagnozowanie potencjalnych usterek.

Pytanie 37

Wyznacz rezystancję przewodu LgY o powierzchni przekroju 10 mm2 i długości 1 km, mając informację, że rezystywność miedzi wynosi 1,72∙10-8 Ω∙m?

A. 17,2 Ω
B. 1 720 Ω
C. 1,72 Ω
D. 172 Ω
Obliczenie rezystancji przewodu może prowadzić do różnych nieporozumień, zwłaszcza gdy błędnie interpretuje się wartości lub stosuje się niewłaściwe wzory. W przypadku odpowiedzi 17,2 Ω, można zauważyć, że jest to wynik, który można uzyskać, myląc jednostki lub nieprawidłowo stosując wzór. Użycie niewłaściwych jednostek lub przeliczeń może prowadzić do znacznych błędów w obliczeniach. Rezystancja przewodu o długości 1 km i przekroju 10 mm² nie może być tak wysoka, ponieważ przy danych wartościach materialnych i geometrycznych wynikiem powinno być zaledwie 1,72 Ω. Z kolei odpowiedzi takie jak 1 720 Ω oraz 172 Ω wskazują na poważne błędy w obliczeniach, które mogą wynikać z całkowitego zignorowania proporcji długości do przekroju poprzecznego lub błędnego przeliczenia jednostek. Tego rodzaju błędy myślowe są częste przy obliczeniach rezystancji, zwłaszcza w przypadkach, gdy nie uwzględnia się odpowiednich parametrów materiałowych. W praktykach inżynieryjnych kluczowe jest prawidłowe zrozumienie i zastosowanie wzorów, a także dbałość o poprawne przeliczenie jednostek, aby uniknąć sytuacji, które mogą prowadzić do nieefektywności w systemach elektrycznych oraz nieplanowanych awarii w instalacjach. Dobre praktyki inżynieryjne zalecają systematyczne sprawdzanie obliczeń oraz korzystanie z wartości tabelarycznych materiałów, aby zapewnić ich poprawność.

Pytanie 38

Prąd ustawczy przekaźnika termobimetalowego, chroniącego silnik pompy wody, o prądzie znamionowym In = 10 A nie może być większy niż

A. 9,50 A
B. 10,50 A
C. 11,00 A
D. 10,10 A
Odpowiedź 11,00 A jest prawidłowa, ponieważ zgodnie z zasadami działania przekaźników termobimetalowych, ich prąd nastawczy powinien być dostosowany do wartości znamionowej urządzenia, które ma zabezpieczać. W tym przypadku, dla przekaźnika zabezpieczającego silnik pompy o prądzie znamionowym In = 10 A, wartość prądu nastawczego powinna być ustawiona na wartość nieprzekraczającą 11,00 A. Umożliwia to zapewnienie odpowiedniego zabezpieczenia w przypadku przeciążenia silnika, ponieważ pozwala na zachowanie marginesu bezpieczeństwa. W praktyce, taka regulacja jest kluczowa, aby uniknąć uszkodzenia silnika oraz samego przekaźnika. Warto również zaznaczyć, że branżowe standardy, takie jak IEC 60947, podkreślają znaczenie odpowiedniego ustawienia wartości prądowych dla zapewnienia bezpiecznego i niezawodnego działania urządzeń. Przykładowo, w przypadku, gdy prąd nastawczy byłby zbyt niski, mogłoby dojść do fałszywego wyzwolenia przekaźnika, co prowadziłoby do niepotrzebnych przestojów maszyny. Z drugiej strony, ustawienie zbyt wysokiego prądu mogłoby nie zabezpieczyć silnika przed realnym przeciążeniem. Dlatego też, 11,00 A jest wartością optymalną, gwarantującą nie tylko bezpieczeństwo, ale również efektywność operacyjną systemu.

Pytanie 39

Przeglądy okresowe instalacji elektrycznej w budynkach mieszkalnych powinny być realizowane co najmniej raz na

A. 4 lata
B. 3 lata
C. 1 rok
D. 5 lat
Badania okresowe mieszkaniowej instalacji elektrycznej powinny być przeprowadzane co pięć lat, co jest zgodne z obowiązującymi przepisami prawa budowlanego oraz normami PN-HD 60364. Regularne kontrole instalacji elektrycznej są kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania systemu. W trakcie takich badań specjaliści sprawdzają między innymi stan izolacji przewodów, działanie zabezpieczeń oraz ich prawidłowe umiejscowienie. W praktyce oznacza to, że po pięciu latach użytkowania instalacji, warto zlecić jej audyt, aby upewnić się, że nie doszło do degradacji elementów elektrycznych, co mogłoby prowadzić do zwarcia lub pożaru. Dobrą praktyką jest również prowadzenie dokumentacji z przeprowadzonych badań, co ułatwia późniejsze analizy i decyzje dotyczące eksploatacji oraz ewentualnych modernizacji. Osoby wynajmujące mieszkania powinny być świadome, że odpowiedzialność za stan instalacji spoczywa na właścicielu, a regularne przeglądy są nie tylko wyrazem dbałości o bezpieczeństwo, ale również wymaganiem prawnym.

Pytanie 40

Po włączeniu oświetlenia na klatce schodowej przez automat schodowy, żarówka na pierwszym piętrze nie zaświeciła, podczas gdy pozostałe żarówki na innych piętrach działały bez zarzutów. Jakie może być źródło tej awarii?

A. Uszkodzony łącznik na pierwszym piętrze
B. Niedokręcony przewód do łącznika na pierwszym piętrze
C. Niedokręcony przewód do oprawy na pierwszym piętrze
D. Uszkodzony automat schodowy
Niedokręcony przewód do oprawy na pierwszym piętrze może być przyczyną braku działania żarówki w tym miejscu. Ta sytuacja często występuje w instalacjach elektrycznych, gdy podczas montażu lub konserwacji, przewody nie są odpowiednio dokręcone. W przypadku oświetlenia na klatkach schodowych, gdzie automaty schodowe kontrolują oświetlenie, każdy element musi być prawidłowo podłączony, aby zapewnić szczelność obwodu. Przykładem może być sytuacja, gdy podczas wymiany żarówki osoba nie zwraca uwagi na stan połączeń, co może prowadzić do ich luzowania. W praktyce, regularne kontrole i konserwacja instalacji elektrycznych, zgodne z normami PN-IEC 60364, są kluczowe dla zapewnienia bezpieczeństwa oraz efektywności działania systemów oświetleniowych. Zawsze warto sprawdzić połączenia przed uznaniem, że część jest uszkodzona, co może zaoszczędzić czas i koszty związane z naprawą.