Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 13 maja 2025 18:10
  • Data zakończenia: 13 maja 2025 18:21

Egzamin zdany!

Wynik: 39/40 punktów (97,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wartość sprężania w silnikach z zapłonem iskrowym w porównaniu do silników z zapłonem samoczynnym jest

A. zawsze identyczna.
B. nie do porównania.
C. niższa.
D. zawsze wyższa.
Silniki z zapłonem iskrowym, takie jak silniki benzynowe, charakteryzują się niższym stopniem sprężania w porównaniu do silników z zapłonem samoczynnym (silników Diesla). Zazwyczaj stopień sprężania w silnikach benzynowych wynosi od 8 do 12, podczas gdy w silnikach Diesla wartość ta może wynosić od 14 do 25. Niższy stopień sprężania w silnikach z zapłonem iskrowym pozwala na uniknięcie zjawiska klekotania, które jest bardziej powszechne przy wyższych wartościach sprężania. W praktyce oznacza to, że silniki z zapłonem iskrowym mogą być łatwiej uruchamiane w różnych warunkach oraz mają mniejsze wymagania dotyczące jakości paliwa, co czyni je bardziej elastycznymi. Ponadto, niższy stopień sprężania wpływa na efektywność spalania i moc silnika, co może być istotne w kontekście osiągów i ekonomiki jazdy. W związku z tym, zrozumienie różnic w stopniach sprężania między tymi dwoma typami silników jest kluczowe dla inżynierów i projektantów pojazdów, którzy muszą dostosować parametry silników do ich zamierzonych zastosowań.

Pytanie 2

Aby zdemontować łożyska z piast kół samochodu, jakie narzędzie powinno być wykorzystane?

A. rozpieraka
B. szczypiec uniwersalnych
C. prasy hydraulicznej
D. zbieraka
Użycie prasy hydraulicznej do demontażu łożysk z piast kół pojazdów jest najskuteczniejszą oraz najbezpieczniejszą metodą, która zapewnia odpowiednią siłę nacisku niezbędną do skutecznego usunięcia łożyska. Prasy hydrauliczne działają na zasadzie różnicy ciśnień, co pozwala na łatwe i precyzyjne wyciąganie łożysk bez ryzyka uszkodzenia piasty. Przykładowo, w warsztatach mechanicznych, zwłaszcza tych zajmujących się naprawą pojazdów ciężarowych lub sportowych, prasy te są standardowym wyposażeniem, umożliwiającym szybkie i efektywne wykonywanie usług. Zgodnie z normami branżowymi, stosowanie prasy hydraulicznej jest zgodne z zasadami bezpiecznej i ergonomicznej pracy, co zmniejsza ryzyko kontuzji dla mechanika. Warto zaznaczyć, że nieodpowiednie metody, takie jak użycie szczypiec uniwersalnych, mogą prowadzić do uszkodzenia łożysk oraz innych elementów układu, co z kolei wydłuża czas naprawy i generuje dodatkowe koszty.

Pytanie 3

Jakim narzędziem dokonuje się pomiaru średnicy cylindrów po zakończonej naprawie silnika?

A. mikrometra
B. suwmiarki
C. średnicówki zegarowej
D. średnicówki mikrometrycznej
Średnicówka zegarowa jest odpowiednim narzędziem do pomiaru średnicy cylindrów po przeprowadzonej naprawie silnika, ponieważ umożliwia uzyskanie bardzo precyzyjnych wyników pomiarowych. To narzędzie działa na zasadzie pomiaru przemieszczenia, gdzie wskazówka na tarczy pokazuje bezpośrednio wartość średnicy. Dzięki temu, średnicówki zegarowe są szczególnie przydatne w sytuacjach, gdzie wymagana jest wysoka dokładność, na przykład w przypadku silników, gdzie tolerancje średnicy cylindrów są kluczowe dla ich prawidłowego funkcjonowania. Przykładowo, przy naprawach silników spalinowych, pomiary średnic cylindrów są niezbędne do oceny stopnia zużycia oraz do dopasowania odpowiednich pierścieni tłokowych. W branży mechanicznej wprowadzenie dobrych praktyk pomiarowych, takich jak stosowanie średnicówek zegarowych, przyczynia się do poprawy jakości wykonywanych usług oraz zwiększenia żywotności naprawianych silników, co jest zgodne z normami ISO. Ponadto, użycie tego narzędzia pozwala na szybkie wykrycie ewentualnych nieprawidłowości w wymiarach, co jest kluczowe dla dalszych etapów naprawy i montażu.

Pytanie 4

Gdzie instaluje się świece żarowe w silnikach diesla?

A. w układzie wydechowym
B. w bloku chłodnicy
C. w misce olejowej
D. w głowicy silnika
Świece żarowe w silnikach wysokoprężnych pełnią kluczową rolę w procesie rozruchu silnika, zwłaszcza w niskotemperaturowych warunkach. Montowane są w głowicy silnika, gdzie mają za zadanie podgrzewać mieszankę powietrzno-paliwową, co ułatwia jej zapłon. Dzięki temu silniki diesla mogą osiągnąć stabilną pracę nawet w trudnych warunkach atmosferycznych. Użycie świec żarowych znacząco poprawia wydajność silnika, redukuje emisję spalin i zmniejsza zużycie paliwa. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie jakości komponentów w silnikach, co czyni świece żarowe kluczowym elementem konstrukcji silnika wysokoprężnego. Dla przykładu, w wielu nowoczesnych pojazdach stosuje się świece żarowe z systemem automatycznego wyłączania po osiągnięciu optymalnej temperatury, co zwiększa ich żywotność i efektywność.

Pytanie 5

W głowicy znajdują się dwa wałki rozrządu. Który symbol to przedstawia?

A. SOHC
B. OHC
C. DOHC
D. OHV
Termin DOHC, czyli Double Overhead Camshaft, odnosi się do silników, które posiadają dwa wałki rozrządu umieszczone w głowicy cylindrów. Taki układ umożliwia bardziej precyzyjne sterowanie zaworami w porównaniu do starszych rozwiązań. Dzięki temu, silniki DOHC mogą osiągać wyższe obroty, co przekłada się na lepsze osiągi i efektywność. Dodatkowo, zastosowanie dwóch wałków pozwala na lepszą synchronizację otwierania i zamykania zaworów, co z kolei wpływa na optymalizację cyklu pracy silnika. Przykładowo, silniki sportowe często korzystają z tego typu rozrządu, aby uzyskać maksymalne parametry mocy i momentu obrotowego. W praktyce, DOHC jest powszechnie stosowany w nowoczesnych samochodach, co czyni tę wiedzę istotną dla każdego, kto zajmuje się motoryzacją czy inżynierią mechaniczną.

Pytanie 6

Łożysko podtrzymujące wał może być stosowane w pojeździe

A. z klasycznym układem napędowym
B. z przednim układem napędowym zblokowanym, z silnikiem ZS
C. z tylnym układem napędowym zblokowanym
D. z przednim układem napędowym zblokowanym, z silnikiem ZI
Łożysko podparcia wału odgrywa kluczową rolę w klasycznym układzie napędowym, który charakteryzuje się zastosowaniem silnika umieszczonego w przedniej części pojazdu oraz napędu przekazywanego na koła tylne. W takim układzie, łożysko podparcia stabilizuje wał napędowy, co pozwala na minimalizację drgań oraz zwiększenie wydajności przekazywania momentu obrotowego. Przykładem zastosowania łożyska podparcia w klasycznym układzie napędowym można znaleźć w wielu pojazdach osobowych, gdzie jego obecność przekłada się na płynniejszą pracę całego układu napędowego i wydłuża żywotność komponentów. Dobre praktyki w zakresie projektowania układów napędowych zalecają stosowanie wysokiej jakości łożysk, aby zminimalizować tarcie oraz zużycie, co jest zgodne z normami branżowymi dotyczącymi efektywności energetycznej i trwałości pojazdów. Należy również zwrócić uwagę na regularną kontrolę stanu łożysk, co pozwala na wczesne wykrywanie potencjalnych problemów i zapobiega kosztownym awariom.

Pytanie 7

Zainstalowanie wtryskiwaczy w dolotowym kolektorze silnika ma miejsce w systemie zasilania

A. gaźnikowym
B. wtryskowym z układem bezpośrednim
C. wtryskowym z wtryskiem pośrednim
D. wtryskowym jednopunktowym
Umieszczenie wtryskiwaczy w kolektorze dolotowym silnika w układzie z wtryskiem pośrednim ma kluczowe znaczenie dla optymalizacji procesu spalania mieszanki paliwowo-powietrznej. Wtryskiwacze w tym układzie dostarczają paliwo do kolektora dolotowego, gdzie następuje jego wymieszanie z powietrzem zanim trafi do cylindrów silnika. Takie podejście umożliwia lepsze rozprężenie paliwa i zapewnia bardziej jednorodną mieszankę, co wpływa na efektywność spalania oraz redukcję emisji. Wtrysk pośredni jest często stosowany w silnikach benzynowych, gdzie kluczowe jest uzyskanie optymalnej mieszanki w różnych warunkach pracy silnika. Praktycznym przykładem zastosowania tego rozwiązania są silniki samochodowe, które wykorzystują technologię wielopunktowego wtrysku, co pozwala na lepsze dostosowanie parametrów pracy silnika do zmieniających się warunków, co przekłada się na większą moc oraz oszczędność paliwa. W branży motoryzacyjnej standardy emisji spalin, takie jak Euro 6, wymuszają na producentach stosowanie bardziej zaawansowanych układów wtryskowych, co sprawia, że wtryskiwanie pośrednie staje się coraz bardziej popularne jako efektywne rozwiązanie.

Pytanie 8

Najistotniejszą informacją, która jest rejestrowana w zleceniu przyjęcia pojazdu do diagnostyki, stanowi

A. przebieg pojazdu
B. numer silnika
C. numer dowodu rejestracyjnego
D. numer nadwozia
Numer nadwozia, znany również jako VIN (Vehicle Identification Number), to unikalny identyfikator przypisany do każdego pojazdu, który jest kluczowy w procesie diagnostyki oraz identyfikacji pojazdu. Jest to standardowy zapis, który zawiera informacje o producencie, modelu, roku produkcji, a także cechach specyficznych dla danego pojazdu. W kontekście badań diagnostycznych, numer nadwozia jest niezwykle istotny, ponieważ pozwala na jednoznaczną identyfikację pojazdu, co jest szczególnie ważne w przypadku ustalania historii serwisowej, ewentualnych napraw, a także wszelkich zgłoszeń związanych z bezpieczeństwem. Przykładowo, przy przeglądach technicznych, mechanicy sprawdzają zgodność numeru VIN w dokumentach z numerem nadwozia umieszczonym na pojeździe. Dzięki temu można uniknąć oszustw związanych z kradzieżą pojazdów lub nieautoryzowanymi modyfikacjami. Znajomość i prawidłowe zapisanie numeru nadwozia w zleceniu przyjęcia pojazdu do badań diagnostycznych jest więc kluczowym elementem zapewniającym prawidłowość i bezpieczeństwo procedur serwisowych.

Pytanie 9

W pojazdach metalowe żeliwo wykorzystuje się do produkcji

A. kolektorów wydechowych
B. łożysk tocznych
C. wałów napędowych
D. zaworów wydechowych
Żeliwo jest materiałem powszechnie stosowanym w budowie kolektorów wydechowych w samochodach, głównie ze względu na swoje korzystne właściwości mechaniczne i termiczne. Kolektory wydechowe muszą wytrzymywać wysokie temperatury oraz korozję, co czyni żeliwo idealnym wyborem. Dzięki swojej odporności na ścieranie i utlenianie, żeliwo zapewnia długowieczność elementów, co przekłada się na mniejsze koszty serwisowania. Przykładowo, w silnikach spalinowych żeliwne kolektory wydechowe są w stanie wytrzymać intensywne warunki pracy, takie jak wysokie ciśnienie spalin. Ponadto, żeliwo ma doskonałą zdolność tłumienia drgań, co pozwala na cichszą pracę silnika, a także ogranicza przenoszenie wibracji na inne elementy układu wydechowego. Zastosowanie żeliwa w kolektorach wydechowych jest zgodne z najlepszymi praktykami inżynieryjnymi, które kładą nacisk na trwałość i bezpieczeństwo komponentów samochodowych.

Pytanie 10

W systemie chłodzenia cieczą silnika spalinowego wykorzystywane są pompy

A. membranowe
B. zębate
C. tłoczkowe
D. wirnikowe
Pompy wirnikowe, zwane też pompami odśrodkowymi, to jedne z najczęściej używanych w układach chłodzenia silników spalinowych. To dlatego, że świetnie radzą sobie z pompowaniem sporych ilości cieczy, a przy tym nie zużywają zbyt dużo energii. Ich działanie jest oparte na tej zasadzie, że wirnik się kręci i dzięki temu wypycha ciecz na zewnątrz. Ich prosta budowa sprawia, że są niezawodne i łatwe w konserwacji. Na przykład w autach to właśnie te pompy odpowiadają za cyrkulację płynu chłodzącego i pomagają utrzymać silnik w odpowiedniej temperaturze, co jest kluczowe dla jego wydajności. W praktyce, te pompy są dostosowane do wymagań silników, co czyni je istotnym elementem nowoczesnych systemów chłodzenia. Warto regularnie sprawdzać stan tych pomp i dbać o ich konserwację, żeby układ chłodzenia działał przez dłuższy czas.

Pytanie 11

Wymiana uszczelki głowicy silnika jest konieczna w przypadku

A. wymiany uszczelniacza wału korbowego
B. naprawy gniazd zaworowych
C. wymiany pompy oleju
D. naprawy przekładni napędu wałka rozrządu
Uszczelka głowicy silnika to naprawdę ważny element, który odpowiada za to, żeby w układzie cylindrowym nie było wycieków. No bo przecież, jakby olej czy płyn chłodzący się lały, to silnik nie działałby jak należy. Jak trzeba naprawić gniazda zaworowe, to wymiana uszczelki też jest konieczna. Zwykle przy tym demontuje się głowicę, żeby mieć dostęp do zaworów. A stara uszczelka, jeżeli jest w złym stanie, może szwankować. Dlatego nowa uszczelka to podstawa, żeby wszystko dobrze działało. Ważne jest, żeby przed jej montażem oczyścić powierzchnie, żeby nie było tam żadnych brudów. Jak użyjesz dobrej jakości uszczelki od producenta, to masz większą pewność, że silnik będzie działał długo i bezproblemowo.

Pytanie 12

W trakcie diagnozowania systemu zawieszenia przy użyciu urządzenia typu "szarpak diagnostyczny", zauważono nadmierny luz koła w kierunku pionowym. Który z elementów nie ma na to wpływu?

A. Sworzeń wahacza
B. Tuleja wahacza
C. Końcówka drążka kierowniczego
D. Łożyska piasty koła przedniego
Końcówka drążka kierowniczego nie wpływa na nadmierny luz koła w płaszczyźnie pionowej, ponieważ jej główną funkcją jest przekazywanie ruchu z układu kierowniczego na koła, co dotyczy głównie ruchu poziomego. W układzie zawieszenia luz koła w płaszczyźnie pionowej jest najczęściej wynikiem problemów z komponentami, które bezpośrednio wpływają na pozycjonowanie koła względem nadwozia. Przykłady takich komponentów to sworznie wahacza, które są odpowiedzialne za ruch w zawieszeniu oraz łożyska piasty koła, które stabilizują obrót koła. Dobrą praktyką w diagnostyce jest regularne sprawdzanie stanu tych elementów, aby zapobiegać uszkodzeniom oraz poprawić komfort jazdy i bezpieczeństwo. Świadomość, które elementy wpływają na dane zjawisko, jest kluczowa dla skutecznej diagnostyki i naprawy.

Pytanie 13

Kompletne oddzielenie współdziałających elementów za pomocą środka smarowego ma miejsce

A. w momencie tarcia płynnego
B. w sytuacji tarcia granicznego
C. w przypadku tarcia suchego
D. w trakcie docierania wstępnego
Tarcie płynne to coś, co dobrze znasz. W takim stanie wszystkie części są oddzielone smarem, co jest super ważne. Smar nie tylko zmniejsza tarcie, ale też tworzy warstwę ochronną, która chroni przed bezpośrednim kontaktem. To naprawdę kluczowe, żeby urządzenia działały długo i bez problemów. Na przykład w silnikach spalinowych olej silnikowy robi dokładnie to, tworzy film ochronny i zmniejsza zużycie części. Jak korzystasz z oleju, warto zwrócić uwagę na oznaczenia, takie jak API, bo to daje pewność, że wszystko działa jak należy. Regularna wymiana oleju i dobór smarów zgodnych z zaleceniami producenta jest mega istotne, żeby zminimalizować ryzyko awarii, które mogą się zdarzyć, jeśli tarcie będzie źle dobrane. W końcu, tarcie płynne to temat, który naprawdę ma znaczenie w inżynierii mechanicznej, bo wpływa na efektywność i trwałość maszyn.

Pytanie 14

Skrót TPMS na desce rozdzielczej samochodu oznacza, że pojazd jest wyposażony w

A. diagnostyczne złącze komunikacyjne
B. system monitorowania ciśnienia w oponach kół
C. system sterowania aktywnym zawieszeniem
D. układ przeciwpoślizgowy
Skrót TPMS, czyli Tire Pressure Monitoring System, oznacza system monitorowania ciśnienia w oponach kół. Jego głównym celem jest zapewnienie bezpieczeństwa i optymalnej wydajności pojazdu poprzez monitorowanie ciśnienia w oponach podczas jazdy. Niski poziom ciśnienia w oponach może prowadzić do zwiększonego zużycia paliwa, pogorszenia przyczepności oraz większego ryzyka uszkodzenia opon. W przypadku wykrycia niskiego ciśnienia, system TPMS aktywuje kontrolkę na tablicy rozdzielczej, co informuje kierowcę o konieczności sprawdzenia i ewentualnego uzupełnienia ciśnienia. Zgodnie z regulacjami prawnymi w wielu krajach, w tym w Unii Europejskiej i Stanach Zjednoczonych, nowe pojazdy muszą być wyposażone w takie systemy, co podkreśla ich znaczenie w poprawie bezpieczeństwa na drogach. W praktyce, regularne monitorowanie ciśnienia opon za pomocą TPMS może przyczynić się do przedłużenia ich żywotności i poprawy komfortu jazdy, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 15

Gdzie stosowany jest odśrodkowy regulator prędkości obrotowej?

A. w pompie tłoczkowej o niskim ciśnieniu
B. w rzędowej pompie wtryskowej
C. w paliwowej pompie wysokiego ciśnienia w systemie Common Rail
D. w przeponowej pompie paliwowej silnika z zapłonem iskrowym
Rzędowa pompa wtryskowa jest kluczowym elementem systemu zasilania silników diesla, a zastosowanie odśrodkowego regulatora prędkości obrotowej w tej konstrukcji ma na celu zapewnienie optymalnej wydajności i precyzyjnego dawkowania paliwa. Odśrodkowy regulator działa na zasadzie wykorzystania siły odśrodkowej, co przekłada się na automatyczne dostosowanie dawki paliwa w zależności od prędkości obrotowej silnika. Dzięki temu, pompa wtryskowa może dostarczać odpowiednią ilość paliwa w zależności od aktualnych warunków pracy, co wpływa na oszczędność paliwa, redukcję emisji spalin oraz poprawę osiągów silnika. W praktyce, takie rozwiązania są zgodne z najlepszymi praktykami branżowymi, które zalecają zastosowanie regulacji w systemach wtryskowych w celu zwiększenia efektywności energetycznej i zmniejszenia wpływu na środowisko. Przykładem może być nowoczesna technologia Common Rail, w której dokładne dawkowanie paliwa jest kluczowe dla osiągnięcia wysokiej sprawności silnika.

Pytanie 16

Na podstawie pomiaru, diagnostyk ocenił łączną jasność świateł drogowych. Maksymalna wartość nie może przekroczyć

A. 210 000 cd
B. 240 000 cd
C. 225 000 cd
D. 200 000 cd
Odpowiedź 225 000 cd jest prawidłowa, ponieważ wartość ta jest zgodna z normami określającymi maksymalne dozwolone natężenie światła w przypadku świateł drogowych. Zgodnie z normą UNECE R112, maksymalne natężenie światła dla świateł drogowych nie powinno przekraczać 225 000 kandeli. Praktyczne zastosowanie tej normy jest kluczowe, ponieważ zbyt intensywne światła mogą powodować oślepienie innych uczestników ruchu, co stwarza istotne zagrożenie. Diagnosta, wykonując pomiary, musi zawsze porównywać wyniki z ustalonymi normami, aby zapewnić bezpieczeństwo na drodze. Utrzymanie odpowiednich wartości światłości jest niezbędne do spełnienia wymogów prawa oraz zapewnienia odpowiednich warunków widzenia w nocy. Przestrzeganie tych zasad pozwala na uniknięcie niebezpiecznych sytuacji wynikających z niewłaściwego oświetlenia pojazdów.

Pytanie 17

Typowy objaw uszkodzenia uszczelki pod głowicą to

A. trudności w uruchomieniu silnika
B. przedostawanie się oleju do układu chłodzenia
C. nadmierne zużycie paliwa
D. zwiększone drgania nadwozia
Uszczelka pod głowicą jest kluczowym elementem, który zapewnia szczelność pomiędzy blokiem silnika a głowicą cylindra. Jej uszkodzenie może prowadzić do różnych problemów, z których jednym z najbardziej charakterystycznych jest przedostawanie się oleju do układu chłodzenia. Dzieje się tak, ponieważ uszczelka pełni rolę bariery, oddzielając różne płyny eksploatacyjne. Gdy ulega uszkodzeniu, olej może przenikać do układu chłodzenia, co skutkuje zanieczyszczeniem płynu chłodzącego. W praktyce objawia się to obecnością oleju w zbiorniku wyrównawczym lub tzw. „majonezem” na korku wlewu oleju. Takie zjawisko jest niebezpieczne, ponieważ może prowadzić do przegrzania silnika, zmniejszenia efektywności chłodzenia oraz poważniejszych uszkodzeń mechanicznych. W branży motoryzacyjnej, szybkie zdiagnozowanie i naprawa uszkodzonej uszczelki pod głowicą są kluczowe dla utrzymania sprawności pojazdu. Standardy serwisowe zalecają regularne sprawdzanie stanu płynów eksploatacyjnych oraz monitorowanie potencjalnych objawów, aby zapobiec poważniejszym awariom.

Pytanie 18

Jakie jest zadanie systemu ABS?

A. zapobieganie poślizgowi kół na śliskiej nawierzchni podczas ruszania
B. zapobieganie zablokowaniu kół w trakcie hamowania na śliskiej nawierzchni
C. stabilizacja trajektorii jazdy podczas pokonywania zakrętów
D. wspomaganie procesu hamowania w sytuacjach awaryjnych
Układ ABS, czyli system zapobiegający blokowaniu kół, ma kluczowe znaczenie dla bezpieczeństwa jazdy, szczególnie na śliskich nawierzchniach. Jego głównym zadaniem jest utrzymanie kontroli nad pojazdem podczas hamowania, co zapobiega poślizgowi kół i pozwala kierowcy na dalsze manewrowanie. W przypadku nagłego hamowania na oblodzonej lub mokrej drodze, system ABS automatycznie zmienia siłę hamowania, aby uniknąć blokady kół. Dzięki temu, kierowca może utrzymać kontrolę nad pojazdem, co jest nieocenioną zaletą w sytuacjach awaryjnych. Na przykład, podczas hamowania w warunkach deszczowych, ABS może pomóc w skróceniu drogi hamowania, a jednocześnie umożliwić kierowcy wykonanie zwrotu, co może być kluczowe dla uniknięcia przeszkód. Standardy branżowe zalecają stosowanie systemów ABS w nowoczesnych pojazdach, co stało się normą w przemyśle motoryzacyjnym, przyczyniając się do poprawy ogólnego bezpieczeństwa na drogach.

Pytanie 19

Pomiar zużycia gładzi cylindrów wykonuje się przy użyciu

A. średnicówki czujnikowej
B. głębokomościomierza
C. suwmiarki modułowej
D. mikrometru
Użycie średnicówki czujnikowej do pomiaru zużycia gładzi cylindrów jest najlepszym rozwiązaniem, ponieważ umożliwia uzyskanie wysokiej precyzji i dokładności pomiarów. Średnicówki czujnikowe, zwane także czujnikami średnicy lub czujnikami cylindrycznymi, są narzędziami pomiarowymi, które pozwalają na bezpośrednie mierzenie średnic otworów, wałów czy cylindrów. Dzięki zastosowaniu mechanizmu pomiarowego z odczytem cyfrowym lub analogowym, średnicówki te oferują dokładność do 0,001 mm. Praktycznym zastosowaniem średnicówki czujnikowej jest kontrola wymiarów w procesie produkcji silników, gdzie zachowanie odpowiednich tolerancji wymiarowych jest kluczowe dla prawidłowego funkcjonowania. W branży motoryzacyjnej standardy takie jak ISO 2768 określają wymagania dotyczące tolerancji wymiarowych, dlatego wykorzystanie średnicówki czujnikowej jest zgodne z tymi normami. Dodatkowo, pomiar za pomocą tego narzędzia może być wspomagany przez systemy komputerowe, co pozwala na łatwe archiwizowanie i analizowanie danych pomiarowych.

Pytanie 20

Wartość luzu zmierzonego w zamku pierścienia tłokowego umieszczonego w cylindrze silnika po naprawie wynosi 0,6 mm. Producent wskazuje, że luz ten powinien mieścić się w zakresie od 0,25 do 0,40 mm. Ustalony wynik wskazuje, że

A. luz jest zbyt mały
B. luz jest zbyt duży
C. luz zamka pierścienia powinien być powiększony
D. luz mieści się w podanych zaleceniach
To, że luz jest za duży, to rzeczywiście dobra ocena. Zmierzony luz 0,6 mm wyraźnie przekracza to, co zaleca producent, który mówi, że powinno być od 0,25 mm do 0,40 mm. Wiesz, że luz w zamku pierścienia tłokowego jest mega ważny dla tego, jak silnik działa? Zbyt duży luz może sprawić, że pierścień się nie osadzi dobrze, co prowadzi do utraty kompresji i do większego zużycia paliwa. No i jeszcze pierścień może się szybciej zużywać. W silnikach spalinowych często korzysta się z różnych metod pomiaru luzu, takich jak feeler gauge, żeby wszystko pasowało idealnie. Różne firmy w branży samochodowej zalecają, żeby regularnie sprawdzać te luzki, żeby silnik działał jak najlepiej i długo. Zbyt duży luz to także wibracje i hałas, co psuje komfort jazdy i może zniszczyć inne elementy silnika. Dlatego przed uruchomieniem silnika trzeba sprawdzić, czy wszystko jest w normie.

Pytanie 21

Aluminiową chłodnicę z nieszczelnością należy

A. naprawić wykorzystując lutowanie twarde
B. naprawić przy pomocy klejenia
C. wymienić na nową
D. naprawić przy użyciu spawania
Wymiana nieszczelnej aluminiowej chłodnicy na nową jest najbardziej zalecaną opcją ze względu na kilka kluczowych czynników. Przede wszystkim, chłodnice aluminiowe są często stosowane w różnych aplikacjach, w tym w motoryzacji i chłodnictwie przemysłowym, ze względu na ich doskonałe właściwości przewodzenia ciepła oraz lekkość. W przypadku nieszczelności, mogą występować mikropęknięcia lub uszkodzenia, które mogą wpłynąć na ich efektywność i bezpieczeństwo eksploatacji. Naprawa poprzez lutowanie lub spawanie może wydawać się kusząca, jednak w praktyce często prowadzi to do kompromisów w wytrzymałości materiału oraz ryzyka ponownego uszkodzenia. Dodatkowo, standardy jakości w wielu branżach, takie jak ISO 9001, zachęcają do wymiany uszkodzonych elementów, co zapewnia długoterminową niezawodność i bezpieczeństwo. Dlatego inwestycja w nową chłodnicę jest z perspektywy technicznej i ekonomicznej bardziej uzasadniona, a także zapewnia zgodność z najlepszymi praktykami inżynieryjnymi.

Pytanie 22

Podczas przeglądu technicznego samochodu stwierdzono potrzebę wymiany oleju silnikowego oraz klocków hamulcowych w kwocie 120,00 zł za komplet. Koszt 4 l oleju z filtrem olejowym wyniósł 160,00 zł, a wartość robocizny to 320,00 zł. Całkowity koszt usługi po uwzględnieniu 10% rabatu wyniósł

A. 540,00 zł
B. 600,00 zł
C. 560,00 zł
D. 480,00 zł
Aby obliczyć łączny koszt usługi po uwzględnieniu zniżki, należy zsumować wszystkie koszty związane z wymianą oleju oraz klocków hamulcowych. Koszt wymiany klocków hamulcowych wynosi 120,00 zł, a koszt oleju silnikowego i filtra to 160,00 zł. Koszt robocizny wynosi 320,00 zł. Łączny koszt usługi przed zniżką wynosi 120,00 zł + 160,00 zł + 320,00 zł = 600,00 zł. Następnie należy obliczyć 10% zniżkę, co daje 60,00 zł. Po odjęciu zniżki od pierwotnego kosztu, otrzymujemy 600,00 zł - 60,00 zł = 540,00 zł. Przykład ten ilustruje ważność znajomości procedur przeglądów okresowych oraz umiejętności kalkulacji kosztów, co jest kluczowe w profesjonalnym zarządzaniu pojazdami. W praktyce, wiele warsztatów stosuje podobne podejście do kalkulacji kosztów usług, aby zapewnić transparentność i zrozumiałość dla klienta, co jest zgodne z dobrymi praktykami w branży motoryzacyjnej.

Pytanie 23

Jak wyraża się moc silnika spalinowego?

A. Nm
B. kW
C. kWh
D. MPa
Moc silnika spalinowego podawana w kilowatach (kW) jest standardowym sposobem określania wydajności silników, co ma znaczenie zarówno w przemyśle motoryzacyjnym, jak i w aplikacjach przemysłowych. Moc wyrażona w kW odnosi się do ilości energii, jaką silnik jest w stanie wygenerować w jednostce czasu. Przykładowo, silnik samochodu osobowego o mocy 100 kW będzie w stanie wytworzyć 100 kilowatogodzin energii w ciągu jednej godziny pracy. Ponadto, moc jest kluczowym parametrem w kontekście przepisów dotyczących emisji spalin oraz regulacji dotyczących efektywności energetycznej. W praktyce, moc silnika ma bezpośredni wpływ na osiągi pojazdu, jego zdolność do przyspieszania oraz na efektywność paliwową. Zgodnie z normami ISO 14396, moc silnika spalinowego powinna być mierzona w sposób, który uwzględnia warunki testowe, co zapewnia porównywalność wyników między różnymi producentami i modelami. Dlatego też, wiedza na temat jednostki kW jest istotna dla inżynierów, techników oraz użytkowników, którzy chcą dokonywać świadomych wyborów dotyczących technologii silnikowej.

Pytanie 24

Po wymianie klocków hamulcowych z przodu pojazdu przeprowadzono jazdę testową, której celem jest ustalenie

A. rozkładu siły hamowanej na każde z kół
B. rodzaju użytego płynu hamulcowego
C. skuteczności hamulców
D. siły hamowania
Skuteczność hamulców jest kluczowym wskaźnikiem, który pozwala ocenić, czy wymiana klocków hamulcowych przyniosła zamierzony efekt. Jazda próbna po wymianie klocków hamulcowych ma na celu nie tylko sprawdzenie, czy nowo zamontowane części działają poprawnie, ale również, czy ich działanie jest zgodne z wymaganiami bezpieczeństwa i komfortu jazdy. W praktyce, skuteczność hamulców można ocenić poprzez obserwację reakcji pojazdu na wciśnięcie pedału hamulca, co powinno skutkować natychmiastowym i proporcjonalnym spowolnieniem. Przy odpowiednim doborze klocków i tarcz hamulcowych, ich współpraca powinna zapewniać optymalne warunki hamowania, co jest kluczowe dla zapobiegania wypadkom drogowym. Warto również wspomnieć, że skuteczność hamulców powinna być regularnie weryfikowana, a jej ocena powinna być zgodna z wytycznymi producentów oraz standardami branżowymi, takimi jak normy ECE R90, które regulują wymagania dotyczące wydajności hamulców w pojazdach. Dodatkowo, nieodpowiednie dobranie klocków hamulcowych może prowadzić do ich przegrzewania, co może negatywnie wpływać na ich skuteczność. Aspekty te powinny być brane pod uwagę podczas każdej wymiany klocków hamulcowych.

Pytanie 25

Jaka wartość zawartości wody w płynie hamulcowym wskazuje na konieczność jego wymiany?

A. 0,1%
B. 3,0%
C. 1,0%
D. 0,5%
Odpowiedź 3,0% jest prawidłowa, ponieważ zgodnie z normami branżowymi, w tym standardami SAE J1703, maksymalna dopuszczalna zawartość wody w płynie hamulcowym nie powinna przekraczać 3,0%. Zawartość wody w płynie hamulcowym ma kluczowe znaczenie dla jego właściwości. Woda w płynie hamulcowym obniża jego temperaturę wrzenia, co może prowadzić do zjawiska 'wrzenia' płynu, a w rezultacie do osłabienia skuteczności hamowania. Regularna kontrola i wymiana płynu hamulcowego, szczególnie gdy jego zawartość wody przekracza ten poziom, jest kluczowa dla zapewnienia bezpieczeństwa na drodze. Przykładowo, w sytuacji, gdy kierowca jedzie w trudnych warunkach, takich jak deszcz czy śnieg, efektywność hamulców jest jeszcze bardziej istotna. Dlatego zaleca się, aby co dwa lata przeprowadzać wymianę płynu hamulcowego, nawet jeśli nie wykryto nadmiernej zawartości wody. Taka praktyka jest zgodna z zaleceniami producentów oraz ekspertów w dziedzinie motoryzacji.

Pytanie 26

Przed rozpoczęciem weryfikacji sprawności układu hamulcowego pojazdu w stanowisku diagnostycznym w Stacji Kontroli Pojazdów należy najpierw

A. wyregulować ciśnienie w oponach
B. zmierzyć poziom wody w płynie hamulcowym
C. zmierzyć grubość materiału ciernego klocków hamulcowych
D. sprawdzić funkcjonowanie serwomechanizmu
Wyregulowanie ciśnienia w ogumieniu jest kluczowym krokiem przed przystąpieniem do badania układu hamulcowego, ponieważ niewłaściwe ciśnienie w oponach wpływa na równowagę pojazdu oraz efektywność hamowania. Zbyt niskie lub zbyt wysokie ciśnienie może prowadzić do nierównomiernego zużycia opon oraz zmiany charakterystyki prowadzenia pojazdu. W sytuacji awaryjnej, gdy hamulce muszą działać optymalnie, niewłaściwe ciśnienie w oponach może znacznie zwiększyć drogę hamowania. Standardy branżowe, takie jak normy zawarte w dokumentach dotyczących bezpieczeństwa ruchu drogowego, zalecają regularne sprawdzanie ciśnienia w ogumieniu w celu zapewnienia maksymalnego bezpieczeństwa i osiągów pojazdu. Przykładowo, w przypadku samochodów osobowych, ciśnienie w oponach powinno być dostosowane do wartości zalecanych przez producenta, co jest szczególnie ważne przed przystąpieniem do dalszych testów diagnostycznych, jak np. test hamulców.

Pytanie 27

Reperacja uszkodzonego elastycznego elementu gumowego w zawieszeniu układu wydechowego polega na jego

A. wymianie
B. spajaniu
C. klejeniu
D. zakręceniu
Wymiana uszkodzonego gumowego elastycznego elementu zawieszenia układu wydechowego jest kluczowym procesem w utrzymaniu prawidłowego działania systemu wydechowego pojazdu. Gumowe elementy, takie jak poduszki, są projektowane w celu absorpcji wibracji oraz ułatwienia ruchu podzespołów, co wzmacnia ich trwałość. W przypadku uszkodzenia, na przykład pęknięcia lub utraty elastyczności, ich wymiana staje się niezbędna, ponieważ naprawy takie jak klejenie czy spajanie mogą nie zapewnić odpowiedniego poziomu bezpieczeństwa oraz wydajności. Wymiana powinna być przeprowadzana zgodnie z zaleceniami producenta pojazdu, co obejmuje wykorzystanie oryginalnych części zamiennych lub ich wysokiej jakości odpowiedników. Przykładem zastosowania tej praktyki może być wymiana poduszki zawieszenia w samochodzie osobowym, co zapobiega przenoszeniu niepożądanych drgań do kabiny pasażerskiej, a także minimalizuje ryzyko uszkodzeń innych elementów układu wydechowego. Warto również zwrócić uwagę na regularne przeglądy tych elementów, co może zwiększyć ich żywotność oraz zredukować koszty napraw.

Pytanie 28

Co należy zrobić w przypadku wykrycia nieszczelności w układzie wydechowym?

A. Zastosować taśmę uszczelniającą
B. Wymienić uszkodzone elementy układu
C. Zwiększyć ciśnienie w układzie
D. Zmniejszyć obroty silnika
W przypadku wykrycia nieszczelności w układzie wydechowym, najlepszym rozwiązaniem jest wymiana uszkodzonych elementów układu. Układ wydechowy odgrywa kluczową rolę w odprowadzaniu spalin z silnika, a nieszczelności mogą prowadzić do wycieku spalin, zwiększonego hałasu i nieprawidłowej pracy silnika. Wymiana uszkodzonych elementów, takich jak tłumik, rury czy uszczelki, zapewnia, że układ będzie funkcjonował prawidłowo i efektywnie. Praktyczne przykłady pokazują, że ignorowanie nieszczelności może prowadzić do poważniejszych problemów, takich jak uszkodzenie katalizatora czy pogorszenie osiągów silnika. Zgodnie z dobrymi praktykami branżowymi, regularna kontrola i konserwacja układu wydechowego jest kluczowa dla utrzymania samochodu w dobrym stanie technicznym. Wymiana niesprawnych części na nowe, zgodne ze specyfikacją producenta, jest najlepszym sposobem na zapewnienie bezpieczeństwa i długowieczności pojazdu.

Pytanie 29

Aby ocenić stan techniczny systemu smarowania silnika, na początku należy

A. sprawdzić poziom oleju w silniku
B. ocenić stan pompy olejowej
C. przeprowadzić pomiar ciśnienia w systemie smarowania
D. zweryfikować czystość filtrów olejowych
Sprawdzenie poziomu oleju w silniku jest pierwszym i kluczowym krokiem w ocenie stanu technicznego układu smarowania. Olej silnikowy pełni fundamentalną rolę w smarowaniu ruchomych części silnika, co ma bezpośredni wpływ na jego wydajność i żywotność. Niedobór oleju może prowadzić do intensywnego zużycia elementów silnika, przegrzewania się, a w skrajnych przypadkach do jego uszkodzenia. Praktyka wykazuje, że regularne kontrolowanie poziomu oleju jest zgodne z zaleceniami producentów pojazdów oraz standardami branżowymi. W przypadku stwierdzenia niskiego poziomu oleju, zaleca się jego uzupełnienie lub wymianę, aby zapewnić optymalne smarowanie. Dodatkowo, monitorowanie koloru i konsystencji oleju może dostarczyć informacji o jego stanie, a także o ewentualnych problemach, takich jak zanieczyszczenia czy degradacja. Znajomość tych praktyk pozwala na wczesne wykrywanie usterek i podejmowanie działań prewencyjnych, co znacząco podnosi bezpieczeństwo i niezawodność eksploatacji silnika.

Pytanie 30

Jakie narzędzie pomiarowe powinno być zastosowane do określenia wartości zużycia tulei cylindrowej?

A. Suwmiarki
B. Mikrometru
C. Średnicówki zegarowej
D. Sprawdzianu do otworów
Średnicówka zegarowa jest narzędziem pomiarowym o wysokiej precyzji, które jest szczególnie przydatne w pomiarach średnic otworów, zarówno cylindrycznych, jak i innych kształtów. Jej konstrukcja pozwala na dokładne i łatwe odczytywanie wyników dzięki zastosowaniu mechanizmu zegarowego, co znacznie ułatwia pracę. W przypadku pomiaru tulei cylindra, świetnie sprawdza się, ponieważ dokładność pomiaru jest kluczowa dla zapewnienia odpowiedniego luzu oraz prawidłowego dopasowania elementów silnika. Używając średnicówki zegarowej, można wykryć nawet niewielkie odchylenia od normy, co pozwala na wczesne wykrycie potencjalnych problemów w procesie produkcji lub remontu silnika. W praktyce, pomiar za pomocą tego narzędzia jest często stosowany w warsztatach mechanicznych i w przemyśle motoryzacyjnym, gdzie precyzja ma krytyczne znaczenie. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie dokładności pomiarów w procesach produkcyjnych, co tylko potwierdza wybór średnicówki zegarowej jako narzędzia właściwego w tym kontekście.

Pytanie 31

Skrót DOHC w specyfikacji technicznej silnika oznacza, że jest to silnik

A. z dwoma wałkami rozrządu umieszczonymi w głowicy
B. z systemem rozrządu górnozaworowego
C. z wałkiem rozrządu znajdującym się w głowicy
D. z systemem rozrządu suwakowego
Skrót DOHC oznacza 'Dual Overhead Camshaft', co w tłumaczeniu na język polski oznacza 'dwoma wałkami rozrządu w głowicy'. Tego rodzaju konstrukcja silnika jest powszechnie stosowana w nowoczesnych pojazdach. Zastosowanie dwóch wałków rozrządu pozwala na precyzyjne sterowanie zaworami dolotowymi i wylotowymi, co przekłada się na lepszą wydajność silnika oraz wyższe osiągi. Silniki DOHC są często bardziej efektywne pod względem zużycia paliwa oraz generują więcej mocy, szczególnie w wyższych zakresach obrotów. Dodatkowo, ta konstrukcja umożliwia zastosowanie nowoczesnych technologii, takich jak zmienne fazy rozrządu, które dodatkowo poprawiają charakterystyki silnika. Przykładem zastosowania silnika DOHC może być wiele modeli sportowych i wyścigowych, w których kluczowe są parametry dynamiczne oraz efektywność. Dzięki skomplikowanej budowie silniki te są również często bardziej responsywne na wciśnięcie pedału gazu, co ma znaczenie w motoryzacji wyczynowej.

Pytanie 32

Stosunek rzeczywistej objętości powietrza w cylindrze do objętości powietrza niezbędnej do całkowitego spalenia paliwa znajdującego się w danym momencie w cylindrze nazywa się współczynnikiem

A. oporu powietrza
B. wzmocnienia
C. nadmiaru powietrza
D. wypełnienia impulsu
Współczynnik nadmiaru powietrza to kluczowy parametr w procesie spalania, który definiuje stosunek rzeczywistej ilości powietrza dostarczonego do silnika do ilości powietrza potrzebnej do całkowitego spalenia paliwa. W praktyce, gdy współczynnik nadmiaru powietrza wynosi 1, oznacza to, że do silnika dostarczono dokładnie tyle powietrza, ile potrzeba do spalenia całego paliwa. Wartości powyżej 1 wskazują na nadmiar powietrza, co jest korzystne z punktu widzenia redukcji emisji szkodliwych substancji, ponieważ sprzyja całkowitemu spalaniu paliwa. Przykładowo, w silnikach spalinowych, takich jak te stosowane w pojazdach, optymalizacja tego współczynnika pozwala na osiągnięcie lepszej efektywności paliwowej oraz zmniejszenie emisji tlenków azotu. Normy emisji, takie jak Euro 6, wymagają stosowania technologii, które pozwalają na kontrolowanie współczynnika nadmiaru powietrza w celu spełnienia rygorystycznych standardów dotyczących czystości spalin. Dobra praktyka w zakresie projektowania silników i układów wydechowych polega na monitorowaniu tego współczynnika w czasie rzeczywistym, co umożliwia dostosowanie parametrów pracy silnika do zmieniających się warunków eksploatacji.

Pytanie 33

Rzetelną ocenę gładzi cylindrów wykonuje się na podstawie

A. pomiarów średnic cylindrów przy użyciu suwmiarki
B. oględzin wizualnych
C. badania dotykowego
D. pomiarów średnic cylindrów przy użyciu średnicówki
Pomiar średnic cylindrów przy użyciu średnicówki jest uznawany za najbardziej miarodajny sposób weryfikacji ich gładzi. Średnicówka, jako specjalistyczne narzędzie pomiarowe, pozwala na dokładne określenie średnicy otworów cylindrycznych z wysoką precyzją. W praktyce, pomiar ten jest kluczowy dla oceny stanu technicznego silników spalinowych – zarówno w kontekście diagnostyki, jak i podczas odbudowy jednostek napędowych. Regularne pomiary średnic cylindrów są istotne, ponieważ z czasem mogą występować zużycia mechaniczne, które obniżają jakość pracy silnika. Ponadto, zgodnie z normami branżowymi, takich jak ISO 2768, ocena jakości cylindrów wymaga precyzyjnych pomiarów, aby zapewnić ich odpowiednie dopasowanie do tłoków. Użycie średnicówki umożliwia zbadanie nie tylko średnicy, ale również ewentualnych odchyleń od wymiarów nominalnych, co jest niezbędne do dalszych działań. Warto zatem podkreślić, że wykorzystanie średnicówki w praktyce warsztatowej przyczynia się do zwiększenia żywotności silnika oraz poprawy jego wydajności.

Pytanie 34

Podczas testu diagnostycznego komputer pokładowy wskazuje błąd systemu paliwowego. Co należy sprawdzić w pierwszej kolejności?

A. Napięcie akumulatora
B. Stan opon
C. Poziom oleju silnikowego
D. Filtr paliwa
Filtr paliwa to element układu paliwowego, który pełni kluczową rolę w zapewnieniu czystości paliwa dostarczanego do silnika. Zanieczyszczone paliwo może prowadzić do wielu problemów, takich jak zatkanie wtryskiwaczy lub uszkodzenie pompy paliwa. W przypadku wystąpienia błędu systemu paliwowego, sprawdzenie stanu filtra paliwa jest logicznym i zgodnym z dobrymi praktykami krokiem. Nowoczesne pojazdy są wyposażone w systemy diagnostyczne, które mogą wykrywać problemy z przepływem paliwa, a zatkany filtr często jest przyczyną takich usterek. Regularna kontrola i wymiana filtra paliwa są zalecane przez producentów samochodów jako część rutynowej konserwacji, co pomaga w uniknięciu poważniejszych problemów i przedłuża żywotność układu paliwowego. Dodatkowo, czysty filtr zapewnia optymalną wydajność silnika i efektywność spalania, co przekłada się na lepszą ekonomię paliwową i niższą emisję spalin. To szczególnie ważne w kontekście rosnących standardów ekologicznych i wymagań dotyczących emisji.

Pytanie 35

Jeśli wymiar czopów głównych wału korbowego przekracza ostatni wymiar naprawczy, jakie działania należy podjąć w stosunku do tych czopów?

A. regeneracji poprzez napawanie wibrostykowe
B. regeneracji poprzez metalizację natryskową
C. regeneracji poprzez chromowanie elektrolityczne
D. szlifowaniu na wymiar naprawczy
Wybór opcji szlifowania na wymiar naprawczy jest właściwy, ponieważ jest to standardowa praktyka w przypadku uszkodzenia czopów głównych wału korbowego, gdy ich wymiar przekracza ostatni wymiar naprawczy. Szlifowanie polega na usunięciu warstwy materiału z powierzchni czopów, co pozwala przywrócić ich odpowiednie wymiary oraz gładkość. Tak przeprowadzone procesy są zgodne z normami branżowymi, takimi jak ISO 9001, które podkreślają znaczenie precyzyjnego wykonania oraz kontroli jakości w procesach regeneracji części. Praktycznym przykładem może być silnik, w którym czopy wału korbowego uległy zużyciu wskutek długotrwałej eksploatacji; ich szlifowanie pozwala na dalsze użytkowanie silnika, co jest korzystne zarówno z ekonomicznego, jak i ekologicznego punktu widzenia. Szlifowanie na wymiar naprawczy zwiększa żywotność komponentów, minimalizując ryzyko ich awarii, oraz jest stosunkowo szybkim i efektywnym sposobem naprawy wałów korbowych.

Pytanie 36

Pierwsze elektroniczne urządzenie sterujące w historii motoryzacji - system Motronic od firmy Bosch - stosowano do regulacji

A. centralnym systemem blokady drzwi
B. układem przeciwpoślizgowym
C. układem wtryskowo-zapłonowym
D. skrzynką biegów
Odpowiedź dotycząca układu wtryskowo-zapłonowego jest poprawna, ponieważ system Motronic, opracowany przez firmę Bosch, rewolucjonizował proces zarządzania silnikiem spalinowym. Zintegrowane sterowanie wtryskiem paliwa i zapłonem pozwalało na precyzyjne dostosowanie dawki paliwa do warunków pracy silnika, co znacząco wpłynęło na jego wydajność oraz redukcję emisji szkodliwych substancji. W praktyce, system ten analizuje różne parametry, takie jak temperatura silnika, prędkość obrotowa i ciśnienie atmosferyczne, aby optymalizować proces spalania. Dzięki zastosowaniu elektronicznych czujników i zaawansowanego oprogramowania, Motronic stał się wzorem dla nowoczesnych systemów zarządzania silnikami. Współczesne standardy w branży motoryzacyjnej, takie jak Euro 6, wymagają zastosowania zaawansowanych rozwiązań sterujących, które system Motronic zainspirował. Przykładem zastosowania tego systemu są pojazdy marki Volkswagen, które jako pierwsze wprowadziły ten typ sterowania w latach 80-tych XX wieku.

Pytanie 37

Zjawisko to występuje najczęściej przy niskich prędkościach oraz dużych naciskach - w sytuacjach niewystarczającego smarowania lub jego braku. W takich warunkach, występy oraz nierówności powierzchni są ze sobą złączane, a potem poddawane ścinaniu. Jakiego rodzaju zużycia dotyczy ten opis?

A. Mechanicznego
B. Elektrochemicznego
C. Chemicznego
D. Adhezyjnego
Zużycie adhezyjne to zjawisko, które występuje, gdy powierzchnie stykające się ze sobą są ze sobą sczepiane z powodu sił adhezyjnych, a następnie ulegają ścinaniu, co prowadzi do usunięcia materiału. Zjawisko to ma miejsce szczególnie przy małych prędkościach i dużych naciskach, kiedy warunki smarowania są niewystarczające lub całkowicie brak. Umożliwia to powstanie mikroskopijnych punktów kontaktowych pomiędzy powierzchniami, co skutkuje ich wzajemnym przyleganiem. Przykładem zastosowania tej wiedzy może być analiza zużycia w łożyskach tocznych, gdzie niewłaściwe smarowanie może prowadzić do uszkodzeń wynikających z zjawisk adhezyjnych. Dobrą praktyką jest regularne monitorowanie stanu smarowania oraz stosowanie odpowiednich środków smarnych, aby zminimalizować ryzyko wystąpienia zużycia adhezyjnego, co jest zgodne z normami ISO 281, które dotyczą oceny żywotności łożysk tocznych.

Pytanie 38

Jaki łączny koszt będzie naprawy głowicy silnika, jeśli wymienione zostały 2 zawory dolotowe w cenie 27 zł za sztukę oraz 2 zawory wylotowe po 25 zł za sztukę? Czas dostarczenia jednego zaworu wynosi 20 minut, a stawka za roboczogodzinę to 90 zł?

A. 224 zł
B. 124 zł
C. 204 zł
D. 154 zł
Aby obliczyć całkowity koszt naprawy głowicy silnika, musimy uwzględnić zarówno koszty części zamiennych, jak i czas pracy mechanika. W tej sytuacji wymieniono 2 zawory dolotowe w cenie 27 zł za sztukę oraz 2 zawory wylotowe po 25 zł za sztukę. Obliczamy koszty części: (2 x 27 zł) + (2 x 25 zł) = 54 zł + 50 zł = 104 zł. Następnie obliczamy czas potrzebny na dostarczenie zaworów. Każdy zawór wymaga 20 minut, więc dla 4 zaworów potrzebujemy 80 minut. Przeliczając to na godziny, otrzymujemy 1,33 godziny (80 minut / 60 minut). Koszt robocizny wynosi 90 zł za godzinę, więc całkowity koszt robocizny to 90 zł x 1,33 godziny = 119,7 zł. Łącząc te wartości, otrzymujemy 104 zł + 119,7 zł = 223,7 zł, co zaokrągla się do 224 zł. Zastosowanie tego typu obliczeń jest istotne w branży motoryzacyjnej, aby właściwie wyceniać usługi oraz planować budżet na ewentualne naprawy.

Pytanie 39

Z układu wydechowego samochodu wydobywa się znaczna ilość białego dymu. Możliwą przyczyną tego zjawiska może być

A. zbyt duża ilość paliwa wtryskiwanego.
B. uszkodzenie uszczelki głowicy silnika
C. zablokowany filtr powietrza.
D. nieprawidłowe ustawienie zapłonu.
Odpowiedzi takie jak 'lanie wtryskiwaczy' czy 'niepoprawnie ustawiony zapłon' są niepoprawne, ponieważ odnoszą się do zupełnie innych problemów technicznych. Lanie wtryskiwaczy, czyli nadmierne wtryskiwanie paliwa, może prowadzić do bogatej mieszanki paliwowo-powietrznej, co objawia się czarnym dymem i zwiększonym zużyciem paliwa, a nie białym dymem. Niepoprawnie ustawiony zapłon również nie jest przyczyną białego dymu; najczęściej skutkuje on szarpaniem silnika, spadkiem mocy lub zwiększonym zużyciem paliwa, ale nie prowadzi do przedostawania się płynów chłodniczych do komory spalania. Z kolei zator w filtrze powietrza, choć może wpływać na wydajność silnika, nie będzie generował białego dymu, lecz raczej spadek mocy oraz problemy z uruchomieniem silnika. Kluczowe jest zrozumienie, że białe dymy najczęściej wskazują na problemy z uszczelką głowicy, a nie na kwestie związane z wtryskiwaczami czy zapłonem. Dlatego ważne jest, by diagnostyka silnika była oparta na solidnych podstawach technicznych oraz praktykach branżowych, co pozwoli na szybkie i trafne zidentyfikowanie rzeczywistych przyczyn problemu.

Pytanie 40

Funkcja amortyzatora w systemie zawieszenia

A. zalicza się do kategorii elementów sprężystych zawieszenia
B. wydłuża czas oscylacji sprężyny
C. zapobiega odrywaniu kół od powierzchni
D. może pełnić rolę sprężyny w układzie zawieszenia
Amortyzator w układzie zawieszenia odgrywa kluczową rolę w zapewnieniu stabilności pojazdu oraz komfortu jazdy. Jego głównym zadaniem jest kontrolowanie ruchów sprężyny, co ma na celu zapobieganie odrywaniu się kół od nawierzchni. W praktyce oznacza to, że amortyzator tłumi drgania, które pojawiają się w wyniku nierówności drogi, co z kolei pozwala na zachowanie kontaktu kół z nawierzchnią. Przykładem zastosowania amortyzatorów są pojazdy terenowe, w których odpowiednia kontrola drgań jest niezbędna do utrzymania stabilności w trudnym terenie. Warto również wspomnieć, że nowoczesne amortyzatory, takie jak amortyzatory gazowe lub aktywne, są projektowane zgodnie z najnowszymi standardami branżowymi, co pozwala na jeszcze lepsze dostosowanie do warunków drogowych i zwiększa bezpieczeństwo jazdy. Dobre praktyki w konstrukcji zawieszeń obejmują regularne sprawdzanie stanu amortyzatorów, ponieważ ich zużycie może negatywnie wpływać na osiągi pojazdu oraz komfort podróży."