Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 1 czerwca 2025 15:15
  • Data zakończenia: 1 czerwca 2025 15:30

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką masę wodorotlenku potasu trzeba odważyć, żeby przygotować 500 cm3 roztworu o stężeniu 0,02 mola? Masy molowe poszczególnych pierwiastków wynoszą: potas K - 39 g/mol, tlen O - 16 g/mol, wodór H - 1 g/mol?

A. 56,00 g
B. 0,28 g
C. 0,56 g
D. 5,60 g
Wiele osób może pomylić się w obliczeniach związanych z przygotowaniem roztworów, co często wynika z błędnego zrozumienia zależności między stężeniem, objętością a masą substancji. Przykładowo, niektórzy mogą nieprawidłowo zastosować jednostki miary, co prowadzi do błędnych wyników. Przy obliczeniach niezbędne jest zawsze przeliczenie objętości roztworu z centymetrów sześciennych na litry, ponieważ stężenie molowe (C) zwykle wyrażane jest w molach na litr. Inny typowy błąd polega na pomylonej masie molowej związku; w tym przypadku, błędne wyliczenie masy molowej KOH przez nieuwzględnienie wszystkich składników chemicznych, takich jak wodór, może prowadzić do zbyt niskiej lub zbyt wysokiej wartości masy, co w efekcie skutkuje niewłaściwym stężeniem roztworu. Ponadto, nieprawidłowe zaokrąglenia lub zbytnia ufność w wyniki kalkulatorów może prowadzić do dalszych nieścisłości. Kluczowym elementem praktyki laboratoryjnej jest dokładność i precyzja, dlatego zaleca się stosowanie wag analitycznych, które mogą zapewnić większą dokładność przy odważaniu substancji. Prawidłowe przygotowanie roztworu jest niezbędne w zastosowaniach takich jak titracje, w których dokładność stężenia roztworu ma kluczowe znaczenie dla uzyskania wiarygodnych wyników. Zrozumienie tych zasad jest ważne dla każdego chemika, aby uniknąć błędów, które mogą prowadzić do fałszywych wniosków w badaniach naukowych.

Pytanie 2

Aby uzyskać drobnokrystaliczny osad BaSO4, należy wykonać poniższe kroki:
Do zlewki wlać 20 cm3 roztworu BaCl2, następnie dodać 100 cm3 wody destylowanej oraz kilka kropli roztworu HCl. Zawartość zlewki podgrzać na łaźni wodnej, a potem, ciągle mieszając, dodać 35 cm3 roztworu H2SO4.
Mieszaninę ogrzewać na łaźni wodnej przez 1 godzinę. Osad odsączyć i przepłukać kilkakrotnie gorącą wodą zakwaszoną kilkoma kroplami roztworu H2SO4.
Według przedstawionej procedury, do uzyskania osadu BaSO4 potrzebne są:

A. zlewka, pipeta wielomiarowa o pojemności 25 cm3, cylindry miarowe o pojemności 50 i 100 cm3, łaźnia wodna, bagietka, zestaw do sączenia, sączek "miękki"
B. zlewka, cylindry miarowe o pojemności 25, 50 i 100 cm3, łaźnia wodna, zestaw do sączenia, sączek "twardy"
C. zlewka, cylindry miarowe o pojemności 50 i 100 cm3, pipeta jednomiarowa o pojemności 20 cm3, łaźnia wodna, bagietka, zestaw do sączenia, sączek "twardy"
D. zlewka, cylindry miarowe o pojemności 25, 50 i 100 cm3, palnik, trójnóg, zestaw do sączenia, sączek "miękki"
Wszystkie niepoprawne odpowiedzi zawierają braki lub nieodpowiednie narzędzia, które nie są zgodne z wymaganiami procedury otrzymywania osadu BaSO4. Na przykład, w przypadku użycia pipety wielomiarowej, nie zapewnia ona precyzyjnego odmierzenia 20 cm3 roztworu BaCl2. Pipeta jednomiarowa to standard w laboratoriach chemicznych, gdy chodzi o dokładne pomiary niewielkich objętości. Dodatkowo, w odpowiedziach, które sugerują zastosowanie sączków 'miękkich', nie są one odpowiednie do procesu sączenia osadu, ponieważ sączki 'twarde' lepiej radzą sobie z zatrzymywaniem cząstek stałych, takich jak BaSO4, a ich wybór oparty jest na specyfice chemikaliów oraz wymaganiach dotyczących filtracji. Wreszcie, dodatkowe narzędzia, takie jak palnik czy trójnóg, nie są potrzebne w tej procedurze, co prowadzi do nieefektywności oraz zbędnych komplikacji w procesie przeprowadzania reakcji. Kluczowe jest, aby w każdym eksperymencie używać odpowiednich narzędzi zgodnie z protokołem, co zwiększa dokładność wyników oraz bezpieczeństwo w laboratoriach.

Pytanie 3

W laboratorium chemicznym systemy wodne zazwyczaj oznacza się kolorem zielonym

A. parową
B. ściekową
C. przeciwpożarową
D. wodną
W laboratoriach chemicznych, zgodnie z międzynarodowymi standardami oznakowania instalacji, kolor zielony jest przypisany do systemów wodnych. Wszystkie rurociągi i instalacje, które transportują wodę, powinny być oznakowane tym kolorem, co zwiększa bezpieczeństwo i efektywność operacyjną. Oznaczenie wodnych instalacji jest szczególnie istotne w kontekście wypadków i awarii, gdzie szybka identyfikacja systemu może uratować życie. Na przykład, w przypadku pożaru, personel musi wiedzieć, które rurociągi prowadzą do źródeł wody, aby skutecznie przeprowadzić akcję gaśniczą. W praktyce oznakowanie to opiera się na normach takich jak ISO 7010 oraz ANSI Z535, które definiują kolorystykę i sposób oznaczania systemów w różnych środowiskach. W związku z tym, rozumienie i przestrzeganie tych standardów jest kluczowe dla zapewnienia bezpieczeństwa w laboratoriach chemicznych oraz minimalizacji ryzyka związanego z niewłaściwym podłączeniem lub pomyleniem instalacji.

Pytanie 4

Po rozpuszczeniu substancji w kolbie miarowej, należy odczekać przed dopełnieniem jej wodą "do kreski" miarowej. Taki sposób postępowania jest uzasadniony

A. potrzebą wyrównania temperatury roztworu z otoczeniem
B. opóźnieniem w osiągnięciu równowagi dysocjacji
C. koniecznością dokładnego wymieszania roztworu
D. opóźnieniem w ustaleniu się kontrakcji objętości
Odpowiedź dotycząca konieczności wyrównania temperatury roztworu i otoczenia jest prawidłowa, ponieważ temperatura ma kluczowe znaczenie dla dokładności pomiarów oraz właściwości fizykochemicznych roztworów. Po rozpuszczeniu substancji w kolbie miarowej, ważne jest, aby roztwór osiągnął równowagę temperaturową przed dopełnieniem do kreski. Różnice temperatur mogą prowadzić do błędów w objętości, ponieważ cieczy o wyższej temperaturze mają tendencję do rozszerzania się. W praktyce, standardy laboratoryjne, takie jak normy ISO dotyczące przygotowywania roztworów, zalecają odczekiwanie, aby uniknąć nieprecyzyjnych wyników analitycznych. Na przykład, w chemii analitycznej, nawet niewielkie różnice w objętości mogą wpłynąć na stężenie roztworu, co ma bezpośredni wpływ na wyniki pomiarów spektroskopowych czy titracji. Przygotowując roztwory, należy także brać pod uwagę efekty, takie jak rozpuszczalność substancji w różnych temperaturach, co może wpływać na ostateczny skład roztworu. Dlatego przestrzeganie protokołów dotyczących wyrównania temperatury jest kluczowe dla uzyskania wiarygodnych i powtarzalnych wyników w laboratoriach.

Pytanie 5

Gdzie należy przechowywać cyjanek potasu KCN?

A. w szczelnie zamkniętym eksykatorze
B. w stalowej szafie, zamkniętej na klucz
C. w pojemniku, z dala od źródeł ciepła
D. w warunkach chłodniczych
Przechowywanie cyjanku potasu (KCN) w stalowej szafie zamkniętej na klucz jest kluczowym aspektem zapewnienia bezpieczeństwa w laboratoriach i miejscach pracy, ponieważ jest to substancja silnie toksyczna. Właściwe przechowywanie tego związku chemicznego minimalizuje ryzyko przypadkowego kontaktu z osobami nieuprawnionymi oraz zapobiega przypadkowemu uwolnieniu substancji do otoczenia. Stalowe szafy przeznaczone do przechowywania substancji niebezpiecznych muszą być zgodne z normami bezpieczeństwa, takimi jak OSHA (Occupational Safety and Health Administration) oraz EPA (Environmental Protection Agency), które nakładają obowiązki dotyczące ochrony zdrowia i środowiska. Przykładem dobrej praktyki jest stosowanie systemów monitorowania, które informują o ewentualnych nieprawidłowościach w temperaturze czy wilgotności w miejscu przechowywania. Umożliwia to wczesne wykrywanie zagrożeń oraz odpowiednie działania w celu ich minimalizacji, co jest niezbędne w zarządzaniu substancjami chemicznymi o wysokim ryzyku. Ponadto, regularne szkolenia pracowników z zakresu obsługi substancji niebezpiecznych wspierają kulturę bezpieczeństwa w organizacji.

Pytanie 6

Aby rozpuścić próbkę tłuszczu o wadze 5 g, wykorzystuje się 50 cm3 mieszanki 96% alkoholu etylowego oraz eteru dietylowego, połączonych w proporcji objętościowej 1 : 2. Jakie ilości cm3 każdego ze składników są potrzebne do przygotowania 150 cm3 tej mieszanki?

A. 100 cm3 alkoholu etylowego oraz 200 cm3 eteru dietylowego
B. 75 cm3 alkoholu etylowego oraz 75 cm3 eteru dietylowego
C. 50 cm3 alkoholu etylowego oraz 100 cm3 eteru dietylowego
D. 100 cm3 alkoholu etylowego oraz 50 cm3 eteru dietylowego
Odpowiedź 50 cm³ alkoholu etylowego i 100 cm³ eteru dietylowego jest poprawna, ponieważ mieszanka przygotowywana w stosunku objętościowym 1:2 oznacza, że na każdą część alkoholu przypadają dwie części eteru. Aby obliczyć ilość składników w przypadku 150 cm³ całkowitej objętości, stosujemy proporcje. W tym przypadku 1 część alkoholu etylowego i 2 części eteru oznaczają, że 1/3 całkowitej objętości to alkohol, a 2/3 to eter. Zatem, 150 cm³ * 1/3 = 50 cm³ alkoholu etylowego, a 150 cm³ * 2/3 = 100 cm³ eteru dietylowego. Zastosowanie takich proporcji jest zgodne z najlepszymi praktykami w chemii analitycznej, gdzie precyzyjne pomiary są kluczowe dla uzyskania powtarzalnych wyników. Dobrym przykładem zastosowania tej wiedzy jest praca w laboratoriach chemicznych, gdzie często przygotowuje się roztwory o określonych stężeniach i proporcjach, co jest niezbędne w badaniach jakości i ilości substancji chemicznych. Właściwe zrozumienie proporcji i ich zastosowania przyczynia się do skutecznych i bezpiecznych procedur laboratoryjnych.

Pytanie 7

Temperatura topnienia mocznika wynosi 133 °C. W celu określenia czystości preparatów tej substancji, przeprowadzono badania temperatury ich topnienia, uzyskując wyniki przedstawione w tabeli. Wskaż preparat o najmniejszym stopniu czystości.

PreparatABCD
Zakres temperatury topnienia [°C]132-133130-133125-133128-133

A. A.
B. B.
C. C.
D. D.
Odpowiedź C jest prawidłowa, ponieważ temperatura topnienia czystego mocznika wynosi 133 °C. W przypadku analizy czystości substancji, kluczowym czynnikiem jest ocena temperatury topnienia - im niższa temperatura początkowa oraz szerszy zakres topnienia, tym większa obecność zanieczyszczeń w próbce. Preparat C osiąga temperaturę początkową topnienia na poziomie 125 °C, co wskazuje na obecność zanieczyszczeń obniżających jego punkt topnienia. Dodatkowo, zakres topnienia 125-133 °C również sugeruje, że substancja nie jest w pełni czysta, co jest zgodne z zasadami analizy chemicznej i standardami jakości. W praktyce, takie badania są istotne w przemyśle chemicznym, farmaceutycznym czy spożywczym, gdzie czystość substancji ma kluczowe znaczenie dla jakości końcowego produktu. Ważne jest, aby zapewnić odpowiednią kontrolę jakości, a metody takie jak pomiary temperatury topnienia są standardem w laboratoriach analitycznych, co umożliwia zapewnienie wysokich standardów jakości preparatów.

Pytanie 8

Próbka, którą analizujemy, to bardzo rozcieńczony wodny roztwór soli nieorganicznych, który ma być poddany analizie. Proces, który można zastosować do zagęszczenia tego roztworu, to

A. destylacji
B. krystalizacji
C. ekstrakcji
D. sublimacji
Ekstrakcja to technika, która polega na wydobywaniu substancji z jednego medium do innego, zwykle wykorzystując różnice w rozpuszczalności. Choć jest to proces użyteczny w analizie chemicznej, nie jest on skuteczny dla zatężania roztworów soli. Nie pomaga on w uzyskaniu większego stężenia roztworu, co jest kluczowe w tym kontekście. Sublimacja to proces, w którym substancja przechodzi ze stanu stałego bezpośrednio w gazowy. Ta metoda jest stosowana do oddzielania substancji, które łatwo sublimują, ale nie ma zastosowania w zatężaniu roztworów wodnych. Krystalizacja polega na wytrącaniu substancji w postaci kryształów, co może prowadzić do uzyskania czystszych substancji, jednak nie jest to proces, który efektywnie redukuje objętość roztworu. Typowym błędem myślowym przy wyborze tych metod jest mylenie procesu separacji z procesem zatężania. Należy pamiętać, że skuteczne zatężanie wymaga zastosowania metod, które pozwalają na usunięcie rozpuszczalnika, co jest charakterystyczne dla destylacji. W związku z tym, odpowiednie zrozumienie i zastosowanie metod separacji lub zatężania jest kluczowe w pracy laboratoryjnej.

Pytanie 9

Jaką metodą nie można rozdzielać mieszanin?

A. chromatografia
B. krystalizacja
C. aeracja
D. ekstrakcja
Aeracja to proces, który nie jest metodą rozdzielania mieszanin, lecz techniką stosowaną w różnych dziedzinach, takich jak oczyszczanie wody czy hodowla ryb, w celu wzbogacenia medium w tlen. Proces ten polega na wprowadzeniu powietrza do cieczy, co ma na celu zwiększenie stężenia tlenu rozpuszczonego w wodzie. Aeracja znajduje zastosowanie w biotechnologii wodnej oraz przy oczyszczaniu ścieków, gdzie tlen jest niezbędny dla organizmów aerobowych, które degradować mogą zanieczyszczenia organiczne. W przeciwieństwie do metod takich jak chromatografia, krystalizacja czy ekstrakcja, które mają na celu separację konkretnych składników z mieszaniny, aeracja koncentruje się na poprawie warunków środowiskowych. Chromatografia jest szeroko stosowana w laboratoriach chemicznych do analizy substancji, krystalizacja służy do oczyszczania substancji chemicznych poprzez tworzenie kryształów, a ekstrakcja umożliwia oddzielenie substancji na podstawie ich różnej rozpuszczalności. Właściwe zrozumienie tych procesów jest kluczowe dla ich efektywnego zastosowania w przemyśle chemicznym i biotechnologii.

Pytanie 10

Do 200 g roztworu NaOH (M = 40 g/mol) o stężeniu 10 % dodano wodę destylowaną w kolbie miarowej o pojemności 500 cm3 do znaku. Jakie jest stężenie molowe powstałego roztworu?

A. 0,1 mol/dm3
B. 1,0 mol/dm3
C. 4,0 mol/dm3
D. 0,5 mol/dm3
Błędne odpowiedzi często opierają się na niepoprawnym zrozumieniu pojęcia stężenia oraz na niewłaściwym obliczeniu liczby moli substancji w roztworze. Dla odpowiedzi wskazujących na stężenie 0,5 mol/dm³, można zauważyć, że mogą one wynikać z błędnego założenia, że 200 g roztworu zawiera mniej moli NaOH, niż wynika to z obliczeń. Inną typową pomyłką jest zakładanie, że rozcieńczenie wpływa na całkowitą ilość moli w roztworze, co jest nieprawdziwe. Po rozcieńczeniu liczba moli pozostaje niezmieniona, a zmienia się tylko objętość roztworu, co prowadzi do błędnych wyników stężenia. Odpowiedzi wskazujące na 4,0 mol/dm³ mogą wynikać z mylnego przeliczenia masy substancji na mole bez uwzględnienia objętości roztworu, co jest kluczowe przy obliczaniu stężeń. Niezrozumienie metody obliczania stężenia molowego prowadzi do niepoprawnych wniosków, a także wykazuje brak znajomości podstawowych zasad chemii, takich jak prawo zachowania masy czy zasady przygotowywania roztworów. W praktyce laboratoryjnej ważne jest, aby dokładnie obliczać zarówno masy, jak i objętości, aby uzyskać poprawne wyniki analizy i zapewnić jakość badań.

Pytanie 11

Podczas pobierania próby wody do oznaczania metali ciężkich zaleca się stosowanie butelek wykonanych z:

A. szkła sodowego
B. ceramiki
C. aluminium
D. polietylenu wysokiej gęstości (HDPE)
Polietylen wysokiej gęstości (HDPE) to materiał, który najczęściej wykorzystuje się do pobierania i przechowywania próbek wody przeznaczonych do analizy zawartości metali ciężkich. Przede wszystkim HDPE jest tworzywem chemicznie obojętnym wobec większości metali. To ogromna zaleta, bo nie wchodzi w reakcje z badanymi jonami, nie adsorbuje ich na swojej powierzchni i nie emituje zanieczyszczeń, które mogłyby zaburzyć wyniki. W praktyce laboratoria stosują butelki HDPE zarówno w analizach środowiskowych, jak i przemysłowych. Bardzo ważne jest też to, że HDPE jest wytrzymały mechanicznie, odporny na pęknięcia i łatwy do mycia oraz dekontaminacji przed kolejnym użyciem. Takie pojemniki są rekomendowane przez międzynarodowe normy, np. ISO 5667 dotyczące pobierania próbek wody. Z mojego doświadczenia wynika, że HDPE to pewność, że próbka nie zostanie zanieczyszczona metalami z materiału opakowania ani nie dojdzie do strat analitu przez związanie z powierzchnią. To naprawdę kluczowe, żeby nie zafałszować wyników, szczególnie przy bardzo niskich stężeniach metali ciężkich.

Pytanie 12

Procedura oznaczenia kwasowości mleka. Do wykonania analizy, zgodnie z powyższą procedurą, potrzebne są

Do kolby stożkowej o pojemności 300 cm3 pobrać dokładnie 25 cm3 badanego mleka i rozcieńczyć wodą destylowaną do objętości 50 cm3. Dodać 2-3 krople fenoloftaleiny i miareczkować mianowanym roztworem wodorotlenku sodu do uzyskania lekko różowego zabarwienia.

A. cylinder miarowy o pojemności 50 cm3, kolba stożkowa o pojemności 300 cm3, biureta.
B. pipeta wielomiarowa o pojemności 25 cm3, kolba stożkowa o pojemności 300 cm3, biureta, cylinder miarowy o pojemności 100 cm3.
C. pipeta jednomiarowa o pojemności 25 cm3, kolba stożkowa o pojemności 300 cm3, biureta, cylinder miarowy o pojemności 25 cm3.
D. pipeta jednomiarowa o pojemności 25 cm3, zlewka o pojemności 300 cm3, biureta.
Wybrana odpowiedź jest prawidłowa, ponieważ dokładnie odpowiada wymaganym materiałom do analizy kwasowości mleka zgodnie z ustaloną procedurą. Pipeta jednomiarowa o pojemności 25 cm3 jest kluczowym narzędziem do precyzyjnego odmierzania próbki mleka, co jest niezbędne dla zachowania dokładności wyniku analizy. Kolba stożkowa o pojemności 300 cm3 pozwala na rozcieńczenie próbki mleka z wodą destylowaną, co jest istotne dla uzyskania właściwej reakcji podczas miareczkowania. Biureta służy do precyzyjnego dozowania odczynnika w procesie miareczkowania, co jest standardem w laboratoriach chemicznych, a cylinder miarowy o pojemności 25 cm3 umożliwia dokładne odmierzenie wody destylowanej. Zastosowanie tych narzędzi zgodnie z dobrą praktyką laboratoryjną zapewnia wiarygodność wyników i powtarzalność analiz, co jest niezwykle istotne w kontekście kontroli jakości produktów mleczarskich.

Pytanie 13

W przypadku rozlania żrącego odczynnika chemicznego na skórę pierwszym poprawnym działaniem jest:

A. Posypanie miejsca solą kuchenną
B. Pocieranie miejsca kontaktu papierowym ręcznikiem
C. Zaklejenie miejsca plastrem
D. Natychmiastowe spłukanie miejsca kontaktu dużą ilością wody
Postępowanie w przypadku kontaktu skóry z substancją żrącą jest jednym z podstawowych elementów bezpieczeństwa w laboratorium chemicznym. Najważniejsze jest, żeby działać szybko i skutecznie. Od razu po rozlaniu żrącego odczynnika trzeba spłukać miejsce kontaktu dużą ilością wody – najlepiej bieżącej. To nie tylko rozcieńcza szkodliwy związek, ale przede wszystkim usuwa go z powierzchni skóry, zmniejszając ryzyko głębszych uszkodzeń tkanek. Praktyka ta wynika z ogólnych zasad BHP obowiązujących w laboratoriach oraz wytycznych instytutów takich jak CIOP czy OSHA. Efektywność tej metody potwierdzają liczne badania. Szybka reakcja pozwala ograniczyć wchłanianie substancji i minimalizuje skutki poparzeń chemicznych. Nawet jeśli żrący środek wydaje się mało agresywny, nie wolno tego bagatelizować. Dobrze mieć też pod ręką prysznic bezpieczeństwa lub zestaw do płukania oczu, zwłaszcza w laboratoriach chemicznych. Warto pamiętać, że niektóre substancje wymagają dłuższego płukania – nawet do 15 minut. Dodatkowo po takim incydencie zawsze należy zgłosić zdarzenie przełożonemu i skonsultować się z lekarzem. Z mojego doświadczenia, szybkie działanie i wiedza o pierwszej pomocy to rzeczy, które naprawdę robią różnicę w laboratoriach. Ostatecznie – lepiej spłukać odczynnik za długo, niż za krótko. To jedna z tych zasad, które zawsze warto mieć z tyłu głowy podczas pracy z chemikaliami.

Pytanie 14

Jakie procedury powinny być stosowane podczas ustalania miana roztworu?

A. Ustalanie miana roztworu polega na dokładnym rozcieńczeniu roztworu, aby uzyskać wcześniej zaplanowane stężenie
B. Ustalanie miana roztworu polega na starannym zagęszczeniu roztworu, aby osiągnąć wcześniej ustalone stężenie
C. Ustalanie miana roztworu polega na dokładnym określeniu stężenia roztworu, w reakcji z roztworem substancji podstawowej o precyzyjnie znanym stężeniu
D. Ustalanie miana każdego roztworu powinno być wykonane natychmiast po jego przygotowaniu
Nastawianie miana roztworu to kluczowy proces w chemii analitycznej, który polega na dokładnym ustaleniu stężenia roztworu przez reakcję z roztworem substancji podstawowej o znanym stężeniu. Ta metoda jest niezwykle istotna, ponieważ precyzyjne określenie miana roztworu pozwala na uzyskanie wiarygodnych wyników analitycznych. Na przykład, w przypadku titracji, przy użyciu roztworu wzorcowego o znanym stężeniu, możemy ustalić stężenie substancji analitowanej, co ma kluczowe znaczenie w laboratoriach chemicznych oraz w badaniach jakościowych i ilościowych. Zgodnie z dobrą praktyką laboratoryjną, należy zapewnić, aby roztwory wzorcowe były przygotowane i przechowywane w odpowiednich warunkach, aby ich stężenie pozostało niezmienne. Ważne jest także wykonywanie pomiarów pod kontrolą określonych protokołów i standardów, jak np. ISO 17025, które zapewniają wysoką jakość i dokładność wyników pomiarów.

Pytanie 15

Poniżej jest równanie reakcji prażenia węglanu wapnia. 200 g węglanu wapnia zawierającego 10% zanieczyszczeń poddano prażeniu. Masa otrzymanego tlenku wapnia wyniosła

CaCO3 → CaO + CO2
(MCaCO3 = 100 g/mol, MCaO = 56 g/mol, MCO2 = 44 g/mol)

A. 28,0 g
B. 112,0 g
C. 31,1 g
D. 100,8 g
Poprawna odpowiedź wynosząca 100,8 g wynika z precyzyjnego obliczenia masy czystego węglanu wapnia, jakie uzyskaliśmy po uwzględnieniu zanieczyszczeń. Zaczynamy od 200 g węglanu wapnia, z czego 10% to zanieczyszczenia. Oznacza to, że czysty węglan wapnia stanowi 90% tej masy, co daje nam 180 g (200 g - 20 g). Następnie, podczas prażenia węglanu wapnia, zachodzi reakcja termiczna, w wyniku której wytwarzany jest tlenek wapnia (CaO). W reakcji tej wydziela się dwutlenek węgla (CO₂). Wzór reakcji to: CaCO₃ (s) → CaO (s) + CO₂ (g). Korzystając ze stosunku mas molowych, który wynosi około 1:0,56 dla CaCO₃ do CaO, obliczamy masę tlenku wapnia, co prowadzi nas do wyniku 100,8 g. Zrozumienie takich procesów jest kluczowe w chemii analitycznej i przemysłowej, gdzie dokładność odgrywa fundamentalną rolę, na przykład w produkcji materiałów budowlanych.

Pytanie 16

Jakie urządzenie służy do pomiaru temperatury topnienia substancji chemicznych?

A. Thiel.
B. Kipp.
C. Engler.
D. Soxleth.
Aparat Thielego jest specjalistycznym urządzeniem używanym do oznaczania temperatury topnienia związków chemicznych. Jego działanie opiera się na precyzyjnym pomiarze temperatury w kontrolowanym środowisku, co pozwala na uzyskanie dokładnych wyników. W praktyce, aparat Thielego wykorzystuje się w laboratoriach chemicznych oraz w przemyśle farmaceutycznym do określenia charakterystyki substancji stałych, co jest kluczowe dla ich dalszych zastosowań. Zgodnie z dobrą praktyką laboratoryjną, proces oznaczania temperatury topnienia powinien odbywać się w atmosferze wolnej od zanieczyszczeń, co zapewnia dokładność wyników. Dodatkowo, znajomość temperatury topnienia jest istotna nie tylko dla identyfikacji substancji, ale także dla oceny ich czystości. Substancje czyste mają wyraźnie określoną temperaturę topnienia, podczas gdy zanieczyszczenia powodują obniżenie tej wartości. Dlatego aparaty Thielego są powszechnie stosowane w standardowych procedurach analitycznych, co świadczy o ich znaczeniu w chemii analitycznej.

Pytanie 17

Połączono równe ilości cynku i bromu, a następnie poddano je reakcji Zn + Br2 → ZnBr2. W tych warunkach stopień reakcji cynku wynosi (masy atomowe: Zn – 65u, Br – 80u)?

A. 0,8
B. 0,4
C. 1,0
D. 0,6
Odpowiedź 0,4 jest poprawna, ponieważ obliczenia wskazują, że stosunek molowy cynku do bromu w reakcji wynosi 1:1. W przypadku reakcji, gdzie mamy do czynienia z równowagą stechiometryczną, kluczowe jest zrozumienie, że dla 1 mola Zn potrzeba 1 mola Br2. Zastosowane masy atomowe (Zn – 65u, Br – 80u) pozwalają na określenie, ile moli każdej substancji mamy w danej reakcji. Wymieszenie równych mas cynku i bromu, na przykład 65 g cynku i 80 g bromu, prowadzi do sytuacji, w której cynk jest reagentem ograniczającym, ponieważ mamy mniej moli cynku (1 mol) niż bromu (1,0 mol). W wyniku tego, tylko część bromu będzie reagować z cynkiem. Obliczając stopień przereagowania cynku, stwierdzamy, że 0,4 wynika z faktu, iż 0,4 mola cynku zareaguje całkowicie, a pozostałe 0,6 mola bromu nie znajdzie reagentu do reakcji. Takie analizy są kluczowe w praktyce chemicznej i inżynieryjnej, gdzie precyzyjne obliczenia dają podstawy do skutecznego projektowania procesów chemicznych.

Pytanie 18

Skalę wzorców do oznaczenia barwy przygotowano w cylindrach Nesslera o pojemności 100 cm3. Barwa oznaczona w tabeli jako X wynosi

Skala wzorców do barwy
Ilość wzorcowego roztworu podstawowego cm3 (c=500 mg Pt/dm3)01,02,03,0
Barwa w stopniach
mg Pt/dm3
05X15

A. 20
B. 5,5
C. 7
D. 10
Wybór odpowiedzi 10 mg Pt/dm³ jest poprawny, ponieważ oparty jest na założeniach dotyczących liniowej skali wzorców stosowanej do oznaczania barwy. Dla 1,0 cm³ roztworu podstawowego wartość wynosi 5 mg Pt/dm³. Zgodnie z zasadami chemii analitycznej, jeśli zwiększamy objętość roztworu podstawowego, to również proporcjonalnie wzrasta stężenie substancji, co jest zgodne z zasadą zachowania masy. W tym przypadku, dla 2,0 cm³ roztworu podstawowego, barwa będzie podwójna, co prowadzi do uzyskania wartości 10 mg Pt/dm³. Tego rodzaju podejście jest powszechnie stosowane w laboratoriach analitycznych, gdzie precyzyjne oznaczanie stężeń ma kluczowe znaczenie dla wiarygodności wyników. Zastosowanie tej metody w praktyce jest istotne dla analizy chemicznej w różnych dziedzinach, takich jak badania środowiskowe czy kontrola jakości w przemyśle chemicznym.

Pytanie 19

Błąd związany z odczytem poziomu cieczy w kolbie miarowej, spowodowany niewłaściwą pozycją oka w stosunku do skali, nazywany jest błędem

A. paralaksy
B. losowym
C. instrumentalnym
D. dokładności
Wybierając coś innego niż 'paralaksy', można się pomylić w rozumieniu, jak działają błędy w pomiarach. Błąd przypadkowy to te różnice, które mogą się zdarzać przez różne czynniki, jak temperatura czy drgania, a nie przez to, jak patrzymy na płyn. Błąd precyzji z kolei to raczej te stałe ograniczenia związane z narzędziami, które wcale nie dotyczą paralaksy. Wreszcie, błąd instrumentalny zdarza się przez złe kalibracje sprzętu, co też nie ma nic wspólnego z tym zjawiskiem. Ważne, żeby zrozumieć te wszystkie pojęcia, bo mają inne znaczenie w pomiarach. Traktowanie ich jako jedno może wprowadzić w błąd, a to z kolei skutkuje nieprawidłowymi wynikami. Dlatego tak ważne jest, by wiedzieć, skąd bierze się błąd, bo to klucz do dobrego pomiaru. Odpowiednie techniki i znajomość różnych błędów pomagają uzyskać lepsze i dokładniejsze wyniki w laboratoriach.

Pytanie 20

Zestaw do filtracji pod obniżonym ciśnieniem powinien obejmować między innymi

A. kolbę ssawkową, lejek Büchnera, płuczkę bezpieczeństwa
B. kolbę okrągłodenną, lejek szklany z sączkiem, płuczkę bezpieczeństwa
C. kolbę stożkową, lejek szklany z sączkiem, pompę próżniową
D. kolbę miarową, lejek Büchnera, pompę próżniową
Odpowiedź wskazująca na kolbę ssawkową, lejek Büchnera oraz płuczkę bezpieczeństwa jest prawidłowa, ponieważ wszystkie te elementy są kluczowe w procesie sączenia pod zmniejszonym ciśnieniem. Kolba ssawkowa, znana również jako kolba próżniowa, jest specjalnie zaprojektowana do przechowywania cieczy pod ciśnieniem niższym niż ciśnienie atmosferyczne, co pozwala na efektywne sączenie. Lejek Büchnera, zbudowany z porcelany lub szkła, umożliwia szybkie i efektywne oddzielanie ciał stałych od cieczy, wykorzystując siłę próżni generowaną przez pompę. Płuczka bezpieczeństwa jest istotnym elementem, który chroni zarówno sprzęt, jak i użytkownika przed niebezpiecznymi substancjami chemicznymi, zapobiegając ich zassaniu do systemu próżniowego. Dobór tych elementów odpowiada standardom laboratoryjnym, gdzie bezpieczeństwo i efektywność są priorytetami. Przygotowując się do procedur laboratoryjnych związanych z filtracją, zawsze należy uwzględnić te trzy składniki, aby zapewnić prawidłowe i bezpieczne przeprowadzenie eksperymentów.

Pytanie 21

Pobieranie próbek wody z zbiornika wodnego, który zasila system wodociągowy, powinno odbywać się

A. w najgłębszym punkcie, z którego czerpana jest woda
B. na powierzchni wody, w pobliżu brzegu zbiornika
C. na powierzchni wody, w centralnej części zbiornika
D. w miejscu oraz na głębokości, gdzie następuje czerpanie wody
Prawidłowa odpowiedź wskazuje na konieczność pobierania próbek wody w miejscu i na głębokości, w którym następuje pobór wody. Jest to kluczowe dla zapewnienia, że próbki odzwierciedlają rzeczywiste warunki wody, jaka jest dostarczana do użytkowników. W praktyce oznacza to, że próbki należy pobierać w punktach, gdzie woda jest zasysana przez system wodociągowy, co pozwala na dokładne monitorowanie jakości wody oraz jej ewentualnych zanieczyszczeń. Zgodnie z normami i zaleceniami takich organizacji jak WHO czy EPA, próbki powinny być zbierane w sposób, który minimalizuje ryzyko zanieczyszczenia próbek. W praktyce, pobieranie próbek na głębokości w miejscu poboru wody jest niezbędne, aby uwzględnić różne warstwy wody oraz potencjalne różnice w jej jakości. Przykładem zastosowania tej wiedzy jest kontrola jakości wody pitnej, gdzie regularne badania próbek w różnych warunkach pozwalają na odpowiednie reagowanie na zmiany i zapewnienie bezpieczeństwa zdrowotnego mieszkańców.

Pytanie 22

Zjawisko fizyczne, które polega na rozkładaniu struktury krystalicznej substancji stałej oraz przenikaniu jej cząsteczek lub jonów do cieczy, nosi nazwę

A. stapianiem
B. rozpuszczaniem
C. sublimacją
D. roztwarzaniem
Stapianie to proces zmiany stanu skupienia substancji z fazy stałej na ciecz, który zachodzi w wyniku podgrzewania materiału do jego temperatury topnienia. W tym przypadku, struktura krystaliczna nie jest niszczona w sposób, w jaki ma to miejsce podczas rozpuszczania. Z kolei sublimacja odnosi się do bezpośredniej przemiany substancji z fazy stałej w gazową, omijając fazę ciekłą. Ten proces również nie dotyczy rozpuszczania, które wymaga obecności rozpuszczalnika, aby cząsteczki solutu mogły się rozproszyć. Roztwarzanie jest terminem często mylonym z rozpuszczaniem, jednak w kontekście chemicznym może odnosić się do różnych procesów, które zachodzą podczas mieszania substancji, a niekoniecznie do samego procesu rozpuszczania, gdzie zachodzi interakcja pomiędzy cząsteczkami solutu a cząsteczkami rozpuszczalnika. Typowe błędy myślowe w tej kwestii obejmują nieuzasadnione utożsamianie procesów fizycznych oraz brak zrozumienia mechanizmów, które za nimi stoją. Wiedza o tych różnicach jest kluczowa w naukach przyrodniczych, ponieważ może wpływać na interpretacje wyników eksperymentów oraz na projektowanie procesów przemysłowych związanych z rozpuszczaniem i jego zastosowaniami.

Pytanie 23

Na opakowaniu fenolu umieszcza się przedstawiony na rysunku znak ostrzegawczy, który oznacza, że jest to substancja

Ilustracja do pytania
A. utleniająca.
B. toksyczna.
C. wybuchowa.
D. drażniąca.
Odpowiedź 'toksyczna' jest poprawna, ponieważ znak ostrzegawczy przedstawiający czaszkę z kośćmi skrzyżowanymi informuje o substancji, która może być niebezpieczna dla zdrowia. Fenol, jako substancja chemiczna, wykazuje wysoką toksyczność, co może prowadzić do poważnych problemów zdrowotnych, w tym uszkodzenia narządów wewnętrznych oraz zagrażających życiu skutków po kontakcie z organizmem. Oznakowanie substancji chemicznych zgodnie z normami GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) jest kluczowe dla zapewnienia bezpieczeństwa w miejscach pracy, laboratorjach oraz w gospodarstwach domowych. Znak ten ma na celu ostrzeżenie użytkowników o konieczności zachowania szczególnej ostrożności, stosowania odpowiednich środków ochrony osobistej, takich jak rękawice czy maski, oraz przestrzegania zaleceń dotyczących przechowywania i używania fenolu. Zrozumienie tych informacji jest niezbędne dla każdego, kto ma do czynienia z takimi substancjami w codziennej pracy lub badaniach.

Pytanie 24

Jakie urządzenie wykorzystuje się do pobierania próbek gazów?

A. aspirator
B. czerpak
C. pojemnik
D. barometr
Aspirator jest urządzeniem zaprojektowanym do pobierania próbek gazów w sposób kontrolowany i skuteczny. Jego działanie opiera się na zasadzie podciśnienia, które umożliwia pobieranie gazów bez narażania ich na zanieczyszczenia czy straty. W praktyce, aspiratory są wykorzystywane w laboratoriach analitycznych, przemyśle chemicznym oraz w monitorowaniu jakości powietrza. Użycie aspiratora pozwala na precyzyjne pobieranie próbek z określonych lokalizacji, co jest kluczowe w analizach, takich jak badanie emisji z kominów, czy ocena stężenia substancji szkodliwych w atmosferze. Standardy, takie jak ISO 17025, podkreślają znaczenie urządzeń do pobierania próbek w kontekście wiarygodności wyników badań. Należy również pamiętać, że aspiratory są często stosowane w połączeniu z odpowiednimi filtrami, co dodatkowo zwiększa jakość pobieranych próbek. Takie podejście zapewnia integrację metod analitycznych z procedurami zapewnienia jakości.

Pytanie 25

Aby uzyskać roztwór 25 gramów CuSO4 w 50 gramach wody, konieczne jest podgrzanie mieszanki do temperatury w przybliżeniu

A. 30°C
B. 313 K
C. 340 K
D. 20°C
Odpowiedź 340 K jest poprawna, ponieważ w tej temperaturze CuSO4 rozpuszcza się efektywnie w wodzie. Rozpuszczalność wielu soli w wodzie zmienia się w zależności od temperatury, a dla siarczanu miedzi (II) jest to szczególnie istotne. W praktyce, aby osiągnąć zalecaną rozpuszczalność 25 g CuSO4 w 50 g wody, trzeba zapewnić odpowiednią energię cieplną, co pozwala cząsteczkom soli na przełamanie wiązań i ich rozpuszczenie. W kontekście laboratoryjnym, odpowiednia temperatura pozwala na uniknięcie nieefektywnego rozpuszczania i oszukiwania czasu pracy w badaniach analitycznych. W zastosowaniach przemysłowych, takich jak produkcja roztworów do procesów galwanicznych, kontrolowanie temperatury jest kluczowe, aby zapewnić jednorodność roztworu. Zgodnie z dobrą praktyką laboratoryjną, zawsze należy monitorować temperaturę, aby uzyskać optymalne wyniki. Ponadto, pamiętajmy, że temperatura ma wpływ na kinetykę reakcji chemicznych oraz na stabilność rozpuszczonych substancji.

Pytanie 26

Wodę do badań mikrobiologicznych powinno się pobierać do butelek

A. umytych wodorotlenkiem sodu
B. sterylnych
C. starannie wypłukanych, na przykład po niegazowanej wodzie mineralnej
D. zanurzonych wcześniej na 2-3 minuty w alkoholu etylowym
Pobieranie próbek wody do badań mikrobiologicznych powinno odbywać się wyłącznie w sterylnych butelkach, co ma kluczowe znaczenie dla uzyskania wiarygodnych wyników. Sterylność opakowania eliminuje ryzyko kontaminacji próbki przez mikroorganizmy z otoczenia. W praktyce, butelki do pobierania wody mikrobiologicznej są zazwyczaj produkowane z materiałów, które można wysterylizować, a ich zamknięcia są zaprojektowane tak, aby zapobiegać wszelkim kontaktom z zanieczyszczeniami. Ponadto, w przypadku badań mikrobiologicznych, takie wymagania są zgodne z normami, takimi jak ISO 5667, które określają procedury pobierania wody. Użycie sterylnych pojemników jest szczególnie istotne, gdyż mikroorganizmy mogą być obecne w różnych formach, a nawet niewielka ilość zanieczyszczeń może prowadzić do fałszywych wyników. Dlatego w laboratoriach oraz w trakcie inspekcji sanitarno-epidemiologicznych stosuje się ściśle określone procedury, aby zapewnić wysoką jakość i wiarygodność badań.

Pytanie 27

Średnia masa wody wypływająca z pipety o deklarowanej pojemności 25 cm3, w temperaturze 25°C wynosi 24,80 g. Korzystając z danych zamieszczonych w tabeli wskaż wartość poprawki kalibracyjnej dla tej pipety.

Masa wody zajmującej objętość 1 dm3 w zależności od temperatury pomiaru
Temperatura
°C
Masa wody
g
20997,17
21997,00
22996,80
23996,59
24996,38
25996,16
26995,93
27995,69
28995,45
29995,18
30994,92

A. 0,18 ml
B. 0,25 ml
C. 0,16 ml
D. 0,10 ml
Dobra robota! Odpowiedź 0,10 ml jest jak najbardziej na miejscu i świetnie pokazuje, jakie są zasady kalibracji pipet. Jak masz pipetę o pojemności 25 cm³, to różnice między tym, co teoretycznie powinno być, a tym, co naprawdę dostajesz, są mega ważne dla precyzyjnych pomiarów. W tym przypadku pipeta faktycznie wypuszcza 0,104 g wody mniej, co daje nam tę poprawkę kalibracyjną 0,10 ml. W labie, kiedy używasz pipet do dozowania różnych substancji, musisz to uwzględnić, żeby wyniki były dokładne. W każdym laboratorium analitycznym kalibracja to standard. Bo każda nawet mała różnica w objętości może zmienić stężenie roztworu, a potem to prowadzi do błędnych wniosków. Dlatego fajnie jest regularnie sprawdzać i kalibrować pipety, żeby mieć pewność, że wyniki są wiarygodne i można je powtarzać.

Pytanie 28

Z analizy wykresu wynika, że substancją o najniższej rozpuszczalności w wodzie w temperaturze 100°C jest

A. saletra potasowa
B. sól kamienna
C. cukier
D. siarczan(VI) miedzi(II)
Sól kamienna, czyli chlorek sodu (NaCl), to dość ciekawa substancja, bo ma niską rozpuszczalność w wodzie w porównaniu do takich rzeczy jak cukier czy siarczan(VI) miedzi(II). Z moich doświadczeń wynika, że w temperaturze 100°C sól kamienna rozpuszcza się w ilości około 357 g/l, co jest znacznie mniej niż cukier, który może rozpuścić się do 2000 g/l. Sól kamienna ma wiele zastosowań, od kuchni po przemysł chemiczny. Ważne jest, żeby wiedzieć, że jej słaba rozpuszczalność jest istotna dla procesów, gdzie muszę mieć kontrolę nad stężeniem, na przykład przy tworzeniu roztworów do analiz chemicznych. Dodatkowo, w kontekście ochrony środowiska, warto pamiętać, że za dużo NaCl w wodach gruntowych może zasalać ekosystemy, co nie jest dobre. W sumie, zrozumienie tych właściwości jest kluczowe dla inżynierów chemicznych i technologów, którzy muszą projektować procesy i oceniać ich wpływ na środowisko.

Pytanie 29

Technika kwartowania (ćwiartkowania) pozwala na redukcję masy próbki ogólnej

A. półciekłej
B. ciekłej
C. gazowej
D. stałej
Metoda kwartowania, czyli ćwiartkowanie, to sposób, który wykorzystuje się w laboratoriach, żeby zmniejszyć masę próbki stałej. Dzięki temu można ją analizować, nie tracąc przy tym jej reprezentatywności. Po prostu dzielimy próbkę na cztery równe części i wybieramy dwie przeciwległe, co daje nam mniejszą próbkę do pracy. To jest ważne zwłaszcza w chemii, gdzie zachowanie proporcji składników ma duże znaczenie. Na przykład, jeśli mamy dużą próbkę gleby i chcemy ją przeanalizować, kwartowanie pozwala nam na zmniejszenie jej do rozmiaru, który jest bardziej odpowiedni do badań, np. mikrobiologicznych czy chemicznych. Dla próbek stałych, takich jak minerały czy różne odpady, kwartowanie jest standardem, bo pozwala nam na uzyskanie reprezentatywnej próbki, a jednocześnie ogranicza straty materiału. Warto też pamiętać, że normy ISO w analizie próbek podkreślają znaczenie uzyskiwania prób reprezentatywnych, co jest kluczowe w wielu badaniach w laboratoriach i przemyśle.

Pytanie 30

Czy odpady laboratoryjne zawierające jony metali ciężkich powinny zostać poddane obróbce przed umieszczeniem ich w odpowiednio oznaczonej pojemności?

A. rozcieńczyć wodą destylowaną
B. zasypać wodorowęglanem sodu
C. przeprowadzić w trudnorozpuszczalne związki i odsączyć
D. zneutralizować kwasem solnym lub zasadą sodową
Odpady laboratoryjne zawierające jony metali ciężkich powinny być przekształcane w trudnorozpuszczalne związki, a następnie odsączane, aby zminimalizować ich toksyczność i ułatwić dalsze postępowanie z nimi. Proces ten zakłada dodawanie reagentów, które reagują z metalami ciężkimi, tworząc osady, które są łatwiejsze do usunięcia. Przykładem może być dodawanie siarczanu sodu, co prowadzi do wytrącenia osadów siarczkowych. Odsączanie pozwala na oddzielenie osadu od cieczy, co jest kluczowe w zarządzaniu odpadami. Praktyki takie są zgodne z normami ochrony środowiska, które nakładają obowiązek zapewnienia, że odpady nie zanieczyszczają wód gruntowych ani innych zasobów wodnych. Z tego powodu laboratoria powinny dysponować odpowiednimi urządzeniami filtracyjnymi oraz zapewniać szkolenia dla personelu w zakresie odpowiedniego postępowania z takimi odpadami. Warto również pamiętać, że metale ciężkie, jak ołów czy kadm, mogą być szkodliwe dla zdrowia ludzkiego, dlatego tak ważne jest ich właściwe zarządzanie.

Pytanie 31

Jakie substancje są potrzebne do uzyskania nierozpuszczalnego wodorotlenku cynku?

A. cynk i wodę
B. tlenek cynku i wodorotlenek sodu
C. chlorek cynku i wodorotlenek sodu
D. chlorek cynku i wodę
Chociaż chlorek cynku i woda mogą wydawać się logicznym połączeniem, reakcja ta nie prowadzi do wytworzenia nierozpuszczalnego wodorotlenku cynku. Chlorek cynku jest dobrze rozpuszczalny w wodzie, co oznacza, że nie dojdzie do wytrącenia Zn(OH)2, ponieważ wymagany jest dodatkowy reagent, który dostarczy jony hydroksylowe. Podobnie, reakcja samego cynku z wodą nie prowadzi do powstania wodorotlenku cynku. Cynk w reakcji z wodą tworzy cynkowy wodorotlenek dopiero w obecności wysokich temperatur lub w odpowiednich warunkach, co czyni ten proces niepraktycznym w standardowych warunkach laboratoryjnych. Z kolei tlenek cynku, będący azotkiem, z wodorotlenkiem sodu nie wyprodukuje wodorotlenku cynku, gdyż tlenek cynku nie wykazuje odpowiednich właściwości do tego typu reakcji. Pojawiają się tutaj typowe błędy myślowe związane z niepełnym zrozumieniem reakcji chemicznych oraz ich warunków, a także z myleniem etapów reakcji i produktów. Kluczowe jest zrozumienie, że do uzyskania nierozpuszczalnego osadu wymagane są odpowiednie reagenty oraz warunki reakcji, co podkreśla znaczenie wiedzy teoretycznej w praktycznych zastosowaniach chemicznych.

Pytanie 32

Laboratoryjna apteczka powinna zawierać m.in.

A. bandaż, watę higroskopijną, gips
B. gazę opatrunkową, wodę utlenioną, plaster
C. alkohol etylowy, perhydrol, płyn Lugola
D. adrenalinę, bandaż, wodę utlenioną
Poprawna odpowiedź to gazę opatrunkową, wodę utlenioną i plaster, ponieważ te elementy są kluczowe w przypadku udzielania pierwszej pomocy w laboratoriach. Gazę opatrunkową można wykorzystać do pokrywania ran, aby zabezpieczyć je przed zanieczyszczeniem oraz zminimalizować ryzyko infekcji. Woda utleniona jest skutecznym środkiem dezynfekującym, który może być użyty do oczyszczania ran, usuwania zanieczyszczeń oraz wspomagania procesu gojenia. Plaster z kolei jest niezbędny do zabezpieczenia drobnych ran i otarć, a także może służyć do ochrony miejsca urazu przed dalszym uszkodzeniem. Zgodnie z normami BHP oraz dobrymi praktykami w zakresie bezpieczeństwa pracy, apteczka laboratoryjna powinna być kompletnie zaopatrzona w te podstawowe materiały pierwszej pomocy, aby szybko reagować na sytuacje awaryjne i minimalizować ryzyko poważniejszych urazów. Warto również pamiętać o regularnym sprawdzaniu dat ważności tych produktów oraz ich dostępności w apteczce, aby zapewnić skuteczność udzielanej pomocy.

Pytanie 33

Aby wykonać czynności analityczne wskazane w ramce, należy użyć:

Otrzymaną do badań próbkę badanego roztworu rozcieńczyć wodą destylowaną w kolbie miarowej o pojemności 100 cm3 do kreski i dokładnie wymieszać. Następnie przenieść pipetą 10 cm3 tego roztworu do kolby stożkowej, dodać ok. 50 cm3 wody destylowanej.

A. kolby stożkowej, moździerza, lejka Shotta, naczynka wagowego.
B. kolby miarowej, tygla, pipety, naczynka wagowego.
C. zlewki, kolby ssawkowej, lejka Buchnera, cylindra miarowego.
D. kolby stożkowej, kolby miarowej, pipety, cylindra miarowego.
Odpowiedź wskazująca na użycie kolby stożkowej, kolby miarowej, pipety oraz cylindra miarowego jest poprawna, ponieważ każdy z tych przyrządów odgrywa kluczową rolę w procesie analitycznym. Kolba miarowa jest niezbędna do precyzyjnego rozcieńczania roztworów, co jest istotne w chemii analitycznej, gdzie dokładność stężeń ma fundamentalne znaczenie dla uzyskania wiarygodnych wyników. Pipeta, z kolei, pozwala na precyzyjne odmierzanie małych objętości roztworów, co jest kluczowe przy przygotowywaniu prób do analiz. Kolba stożkowa znajduje zastosowanie w mieszaniu reagentów oraz w prowadzeniu reakcji chemicznych, a cylinder miarowy umożliwia dokładne pomiary większych objętości cieczy. Użycie tych instrumentów jest zgodne z najlepszymi praktykami laboratoryjnymi i standardami dotyczącymi chemii analitycznej, co zapewnia rzetelność przeprowadzanych badań oraz powtarzalność eksperymentów.

Pytanie 34

Opis w ramce przedstawia sposób oczyszczania substancji poprzez

Próbke substancji stałej należy umieścić w kolbie kulistej, zaopatrzonej w chłodnicę zwrotną, dodać rozpuszczalnika - etanolu i delikatnie ogrzewać do wrzenia. Po lekkim ostudzeniu dodać do roztworu niewielką ilość węgla aktywnego, zagotować i przesączyć na gorąco. Przesącz pozostawić do ostygnięcia, a wydzielony osad odsączyć pod zmniejszonym ciśnieniem, przemyć niewielką ilością rozpuszczalnika, przenieść na szalkę, pozostawić do wyschnięcia, a następnie zważyć.

A. sublimację.
B. ekstrakcję.
C. krystalizację.
D. destylację.
Krystalizacja jest kluczowym procesem w chemii, który polega na separacji substancji w postaci czystych kryształów z roztworu. Opisany proces obejmuje rozpuszczenie substancji w odpowiednim rozpuszczalniku, co ma na celu uzyskanie jednorodnej cieczy. Następnie, poprzez ogrzewanie do wrzenia, zwiększa się rozpuszczalność substancji, co pozwala na rozpuszczenie większej ilości materiału. Po schłodzeniu roztworu, rozpuszczalność substancji maleje, co prowadzi do wykrystalizowania się czystych kryształów. W tym kontekście dodanie węgla aktywnego jest powszechną praktyką w celu eliminacji zanieczyszczeń, co zwiększa czystość końcowego produktu. Chłodnica zwrotna dodatkowo zabezpiecza przed utratą rozpuszczalnika, co jest istotne w kontekście zrównoważonego wykorzystania zasobów. Przykłady zastosowania krystalizacji obejmują przemysł farmaceutyczny do uzyskiwania czystych substancji czynnych, a także produkcję soli i innych związków chemicznych. Proces ten jest zgodny z dobrymi praktykami laboratoryjnymi, co czyni go niezastąpionym w wielu dziedzinach chemii i inżynierii chemicznej.

Pytanie 35

Jakie środki należy zastosować do gaszenia pożaru metali, takich jak magnez, sód czy potas?

A. gaśnicy śniegowej
B. wody
C. piasku
D. gaśnicy pianowej
Wybór niewłaściwych środków do gaszenia pożarów metali często wynika z błędnych przekonań na temat sposobów ich kontroli. Użycie gaśnicy śniegowej wydaje się być atrakcyjne, gdyż zmniejsza temperaturę, jednak nie jest skuteczne w przypadku reakcji chemicznych, jakie mogą wystąpić podczas pożaru metalu. Oprócz tego, niektóre metale, takie jak magnez, mogą reagować ze składnikami obecnymi w gaśnicy śniegowej, co prowadzi do niebezpiecznych efektów. Nawet woda, która w wielu sytuacjach jest podstawowym środkiem gaśniczym, w kontekście pożarów metali jest całkowicie niewłaściwa. Kontakt wody z metalami, takimi jak sód czy potas, nie tylko nasila ogień, ale może również prowadzić do eksplozji, ponieważ metal reaguje z wodą, tworząc łatwopalne gazy. Użycie gaśnicy pianowej jest również złym wyborem, ponieważ piany nie są w stanie stłumić ognia w przypadku materiałów reagujących z wodą. Te błędne decyzje często wynikają z braku świadomości o specyfikach pożarów metali i ich unikalnych właściwościach. Dlatego kluczowe jest, aby osoby zajmujące się bezpieczeństwem przeciwpożarowym były dobrze poinformowane o właściwych metodach gaszenia takich pożarów oraz posługiwały się odpowiednimi standardami, jak na przykład wytyczne NFPA 484, które dostarczają niezbędnych informacji na ten temat.

Pytanie 36

Jednym z sposobów oddzielania jednorodnych mieszanin jest

A. sedymentacja
B. destylacja
C. dekantacja
D. filtracja
Destylacja to naprawdę ważna metoda, jeśli chodzi o rozdzielanie mieszanin jednorodnych. Działa to tak, że różne składniki mają różne temperatury wrzenia. Fajnie sprawdza się to szczególnie w cieczy, gdzie te różnice są wyraźne. W praktyce, destylacja ma wiele zastosowań, zwłaszcza w przemyśle chemicznym, petrochemicznym i farmaceutycznym. Na przykład, podczas produkcji etanolu z fermentacji, destylacja pomaga oddzielić alkohol od wody i innych substancji. W branży chemicznej korzysta się z niej do oczyszczania rozpuszczalników, a w przemyśle naftowym do separacji różnych frakcji ropy naftowej. Metoda destylacji frakcyjnej jest super, bo pozwala skupić się na skutecznym rozdzielaniu skomplikowanych mieszanin na poszczególne składniki. To wszystko jest zgodne z normami przemysłowymi, które wymagają, żeby produkty końcowe były czyste i żeby proces był jak najbardziej efektywny.

Pytanie 37

Aby przygotować 250 cm3 0,2-molowego roztworu wodorotlenku sodu, należy odważyć

MNaOH = 40g / mol

A. 0,05 g stałego NaOH.
B. 2,00 g stałego NaOH.
C. 25,0 g stałego NaOH.
D. 2,50 g stałego NaOH.
Wybór błędnej odpowiedzi wynika z kilku powszechnych błędów w obliczaniach związanych z masami molowymi i stężeniami roztworów. Podejścia takie jak obliczenie masy na podstawie niewłaściwej liczby moli lub pomylenie jednostek objętościowych mogą prowadzić do niepoprawnych wyników. Na przykład, jeśli ktoś odważyłby 2,50 g NaOH, to byłoby to znacznie więcej niż wymagane 2 g. Użytkownik mógł nie zaświadczyć, że przy obliczeniach trzeba stosować odpowiednie wzory oraz przeliczenia, by uzyskać dokładne wyniki. W przypadku opcji 0,05 g również brakuje zrozumienia tematu, ponieważ to wartość zbyt mała w kontekście wymaganej ilości NaOH do przygotowania roztworu o stężeniu 0,2 mola. Stosowanie 25,0 g jest kolejnym przypadkiem, gdzie wyraźnie przekroczono potrzebną masę, co może prowadzić do niebezpiecznych reakcji chemicznych. Obliczanie masy substancji chemicznych wymaga staranności i precyzji, dlatego zawsze należy upewnić się, że wszystkie wartości są odpowiednio przeliczone i stosowane w praktyce. Zrozumienie różnicy pomiędzy molami, masą molową a stężeniem roztworu jest kluczem do poprawnego przygotowania chemikaliów w laboratoriach.

Pytanie 38

Jakie proporcje objętościowe powinny być zastosowane do zmieszania roztworu etanolu o stężeniu 30% (V/V) z roztworem o stężeniu 70% (V/V), aby uzyskać roztwór o stężeniu 50% (V/V)?

A. 1:1
B. 3:7
C. 1:2
D. 2:1
Aby zrobić roztwór o stężeniu 50% (V/V), trzeba połączyć roztwór etanolu 30% (V/V) z roztworem 70% (V/V) w równych częściach. Czyli, jeśli masz jednostkę objętości 30%, to dodajesz dokładnie taką samą jednostkę objętości 70%. W ten sposób końcowe stężenie etanolu wychodzi idealnie 50%, bo dobrze zbalansowaliśmy ilość etanolu z obu roztworów. Można to też zapisać matematycznie: (0.3V1 + 0.7V2) / (V1 + V2) = 0.5, gdzie V1 to objętość 30%, a V2 to objętość 70%. Takie obliczenia są na porządku dziennym w laboratoriach chemicznych i wszędzie tam, gdzie trzeba dokładnie wymieszać substancje. Na pewno widziałeś to w produkcji alkoholu, bo różne stężenia etanolu są tam używane, żeby uzyskać różne smaki. Zrozumienie tych zasad jest też ważne z perspektywy przepisów dotyczących sprzedaży alkoholu, które często opierają się na konkretnych stężeniach substancji aktywnych.

Pytanie 39

Jakie zestawienie sprzętu laboratoryjnego wykorzystuje się do filtracji osadów?

A. Zlewka, lejek, waga, bagietka
B. Zlewka, lejek, trójnóg, tygiel
C. Zlewka, waga, tryskawka, bagietka
D. Zlewka, lejek, statyw, bagietka
Wybór zestawu sprzętu laboratoryjnego do sączenia osadów jest kluczowy dla efektywności procesu filtracji. W przypadku poprawnej odpowiedzi, czyli zestawu składającego się ze zlewki, lejka, statywu i bagietki, każdy z tych elementów odgrywa istotną rolę. Zlewka służy do przechowywania cieczy, która ma być filtrowana, natomiast lejek ułatwia skierowanie tej cieczy do naczynia filtracyjnego, co zwiększa wydajność procesu. Statyw zapewnia stabilność i bezpieczeństwo podczas pracy z lejkiem, co jest niezwykle ważne, aby uniknąć rozlania cieczy. Bagietka natomiast umożliwia precyzyjne dozowanie cieczy, co jest istotne w przypadku pracy z substancjami chemicznymi. Przykładem zastosowania tego zestawu może być filtracja roztworów w chemii analitycznej, gdzie osady muszą być oddzielone od cieczy w celu dalszej analizy. W kontekście standardów laboratoryjnych, korzystanie z tego zestawu jest zgodne z dobrymi praktykami, które podkreślają znaczenie precyzyjnych i bezpiecznych metod pracy.

Pytanie 40

Aby oddzielić mieszankę etanolu i wody, konieczne jest przeprowadzenie procesu

A. destylacji
B. ekstrakcji
C. dekantacji
D. sączenia
Destylacja jest procesem fizycznym, który wykorzystuje różnice w temperaturach wrzenia składników mieszaniny do ich rozdzielenia. W przypadku etanolu i wody, etanol ma niższą temperaturę wrzenia (78,37 °C) w porównaniu do wody (100 °C). Podczas destylacji podgrzewamy mieszaninę, aż etanol zacznie parować, a następnie skraplamy pary, zbierając czysty etanol. Proces ten jest powszechnie stosowany w przemyśle chemicznym oraz w produkcji alkoholu, gdzie oczyszcza się etanol od niepożądanych substancji. Destylacja jest również kluczowym procesem w laboratoriach chemicznych, gdzie czystość substancji ma ogromne znaczenie. Warto zaznaczyć, że dobór odpowiednich sprzętów, takich jak kolumna destylacyjna, może znacząco wpłynąć na efektywność rozdzielania. W praktyce, destylacja jest uważana za jedną z najważniejszych metod separacji w chemii, szczególnie w kontekście tworzenia czystych reagentów.