Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 19 maja 2025 18:02
  • Data zakończenia: 19 maja 2025 18:07

Egzamin niezdany

Wynik: 6/40 punktów (15,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Wyłącznik, który chroni instalację elektryczną przed skutkami przeciążenia, to

A. różnicowoprądowy
B. nadprądowy
C. podnapięciowy
D. czasowy
Różnicowoprądowy wyłącznik jest elementem ochrony przed porażeniem elektrycznym, a nie przeciążeniem. Jego głównym zadaniem jest wykrywanie różnic w prądzie płynącym w przewodach fazowym i neutralnym, co może wskazywać na upływ prądu do ziemi. Zastosowanie tego typu wyłącznika jest kluczowe w miejscach, gdzie istnieje ryzyko kontaktu z wodą lub w przypadku urządzeń przenośnych, ale nie chroni on przed skutkami przeciążenia w instalacji elektrycznej, co może prowadzić do uszkodzenia przewodów. Wyłącznik czasowy nie ma zastosowania w kontekście przeciążenia, ponieważ jego funkcja polega na automatycznym włączaniu lub wyłączaniu obwodów po określonym czasie, co nie wpływa na ochronę przed prądem, który przekracza określoną wartość. Podobnie, wyłącznik podnapięciowy jest używany do ochrony przed spadkami napięcia, a nie przed przeciążeniem. Typowym błędem jest mylenie tych różnych rodzajów wyłączników, co może prowadzić do niewłaściwego doboru zabezpieczeń w instalacjach elektrycznych. Ważne jest zrozumienie, że każdy z tych elementów pełni inną funkcję, a ich zastosowanie wymaga znajomości specyfiki, norm i wymagań dotyczących zabezpieczeń elektrycznych.

Pytanie 2

Aby połączyć przewody systemu domofonowego w kostce połączeniowej, należy wykorzystać

A. pilnik
B. wiertarkę
C. wkrętak
D. młotek
Użycie wkrętaka do podłączenia przewodów w kostce podłączeniowej systemu domofonowego jest najlepszym wyborem, ponieważ wkrętak umożliwia precyzyjne i pewne dokręcenie śrub, co jest kluczowe dla zapewnienia trwałego i stabilnego połączenia. Dobrze zaciśnięte przewody w kostce minimalizują ryzyko przypadkowego rozłączenia i zwiększają bezpieczeństwo całego systemu. Na przykład, w przypadku domofonów, które mogą być narażone na działanie warunków atmosferycznych, solidne połączenie przewodów jest niezbędne do utrzymania prawidłowego funkcjonowania. W branży elektrycznej oraz w instalacjach niskonapięciowych stosowanie wkrętaka jest standardem, który zapewnia zgodność z normami, takimi jak PN-IEC 60364, które określają zasady prawidłowego podłączania elementów elektronicznych. Praktycznie rzecz biorąc, użycie wkrętaka odpowiedniego do typu śrub w kostce podłączeniowej zwiększa efektywność pracy oraz bezpieczeństwo instalacji.

Pytanie 3

Wybierz z podanych parametrów sygnałów, które poziomy sygnałów analogowych są wykorzystywane w systemach automatyki przemysłowej do transmisji danych?

A. 4 A ÷ 20 A
B. 4 mV ÷ 20 mV
C. 4 mA ÷ 20 mA
D. 4 V ÷ 20 V
Poziomy sygnałów 4 mA ÷ 20 mA są standardem w systemach automatyki przemysłowej, znanym jako sygnał prądowy. Jest to powszechnie stosowany zakres dla czujników i urządzeń pomiarowych, które komunikują się z systemami sterującymi. Wykorzystanie tego standardu jest zgodne z normą IEC 60381-1, która definiuje zasady dotyczące sygnałów analogowych w automatyce. Prąd 4 mA reprezentuje minimalny poziom sygnału, podczas gdy 20 mA to maksymalny poziom. Taki zakres daje możliwość wykrycia awarii w obwodzie, ponieważ sygnał opada poniżej 4 mA, co sygnalizuje problem z urządzeniem. Przykładowo, w systemach monitorowania temperatury, czujnik może wysyłać sygnał prądowy w tym zakresie do kontrolera, umożliwiając precyzyjne zarządzanie procesem. W zastosowaniach przemysłowych, takich jak automatyka procesowa, wykorzystanie sygnałów 4 mA ÷ 20 mA pozwala na efektywne przesyłanie informacji przy minimalnych zakłóceniach i długich odległościach, co czyni tę metodę niezawodną i efektywną.

Pytanie 4

Jaką jednostką określa się moc czynną?

A. var
B. V
C. VA
D. W
Jednostką mocy czynnej jest wat (W), który jest powszechnie stosowaną jednostką w elektrotechnice i energetyce. Moc czynna to ta część mocy, która jest rzeczywiście wykorzystana do wykonania pracy w obwodach elektrycznych, a jej wartość można obliczyć jako iloczyn napięcia, natężenia prądu oraz cosinusa kąta fazowego między nimi (P = U * I * cos(φ)). W praktyce oznacza to, że moc czynna odzwierciedla efektywność działania urządzeń elektrycznych, takich jak silniki, grzejniki czy oświetlenie. Wyższa moc czynna oznacza lepsze wykorzystanie energii elektrycznej. Przykładem jest silnik elektryczny, który może mieć moc podaną w watach – informuje to użytkownika o maksymalnej mocy, jaką może dostarczyć. Standardy takie jak IEC 60038 definiują wartości nominalne dla mocy w różnych zastosowaniach, co jest kluczowe w projektowaniu instalacji elektrycznych, zapewniając ich bezpieczeństwo i efektywność działania.

Pytanie 5

Jakie oznaczenie mają terminale w urządzeniach systemów alarmowych, które służą do podłączenia obwodu sabotażowego?

A. CLK
B. TMP
C. COM
D. KPD
Oznaczenie TMP (tamper) odnosi się do zacisków, które są wykorzystywane do podłączenia obwodu sabotażowego w systemach alarmowych. Obwód sabotażowy jest kluczowym elementem zabezpieczeń, ponieważ jego zadaniem jest monitorowanie integralności samego urządzenia. Gdy dojdzie do manipulacji, np. otwarcia obudowy czujnika lub innego urządzenia, obwód sabotażowy zostaje przerwany, co aktywuje alarm. Zastosowanie obwodu TMP jest powszechną praktyką w systemach zgodnych z normami EN 50131, które definiują wymagania dla systemów alarmowych. Przykładowo, w instalacjach alarmowych używanych w obiektach komercyjnych czy przemysłowych, zastosowanie zacisków TMP zapewnia wysoki poziom ochrony przed nieautoryzowanym dostępem. Właściwe podłączenie tych zacisków przyczynia się do zwiększenia skuteczności całego systemu alarmowego, co jest kluczowe w kontekście ochrony mienia.

Pytanie 6

Jak nazywa się jednostka ładunku elektrycznego?

A. herc
B. farad
C. kelwin
D. kulomb
Kulomb (C) jest jednostką ładunku elektrycznego w układzie SI, który jest powszechnie stosowany w naukach przyrodniczych oraz inżynierii elektrycznej. Definiuje się go poprzez ilość ładunku, która przepływa przez przewodnik, gdy prąd elektryczny o natężeniu jednego ampera płynie przez ten przewodnik przez jedną sekundę. Jest kluczowy w kontekście prawa Coulomba, które opisuje siłę elektrostatyczną między naładowanymi ciałami. Zrozumienie kulomba ma praktyczne zastosowanie w projektowaniu układów elektronicznych, gdzie precyzyjne obliczenie ładunku jest niezbędne do zapewnienia efektywności działania komponentów takich jak kondensatory, które przechowują ładunek elektryczny. W praktyce, w elektronice, często korzysta się z kulombów do określania pojemności kondensatorów, co jest kluczowe przy projektowaniu układów filtrujących oraz w systemach zasilania. Warto również zaznaczyć, że kulomb jest jednostką stosunkowo dużą, a w wielu zastosowaniach inżynieryjnych wykorzystuje się jego podwielkości, takie jak mikro-kulomb (μC) czy nano-kulomb (nC).

Pytanie 7

Jednym z komponentów urządzenia elektronicznego jest rezystor o wartości rezystancji 1 kΩ i mocy 1 W. Jeśli brakuje elementu o tych parametrach, można go zastąpić rezystorem

A. o wyższej rezystancji i tej samej mocy
B. o identycznej rezystancji i wyższej mocy
C. o identycznej rezystancji i niższej mocy
D. o niższej rezystancji i tej samej mocy
Wybór rezystora o mniejszej rezystancji i tej samej mocy jest nieprawidłowy, ponieważ zmiana rezystancji w obwodzie wprowadza inne parametry do działania układu. Zmniejszenie rezystancji spowoduje wzrost prądu zgodnie z prawem Ohma, co może prowadzić do przeciążenia pozostałych elementów obwodu, a także spalić nowy rezystor, jeśli nie jest on odpowiednio dobrany do wymagań. Wybór rezystora o takiej samej rezystancji, ale mniejszej mocy, również jest błędny, ponieważ rezystor o mniejszej mocy nie będzie w stanie pracować w warunkach, które byłyby akceptowane dla oryginalnego elementu. Może to prowadzić do przegrzania i uszkodzenia rezystora. Wybór rezystora o większej rezystancji i tej samej mocy jest także niewłaściwy, gdyż zwiększenie rezystancji zmieni całkowity prąd w obwodzie, co z kolei wpłynie na działanie pozostałych komponentów. Takie podejście często wynika z niepełnego zrozumienia zasad działania obwodów elektrycznych oraz mechanizmów odpowiedzialnych za prąd i napięcie. Dlatego ważne jest, aby przy wyborze komponentów zawsze kierować się nie tylko ich rezystancją, ale także mocą, aby zapewnić pełną kompatybilność w obwodzie.

Pytanie 8

Który z podanych rezultatów pomiarów jest poprawny dla sygnałów telewizyjnych z nadajników naziemnych?

A. Poziom 29 dBµV, MER 14 dB
B. Poziom 55 dBµV, MER 24 dB
C. Poziom 65 dBµV, MER 12 dB
D. Poziom 25 dBµV, MER 29 dB
Wartości poziomu sygnału i MER są kluczowymi wskaźnikami dla oceny jakości sygnału telewizyjnego. W przypadku poziomu 65 dBµV oraz MER 12 dB, pomimo że poziom sygnału jest na wyższym poziomie, MER jest zbyt niski, co sugeruje znaczne zakłócenia w sygnale. Wysoki poziom sygnału nie zawsze przekłada się na dobrą jakość odbioru. W rzeczywistości, zbyt wysoki poziom sygnału w połączeniu z niskim MER może prowadzić do przesterowania odbiornika, co skutkuje niestabilnym obrazem lub jego całkowitym brakiem. Z kolei poziom 25 dBµV z MER 29 dB wydaje się być dobry pod względem jakości, jednak poziom sygnału jest zdecydowanie za niski dla stabilnego odbioru telewizji naziemnej. Odbiorniki telewizyjne wymagają minimalnego poziomu sygnału, aby mogły prawidłowo przetwarzać dane. Podobnie, poziom 29 dBµV z MER 14 dB jest również nieodpowiedni. Niski MER przy jednocześnie niskim poziomie sygnału wskazuje na poważne problemy z zakłóceniami, co również prowadzi do nieprzewidywalnych efektów w odbiorze. W kontekście praktycznym, dla zapewnienia odpowiedniej jakości sygnału, istotne jest, aby zarówno poziom sygnału, jak i MER były zgodne z najlepszymi praktykami branżowymi. Użytkownicy często mylą te wskaźniki, sądząc, że wyższy poziom sygnału zawsze oznacza lepszą jakość, co w rzeczywistości nie jest prawdą. Z tego względu, kluczowe jest zrozumienie synergii pomiędzy poziomem sygnału a jakością odbioru oraz dostosowanie instalacji do tych wymagań.

Pytanie 9

Jakość sygnału z anten satelitarnych w dużym stopniu zależy od warunków pogodowych. Zjawisko pikselizacji lub zanik obrazu jest szczególnie zauważalne w antenach o średnicy

A. 100 cm
B. 60 cm
C. 110 cm
D. 85 cm
Wybór odpowiedzi 100 cm, 85 cm lub 110 cm na pytanie o wpływ średnicy anteny satelitarnej na jakość odbioru w trudnych warunkach atmosferycznych jest błędny, ponieważ koncepcje te ignorują kluczowy aspekt, jakim jest wrażliwość anteny na sygnał. Anteny o większej średnicy, mimo że mogą poprawić odbiór sygnału w stabilnych warunkach, nie zawsze są odpowiednie w trudnych warunkach atmosferycznych. Efekt pikselizacji, który jest istotnym zagadnieniem w telekomunikacji satelitarnej, występuje wtedy, gdy sygnał jest zakłócany przez warunki atmosferyczne, co jest szczególnie widoczne w mniejszych antenach, jak te o średnicy 60 cm. Wybór większej anteny niekoniecznie rozwiązuje problem odbioru w trudnych warunkach, ponieważ nie uwzględnia się, że mniejsza średnica anteny lepiej obrazuje skutki zakłóceń. Użytkownicy często mylą pojęcia związane z wielkością anteny i jakością odbioru, co prowadzi do błędnych wniosków. Istotne jest, aby zrozumieć, że w praktyce, w zależności od lokalizacji i warunków atmosferycznych, mała antena może lepiej określać zmiany w jakości sygnału, co jest kluczowe dla zapewnienia satysfakcjonującego odbioru. Dlatego ważne jest, aby przy planowaniu instalacji anteny sugerować jej średnicę w kontekście lokalnych warunków atmosferycznych oraz przewidywanych czynników zakłócających.

Pytanie 10

Który z komponentów elektronicznych wymaga właściwej polaryzacji podczas instalacji na płytce drukowanej?

A. Rezystor węglowy
B. Bezpiecznik topikowy
C. Stabilizator scalony
D. Kondensator ceramiczny
Stabilizator scalony to element elektroniczny, który wymaga zachowania odpowiedniej polaryzacji podczas montażu na płytce obwodu drukowanego. Stabilizatory scalone są projektowane do pracy z określoną polaryzacją napięcia zasilającego, co oznacza, że ich piny zasilające mają przypisane konkretne funkcje, takie jak wejście, wyjście oraz masa. Niewłaściwe podłączenie stabilizatora może prowadzić do jego uszkodzenia lub niewłaściwego działania. Przykładem zastosowania stabilizatora scalonego jest zasilanie układów logicznych, gdzie stabilne napięcie jest kluczowe dla prawidłowego działania. W praktyce, dla zapewnienia poprawnej polaryzacji, projektanci obwodów umieszczają na płytkach oznaczenia, które wskazują, jak należy podłączyć ten element, a także stosują odpowiednie procedury testowania po montażu. Standardy branżowe, takie jak IPC-A-610, podkreślają znaczenie odpowiedniego montażu komponentów elektronicznych, w tym przestrzegania zasad dotyczących polaryzacji, co jest kluczowe dla niezawodności i trwałości finalnych produktów elektronicznych.

Pytanie 11

Jakie są właściwe kroki do wykonania podczas wymiany uszkodzonej kamery monitoringu połączonej z rejestratorem wideo?

A. Odłączenie zasilania od kamery, demontaż kamery, odłączenie przewodu sygnałowego od uszkodzonej kamery i podłączenie do nowego urządzenia, zamontowanie kamery, podłączenie zasilania do kamery
B. Odłączenie zasilania od kamery, odłączenie przewodu sygnałowego od kamery, zdemontowanie uszkodzonej kamery i zamocowanie nowej, podłączenie przewodu sygnałowego do kamery, podłączenie zasilania do kamery
C. Odłączenie zasilania od rejestratora, odłączenie przewodu sygnałowego od kamery, zdemontowanie uszkodzonej kamery i zamontowanie nowej, podłączenie przewodu sygnałowego do kamery, podłączenie zasilania do rejestratora
D. Odłączenie przewodu sygnałowego od kamery, odłączenie zasilania od kamery, zdemontowanie uszkodzonej kamery i zamontowanie nowej, podłączenie zasilania do kamery, podłączenie przewodu sygnałowego do kamery

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa kolejność czynności przy wymianie kamery monitoringu zaczyna się od odłączenia zasilania od kamery, co jest kluczowe dla zapewnienia bezpieczeństwa podczas pracy z urządzeniem. Następnie należy odłączyć przewód sygnałowy, aby uniknąć uszkodzenia gniazd lub kabli. Kolejnym krokiem jest demontaż uszkodzonej kamery i montaż nowej, co należy wykonać z zachowaniem ostrożności, aby nie uszkodzić uchwytów czy innych elementów konstrukcyjnych. Po zamontowaniu nowej kamery, podłączenie przewodu sygnałowego powinno być wykonane z uwagą na właściwe oznaczenia, aby zapewnić prawidłowy przesył danych. Na końcu podłączamy zasilanie do kamery. Taka procedura nie tylko spełnia zasady BHP, ale także jest zgodna z zaleceniami producentów sprzętu, co przekłada się na długotrwałe i niezawodne działanie systemu monitoringu. W praktyce, przestrzeganie tej kolejności minimalizuje ryzyko uszkodzenia sprzętu oraz zapewnia, że nowa kamera będzie działać od razu po zakończeniu instalacji.

Pytanie 12

Aby podłączyć czujkę kontaktronową w trybie NC do systemu alarmowego, należy użyć przewodu o co najmniej

A. dwużyłowym bez rezystorów
B. czteroparowym UTP z dwoma rezystorami
C. sześciożyłowym z dwoma rezystorami
D. czterożyłowym z jednym rezystorem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dwużyłowego bez rezystorów jest poprawna w kontekście podłączenia czujki kontaktronowej do systemu alarmowego w konfiguracji NC (normalnie zamkniętej). Czujki kontaktronowe działają na zasadzie zamykania obwodu, gdy magnes zbliża się do czujnika, co aktywuje alarm. W tej konfiguracji nie jest wymagane stosowanie rezystorów, ponieważ czujki te mogą być bezpośrednio podłączone do centrali alarmowej. Zastosowanie dwużyłowego przewodu jest wystarczające do przesyłania sygnału z czujki do systemu, co czyni instalację prostszą i bardziej ekonomiczną. W praktyce, wykorzystanie dwużyłowego przewodu minimalizuje koszty materiałowe, a również czas potrzebny na instalację. Warto również pamiętać o zgodności z normami instalacyjnymi, które zalecają stosowanie odpowiednich przewodów w zależności od zastosowania, co w tym przypadku potwierdza wybór dwużyłowego przewodu bez rezystorów jako najodpowiedniejszego rozwiązania. Właściwe połączenie jest kluczowe dla prawidłowego funkcjonowania systemu alarmowego, a nieprawidłowe podłączenia mogą prowadzić do fałszywych alarmów lub błędów w działaniu systemu.

Pytanie 13

Jaki jest zakres pomiarowy watomierza, jeśli jego zakres prądowy wynosi 2 A, a zakres napięciowy to 200 V?

A. 800 W
B. 100 W
C. 400 W
D. 200 W

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wiesz, żeby obliczyć zakres pomiarowy watomierza, trzeba skorzystać z wzoru na moc elektryczną. Mamy tutaj proste równanie: P = U * I. W tym przypadku to wygląda tak: prąd wynosi 2 A, a napięcie to 200 V. Jak to podstawisz do wzoru, wyjdzie ci P = 200 V * 2 A, co daje 400 W. To znaczy, że maksymalna moc, którą ten watomierz może zmierzyć, to 400 W – to pasuje do jego specyfikacji. W praktyce, jak będziesz mógł mierzyć różne urządzenia, ważne jest, żeby wiedzieć, jaki jest maksymalny zakres pomiarowy, bo inaczej ryzykujesz uszkodzenie urządzenia i błędne odczyty. Takie pomiary są przydatne w wielu sytuacjach – od monitorowania zużycia energii w domu po sprawdzanie wydajności w przemyśle. Zrozumienie zakresu pomiarowego jest kluczowe, bo pozwala inżynierom i technikom na właściwy dobór sprzętu do konkretnych zadań.

Pytanie 14

Który przewód powinien być użyty do połączenia z siecią elektryczną transformatora znajdującego się w metalowej obudowie systemu alarmowego?

A. YTDY 4 x 0,75 mm2
B. YDY 2 x 1,5 mm2
C. YTDY 2 x 0,75 mm2
D. YDY 3 x 1,5 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź YDY 3 x 1,5 mm2 jest poprawna, ponieważ przewód ten cechuje się odpowiednią konstrukcją i parametrami technicznymi, które idealnie nadają się do podłączenia transformatora w metalowej obudowie centralki alarmowej. Przewód YDY jest przewodem o podwyższonej odporności na działanie czynników zewnętrznych oraz na uszkodzenia mechaniczne, co jest kluczowe w zastosowaniach związanych z systemami alarmowymi. Posiada trzy żyły o przekroju 1,5 mm2, co zapewnia dostateczną wydajność prądową oraz minimalizuje straty energii. W praktyce, zastosowanie przewodu YDY 3 x 1,5 mm2 jest zgodne z wytycznymi norm PN-IEC 60364, które regulują instalacje elektryczne, a także z zasadami dotyczącymi ochrony przeciwporażeniowej. Przewód ten pozwala na bezpieczne i efektywne połączenie transformatora z siecią energetyczną, co jest kluczowe dla prawidłowego działania systemu alarmowego.

Pytanie 15

Badanie złącza p-n w tranzystorze bipolarnym można przeprowadzić przy użyciu

A. watomierza
B. amperomierza
C. omomierza
D. woltomierza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca omomierza jest jak najbardziej trafna. To narzędzie służy do pomiaru oporu elektrycznego, co jest mega ważne przy badaniu złącza p-n w tranzystorze bipolarnym. Złącze p-n działa jak dioda, która w zasadzie jest przewodnikiem, gdy prąd płynie w jedną stronę, a w drugą - staje się opornikiem. Kiedy używamy omomierza, możemy sprawdzić, czy to złącze działa tak jak powinno, bo mierzymy opór w obu stanach. Jak tranzystor się uszkodzi, omomierz pokaże niską oporność nawet w stanie zaporowym, co oznacza, że coś jest nie tak. W elektronice omomierz to kluczowe narzędzie, zwłaszcza przy diagnozowaniu problemów w obwodach i produkcji komponentów elektronicznych. Każdy tranzystor musi być testowany, żeby był zgodny z normami jakości. To pokazuje, jak ważny jest omomierz przy weryfikacji złączy p-n.

Pytanie 16

Które z działań nie jest konieczne podczas konserwacji bramy przesuwnej?

A. Ponowne programowanie pilotów zdalnego sterowania
B. Smarowanie elementów ruchomych napędu
C. Sprawdzenie ustawień krańcowych bramy
D. Weryfikacja działania zabezpieczeń mechanicznych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Ponowne programowanie pilotów zdalnego sterowania" jest poprawna, ponieważ nie jest to czynność niezbędna do codziennej konserwacji bramy przesuwnej. Regularna konserwacja powinna skupiać się na zapewnieniu prawidłowego działania mechanizmów bramy oraz jej bezpieczeństwa. Sprawdzanie działania zabezpieczeń mechanicznych jest kluczowe, aby uniknąć wypadków i uszkodzeń. Przesmarowanie części ruchomych napędu zapewnia płynność ruchu oraz minimalizuje zużycie elementów, co może wydłużyć ich żywotność. Sprawdzenie położeń krańcowych bramy jest również istotne, ponieważ niewłaściwe ustawienie tych położeń może prowadzić do uszkodzenia bramy oraz systemu napędowego. Warto zaznaczyć, że programowanie pilotów zdalnego sterowania powinno być przeprowadzane tylko w przypadku, gdy zmienia się ich ustawienie lub dodawane są nowe urządzenia. Dlatego nie jest to czynność rutynowa związana z konserwacją bramy.

Pytanie 17

Zanim rozpoczniesz konserwację jednostki centralnej komputera stacjonarnego, co należy wykonać?

A. odłączyć przewód zasilający
B. wymontować dysk twardy
C. wymontować pamięci RAM
D. uziemić metalowe elementy obudowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odłączenie przewodu zasilającego przed rozpoczęciem konserwacji jednostki centralnej komputera stacjonarnego to naprawdę ważna sprawa. Dzięki temu zarówno sprzęt, jak i osoba, która to robi, są w większym bezpieczeństwie. Przewód zasilający daje prąd do jednostki, więc jego odpięcie zmniejsza ryzyko porażenia prądem i oszczędza podzespoły przed uszkodzeniami, których można uniknąć. W sumie, wielu pasjonatów napraw komputerów stosuje tę zasadę jak mantra. W moim doświadczeniu zawsze lepiej jest być ostrożnym. Przydaje się też położenie maty antystatycznej, żeby nie narobić bałaganu z ładunkami elektrostatycznymi. A w sytuacjach, kiedy pracujemy na serwerach czy innych bardziej skomplikowanych komputerach, pamiętajmy, że czasem trzeba użyć wyłącznika zasilania. Lepiej dmuchać na zimne, szczególnie kiedy chodzi o drogie komponenty.

Pytanie 18

W regulatorze PID podwojono stałą czasową Ti (czas całkowania), co skutkuje

A. zmniejszeniem stabilności układu
B. wzrostem amplitudy oscylacji
C. wydłużeniem czasu regulacji
D. brakiem zmian w czasie regulacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwiększenie stałej czasowej Ti, która odpowiada za czas całkowania w regulatorze PID, bezpośrednio wpływa na wydłużenie czasu regulacji. Stała Ti jest kluczowym parametrem, który określa, jak szybko regulator będzie integrował błąd w systemie. Kiedy Ti jest większe, to regulator będzie wolniej reagował na zmiany w błędzie, co prowadzi do dłuższego czasu odpowiedzi na zakłócenia. W praktyce oznacza to, że system będzie potrzebował więcej czasu na osiągnięcie zadanego poziomu, co jest szczególnie istotne w aplikacjach wymagających precyzyjnej kontroli, takich jak automatyka przemysłowa czy systemy HVAC. Wartości Ti powinny być dostosowywane zgodnie z wymaganiami procesu, a ich nadmierne zwiększenie może prowadzić do opóźnień w reakcji systemu, co jest niekorzystne. W kontekście projektowania systemów automatyki, należy stosować metody dostrajania parametrów PID, takie jak metoda Zieglera-Nicholsa, aby uzyskać optymalne wartości Ti, co pozwoli na efektywniejszą regulację.

Pytanie 19

Jak należy przeprowadzać kontrolę układów scalonych w uszkodzonym telewizorze?

A. porównując napięcia oraz oscylogramy na poszczególnych wyprowadzeniach z informacjami zawartymi w instrukcji serwisowej przy załączonym telewizorze
B. poddając je sztucznemu podgrzaniu i obserwując obraz na ekranie
C. poddając je sztucznemu schłodzeniu i obserwując obraz na ekranie
D. porównując napięcia oraz oscylogramy na poszczególnych wyprowadzeniach z informacjami zawartymi w instrukcji serwisowej przy wyłączonym telewizorze

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Właściwe sprawdzanie układów scalonych w uszkodzonym odbiorniku telewizyjnym polega na porównaniu napięć oraz oscylogramów na poszczególnych wyprowadzeniach z danymi zawartymi w instrukcji serwisowej przy załączonym odbiorniku. Taki proces diagnostyki pozwala na dokładną ocenę pracy układów scalonych w ich normalnych warunkach operacyjnych. Włączony odbiornik umożliwia obserwację działania układu w czasie rzeczywistym, co jest kluczowe dla identyfikacji potencjalnych usterek. Pomiar napięć i analiza oscylogramów dostarczają informacji o tym, czy sygnały są poprawne, a także pozwalają na identyfikację uszkodzeń, które mogą nie być widoczne gołym okiem. Dobre praktyki serwisowe wymagają posiadania instrukcji serwisowej, która zawiera wartości referencyjne, co daje technikowi możliwość szybkiej i efektywnej diagnozy. Przykładowo, w przypadku stwierdzenia nietypowych napięć na wyprowadzeniach, technik może podjąć decyzję o wymianie układu scalonego, co jest bardziej efektywne, niż bazowanie na obserwacji wizualnej.

Pytanie 20

Co należy zrobić jako pierwsze, gdy u pacjenta występuje zatrzymanie akcji serca oraz brak oddechu?

A. podać leki
B. sprawdzić drożność dróg oddechowych
C. wykonać sztuczne oddychanie oraz masaż serca
D. umożliwić położenie na boku

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W sytuacji zatrzymania akcji serca oraz braku oddechu najważniejsze jest, aby w pierwszej kolejności sprawdzić drożność dróg oddechowych. Bez zapewnienia drożności dróg oddechowych, nie będzie możliwe skuteczne przeprowadzenie wentylacji ani masażu serca, ponieważ niewłaściwie ukierunkowane powietrze nie dotrze do płuc. W praktyce, podczas udzielania pierwszej pomocy, należy niezwłocznie unikać wszelkich przeszkód, które mogą blokować drogi oddechowe, takich jak język, wymioty czy inne ciała obce. W standardach resuscytacji, takich jak wytyczne American Heart Association (AHA), kluczowym krokiem jest ocena i otwarcie dróg oddechowych, co powinno być zrealizowane poprzez zastosowanie manewru uniesienia podbródka lub przechylenia głowy do tyłu. Przykładem zastosowania tej zasady jest sytuacja, w której ratownik wykonuje te czynności przed przystąpieniem do udzielania sztucznego oddychania, co może znacząco zwiększyć szanse na przeżycie osoby poszkodowanej.

Pytanie 21

Aby określić charakterystykę diody prostowniczej, konieczne jest użycie zasilacza, amperomierza oraz

A. oscyloskopu
B. woltomierza
C. generatora
D. amperometru

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby wyznaczyć charakterystykę diody prostowniczej, niezbędne jest mierzenie napięcia oraz prądu, które są kluczowymi parametrami do określenia jej właściwości. Woltomierz służy do pomiaru napięcia na diodzie, natomiast amperomierz do pomiaru prądu przepływającego przez nią. Te dwa pomiary są niezbędne do skonstruowania charakterystyki prądowo-napięciowej (I-V), która obrazowo pokazuje, jak dioda reaguje na różne wartości napięcia i prądu. Zrozumienie tej charakterystyki jest istotne w zastosowaniach inżynieryjnych, ponieważ pozwala na dobór odpowiednich komponentów w obwodach elektronicznych, takich jak zasilacze czy układy prostownicze. W praktyce, dobry woltomierz powinien mieć odpowiednią klasę dokładności, aby zapewnić precyzyjne pomiary, co jest zgodne z najlepszymi praktykami w branży elektronicznej, gdzie jakość i dokładność pomiarów są kluczowe dla prawidłowego działania urządzeń.

Pytanie 22

Programowanie mikrokontrolera bez konieczności jego wylutowania z obwodu jest realizowane za pomocą metody

A. USB
B. RS 485
C. ISP
D. RS 238

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Programowanie mikrokontrolera bez jego wylutowywania z układu jest możliwe dzięki technice ISP, co oznacza In-System Programming. Ta metoda pozwala na programowanie mikrokontrolera bezpośrednio na płytce PCB, co znacząco ułatwia proces rozwoju i testowania projektów elektronicznych. ISP umożliwia ładowanie oprogramowania, a także aktualizację już istniejącego, co jest nieocenione podczas iteracyjnego procesu projektowania. Dzięki temu inżynierowie mogą szybko wprowadzać zmiany w kodzie, testować je w czasie rzeczywistym i minimalizować ryzyko uszkodzenia mikrokontrolera, które mogłoby wystąpić przy wylutowywaniu. W praktyce, technika ISP jest stosunkowo powszechnie wykorzystywana w aplikacjach opartych na mikrokontrolerach AVR, PIC oraz ARM, gdzie dostęp do pinów programujących jest bezpośrednio zrealizowany na złączach. Zastosowanie ISP jest zgodne z dobrymi praktykami inżynieryjnymi w zakresie testowania i prototypowania, co czyni tę metodę kluczowym narzędziem w aspektach projektowania i rozwoju elektroniki.

Pytanie 23

Instrukcja CLR P1.7 wskazuje na

A. konfigurację linii 7 w porcie P1
B. wymazanie komórki o adresie 1.7
C. zerowanie linii 7 w porcie P1
D. wczytanie komórki znajdującej się pod adresem 1.7

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rozkaz CLR P1.7 oznacza zerowanie linii 7 w porcie P1, co jest kluczowe w kontekście programowania mikrokontrolerów, szczególnie w architekturze MCS-51. W systemach mikroprocesorowych porty I/O, takie jak P1, są używane do komunikacji z zewnętrznymi urządzeniami. Komenda CLR, czyli 'Clear', jest stosowana do ustawienia konkretnego bitu w rejestrze portu na stan niski (0). Zerowanie linii 7 w porcie P1 może mieć istotne znaczenie w aplikacjach, gdzie ta linia steruje zewnętrznym urządzeniem, takim jak dioda LED, przekaźnik czy inny element elektroniczny. Przykładowo, aby wyłączyć diodę LED podłączoną do linii 7, należy wykonać tę komendę, co rezultuje w uzyskaniu pożądanego efektu w aplikacji. Zrozumienie działania portów I/O oraz umiejętność manipulowania stanami bitów w rejestrach jest fundamentem w inżynierii oprogramowania dla systemów wbudowanych, co jest zgodne z zasadami najlepszych praktyk w branży.

Pytanie 24

Utrzymanie w dobrym stanie elementów chłodzących w zasilaczach sprzętu elektronicznego polega na

A. pomalowaniu ich lakierem elektroprzewodzącym
B. oczyszczeniu ich za pomocą sprężonego powietrza
C. zanurzeniu ich w wodnym roztworze detergentu
D. przetarciu ich drobnym papierem ściernym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca oczyszczenia elementów chłodzących w zasilaczach za pomocą sprężonego powietrza jest poprawna, ponieważ to podejście jest zgodne z najlepszymi praktykami w zakresie konserwacji elektroniki. Elementy chłodzące, takie jak radiatory, mogą zbierać kurz i inne zanieczyszczenia, które mogą negatywnie wpływać na efektywność chłodzenia. Użycie sprężonego powietrza pozwala na skuteczne usunięcie tych zanieczyszczeń bez ryzyka uszkodzenia delikatnych komponentów. Sprężone powietrze dostarcza energię kinetyczną, która pozwala na wypchnięcie cząsteczek brudu z trudno dostępnych miejsc, co jest kluczowe dla zachowania optymalnych parametrów pracy urządzenia. W praktyce, regularne stosowanie sprężonego powietrza w konserwacji zasilaczy i innych urządzeń elektronicznych jest zalecane co kilka miesięcy, a w warunkach intensywnego użytkowania może być konieczne nawet częściej. Tego rodzaju działania są zgodne z wytycznymi organizacji zajmujących się bezpieczeństwem i jakością elektroniki, co podkreśla ich znaczenie w dbałości o sprzęt.

Pytanie 25

Czujnik kontaktronowy, często wykorzystywany w systemach alarmowych, zmienia swój stan pod wpływem

A. pola elektrycznego
B. zmiany natężenia dźwięku
C. zmiany temperatury
D. pola magnetycznego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik kontaktronowy działa na zasadzie detekcji pola magnetycznego. W jego wnętrzu znajdują się dwa metalowe styki, które są zamknięte w hermetycznej obudowie. Gdy w pobliżu czujnika pojawia się pole magnetyczne, styki te zbliżają się do siebie, co skutkuje zmianą stanu czujnika z otwartego na zamknięty. To zjawisko jest wykorzystywane w systemach sygnalizacji włamania oraz w różnych zastosowaniach automatyki budynkowej. Na przykład, w systemach alarmowych, czujniki kontaktronowe mogą być umieszczane w drzwiach i oknach, by informować o ich otwarciu. Dobrą praktyką jest umieszczanie ich w miejscach, gdzie mogą być łatwo zintegrowane z centralą alarmową, co zwiększa bezpieczeństwo obiektu. Warto również zauważyć, że kontaktrony są preferowane w sytuacjach, gdzie wymagana jest wysoka niezawodność oraz estetyka, ponieważ ich działanie jest ciche, a sama konstrukcja jest minimalistyczna.

Pytanie 26

Aby zlokalizować metalowy obiekt w systemie automatyki przemysłowej, najbardziej odpowiednim rozwiązaniem będzie czujnik

A. optyczny
B. temperatury
C. pojemnościowy
D. indukcyjny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik indukcyjny jest najbardziej odpowiednim rozwiązaniem do wykrywania metalowych przedmiotów w zastosowaniach automatyki przemysłowej. Działa na zasadzie generowania pola elektromagnetycznego, które zmienia się w obecności obiektu metalowego. Kiedy metalowy przedmiot wchodzi w zasięg pola, zmienia się jego wartości, co pozwala czujnikowi na detekcję obiektu. Jest to szczególnie użyteczne w zautomatyzowanych liniach produkcyjnych, gdzie precyzyjne wykrywanie elementów metalowych jest kluczowe dla zapewnienia bezpieczeństwa i efektywności operacyjnej. Przykładowo, czujniki indukcyjne są powszechnie stosowane w robotyce do detekcji pozycji narzędzi lub komponentów, a także w systemach transportowych, gdzie mogą monitorować obecność części na taśmach produkcyjnych. W branży przemysłowej standardy takie jak ISO 13849-1 dotyczące bezpieczeństwa maszyn podkreślają znaczenie stosowania niezawodnych czujników wykrywających obecność obiektów, co czyni czujniki indukcyjne odpowiednim wyborem. Dodatkowo, ich odporność na zanieczyszczenia oraz możliwość pracy w trudnych warunkach, jak np. w wysokiej temperaturze czy w obecności wilgoci, sprawia, że są one często preferowanym rozwiązaniem w przemysłowych aplikacjach.

Pytanie 27

Jakie narzędzie wykorzystuje się do usuwania resztek topnika z płytek drukowanych?

A. pędzelka
B. gąbki
C. wacika
D. ligniny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Usuwanie resztek topnika z płytek drukowanych przy użyciu pędzelka jest najlepszą praktyką, ponieważ pędzelek pozwala na precyzyjne, delikatne czyszczenie trudno dostępnych miejsc, takich jak szczeliny i złącza. Topnik, który jest stosowany podczas lutowania, może pozostawiać resztki, które negatywnie wpływają na przewodność elektryczną i mogą prowadzić do korozji. Aby zapewnić wysoką jakość połączeń elektrycznych i zminimalizować ryzyko problemów w przyszłości, ważne jest, aby te resztki były skutecznie usunięte. Pędzelki, szczególnie te o cienkich włosach, umożliwiają skuteczne czyszczenie, jednocześnie nie uszkadzając delikatnych komponentów na płytce. W praktyce, po zakończeniu lutowania, zaleca się użycie pędzelka w połączeniu z odpowiednim środkiem czyszczącym, co zapewnia kompleksową ochronę płytki. Przestrzeganie tych standardów czyszczenia jest zgodne z najlepszymi praktykami w branży elektroniki, co przyczynia się do trwałości i niezawodności urządzeń elektronicznych.

Pytanie 28

Jakie są poprawne etapy, które należy wykonać przy demontażu uszkodzonej kamery monitorującej?

A. Zasilanie wyłączyć, przewody zasilające odłączyć, kamerę zdemontować, przewód sygnałowy odłączyć
B. Zasilanie wyłączyć, przewód sygnałowy odłączyć, przewody zasilające odłączyć, kamerę zdemontować
C. Zasilanie wyłączyć, przewody zasilające odłączyć, przewód sygnałowy odłączyć, kamerę zdemontować
D. Przewód sygnałowy odłączyć, zasilanie wyłączyć, przewody zasilające odłączyć, kamerę zdemontować

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zgadza się, żeby bezpiecznie zdemontować kamerę, najpierw musisz wyłączyć zasilanie. To podstawowa zasada, bo zapobiega nieprzyjemnym sytuacjom, jak porażenie prądem. Potem odłączasz przewody zasilające, ale z zachowaniem ostrożności, bo nie chcesz zrobić zwarcia. Kiedy już masz wszystko odłączone, to czas na przewód sygnałowy. To ważne, żeby nie uszkodzić systemu monitoringu. Na końcu, jak masz pewność, że wszystko jest odłączone, możesz przystąpić do demontażu kamery. Takie podejście pozwala na bezpieczne i sprawne serwisowanie sprzętu, a to bardzo ważne, żeby wszystko działało jak należy.

Pytanie 29

W instrukcji dotyczącej uruchamiania urządzenia znajduje się polecenie: "...dostosować obwód rezonansowy przy pomocy trymera do częstotliwości...". Czym jest trymer?

A. potencjometrem
B. kondensatorem dostrojczym
C. cewką regulowaną
D. filtr z regulowaną indukcyjnością

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kondensator dostrojczy jest elementem elektronicznym, który jest używany do regulacji częstotliwości obwodów rezonansowych w aplikacjach takich jak radioodbiorniki, nadajniki i systemy komunikacyjne. Działa na zasadzie zmiany pojemności, co wpływa na częstotliwość rezonansową obwodu LC (indukcyjność i kondensator). Przykładem zastosowania kondensatora dostrojczego może być dostrajanie fal radiowych w odbiornikach radiowych, gdzie użytkownik może dostosować pojemność kondensatora, aby odbierać różne stacje. W branży elektronicznej, szczególnie w projektowaniu filtrów pasmowych czy oscylatorów, stosowanie kondensatorów dostrojczych jest standardem, ponieważ pozwala na precyzyjne dostrojenie sygnałów do odpowiednich częstotliwości. Ponadto, dobrą praktyką jest zazwyczaj korzystanie z kondensatorów o wysokiej jakości dielektrycznej, co minimalizuje straty energii i poprawia stabilność działania urządzenia. W kontekście obwodów elektronicznych, znajomość właściwości kondensatorów dostrojczych i ich zastosowań jest kluczowa dla inżynierów i techników zajmujących się elektroniką.

Pytanie 30

Analogowy oscyloskop dwukanałowy pozwala na pomiar

A. bitowej stopy błędów
B. współczynnika błędów modulacji
C. przesunięcia fazowego
D. stosunku sygnału do szumu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "przesunięcie fazowe" jest poprawna, ponieważ analogowy oscyloskop dwukanałowy jest szczególnie przydatny do analizy sygnałów w czasie rzeczywistym, umożliwiając bezpośrednie porównanie dwóch sygnałów. Przesunięcie fazowe oznacza różnicę w czasie pomiędzy dwoma sygnałami, co jest kluczowe w wielu zastosowaniach elektronicznych, takich jak synchronizacja systemów, modulacja czy analiza obwodów. Z pomocą oscyloskopu można zaobserwować, jak dwa sygnały współpracują ze sobą, co pozwala na dokładne pomiary przesunięcia fazowego. Przykładem zastosowania tej techniki może być analizowanie sygnałów w systemach komunikacyjnych, gdzie dokładna synchronizacja sygnałów jest kluczowa dla poprawnego odbioru informacji. Ponadto, w przypadku analizy filtrów, przesunięcie fazowe może dostarczyć informacji o stabilności i charakterystyce częstotliwościowej systemu, co jest zgodne z najlepszymi praktykami w obszarze inżynierii elektronicznej.

Pytanie 31

Jaką rolę w systemie antenowym w budynku mieszkalnym odgrywa zwrotnica antenowa?

A. Wprowadza sygnał telewizyjny z kilku anten do jednego kabla antenowego
B. Pozwala na podłączenie anteny z wyjściem symetrycznym do asymetrycznego wejścia w telewizorze
C. Dzieli sygnał telewizyjny na kilka urządzeń odbiorczych
D. Przesuwa zakres częstotliwości sygnału telewizji satelitarnej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwrotnica antenowa pełni kluczową rolę w instalacji antenowej w budynkach wielorodzinnych, umożliwiając integrację sygnałów telewizyjnych z różnych źródeł. Dzięki jej zastosowaniu, sygnały z kilku anten mogą być wprowadzone do jednego przewodu antenowego, co pozwala na efektywne zarządzanie sygnałem i ogranicza ilość kabli w budynku. Przykładem może być budynek z instalacją odbierającą sygnał z anteny naziemnej oraz anteny satelitarnej – zwrotnica pozwala na przesyłanie tych sygnałów do jednego odbiornika. W praktyce, stosowanie zwrotnic zgodnych z obowiązującymi normami, takimi jak EN 50083, zapewnia ich wysoką jakość i minimalizację strat sygnału. Dobrze zaprojektowana instalacja z wykorzystaniem zwrotnic przyczynia się do uzyskania lepszego odbioru sygnału, co jest szczególnie istotne w budynkach o dużej liczbie mieszkańców, gdzie każdy chce mieć dostęp do wysokiej jakości transmisji telewizyjnej.

Pytanie 32

Na schemacie ideowym elektronicznego urządzenia wskazano wartość rezystancji poprzez oznaczenie k22.
Jaką wartość ma ta rezystancja?

A. 0,22 Ω
B. 0,22 kΩ
C. 22 kΩ
D. 22 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
No to tak. Wartość rezystancji, którą mamy oznaczoną jako k22, to tak naprawdę 0,22 kΩ, a to jest równoznaczne z 220 Ω. Ten 'k' w tym przypadku to taki prefiks kilo, który oznacza, że to jest tysięczna wielokrotność jednostki. Ale w tym konkretnym przypadku, pierwsza cyfra '2' to nie dodatkowe zera, tylko pełna wartość. Umiejętność czytania oznaczeń rezystorów jest naprawdę ważna, jak chcesz projektować jakieś obwody elektroniczne. To pozwala dobrze dobrać wszystkie komponenty, co ma wielkie znaczenie dla funkcji i bezpieczeństwa całego układu. Zrozumienie tego systemu jest istotne nie tylko dla inżynierów, ale też dla tych, którzy są hobbystami w elektronice. W dzisiejszych czasach, normy takie jak IPC-2221 kładą duży nacisk na dokładne odczytywanie wartości rezystancji, żeby uniknąć różnych pomyłek w projektowaniu obwodów drukowanych, co jest ważne zarówno w przemyśle, jak i dla użytkowników końcowych.

Pytanie 33

Jaki środek ochrony osobistej jest najczęściej używany podczas naprawy urządzeń elektronicznych w serwisie RTV?

A. Rękawiczki
B. Szkła ochronne
C. Maska ochronna do twarzy
D. Fartuch ochronny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Fartuch ochronny jest kluczowym środkiem ochrony indywidualnej stosowanym w serwisach RTV, ponieważ zapewnia nie tylko bezpieczeństwo, ale również ochronę przed zanieczyszczeniami i uszkodzeniami. W trakcie napraw urządzeń elektronicznych, serwisanci często mają do czynienia z substancjami chemicznymi, takimi jak smary czy środki czyszczące, które mogą być szkodliwe dla skóry. Fartuch zabezpiecza odzież i skórę, minimalizując ryzyko kontaktu z tymi substancjami. Ponadto, fartuch ochronny oferuje również bariery przeciwko odpadkom mechanicznym, które mogą pojawić się podczas demontażu i montażu urządzeń. Dobrą praktyką w branży jest stosowanie fartuchów wykonanych z materiałów odpornych na działanie substancji chemicznych, które można łatwo czyścić lub wymieniać. Przykładowo, podczas naprawy telewizorów czy komputerów, fartuch ochronny jest nie tylko środkiem ochronnym, ale także oznaką profesjonalizmu i dbałości o detale, co wpływa na postrzeganą jakość usług w oczach klientów.

Pytanie 34

Firma zajmująca się konserwacją oraz serwisowaniem instalacji domofonowych nalicza administratorowi budynku rocznie sumę 1 800 zł. Jaką kwotą miesięcznie trzeba obciążyć każdego z 30 mieszkańców?

A. 5 zł
B. 10 zł
C. 15 zł
D. 3 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby wyliczyć, jaką kwotą miesięcznie należy obciążyć każdego z 30 lokatorów, najpierw należy obliczyć roczny koszt konserwacji i serwisowania instalacji domofonowej, który wynosi 1800 zł. Następnie dzielimy ten koszt przez liczbę miesięcy w roku, czyli 12, co daje nam 150 zł miesięcznie na całą wspólnotę. Aby określić kwotę przypadającą na jednego lokatora, dzielimy miesięczny koszt za całą budowę przez liczbę lokatorów: 150 zł / 30 lokatorów = 5 zł na lokatora. Jest to przykład zastosowania podstawowych zasad rachunkowości w kontekście zarządzania nieruchomościami. Obliczenia tego typu są niezbędne w zarządzaniu wspólnotami mieszkaniowymi oraz w określaniu kosztów eksploatacji, co jest zgodne z dobrymi praktykami branżowymi. Przykłady takich obliczeń można znaleźć w dokumentacji finansowej wspólnot oraz projektach budżetowych, gdzie precyzja w planowaniu wydatków ma kluczowe znaczenie dla prawidłowego funkcjonowania całej wspólnoty.

Pytanie 35

Jak nazywa się jednostka mocy pozornej?

A. wat.
B. watogodzina.
C. war.
D. woltoamper.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Woltoamper (VA) jest jednostką mocy pozornej, która odnosi się do sumy mocy czynnej i mocy biernej w obwodach prądu przemiennego. W przeciwieństwie do wata, która mierzy moc czynną i uwzględnia jedynie energię, która jest rzeczywiście wykorzystywana do pracy, woltoamper uwzględnia także moc, która jest 'stracona' w systemie w wyniku opóźnień fazowych pomiędzy prądem a napięciem. W przypadku obwodów z indukcyjnościami lub pojemnościami, moc pozorna jest istotna dla określenia potrzebnych zabezpieczeń oraz wymagań dotyczących transformatorów i urządzeń, gdyż może wpływać na ich wydajność i żywotność. Przykładami zastosowania mocy pozornej są instalacje elektryczne w przemyśle, gdzie ważne jest, aby rozważać zarówno moc czynną, jak i bierną w celu zoptymalizowania efektywności energetycznej. Zgodnie z normami IEC, poprawne obliczenie mocy pozornej jest kluczowe dla projektowania systemów, które minimalizują straty energii.

Pytanie 36

Które złącze jest przeznaczone do podłączenia sygnałów: zespolonego obrazu, koloru R, koloru G, koloru B, luminancji oraz chrominancji, a także sygnału audio dla lewego i prawego kanału?

A. EUROSCART
B. DIN 5
C. S-VHS
D. JACK

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź EUROSCART to strzał w dziesiątkę! To złącze fajnie łączy sygnały wideo i audio w jednym kablu, co naprawdę ułatwia życie podczas oglądania filmów czy grania w gry. Obsługuje różne rodzaje sygnałów, takie jak R, G i B, co jest mega ważne dla jakości obrazu. Dodatkowo, EUROSCART przesyła dźwięk na dwa kanały – lewy i prawy, co sprawia, że można go znaleźć w wielu urządzeniach RTV, jak telewizory czy odtwarzacze DVD. Na przykład, kiedy podłączasz odtwarzacz DVD do telewizora, używając EUROSCART, nie musisz się martwić o bałagan z kablami. To złącze jest też zgodne z normą CENELEC EN 50049-1, co znaczy, że jest powszechnie uznawane w świecie elektroniki. Dobrze wiedzieć, że jest tak szeroko stosowane!

Pytanie 37

Czujnik typu PIR służy do wykrywania

A. ruchu
B. wilgoci
C. dymu
D. światła

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujka typu PIR (Passive Infrared Sensor) jest urządzeniem wykrywającym ruch na podstawie analizy promieniowania podczerwonego emitowanego przez obiekty w swoim zasięgu. Działa na zasadzie detekcji zmian temperatury w polu widzenia czujnika, co jest istotne w kontekście monitorowania obszaru. Czujki te są szeroko stosowane w systemach zabezpieczeń, automatyce budynkowej oraz inteligentnych domach. Przykładem zastosowania jest system alarmowy, w którym czujka PIR uruchamia alarm w momencie wykrycia ruchu, co zwiększa bezpieczeństwo obiektu. Standardy branżowe, takie jak EN 50131, definiują wymagania dotyczące wydajności i niezawodności takich czujek, aby zapewnić ich skuteczność w detekcji ruchu. Dzięki swojej konstrukcji czujki PIR są energooszczędne, co czyni je idealnym wyborem do zastosowań w nowoczesnych systemach automatyzacji, gdzie ważna jest efektywność energetyczna. Właściwe umiejscowienie czujnika oraz jego kalibracja są kluczowe dla optymalizacji działania, co podkreśla potrzebę stosowania dobrych praktyk w instalacji i użytkowaniu tych urządzeń.

Pytanie 38

Jakie urządzenie służy do ochrony elektroniki przed skutkami wyładowań atmosferycznych?

A. ochronnik przepięciowy
B. wyłącznik nadprądowy
C. ochronnik termiczny
D. wyłącznik różnicowoprądowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ochronnik przepięciowy jest urządzeniem zaprojektowanym w celu zabezpieczania instalacji elektrycznych oraz podłączonych do nich urządzeń przed skutkami przepięć, które mogą wystąpić na skutek wyładowań atmosferycznych lub innych nagłych wzrostów napięcia. Działa poprzez odprowadzanie nadmiaru energii, co minimalizuje ryzyko uszkodzenia sprzętu. Przykładem zastosowania ochronników przepięciowych są instalacje w budynkach mieszkalnych, gdzie ochrona sprzętu RTV, AGD oraz komputerów jest kluczowa. Standardy takie jak IEC 61643-11 oraz PN-EN 61643-11 określają wymagania dotyczące tych urządzeń, zapewniając ich skuteczność i bezpieczeństwo. Ważne jest, aby dobierać odpowiednie ochronniki do specyfiki instalacji oraz środowiska, w którym są używane, a także regularnie przeprowadzać ich przeglądy, aby zapewnić ich prawidłowe funkcjonowanie i przedłużyć żywotność chronionego sprzętu.

Pytanie 39

Urządzenie działające w sieci komputerowej, mające na celu powiększenie zasięgu transmisji przez odtworzenie pierwotnego kształtu sygnału, bez oceny poprawności przesyłanych informacji, to

A. repeater
B. hub
C. switch
D. bridge

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Repeater, znany również jako wzmacniacz sygnału, jest urządzeniem, które działa na warstwie fizycznej modelu OSI. Jego głównym zadaniem jest odbieranie sygnałów sieciowych, a następnie ich regeneracja i ponowne przesyłanie, co pozwala na zwiększenie zasięgu transmisji. Przykład zastosowania repeatera można zobaczyć w dużych biurach lub na kampusach uniwersyteckich, gdzie dystans między urządzeniami sieciowymi może przekraczać standardowy zasięg sieci Ethernet. W takich przypadkach repeater pozwala na efektywne łączenie kilku segmentów sieci, eliminując utratę jakości sygnału. Repeater działa bez analizy danych, co oznacza, że nie filtruje ani nie interpretuje przesyłanych informacji, co czyni go idealnym rozwiązaniem do rozszerzenia zasięgu. Dobre praktyki zalecają umieszczanie repeaterów w miejscach, gdzie sygnał jest najsłabszy, by maksymalnie wykorzystać ich możliwości. Warto również pamiętać o stosowaniu repeaterów w sieciach Wi-Fi, gdzie mogą znacznie poprawić jakość sygnału w trudno dostępnych lokalizacjach.

Pytanie 40

W jakich systemach wykorzystywany jest sterownik PLC?

A. w automatyce przemysłowej
B. w transmisji światłowodowej
C. w telewizji dozorowej
D. w sieciach komputerowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sterownik PLC to naprawdę ważna rzecz w automatyce przemysłowej. Umożliwia kontrolę i monitorowanie produkcji, co jest super istotne w fabrykach. Dzięki temu można dostosować systemy do potrzeb konkretnej produkcji. Na przykład w liniach montażowych, PLC potrafi świetnie koordynować pracę maszyn, tak żeby wszystko działało sprawnie i bezpiecznie. Tak samo, w budynkach, gdzie zarządza się oświetleniem czy wentylacją, PLC pomaga zaoszczędzić energię. Jest też sporo standardów, jak IEC 61131, które mówią, jak projektować te systemy. To wszystko pokazuje, jak ważne są PLC w nowoczesnym przemyśle.
Strona wykorzystuje pliki cookies do poprawy doświadczenia użytkownika oraz analizy ruchu. Szczegóły