Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 5 czerwca 2025 14:58
  • Data zakończenia: 5 czerwca 2025 14:58

Egzamin niezdany

Wynik: 1/40 punktów (2,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Aby ustalić miano roztworu wodnego NaOH, należy zastosować

A. odmierzoną ilość kwasu azotowego(V)
B. naważkę kwasu benzenokarboksylowego
C. odmierzoną porcję roztworu kwasu octowego
D. naważkę kwasu mrówkowego
Użycie naważki kwasu benzenokarboksylowego do przygotowywania miana roztworu wodnego wodorotlenku sodu jest właściwe z kilku istotnych powodów. Kwas benzenokarboksylowy jest znanym kwasem organicznym, którego właściwości chemiczne umożliwiają precyzyjne ustalanie stężenia zasady w roztworze. Przygotowanie roztworu wzorcowego polega na rozpuszczeniu dokładnie znanej masy substancji w wodzie, co pozwala na osiągnięcie pożądanej koncentracji. W praktyce laboratoryjnej, stosowanie substancji o dobrze znanym i stabilnym stężeniu, takich jak kwas benzenokarboksylowy, jest standardem, który zapewnia powtarzalność wyników oraz dokładność analizy. Dodatkowo, przy pomocy tego kwasu można przeprowadzać miareczkowanie, co jest kluczowe w procesach analitycznych oraz badaniach jakościowych. Tego rodzaju praktyki są zgodne z zasadami metrologii chemicznej, która kładzie nacisk na precyzyjne pomiary i standaryzację procesów.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Odczynnik, który w specyficznych warunkach reaguje wyłącznie z danym jonem, umożliwiając tym samym jego identyfikację w mieszance, to odczynnik

A. indywidualny
B. charakterystyczny
C. selektywny
D. specyficzny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odczynnik specyficzny to taki, który reaguje z określonym jonem w danej mieszaninie, co pozwala na jego wykrycie i analizę. Oznacza to, że w warunkach laboratoryjnych, odczynnik ten jest w stanie wyizolować reakcję tylko dla jednego jonu, unikając interakcji z innymi składnikami. Przykładem może być zastosowanie odczynnika specyficznego do wykrywania jonów srebra w roztworach, gdzie używany jest tiocyjanian potasu, który reaguje z srebrem, tworząc charakterystyczny kompleks. Tego typu odczynniki są kluczowe w analizie chemicznej, gdyż umożliwiają precyzyjne pomiary i wykrywanie substancji w skomplikowanych mieszaninach. W laboratoriach często stosuje się różne metody analityczne, takie jak spektroskopia czy chromatografia, które wymagają użycia odczynników o wysokiej specyfice, aby wyniki były wiarygodne. Specyficzność odczynnika jest zgodna z dobrą praktyką laboratoryjną i standardami jakości, co jest istotne w kontekście zapewnienia dokładności wyników analizy.

Pytanie 5

Oddzielanie płynnej mieszaniny wieloskładnikowej poprzez odparowanie, a następnie skraplanie jej komponentów, to proces

A. krystalizacji
B. koagulacji
C. filtracji
D. destylacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Destylacja to proces, który polega na rozdzielaniu składników cieczy poprzez ich odparowanie i następne skroplenie. Jest to technika szeroko stosowana w różnych gałęziach przemysłu, takich jak petrochemia, przemysł spożywczy, a także w laboratoriach chemicznych. Przykładem zastosowania destylacji w przemyśle jest produkcja alkoholi, gdzie poprzez destylację fermentowanych surowców uzyskuje się wysokoprocentowe napoje. Proces destylacji wykorzystuje różnice w temperaturach wrzenia poszczególnych składników, co pozwala na ich selektywne odparowanie i kondensację. W praktyce, w destylacji frakcyjnej, stosuje się kolumny destylacyjne, które umożliwiają wielokrotne skraplanie i odparowywanie, co zwiększa efektywność rozdziału. Warto również znać standardy takie jak ASTM D86, które określają metody przeprowadzania destylacji w przemyśle naftowym, gwarantując wysoką jakość oraz powtarzalność procesów.

Pytanie 6

Wskaż sprzęt, którego należy użyć, aby przygotować 100 cm3 roztworu NaOH o stężeniu 0,1 mol/dm3.

12345
naczynko wagowewaga analitycznakolba stożkowakolba miarowa
pojemności 50 cm3
kolba miarowa
pojemności 100 cm3

A. 1,2,5
B. 2,3,4
C. 1,2,3
D. 1,2,4

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby przygotować 100 cm3 roztworu NaOH o stężeniu 0,1 mol/dm3, konieczne jest zastosowanie odpowiedniego sprzętu laboratoryjnego. W pierwszej kolejności, do odważenia 0,4 g NaOH, wykorzystujemy naczynko wagowe oraz wagę analityczną, które zapewniają wysoką precyzję ważenia. Zgodnie z dobrymi praktykami laboratoryjnymi, waga analityczna powinna być kalibrowana przed każdym użyciem, co gwarantuje dokładność pomiarów. Następnie, do przygotowania roztworu używamy kolby miarowej o pojemności 100 cm3. Kolba miarowa umożliwia precyzyjne odmierzanie objętości roztworu, co jest kluczowe dla uzyskania żądanego stężenia. Przygotowanie roztworu w kolbie miarowej jest standardową procedurą w chemii analitycznej i przemysłowej, pozwalającą na powtarzalność wyników. Użycie niewłaściwego naczynia, takiego jak kolby o innych pojemnościach, może prowadzić do błędnych stężeń, co ma istotne znaczenie w kontekście reakcji chemicznych, w których stosunki molowe są kluczowe.

Pytanie 7

Naczynia miarowe kalibrowane "na wlew" mają oznaczenie w postaci symbolu

A. Ex
B. A
C. In
D. B

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Naczynia miarowe kalibrowane "na wlew" oznaczone symbolem "In" są przeznaczone do pomiaru objętości cieczy, które pozostają w naczyniu po ich napełnieniu. Oznaczenie to wskazuje, że naczynie powinno być uzupełnione do wyznaczonego poziomu, a dokładność pomiaru zależy od właściwego zastosowania naczynia. W praktyce, naczynia te są używane w laboratoriach do precyzyjnego odmierzania reagentów, gdzie ważne jest, aby cała objętość została wykorzystana w procesie chemicznym. Warto zauważyć, że zgodnie z normami ISO oraz wymaganiami dotyczącymi jakości w laboratoriach, stosowanie naczyń miarowych kalibrowanych „na wlew” pozwala na uzyskanie wiarygodnych wyników pomiarów. Używając naczyń oznaczonych symbolem „In”, laboranci mogą zminimalizować błędy związane z pozostałością cieczy, co jest istotne w kontekście analizy danych i powtarzalności badań.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Podczas reakcji chlorku żelaza(III) z wodorotlenkiem potasu dochodzi do wytrącenia wodorotlenku żelaza(III) w formie

A. serowatego osadu
B. grubokrystalicznego osadu
C. drobnokrystalicznego osadu
D. galaretowatego osadu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Reakcja chlorku żelaza(III) z wodorotlenkiem potasu prowadzi do wytrącenia wodorotlenku żelaza(III) w postaci galaretowatego osadu. Ta charakterystyka jest istotna w kontekście chemii analitycznej oraz w procesach związanych z oczyszczaniem wód. Galaretowaty osad jest wynikiem specyficznej kinetyki reakcji oraz agregacji cząsteczek w wyniku obecności warunków pH. W praktycznych zastosowaniach, taki osad jest łatwy do rozdzielenia od cieczy, co czyni go użytecznym w procesach filtracji. Ponadto, wodorotlenek żelaza(III) jest często stosowany w przemysłowych aplikacjach, takich jak produkcja pigmentów czy w medycynie do usuwania metali ciężkich z organizmu. Zrozumienie właściwości tego osadu jest kluczowe dla efektywnego projektowania procesów przemysłowych, w których kontrola nad rozdziałem faz jest niezbędna.

Pytanie 12

Zamieszczony fragment procedury opisuje sposób otrzymywania

„W zlewce o pojemności 250 cm3 rozpuść w 50 cm3 wody destylowanej 5 g uwodnionego siarczanu(VI) miedzi(II). Do roztworu dodaj 16,7 cm3 roztworu NaOH o stężeniu 6 mol/dm3. Następnie dodaj 10 g glukozy w celu przeprowadzenia reakcji redukcji jonów miedzi(II) do miedzi(I). Ostrożnie ogrzewaj zlewkę z mieszaniną reakcyjną do otrzymania czerwonego osadu (...)Osad odsącz, przemyj alkoholem i susz na bibule na powietrzu."

A. Cu(OH)2.
B. Na2SO4.
C. Cu20.
D. CuO.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź Cu2O jest poprawna, ponieważ opisany proces rzeczywiście prowadzi do powstania tlenku miedzi(I), znanego również jako Cu2O. W trakcie tej reakcji jony miedzi(II) są redukowane do miedzi(I) przy udziale glukozy jako reduktora, co jest typowe dla reakcji w chemii organicznej, w szczególności w kontekście próby Fehlinga. Tlenek miedzi(I) charakteryzuje się intensywnym czerwonym kolorem, co czyni go doskonałym wskaźnikiem w analizie chemicznej, zwłaszcza w detekcji cukrów redukujących. W praktyce, uzyskany osad Cu2O może być stosowany w różnych dziedzinach, takich jak elektronika, gdzie wykorzystuje się go w produkcji półprzewodników, a także w materiałach budowlanych. Oprócz tego, jego właściwości antybakteryjne sprawiają, że znajduje zastosowanie w medycynie, np. w antyseptykach. Dodatkowo, proces ten ilustruje zasady chemiczne dotyczące reakcji redoks, przyczyniając się do lepszego zrozumienia mechanizmów reakcji chemicznych, co jest ważne dla studentów kierunków chemicznych i inżynierskich.

Pytanie 13

Który z podanych związków chemicznych można wykorzystać do oceny całkowitego usunięcia jonów chlorkowych z osadu?

A. KNO3
B. AgNO3
C. Al(NO3)3
D. Cu(NO3)2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
AgNO3, czyli azotan srebra, jest powszechnie stosowanym reagentem w chemii analitycznej, który umożliwia identyfikację i oznaczanie jonów chlorkowych. Jony srebra z azotanu srebra reagują z jonami chlorkowymi, tworząc nierozpuszczalny osad chlorku srebra (AgCl). Ta reakcja jest zasadnicza w procesach, w których kontrola czystości chemicznej jest kluczowa, na przykład w laboratoriach analitycznych oraz w przemyśle chemicznym. W praktyce, próbka z osadu, w której podejrzewa się obecność jonów chlorkowych, może zostać poddana działaniu AgNO3. Po dodaniu reagentu, wystąpienie białego osadu AgCl wskazuje na obecność chlorków. Procedura ta jest zgodna z normami określonymi w analizach chemicznych, co czynią ją wiarygodną metodą w różnych zastosowaniach. Ponadto, reakcja ta jest również wykorzystywana w edukacji chemicznej do demonstrowania właściwości reakcji podwójnej wymiany, co czyni ją ważnym elementem programu nauczania w szkołach wyższych oraz technicznych.

Pytanie 14

Wskaź sprzęt laboratoryjny, który znajduje się w zestawie do filtracji pod obniżonym ciśnieniem?

A. Kolba stożkowa, lejek z sitkiem, bagietka
B. Kolba miarowa, lejek szklany, bagietka
C. Kolba ssawkowa, lejek szklany, urządzenie do pompowania wody
D. Kolba ssawkowa, lejek z sitkiem, urządzenie do pompowania wody

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na kolbę ssawkową, lejek z sitowym dnem oraz pompkę wodną jako zestaw do sączenia pod zmniejszonym ciśnieniem jest prawidłowa. Kolba ssawkowa jest specjalnie zaprojektowana do przechwytywania i transportu cieczy, a jej konstrukcja umożliwia tworzenie podciśnienia wewnątrz kolby. Lejek z sitowym dnem odgrywa kluczową rolę w procesie filtracji, umożliwiając sączenie cieczy przez sitko, co pozwala na oddzielenie cząstek stałych od cieczy. Pompka wodna jest używana do redukcji ciśnienia, co jest istotne w procesach takich jak ekstrakcja czy destylacja, gdyż umożliwia efektywne usuwanie cieczy w niższych temperaturach, co z kolei zapobiega degradowaniu wrażliwych substancji chemicznych. Użycie tego sprzętu jest zgodne z najlepszymi praktykami laboratoryjnymi, gdzie ważne jest zachowanie integralności próbek oraz minimalizacja strat substancji lotnych.

Pytanie 15

Ogrzewanie organicznych substancji w atmosferze powietrza w otwartym naczyniu, mające na celu przemianę tych substancji w związki nieorganiczne, określa się jako mineralizacja?

A. na mokro
B. UV
C. mikrofalową
D. na sucho

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "na sucho" jest prawidłowa, ponieważ mineralizacja substancji organicznej w atmosferze powietrza polega na utlenianiu tych substancji w warunkach braku wody. Proces ten jest stosowany w różnych dziedzinach, takich jak przemysł biopaliwowy, gdzie organiczne odpady są przekształcane w użyteczne substancje, jak biometan. Mineralizacja ma kluczowe znaczenie w cyklu nutrientów w ekosystemach, gdzie przyczynia się do uwalniania składników odżywczych do gleby, co jest istotne dla wzrostu roślin. Dobrze zorganizowany proces mineralizacji pozwala na efektywne zarządzanie odpadami organicznymi, zmniejszając ich wpływ na środowisko. W kontekście standardów branżowych, uwzględnienie metod mineralizacji w zarządzaniu odpadami organicznymi jest częścią dobrych praktyk, które podkreślają znaczenie recyklingu i ponownego wykorzystania zasobów.

Pytanie 16

Zamieszczony piktogram przedstawia substancję o klasie i kategorii zagrożenia:

Ilustracja do pytania
A. sprężone gazy pod ciśnieniem.
B. gazy utleniające, kategoria zagrożenia 1.
C. niestabilne materiały wybuchowe.
D. gazy łatwopalne, kategoria zagrożenia 1.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź dotycząca klasyfikacji substancji jako niestabilne materiały wybuchowe jest fundamentem wiedzy w obszarze zarządzania bezpieczeństwem chemicznym. Piktogram przedstawiony w pytaniu jest zgodny z regulacjami międzynarodowymi, szczególnie z GHS, które podkreślają znaczenie odpowiedniego oznakowania substancji chemicznych. Niestabilne materiały wybuchowe są klasyfikowane jako substancje, które mogą eksplodować w wyniku działania bodźców mechanicznych czy termicznych. Przykładami takich substancji są niektóre rodzaje dynamitu lub azotanu amonu w pewnych formach, które są wykorzystywane w przemyśle budowlanym i górniczym. Zrozumienie tej klasyfikacji jest kluczowe dla profesjonalistów zajmujących się bezpieczeństwem w laboratoriach oraz w transporcie substancji chemicznych, ponieważ niewłaściwe postrzeganie i klasyfikacja mogą prowadzić do poważnych wypadków. Przepisy dotyczące transportu i przechowywania substancji niebezpiecznych wymagają ścisłego przestrzegania norm, co podkreśla wagę edukacji w tym zakresie. Znajomość tego typu oznaczeń pozwala na właściwe podejście do magazynowania oraz obsługi substancji chemicznych, minimalizując ryzyko dla zdrowia i środowiska.

Pytanie 17

Ropa naftowa stanowi mieszankę węglowodorów. Jaką metodę wykorzystuje się do jej rozdzielania na składniki?

A. krystalizację
B. destylację prostą
C. destylację frakcyjną
D. sedymentację

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Destylacja frakcyjna to naprawdę najbardziej odpowiedni sposób na rozdzielanie ropy naftowej. Dzięki niej możemy oddzielać różne frakcje węglowodorów, bo opiera się na ich punktach wrzenia. W praktyce to wygląda tak, że mieszanka cieczy przechodzi przez kolumnę destylacyjną i przy różnych temperaturach wrzenia frakcji, oddzielają się one na różnych poziomach. W przemyśle naftowym używa się tej metody do produkcji paliw, jak benzyna, olej napędowy czy nafta lotnicza, które są separowane w odpowiednich zakresach temperatur. To wszystko jest zgodne z tym, co robią specjaliści i naprawdę ważne, bo liczy się efektywność rozdziału i jakość produktów. Co ciekawe, destylacja frakcyjna ma też zastosowanie w innych branżach, na przykład w produkcji alkoholu czy chemii organicznej. Tam też potrzeba dobrego oddzielania składników, żeby uzyskać czyste substancje.

Pytanie 18

Aby uzyskać roztwór AgNO3 (masa molowa AgNO3 to 169,8 g/mol) o stężeniu 0,1 mol/dm3, należy rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski.

A. odważyć 169,80 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić
B. odważyć 16,98 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski
C. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski
D. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest poprawna, ponieważ przygotowanie roztworu o stężeniu 0,1 mol/dm³ wymaga precyzyjnego odmierzania substancji chemicznych. Aby uzyskać roztwór o pojemności 100 cm³ i stężeniu 0,1 mol/dm³, należy obliczyć ilość AgNO₃ potrzebną do przygotowania takiego roztworu. Masa molowa AgNO₃ wynosi 169,8 g/mol, więc dla 0,1 mol/dm³ w 100 cm³ (0,1 dm³) potrzeba 0,01 mola tej substancji. Zatem 0,01 mola x 169,8 g/mol daje 1,698 g AgNO₃. Przeniesienie odważonej ilości do kolby miarowej o pojemności 100 cm³ i rozpuszczenie w wodzie destylowanej oraz uzupełnienie do kreski zapewnia, że otrzymujemy dokładnie przygotowany roztwór o wymaganym stężeniu. Tego rodzaju praktyka jest zgodna z najlepszymi praktykami w laboratoriach chemicznych, gdzie precyzja i dokładność są kluczowe dla uzyskania wiarygodnych wyników analitycznych.

Pytanie 19

Na podstawie danych w tabeli próbkę, w której będzie oznaczany BZT, należy przechowywać

Oznaczany parametrRodzaj naczynia do przechowywaniaSposób utrwalaniaDopuszczalny czas przechowywania
barwaszklane lub polietylenowe- schłodzenie do temperatury 2-5°C24 h
fosforany ogólneszklane lub polietylenowe- zakwaszenie kwasem siarkowym(VI)
- schłodzenie do temperatury 2-5°C
4 h
48 h
BZTszklane- schłodzenie do temperatury 2-5°C
- przechowywanie w ciemności
24 h
azot azotanowy(V)szklane lub polietylenowe- schłodzenie do temperatury 2-5°C
- dodanie 2 cm3 chloroformu do 1 dm3 próbki
24 h
48 h

A. w polietylenowej butelce.
B. w butelce z ciemnego szkła.
C. w szklanej butelce.
D. w metalowym naczyniu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przechowywanie próbki do oznaczania biochemicznego zapotrzebowania tlenu (BZT) w butelce z ciemnego szkła jest kluczowe, aby zapewnić jej integralność i dokładność pomiarów. Ciemne szkło chroni próbkę przed działaniem światła, które może prowadzić do fotodegradacji niektórych składników organicznych, co w konsekwencji zafałszowałoby wyniki analizy. Przechowywanie w odpowiedniej temperaturze, zazwyczaj w zakresie 2-5°C, również ma fundamentalne znaczenie, ponieważ niska temperatura spowalnia procesy biochemiczne, które mogłyby wpłynąć na zmiany w stężeniu tlenu. Zgodnie z normami ISO i dobrymi praktykami laboratoryjnymi, nieprzekraczanie tych warunków gwarantuje wyższej jakości wyniki. W praktyce, takie podejście jest stosowane w laboratoriach zajmujących się analizą wód, gdzie prawidłowe przechowywanie próbek jest kluczowe dla monitorowania stanu ekologicznego zbiorników wodnych. Zastosowanie butelek z ciemnego szkła jest zatem nie tylko zgodne z wymaganiami, ale także odzwierciedla wysokie standardy profesjonalizmu w pracy laboratoryjnej.

Pytanie 20

Podstawowy zestaw do filtracji, oprócz statywu i sączka, obejmuje

A. lejka, kolby stożkowej, zlewki
B. lejka, 2 zlewki, bagietki
C. lejka, 2 kolb stożkowych, bagietki
D. lejka, zlewki, 2 bagietek

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'z lejka, 2 zlewek, bagietki' jest prawidłowa, ponieważ podstawowy zestaw do sączenia rzeczywiście obejmuje te elementy. Lejek jest niezbędny do precyzyjnego kierowania cieczy do naczynia, co zapobiega rozlaniu i zapewnia czystość eksperymentu. Zlewki są kluczowe, gdyż jedna jest używana do przechwytywania cieczy podczas sączenia, a druga do gromadzenia płynów, które mogą być użyte w dalszym etapie analizy. Bagietki, znane również jako pipety, są używane do precyzyjnego przenoszenia niewielkich objętości substancji, co jest niezwykle ważne w laboratoriach chemicznych i biologicznych. Poprawne wykorzystanie tego zestawu zapewnia zgodność z dobrymi praktykami laboratoryjnymi, a także ułatwia zrozumienie procesów chemicznych i biologicznych. Przykładem może być ich zastosowanie w filtracji, gdzie odpady są usuwane, a czysta ciecz zbierana do zlewki, co jest kluczowe w wielu procedurach analitycznych.

Pytanie 21

Odlanie cieczy z nad osadu to

A. dekantacja
B. destylacja
C. filtracja
D. sedymentacja

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dekantacja to proces polegający na oddzieleniu cieczy od osadu poprzez jej zlanie. Jest to technika powszechnie stosowana w laboratoriach chemicznych oraz w przemyśle, szczególnie w produkcji napojów, takich jak wino czy piwo. W praktyce dekantacja umożliwia uzyskanie klarownej cieczy, eliminując niepożądane cząstki stałe. W przypadku win, na przykład, dekantacja jest kluczowym etapem, który pozwala na usunięcie osadu powstałego podczas fermentacji, co poprawia jakość i smak trunku. Proces ten jest zgodny z zasadami dobrych praktyk laboracyjnych, które zalecają stosowanie efektywnych metod separacji, minimalizujących ryzyko kontaminacji. Ważnym aspektem dekantacji jest także precyzja, z jaką należy przeprowadzić ten proces, aby uniknąć zmieszania cieczy z osadem. W kontekście analizy jakości cieczy, dekantacja może być również używana w analizie chemicznej do przygotowania próbek do dalszych badań, co podkreśla jej znaczenie w szerokim zakresie zastosowań.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Na etykiecie odważki analitycznej znajduje się napis: Z odważki tej można przygotować

Odważka analityczna

azotan(V) srebra(I)

AgNO3

0,1 mol/dm3

A. dwie kolby miarowe o pojemności 500 cm3 mianowanego roztworu AgNO3 o stężeniu 0,1 mol/dm3.
B. cztery kolby miarowe o pojemności 250 cm3 mianowanego roztworu AgNO3 o stężeniu 0,025 mol/dm3.
C. jedną kolbę miarową o pojemności 500 cm3 mianowanego roztworu AgNO3 o stężeniu 0,05 mol/dm3.
D. jedną kolbę miarową o pojemności 1000 cm3 mianowanego roztworu AgNO3 o stężeniu 0,1 mol/dm3.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest poprawna, ponieważ na etykiecie odważki analitycznej znajduje się informacja o stężeniu 0,1 mol/dm³. Aby przygotować 1000 cm³ (1 dm³) roztworu AgNO₃ o takim stężeniu, potrzebujemy 0,1 mola tego związku. Mnożąc liczbę moli przez masę molową AgNO₃ (169,87 g/mol), otrzymujemy masę potrzebną do przygotowania roztworu, która wynosi 16,987 g. W praktyce, przygotowując roztwór o konkretnym stężeniu, kluczowe jest precyzyjne odmierzenie masy substancji oraz odpowiednie rozcieńczenie. Taka umiejętność jest niezbędna w laboratoriach chemicznych, gdzie dokładność odgrywa podstawową rolę w eksperymentach i analizach. Przygotowanie roztworu o właściwym stężeniu jest zgodne z zasadami dobrej praktyki laboratoryjnej (GLP), które zapewniają wiarygodność wyników badań. Dodatkowo, umiejętność przygotowywania roztworów o określonych stężeniach jest fundamentalna w chemii analitycznej, chemii organicznej oraz wielu zastosowaniach przemysłowych, w tym w farmaceutyce.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Podstawowy zestaw do filtracji składa się ze statywu oraz

A. zlejka, zlewki i pipety
B. zlejka, dwóch zlewek i bagietki
C. zlejka Büchnera, zlewki i bagietki
D. z dwóch zlewek i bagietki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Podstawowy zestaw do sączenia rzeczywiście składa się z statywu oraz zlejki, dwóch zlewek i bagietki. Statyw jest kluczowy, ponieważ zapewnia stabilność i bezpieczeństwo podczas procesu sączenia, co jest szczególnie ważne w laboratoriach chemicznych i biologicznych, gdzie manipulacja cieczami może być niebezpieczna. Zlejka służy do przechwytywania cieczy, która jest sączona, natomiast zlewki są wykorzystywane do przechowywania oraz transportowania różnych odczynników i próbek. Bagietka, z kolei, jest narzędziem pomocniczym używanym do kierowania cieczy lub do mieszania składników w zlewkach. Przykładem zastosowania tego zestawu jest filtracja próbki cieczy w celu usunięcia zawiesin, co jest powszechnie stosowane w analizach chemicznych oraz podczas przygotowywania rozwiązań o określonym stężeniu. W laboratoriach stosuje się również standardowe procedury bezpieczeństwa, które obejmują wykorzystanie odpowiednich narzędzi i zachowywanie porządku, aby uniknąć kontaminacji.

Pytanie 26

W laboratorium chemicznym przewody instalacji rurowych są oznaczane różnymi kolorami, zgodnie z obowiązującymi normami. Polska Norma PN-70 N-01270/30 określa kolor dla wody jako

A. czerwony
B. niebieski
C. zielony
D. żółty

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "zielony" jest poprawna, ponieważ według Polskiej Normy PN-70 N-01270/30 kolor zielony jest przypisany dla instalacji wodnych. W praktyce oznakowanie rur wodociągowych tym kolorem ma na celu poprawę bezpieczeństwa w laboratoriach chemicznych oraz w innych obiektach, gdzie może wystąpić współistnienie różnych substancji. Oznakowanie ma na celu jednoznaczne wskazanie, jakiego medium można się spodziewać w danej instalacji, co ma kluczowe znaczenie w kontekście ewentualnych wypadków lub niebezpieczeństw. Na przykład w laboratoriach, gdzie używa się wielu substancji chemicznych, a także rozmaitych płynów, właściwe oznaczenie rur wodnych pozwala uniknąć pomyłek, które mogłyby prowadzić do poważnych konsekwencji. Przestrzeganie tego rodzaju norm w instalacjach przemysłowych oraz badawczych jest częścią szerokiego systemu zarządzania bezpieczeństwem, który powinien być wdrażany w każdym laboratorium.

Pytanie 27

Osady kłaczkowe, które powstają w wyniku prostego koagulowania, określa się mianem osadów

A. liofilowymi
B. liofobowymi
C. drobnokrystalicznymi
D. grubokrystalicznymi

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Osady kłaczkowate, które powstają w wyniku łatwego koagulowania, określane są mianem osadów liofobowych. Termin ten odnosi się do systemów, w których cząstki stałe są zawieszone w cieczy, a ich tendencja do agregacji jest zmniejszona przez siły odpychające, wynikające z ich liofobowości. W praktyce, osady liofobowe są istotne w wielu procesach technologicznych, takich jak oczyszczanie ścieków czy wytwarzanie emulsji i zawiesin. Na przykład, w przemyśle chemicznym, kontrola koagulacji i flokulacji jest kluczowa do uzyskania wysokiej jakości produktów. Wykorzystanie koagulantów, które sprzyjają tworzeniu osadów liofobowych, pozwala na efektywne separowanie ciał stałych od cieczy, co jest zgodne z najlepszymi praktykami w zakresie zarządzania odpadami. Dodatkowo, znajomość właściwości fizykochemicznych systemów liofobowych jest istotna dla inżynierów chemicznych, którzy projektują procesy produkcyjne wymagające precyzyjnych kontroli nad zachowaniem cząstek w zawiesinach.

Pytanie 28

Materiały wykorzystywane w laboratoriach, mogące prowadzić do powstawania mieszanin wybuchowych, powinny być przechowywane

A. w izolowanych pomieszczeniach magazynów ogólnych
B. w różnych punktach laboratorium
C. w specjalnie wydzielonych piwnicach murowanych
D. na otwartym powietrzu pod dachem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Materiały stosowane w laboratoriach, które mogą tworzyć mieszaniny wybuchowe, należy przechowywać w izolowanych pomieszczeniach magazynów ogólnych ze względu na ryzyko ich niekontrolowanej reakcji, co może prowadzić do poważnych zagrożeń dla zdrowia i bezpieczeństwa. Izolacja pomieszczeń magazynowych pozwala na ograniczenie rozprzestrzeniania się ewentualnych wybuchów oraz na skuteczne zarządzanie wentylacją i monitoringiem. Przykładem mogą być laboratoria chemiczne, gdzie substancje takie jak rozpuszczalniki organiczne, materiały łatwopalne czy reagenty chemiczne muszą być przechowywane w wyspecjalizowanych pomieszczeniach, które są zgodne z przepisami BHP oraz normami takimi jak NFPA (National Fire Protection Association) czy OSHA (Occupational Safety and Health Administration). Dobre praktyki obejmują również regularne kontrole i audyty stanu magazynów, co pozwala na wczesne wykrywanie potencjalnych zagrożeń oraz zapewnienie odpowiednich środków ochrony, takich jak gaśnice i systemy alarmowe.

Pytanie 29

Przedstawiony schemat ideowy ilustruje proces syntezy z propanu C3H8 → C3H7Cl → C3H6 → C3H6(OH)2 → C3H5(OH)2Cl → C3H5(OH)3

A. glicerolu
B. glikolu propylowego
C. glikolu etylowego
D. glicyny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Glicerol, znany również jako 1,2,3-propanotriol, jest trójwodorotlenowym alkoholem, który odgrywa kluczową rolę w biochemii oraz przemyśle chemicznym. Proces przekształcania propanu (C3H8) w glicerol odbywa się poprzez szereg reakcji chemicznych, które obejmują chlorowanie, dehydratację oraz hydrolizę. Glicerol znajduje zastosowanie w wielu dziedzinach, w tym w farmaceutyce jako środek nawilżający i rozpuszczalnik, a także w kosmetykach ze względu na swoje właściwości humektantne. Dodatkowo, glicerol jest wykorzystywany w przemyśle spożywczym jako substancja słodząca i stabilizująca. W kontekście dobrych praktyk branżowych, glicerol jest stosowany zgodnie z normami bezpieczeństwa żywności oraz regulacjami dotyczącymi kosmetyków, co podkreśla jego wszechstronność i znaczenie w różnych sektorach. Znajomość tego procesu i właściwości glicerolu jest istotna dla chemików oraz inżynierów zajmujących się produkcją substancji chemicznych oraz formulacjami kosmetycznymi.

Pytanie 30

Jaki jest błąd względny pomiaru na wadze o precyzji 0,1 g dla próbki o wadze 1 g?

A. 0,1%
B. 10%
C. 1%
D. 100%

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Błąd względny ważenia określa stosunek błędu pomiaru do wartości mierzonej, wyrażony w procentach. W przypadku wagi o dokładności 0,1 g, oznacza to, że maksymalny błąd pomiaru przy ważeniu próbki o masie 1 g wynosi 0,1 g. Aby obliczyć błąd względny, stosujemy wzór: (błąd pomiaru / wartość mierzona) * 100%. Wstawiając dane: (0,1 g / 1 g) * 100% = 10%. Taki błąd względny jest szczególnie istotny w laboratoriach, gdzie precyzyjność pomiarów jest kluczowa, na przykład w analizach chemicznych, gdzie nawet niewielkie odchylenia mogą prowadzić do błędnych wyników. W praktyce, znajomość błędu względnego pozwala ocenić jakość pomiaru oraz dostosować metodykę ważenia do wymogów analizy. Przy wyborze wagi, warto zwrócić uwagę na jej dokładność oraz na to, w jaki sposób błąd względny wpływa na wyniki końcowe, co jest kluczowe w kontekście standardów jakości, takich jak ISO 17025.

Pytanie 31

Na rysunku przedstawiono wagę

Ilustracja do pytania
A. automatyczną.
B. precyzyjną.
C. hydrostatyczną.
D. mikroanalityczną.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Waga precyzyjna to urządzenie laboratoryjne, które charakteryzuje się wysoką dokładnością i precyzją pomiarów masy. Na zdjęciu widoczna jest waga, która posiada cyfrowy wyświetlacz oraz przyciski kalibracji i tarowania, co jest typowe dla wag precyzyjnych. Tego rodzaju wagi znajdują zastosowanie w wielu dziedzinach, takich jak chemia, biotechnologia czy farmacja, gdzie dokładne ważenie substancji jest kluczowe dla uzyskania wiarygodnych wyników eksperymentów. Wagi precyzyjne są często wykorzystywane do ważenia małych ilości reagentów, co jest istotne w procesach analitycznych. W branży laboratoryjnej stosuje się standardy, takie jak ISO/IEC 17025, które określają wymagania dotyczące kompetencji laboratoriów badawczych i wzorcujących, co podkreśla znaczenie precyzyjnego ważenia. Dzięki zastosowaniu technologii cyfrowej, wagi te oferują również możliwość podłączenia do komputerów oraz oprogramowania, co ułatwia dokumentację i analizę danych.

Pytanie 32

Jaką objętość roztworu NaOH o stężeniu 1 mol/dm3 należy użyć, aby przygotować 50 cm3 roztworu NaOH o stężeniu 0,4 mol/dm3?

A. 10 cm3
B. 20 cm3
C. 50 cm3
D. 25 cm3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć objętość roztworu NaOH o stężeniu 1 mol/dm3, potrzebnej do sporządzenia 50 cm3 roztworu o stężeniu 0,4 mol/dm3, należy zastosować zasadę zachowania moles. Obliczamy liczbę moli NaOH w docelowym roztworze: C1V1 = C2V2, gdzie C1 = 1 mol/dm3, V1 to objętość, C2 = 0,4 mol/dm3 i V2 = 50 cm3 = 0,05 dm3. Z równania mamy: 1 * V1 = 0,4 * 0,05. Obliczając V1, otrzymujemy V1 = 0,4 * 0,05 = 0,02 dm3 = 20 cm3. Takie podejście jest standardem w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania powtarzalnych i wiarygodnych wyników. Przykładem zastosowania może być przygotowanie roztworów do titracji, gdzie dokładność stężenia reagentu jest niezbędna dla prawidłowego przeprowadzenia analizy. Warto również zauważyć, że w praktyce często stosuje się wzory rozcieńczania, co zapewnia efektywność i bezpieczeństwo pracy w laboratorium chemicznym.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

W trakcie destylacji cieczy wykorzystuje się tzw. kamienie wrzenne, ponieważ

A. przyspieszają proces wrzenia cieczy
B. przyspieszają przebieg destylacji
C. obniżają temperaturę wrzenia cieczy
D. umożliwiają równomierne wrzenie cieczy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kamyczki wrzenne odgrywają kluczową rolę w procesie destylacji, ponieważ umożliwiają równomierne wrzenie cieczy. Dzięki nim powstaje wiele małych bąbelków pary, co prowadzi do wzrostu powierzchni wymiany między cieczą a parą. W rezultacie ciecz wrze w sposób bardziej kontrolowany, co jest istotne w kontekście uzyskiwania czystych frakcji destylacyjnych. W praktyce, stosowanie kamyczków wrzennych pozwala unikać zjawiska tzw. „bumu wrzenia”, które może prowadzić do gwałtownego wrzenia i nieefektywności procesu. Dobre praktyki w chemii analitycznej zalecają stosowanie kamyczków w celu zapewnienia stabilności procesu, co jest szczególnie ważne w przemyśle chemicznym i farmaceutycznym, gdzie precyzyjne oddzielanie składników jest kluczowe dla uzyskania wysokiej jakości produktów. W związku z tym, kamyczki wrzenne przyczyniają się nie tylko do poprawy efektywności destylacji, ale także do bezpieczeństwa całego procesu, co jest zgodne z międzynarodowymi standardami bezpieczeństwa chemicznego.

Pytanie 35

Jakie urządzenie jest wykorzystywane do oczyszczania próbki gazowej?

A. chłodnica
B. rozdzielacz
C. płuczka
D. zestaw sit

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Płuczka jest urządzeniem stosowanym do oczyszczania gazów, które działa na zasadzie przepływu gazu przez ciecz. Proces ten pozwala na usunięcie zanieczyszczeń, takich jak pyły, drobne cząstki stałe oraz różne substancje chemiczne, które mogą być rozpuszczalne w cieczy. W praktyce płuczki wykorzystywane są w różnych gałęziach przemysłu, w tym w energetyce, przemyśle chemicznym oraz w procesach oczyszczania spalin. Standardy branżowe, takie jak ISO 14001 dotyczące zarządzania środowiskowego, podkreślają znaczenie redukcji emisji szkodliwych substancji do atmosfery, co czyni płuczki kluczowym elementem w systemach kontroli zanieczyszczeń. Przykładowo, w elektrowniach węglowych płuczki są używane do oczyszczania spalin przed ich emisją do atmosfery, co przyczynia się do ochrony środowiska oraz spełnienia norm prawnych dotyczących jakości powietrza.

Pytanie 36

Aby poprawić efektywność reakcji opisanej równaniem: HCOOH + C2H5OH ⇄ HCOOC2H5 + H2O, należy

A. oddestylować etylowy ester kwasu mrówkowego
B. wprowadzić wodę
C. dodać etylowy ester kwasu mrówkowego
D. zmniejszyć stężenie kwasu mrówkowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oddestylowanie mrówczanu etylu jest skuteczną metodą na zwiększenie wydajności reakcji esterifikacji przedstawionej w równaniu HCOOH + C2H5OH ⇄ HCOOC2H5 + H2O. Proces ten polega na usunięciu produktu reakcji, czyli mrówczanu etylu, co zgodnie z zasadą Le Chateliera, przesuwa równowagę reakcji w stronę produktów, w tym przypadku w stronę esteru. W praktycznych zastosowaniach, oddestylowanie można przeprowadzić za pomocą destylacji frakcyjnej, co pozwala na efektywne oddzielenie estera od pozostałych reagentów i produktów. Technika ta jest szeroko stosowana w przemyśle chemicznym, gdzie zwiększenie wydajności syntez jest kluczowe dla rentowności procesów. Ponadto, w przypadku syntez chemicznych, takich jak produkcja estrów, odpowiednia kontrola warunków reakcji, w tym temperatury i ciśnienia, również może wpływać na efektywność oraz czystość otrzymywanych produktów, co stanowi istotny aspekt dobrych praktyk inżynieryjnych.

Pytanie 37

Na podstawie danych zawartych w tabeli określ, do oznaczania którego parametru próbka musi być utrwalona w niskim pH.

Oznaczany parametrRodzaj naczynia do przechowywaniaSposób utrwalaniaDopuszczalny czas przechowywania
barwaszklane lub polietylenowe- schłodzenie do temperatury 2-5°C24 h
fosforany ogólneszklane lub polietylenowe- zakwaszenie kwasem siarkowym(VI)
- schłodzenie do temperatury 2-5°C
4 h
48 h
BZTszklane- schłodzenie do temperatury 2-5°C
- przechowywanie w ciemności
24 h
azot azotanowy(V)szklane lub polietylenowe- schłodzenie do temperatury 2-5°C
- dodanie 2 cm3 chloroformu do 1 dm3 próbki
24 h
48 h

A. Azotu azotanowego(V).
B. Barwy.
C. Fosforanów ogólnych.
D. BZT.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to fosforany ogólne, ponieważ zgodnie z metodyką analizy, próbki wody wymagają zakwaszenia w celu wiązania i stabilizacji fosforanów. Badania wykazały, że niskie pH, osiągane poprzez dodanie kwasu siarkowego(VI), minimalizuje straty fosforanów w wyniku ich adsorpcji na cząstkach stałych oraz ich konwersji do form, które są trudniejsze do zmierzenia. W praktyce, do oznaczania fosforanów ogólnych często stosuje się metody kolorimetryczne, które opierają się na reakcji fosforanów z odczynnikami w kwasowym środowisku. Standardy analityczne, takie jak metody opisane przez APHA (American Public Health Association), podkreślają znaczenie odpowiedniego przygotowania próbki w niskim pH, aby zapewnić rzetelność wyników. Ponadto, ustalenie odpowiednich warunków przechowywania i transportu próbek, w tym ich zakwaszenia, jest kluczowe w monitorowaniu jakości wód i ochrony zasobów wodnych. Właściwe metody analizy fosforanów wspierają zarządzanie ekosystemami wodnymi oraz podejmowanie decyzji dotyczących ochrony środowiska.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Rozdział składników mieszaniny w chromatografii odbywa się dzięki ich różnym

A. rozpuszczalności
B. lotności
C. adsorpcji
D. absorpcji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Chromatograficzny rozdział składników mieszaniny oparty jest na różnicy w adsorpcji tych składników na fazie stacjonarnej i fazie ruchomej. Adsorpcja to proces, w którym cząsteczki substancji przyczepiają się do powierzchni innej substancji. W chromatografii, różne substancje mają różne właściwości adsorpcyjne, co prowadzi do ich odmiennych czasów przejścia przez kolumnę chromatograficzną. Na przykład, w chromatografii cienkowarstwowej (TLC) różne związki chemiczne mogą rozdzielać się na podstawie ich zdolności do adsorbowania się na warstwie stałej (np. silica gel) w porównaniu do ich rozpuszczalności w fazie ruchomej (np. rozpuszczalnik). Zrozumienie procesu adsorpcji jest kluczowe w zastosowaniach takich jak oczyszczanie substancji chemicznych, identyfikacja związków w analizach laboratoryjnych oraz w przemyśle farmaceutycznym do analizy jakości leków. Dobre praktyki chromatograficzne wymagają znajomości parametrów adsorpcyjnych różnych substancji, co umożliwia optymalne warunki rozdziału.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.