Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 6 czerwca 2025 14:07
  • Data zakończenia: 6 czerwca 2025 14:19

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby nagrać dane na nośniku przedstawionym na ilustracji, konieczny jest odpowiedni napęd

Ilustracja do pytania
A. DVD-R/RW
B. Blu-ray
C. CD-R/RW
D. HD-DVD
Płyta przedstawiona na rysunku to Blu-ray o oznaczeniu BD-RE DL co oznacza że jest to płyta wielokrotnego zapisu (BD-RE) oraz dwuwarstwowa (DL - Dual Layer) o pojemności 50 GB. Blu-ray to format optyczny stworzony do przechowywania dużych ilości danych szczególnie materiałów wideo wysokiej rozdzielczości takich jak filmy w jakości HD czy 4K. W porównaniu do starszych formatów jak DVD czy CD Blu-ray oferuje znacznie większą pojemność co umożliwia zapis nie tylko filmów ale także dużych projektów multimedialnych i archiwizację danych. Nagrywarki Blu-ray są specjalnie zaprojektowane aby obsługiwać te płyty wymagają niebieskiego lasera o krótszej długości fali w porównaniu do czerwonych laserów używanych w napędach DVD. Dzięki temu są w stanie odczytywać i zapisywać dane z większą gęstością. Standard Blu-ray jest powszechnie uznawany w przemyśle filmowym i technologicznym za wysokowydajny i przyszłościowy format dlatego jego znajomość i umiejętność obsługi jest ceniona w branży IT i multimedialnej.

Pytanie 2

Na podstawie oznaczenia pamięci DDR3 PC3-16000 można określić, że ta pamięć

A. pracuje z częstotliwością 16000 MHz
B. pracuje z częstotliwością 160 MHz
C. ma przepustowość 160 GB/s
D. ma przepustowość 16 GB/s
Analizując błędne odpowiedzi, można zauważyć, że niepoprawne stwierdzenia często wynikają z nieporozumienia dotyczącego sposobu, w jaki określa się parametry pamięci. Stwierdzenie, że pamięć ma przepustowość 160 GB/s, jest nieprawidłowe, ponieważ przekracza rzeczywiste możliwości standardu DDR3, który nie osiąga takich wartości. Wartości przepustowości są związane z częstotliwością zegara oraz szerokością magistrali, a 160 GB/s przekracza fizyczne limity technologii DDR3. Kolejną nieścisłością jest stwierdzenie, że pamięć pracuje z częstotliwością 160 MHz. Taka wartość jest znacznie poniżej rzeczywistych parametrów DDR3. Częstotliwość odnosi się do zegara w trybie transferu, gdzie DDR3 pracuje z częstotliwościami rzędu 800 MHz, co odpowiada efektywnym wartościom 1600 MHz, a stąd już wnioskujemy, że przepustowość może osiągnąć 16 GB/s. Z kolei podanie wartości 16000 MHz jest również nieprawidłowe, ponieważ to odnosi się do błędnego przeliczenia jednostek - efektywna częstotliwość DDR3 PC3-16000 to 2000 MHz, a nie 16000 MHz. Poprawne zrozumienie tych parametrów jest kluczowe dla właściwego doboru pamięci w systemach komputerowych, aby zapewnić optymalną wydajność i zgodność z pozostałymi komponentami.

Pytanie 3

Wskaż nośnik, który w sieciach komputerowych umożliwia najszybszą wymianę danych?

A. Mikrofale
B. Kabel światłowodowy
C. Fale radiowe
D. Czteroparowy kabel kat. 5
Kabel światłowodowy to naprawdę najszybsze medium, jakie możemy mieć w sieciach komputerowych. Prędkości, które osiąga, potrafią sięgać nawet wielu terabitów na sekundę, więc jak ktoś potrzebuje dużej przepustowości, to jest to strzał w dziesiątkę. Co ciekawe, dzięki temu, że przesyła dane światłem, sygnał nie łapie zakłóceń elektromagnetycznych. Oznacza to, że można przesyłać informacje na naprawdę długie odległości bez straty jakości. Widziałem, że takie kable są super popularne w telekomunikacji, w centrach danych i między budynkami na kampusach. Są też standardy jak ITU-T G.652 dla włókien jednomodowych i G.655 dla włókien wielomodowych, które zapewniają, że połączenia są naprawdę dobre i niezawodne. Dlatego instalacje światłowodowe robią się coraz bardziej powszechne w nowoczesnych sieciach, co wynika z rosnących potrzeb na transfer danych.

Pytanie 4

Aby poprawić niezawodność oraz efektywność przesyłania danych na serwerze, należy

A. trzymać dane na innym dysku niż systemowy
B. stworzyć punkt przywracania systemu
C. ustawić automatyczne wykonywanie kopii zapasowej
D. zainstalować macierz dyskową RAID1
Utworzenie punktu przywracania systemu to dobre rozwiązanie w kontekście przywracania systemu operacyjnego do wcześniejszego stanu, jednak nie zapewnia ochrony przed utratą danych na poziomie dysku. Przywracanie systemu działa na założeniu, że system operacyjny może zostać naprawiony, ale nie zabezpiecza fizycznych danych przechowywanych na dyskach. W przypadku uszkodzenia dysku twardego, dane mogą zostać trwale utracone, a punkt przywracania nie będzie w stanie ich uratować. Przechowywanie danych na innym dysku niż systemowy może pomóc w organizacji danych, ale nie zapewnia automatycznej redundancji, co oznacza, że jeśli inny dysk ulegnie awarii, dane również mogą zostać utracone. Konfiguracja automatycznego wykonywania kopii zapasowej jest korzystna, ale nie zastępuje mechanizmów ochrony danych, takich jak RAID. Kopie zapasowe są kluczowe, ale proces ich wykonywania może być przerywany, co prowadzi do sytuacji, w której najnowsze dane nie są zabezpieczone. Dlatego poleganie wyłącznie na kopiach zapasowych bez implementacji systemów RAID może być mylnym podejściem. W kontekście zapewnienia zarówno wydajności, jak i niezawodności, kluczowym jest zastosowanie technologii RAID jako fundamentu zarządzania danymi, a nie jedynie dodatkowego środka zabezpieczającego.

Pytanie 5

Urządzenie sieciowe, które widoczna jest na ilustracji, to

Ilustracja do pytania
A. przełącznik
B. firewall
C. router
D. konwerter mediów
Pierwszym błędnym podejściem jest zaklasyfikowanie urządzenia jako konwertera mediów. Konwertery mediów są specjalistycznymi urządzeniami stosowanymi do zamiany jednego typu medium transmisyjnego na inny, np. z miedzianego przewodu Ethernet na światłowód. Nie zarządzają one ruchem sieciowym na poziomie IP, jak to robią routery. Konwertery mediów działają na warstwie fizycznej modelu OSI, co wyklucza ich jako odpowiedź w tym przypadku. Innym błędnym rozważaniem jest uznanie urządzenia za firewall. Firewalle działają na różnych poziomach modelu OSI, ale ich podstawowym zadaniem jest filtrowanie ruchu i ochrona sieci przed nieautoryzowanym dostępem. Chociaż niektóre nowoczesne routery mogą mieć wbudowane funkcje firewalla, ich główną funkcją jest routing, a nie zabezpieczanie sieci. Przełącznik natomiast operuje na drugiej warstwie modelu OSI i jego zadaniem jest przekazywanie ramek danych w obrębie jednej sieci lokalnej na podstawie adresów MAC. Przełączniki nie zarządzają ruchem między różnymi sieciami, co jest kluczową funkcją routera. Wybór innych odpowiedzi niż router wynika z nieporozumienia dotyczącego funkcji poszczególnych urządzeń sieciowych oraz ich miejsca w infrastrukturze sieciowej, co jest fundamentalną wiedzą w dziedzinie IT.

Pytanie 6

Komunikat o błędzie KB/Interface, wyświetlany na monitorze komputera podczas BIOS POST firmy AMI, wskazuje na problem

A. baterii CMOS
B. sterownika klawiatury
C. pamięci GRAM
D. rozdzielczości karty graficznej
Ten komunikat KB/Interface error, który widzisz na ekranie, to sygnał, że coś jest nie tak z klawiaturą. Kiedy uruchamiasz komputer, BIOS robi parę testów, żeby sprawdzić, czy klawiatura działa i jest dobrze podłączona. Jak jej nie znajdzie, to pojawia się ten błąd. To może być spowodowane różnymi rzeczami, na przykład uszkodzonym kablem, złym portem USB albo samą klawiaturą. Klawiatura jest super ważna, bo bez niej nie da się korzystać z komputera i przejść dalej, więc trzeba to naprawić. Na początek warto sprawdzić, czy kabel jest dobrze wpięty, a potem spróbować innego portu USB lub użyć innej klawiatury, żeby sprawdzić, czy to nie sprzęt. Fajnie jest też pamiętać o aktualizacji BIOS-u, bo to może pomóc w lepszym rozpoznawaniu urządzeń.

Pytanie 7

Symbol "LGA 775" obecny w dokumentacji technicznej płyty głównej wskazuje na typ gniazda dla procesorów:

A. których obudowa zawiera pola dotykowe
B. które mają mniej połączeń zasilających niż gniazdo dla procesorów w obudowie PGA
C. które są zgodne z szyną systemową o maksymalnej częstotliwości taktowania do 1 333 MHz
D. których obudowa zawiera piny
Stwierdzenie, że 'LGA 775' odnosi się do procesorów, których obudowa posiada piny, jest nieprawidłowe, ponieważ koncept pinu w kontekście LGA odnosi się do technologii PGA, gdzie procesor ma wystające piny, które wchodzą w gniazdo na płycie głównej. W przypadku LGA, procesor jest płaski i posiada pola dotykowe, co eliminuje wiele problemów związanych z mechanicznym uszkodzeniem pinów. Wybór gniazda LGA 775 ma swoje uzasadnienie w potrzebie zwiększenia niezawodności połączeń oraz prostoty montażu. Kolejna nieścisłość dotyczy połączeń zasilających. W rzeczywistości LGA 775 obsługuje standardowe połączenia zasilające, które są wystarczające dla większości procesorów z tej serii, a stwierdzenie, że obudowy te mają mniej połączeń zasilających niż ich odpowiedniki w technologii PGA jest mylące. To zróżnicowanie w konstrukcji gniazd nie wpływa bezpośrednio na efektywność zasilania procesora, lecz na sposób, w jaki procesor łączy się z płytą główną. Warto również zwrócić uwagę na częstotliwość szyny systemowej. Podczas gdy LGA 775 obsługuje procesory z różnymi częstotliwościami taktowania, twierdzenie, że gniazdo to ogranicza się do częstotliwości 1 333 MHz, jest zbyt ogólne, ponieważ różne modele procesorów mogą współpracować z szyną systemową o różnych prędkościach, co było istotne w kontekście rozwoju technologii oraz zastosowań w standardowych komputerach i zaawansowanych stacjach roboczych.

Pytanie 8

Jaka jest binarna reprezentacja adresu IP 192.168.1.12?

A. 11000100,10101010,00000101,00001001
B. 11000010,10101100,00000111,00001101
C. 11000000.10101000,00000001,00001100
D. 11000001,10111000,00000011,00001110
Adres IP 192.168.1.12 w zapisie binarnym ma postać 11000000.10101000.00000001.00001100. Aby zrozumieć, jak dokonano tej konwersji, należy znać zasady przekształcania liczb dziesiętnych na system binarny. Każda z czterech części adresu IP (octetów) jest przekształcana osobno. W przypadku 192, jego binarna reprezentacja to 11000000, co uzyskuje się przez dodawanie kolejnych potęg liczby 2: 128 + 64 = 192. Następnie 168 zamienia się na 10101000, ponieważ 128 + 32 + 8 = 168. Kolejny octet, 1, jest po prostu 00000001, a ostatni, 12, to 00001100. W praktyce, znajomość binarnego zapisu adresu IP jest niezbędna w sieciach komputerowych, zwłaszcza przy konfiguracji urządzeń sieciowych czy diagnostyce problemów z komunikacją. Ważne jest również, aby zrozumieć, że te adresy IP są częścią standardu IPv4, który jest powszechnie stosowany w internecie oraz w sieciach lokalnych. Znajomość konwersji między systemami liczbowymi jest podstawową umiejętnością każdego specjalisty IT, co znacząco ułatwia pracę z sieciami oraz zabezpieczeniami.

Pytanie 9

ARP (Adress Resolution Protocol) to protokół, który pozwala na przekształcenie adresu IP na

A. adres MAC
B. nazwa systemu
C. nazwa domeny
D. adres e-mail
ARP (Address Resolution Protocol) jest kluczowym protokołem w sieciach komputerowych, który umożliwia odwzorowanie adresu IP na adres sprzętowy (MAC) urządzeń w lokalnej sieci. Każde urządzenie w sieci ma unikalny adres MAC, który jest niezbędny do przesyłania danych na poziomie warstwy łącza danych w modelu OSI. Gdy urządzenie chce wysłać pakiet danych do innego urządzenia, najpierw musi znać jego adres MAC, a protokół ARP dostarcza tej informacji. Przykładem użycia ARP jest sytuacja, gdy komputer chce nawiązać połączenie z drukarką w sieci. Komputer wysyła zapytanie ARP z prośbą o adres MAC przypisany do określonego adresu IP drukarki, a urządzenie odpowiada swoim adresem MAC. ARP jest integralną częścią protokołów internetowych i jest używany w praktycznie każdej sieci lokalnej. Zgodnie z dobrymi praktykami branżowymi, administratorzy sieci powinni regularnie monitorować i aktualizować tabele ARP, aby zapewnić prawidłowe odwzorowanie adresów i zwiększyć bezpieczeństwo sieci.

Pytanie 10

Najwyższą prędkość transmisji danych w sieciach bezprzewodowych zapewnia standard

A. 802.11 n
B. 802.11 a
C. 802.11 g
D. 802.11 b
Standardy 802.11 a, b i g, mimo że odgrywają ważną rolę w historii sieci bezprzewodowych, mają istotne ograniczenia w kontekście prędkości transmisji danych i technologii, które oferują. Standard 802.11 a, wprowadzony w 1999 roku, działa w paśmie 5 GHz i umożliwia osiąganie prędkości do 54 Mb/s. Choć jego wyższa częstotliwość pozwala na mniejsze zakłócenia, ogranicza zasięg i przebijalność sygnału przez przeszkody. Z kolei standard 802.11 b, również z 1999 roku, działa w paśmie 2,4 GHz i oferuje prędkości do 11 Mb/s, co czyni go znacznie wolniejszym. Jest także bardziej podatny na zakłócenia od innych urządzeń, takich jak mikrofalówki czy telefony bezprzewodowe. Standard 802.11 g, wprowadzony w 2003 roku, poprawił sytuację, osiągając prędkości do 54 Mb/s, ale nadal korzystał z pasma 2,4 GHz, co wiązało się z tymi samymi problemami zakłóceń. Użytkownicy, którzy wybierają te starsze standardy, mogą spotkać się z ograniczeniami w wydajności sieci, szczególnie w środowiskach, gdzie wiele urządzeń korzysta z pasma 2,4 GHz, co zwiększa ryzyko kolizji oraz spadku prędkości. Zrozumienie różnic między tymi standardami jest kluczowe dla efektywnego projektowania i wdrażania sieci bezprzewodowych, aby zaspokoić rosnące potrzeby użytkowników w zakresie prędkości i stabilności połączeń.

Pytanie 11

W systemie Linux polecenie chown służy do

A. regeneracji systemu plików
B. zmiany właściciela pliku
C. przemieszczania pliku
D. modyfikacji parametrów pliku
Przeniesienie pliku, zmiana parametrów pliku i naprawa systemu plików to działania, które nie są związane z funkcją polecenia chown. Przeniesienie pliku najczęściej realizowane jest za pomocą polecenia mv, które przemieszcza plik z jednego miejsca w systemie do innego, co nie ma nic wspólnego ze zmianą właściciela. Z kolei zmiana parametrów pliku, takich jak atrybuty czy uprawnienia, jest realizowana przez polecenia chmod lub chattr, które nie dotyczą właściciela pliku. Ponadto, naprawa systemu plików to zadanie, które wymaga narzędzi takich jak fsck, które skanowałyby i naprawiały błędy w strukturze plików. Przekonanie, że chown może pełnić te funkcje, może wynikać z niepełnej wiedzy na temat zadań różnych poleceń w Linuxie, co jest powszechnym błędem wśród mniej doświadczonych użytkowników. Kluczowe jest rozróżnianie tych funkcji, aby skutecznie zarządzać systemem plików i zapewnić jego bezpieczeństwo oraz prawidłowe działanie.

Pytanie 12

Użytkownik systemu Linux, który pragnie usunąć konto innego użytkownika wraz z jego katalogiem domowym, powinien wykonać polecenie

A. sudo userdel nazwa_użytkownika
B. sudo userdel -r nazwa_użytkownika
C. userdel nazwa_użytkownika
D. userdel -d nazwa_użytkownika
Odpowiedź 'sudo userdel -r nazwa_użytkownika' jest jak najbardziej na miejscu. Używasz polecenia 'userdel' z przełącznikiem '-r', co pozwala na usunięcie konta użytkownika oraz wszystkich jego plików w katalogu domowym. To ważne, bo bez 'sudo' nie dałbyś rady tego zrobić, a standardowy użytkownik nie ma odpowiednich uprawnień do usuwania kont innych ludzi. W przypadku systemów Unix/Linux ważne jest, żeby do takich operacji mieć odpowiednie prawa administracyjne. To polecenie może się przydać, gdy na przykład administrator musi wyczyścić konto kogoś, kto już nie pracuje w firmie albo gdy konto było używane do nieautoryzowanego dostępu. Dobrze też pamiętać o zrobieniu kopii zapasowej danych przed usunięciem konta, żeby nic ważnego nie przepadło. Dodatkowo, 'userdel' super się sprawdza w skryptach, więc może być naprawdę pomocne w codziennej pracy administratora.

Pytanie 13

Jaką topologię fizyczną sieci ukazuje przedstawiony rysunek?

Ilustracja do pytania
A. Pełnej siatki
B. Podwójnego pierścienia
C. Gwiazdy
D. Magistrali
Topologia gwiazdy to jedna z najczęściej używanych struktur w sieciach komputerowych. W tej topologii wszystkie urządzenia są podłączone do centralnego punktu, którym zazwyczaj jest switch lub hub. Każde z urządzeń ma swój własny kabel, co oznacza, że jeśli jeden z kabli się uszkodzi, to reszta sieci dalej działa. To jest super ważne, bo łatwo można zlokalizować problem. W praktyce, topologia gwiazdy jest często wykorzystywana w sieciach lokalnych LAN, bo umożliwia łatwe dodawanie nowych urządzeń bez zakłócania działania już działających. Myślę, że dużą zaletą tej struktury jest to, że standardy takie jak Ethernet korzystają z gwiazdy, co zwiększa jej wydajność i niezawodność. Dodatkowo, cała komunikacja przez centralny punkt pozwala na lepsze monitorowanie dostępu i bezpieczeństwa. Tak więc, można powiedzieć, że to naprawdę elastyczne rozwiązanie.

Pytanie 14

Jak wygląda sekwencja w złączu RJ-45 według normy TIA/EIA-568 dla zakończenia typu T568B?

A. Biało-brązowy, brązowy, biało-pomarańczowy, pomarańczowy, biało-zielony, niebieski, biało-niebieski, zielony
B. Biało-pomarańczowy, pomarańczowy, biało-zielony, niebieski, biało-niebieski, zielony, biało-brązowy, brązowy
C. Biało-zielony, zielony, biało-pomarańczowy, pomarańczowy, niebieski, biało-niebieski, biało-brązowy, brązowy
D. Biało-niebieski, niebieski, biało-brązowy, brązowy, biało-zielony, zielony, biało-pomarańczowy, pomarańczowy
Odpowiedź jest zgodna z normą TIA/EIA-568, która definiuje standardy okablowania sieciowego, w tym kolejność przewodów dla zakończenia typu T568B. W tej konfiguracji sekwencja przewodów zaczyna się od biało-pomarańczowego, następnie pomarańczowy, a potem biało-zielony, niebieski, biało-niebieski, zielony, biało-brązowy i na końcu brązowy. Zastosowanie właściwej kolejności przewodów jest kluczowe dla zapewnienia poprawnej komunikacji w sieciach Ethernet. Każdy przewód odpowiada za przesyłanie sygnałów w określony sposób, a ich niewłaściwe ułożenie może prowadzić do problemów z transmisją danych, takich jak zakłócenia, utrata pakietów czy zmniejszenie prędkości połączenia. W praktyce, prawidłowe zakończenie kabli RJ-45 według T568B jest standardem w wielu instalacjach sieciowych, co zapewnia interoperacyjność urządzeń oraz ułatwia przyszłe modyfikacje i konserwację sieci. Dodatkowo, znajomość tej normy jest istotna dla specjalistów zajmujących się projektowaniem i wdrażaniem infrastruktury sieciowej, co czyni ją niezbędnym elementem ich kompetencji zawodowych.

Pytanie 15

Który typ drukarki stosuje metodę, w której stały barwnik jest przenoszony z taśmy na papier odporny na wysoką temperaturę?

A. Laserowa
B. Atramentowa
C. Termiczna
D. Termosublimacyjna
Drukarki laserowe działają na zasadzie elektrostatycznego naładowania tonera, który jest przenoszony na papier, a następnie utrwalany przez wysoką temperaturę. To podejście charakteryzuje się szybkością i wydajnością, ale nie wykorzystuje sublimacji barwnika, co czyni je mniej odpowiednim do uzyskiwania intensywnych kolorów czy płynnych przejść tonalnych, jak to ma miejsce w przypadku druku termosublimacyjnego. Z kolei drukarki termiczne stosują technologię, która polega na podgrzewaniu specjalnego papieru, co prowadzi do reakcji chemicznych w jego strukturze i w rezultacie do powstania obrazu. Pomimo że ta technika jest stosunkowo tania i szybka, generuje wydruki o ograniczonej trwałości, co sprawia, że nie nadaje się do aplikacji, które wymagają wysokiej jakości i długowieczności. Drukarki atramentowe dysponują systemem drobnych dysz, które nanoszą atrament na papier, co pozwala na uzyskanie złożonych obrazów, ale ich efektywność w generowaniu trwałych i odpornych na czynniki zewnętrzne wydruków jest ograniczona w porównaniu do technologii termosublimacyjnej. Wybierając odpowiednią technologię druku, warto zrozumieć różnice pomiędzy tymi metodami, aby uniknąć błędnych wyborów, które mogą prowadzić do nieefektywności oraz niezadowolenia z jakości uzyskiwanych wydruków. W praktyce, wybór powinien opierać się na zastosowaniu i wymaganiach dotyczących trwałości oraz jakości wydruków.

Pytanie 16

Aby poprawić bezpieczeństwo zasobów sieciowych, administrator sieci komputerowej w firmie otrzymał zadanie podziału aktualnej lokalnej sieci komputerowej na 16 podsieci. Obecna sieć posiada adres IP 192.168.20.0 i maskę 255.255.255.0. Jaką maskę sieci powinien zastosować administrator?

A. 255.255.255.224
B. 255.255.255.192
C. 255.255.255.240
D. 255.255.255.248
Aby podzielić sieć 192.168.20.0/24 na 16 podsieci, należy zrozumieć, jak działa maskowanie sieciowe. Maskę /24 (255.255.255.0) można przekształcić, aby uzyskać więcej podsieci poprzez pożyczenie bitów z części hosta. W przypadku 16 podsieci potrzebujemy 4 dodatkowych bitów (2^4 = 16). Stąd, nowa maska będzie miała 28 bitów (24 bity sieci + 4 bity na podsieci), co daje nam maskę 255.255.255.240. Dzięki temu każda z podsieci będzie miała 16 adresów IP, z czego 14 będzie dostępnych dla hostów (adresy 0 i 15 w każdej podsieci są zarezerwowane na adres sieci i rozgłoszeniowy). Przykładowo, pierwsza podsieć będzie miała adresy od 192.168.20.0 do 192.168.20.15, druga od 192.168.20.16 do 192.168.20.31 itd. Stosowanie odpowiednich masek jest kluczowe dla efektywnego zarządzania zasobami sieciowymi oraz optymalizacji wykorzystania adresów IP, co jest zgodne z najlepszymi praktykami w branży IT.

Pytanie 17

Aby poprawić bezpieczeństwo prywatnych danych sesji na stronie internetowej, zaleca się dezaktywację w ustawieniach przeglądarki

A. blokady okienek wyskakujących
B. blokady działania skryptów
C. informowania o wygasłych certyfikatach
D. funkcji zapisywania haseł
Funkcja zapamiętywania haseł w przeglądarkach to rzeczywiście wygodne rozwiązanie, ale może być dość ryzykowne dla naszej prywatności. Kiedy przeglądarka zapamiętuje hasła, zazwyczaj są one w jakiejś formie zabezpieczone, ale w przypadku, gdy ktoś dostanie się do naszego komputera, te hasła da się odszyfrować. Jak się okazuje, jeżeli ktoś fizycznie dostaje się do naszego sprzętu, to bez problemu może przejąć kontrolę nad naszymi zapisanymi danymi, w tym hasłami. Teraz, kiedy patrzymy na różne badania, widać, że ataki phishingowe mogą być skuteczniejsze, jeżeli użytkownicy polegają na funkcjach zapamiętywania haseł, ponieważ stają się mniej ostrożni w stosunku do prób kradzieży danych. Dlatego moim zdaniem warto pomyśleć o korzystaniu z menedżerów haseł – one oferują znacznie lepsze zabezpieczenia. A do tego dobrze byłoby wprowadzić podwójną autoryzację przy ważniejszych kontach. To wszystko przypomina mi o potrzebie świadomego zarządzania swoimi danymi, na przykład regularnie zmieniając hasła i nie zapisując ich w przeglądarkach. To jest zgodne z tym, co mówią standardy bezpieczeństwa, jak NIST Special Publication 800-63.

Pytanie 18

Aby utworzyć ukryty, udostępniony folder w systemie Windows Serwer, należy dodać na końcu jego nazwy odpowiedni znak

A. %
B. @
C. &
D. $
Wybór symbolu '@' jako końca nazwy katalogu wynika z nieporozumienia dotyczącego funkcji tego znaku w systemie Windows. W rzeczywistości '@' nie ma żadnego wpływu na widoczność folderów ani ich udostępnienie w sieci. W kontekście programowania i administracji systemami, '@' jest często używane w różnych sytuacjach, na przykład przy definiowaniu adresów e-mail, ale jego zastosowanie w kontekście nazwy katalogów w systemie Windows jest błędne. Z kolei użycie '%' w nazwie folderu jest również nieprawidłowe, gdyż znak ten jest używany jako symbol zmiennych środowiskowych w systemie Windows, co może prowadzić do nieoczekiwanych rezultatów podczas próby dostępu do tak nazwanych folderów. Dodatkowo, '&' jako znak końcowy dla folderu nie ma praktycznego zastosowania w kontekście ukrywania czy udostępniania zasobów; w systemach Unix-like może on mieć inne znaczenia, ale w Windows jego zastosowanie w nazwach katalogów jest mylące. Wybierając niewłaściwe symbole, użytkownicy mogą nieświadomie stwarzać problemy z dostępem do danych lub ich bezpieczeństwem. Kluczowe jest zrozumienie specyfiki znaków stosowanych w systemie operacyjnym, aby efektywnie zarządzać zasobami oraz zapewnić ich odpowiednie zabezpieczenie.

Pytanie 19

Bęben działający na zasadzie reakcji fotochemicznych jest wykorzystywany w drukarkach

A. termosublimacyjnych
B. atramentowych
C. laserowych
D. igłowych
Bęben światłoczuły jest kluczowym elementem w drukarkach laserowych, gdyż odgrywa fundamentalną rolę w procesie obrazowania. Jego powierzchnia jest pokryta materiałem światłoczułym, który reaguje na światło laserowe. Gdy laser skanuje bęben, naświetla go w określonych miejscach, tworząc na jego powierzchni obraz do wydruku. Następnie na bębnie osadza się toner, który jest przyciągany do naświetlonych obszarów. W procesie drukowania, bęben obraca się i przenosi toner na papier, gdzie jest następnie utrwalany przez działanie wysokiej temperatury. To podejście zapewnia wysoką jakość wydruków, doskonałą ostrość detali oraz dużą prędkość drukowania. W praktyce, drukarki laserowe są szeroko stosowane w biurach i środowiskach, gdzie wymagana jest wydajność przy dużych nakładach, co czyni je popularnym wyborem w branży drukarskiej. Dodatkowo, stosowanie bębna w technologii laserowej przyczynia się do mniejszej liczby problemów związanych z zatykanie się papieru, co jest częstym problemem w drukarkach atramentowych.

Pytanie 20

Członkostwo komputera w danej sieci wirtualnej nie może być ustalane na podstawie

A. numeru portu w przełączniku
B. adresu MAC karty sieciowej danego komputera
C. znacznika ramki Ethernet 802.1Q
D. nazwa komputera w sieci lokalnej
Nazwa komputera w sieci lokalnej, zwana także identyfikatorem hosta, jest używana do rozpoznawania urządzenia w danej sieci, ale nie ma bezpośredniego wpływu na przypisanie komputera do konkretnej sieci wirtualnej. Sieci wirtualne, takie jak VLAN (Virtual Local Area Network), są definiowane na podstawie bardziej technicznych atrybutów, jak numer portu przełącznika czy znacznik ramki Ethernet 802.1Q, które są stosowane w infrastrukturze sieciowej. Na przykład, w przypadku VLAN, administratorzy konfigurują porty przełączników, aby przypisać do nich różne sieci wirtualne, co pozwala na izolację ruchu między różnymi segmentami sieci. Z kolei znaczniki Ethernet 802.1Q umożliwiają etykietowanie ramek Ethernet, aby mogły być rozróżnione przez przełączniki w kontekście różnych VLAN-ów. Nazwa komputera jest zatem zbyt ogólną informacją, aby określić jego przynależność do konkretnej sieci wirtualnej.

Pytanie 21

Aby poprawić bezpieczeństwo zasobów sieciowych, administrator sieci komputerowej w firmie został zobowiązany do podziału istniejącej lokalnej sieci komputerowej na 16 podsieci. Pierwotna sieć miała adres IP 192.168.20.0 z maską 255.255.255.0. Jaką maskę sieci powinien zastosować administrator?

A. 255.255.255.248
B. 255.255.255.224
C. 255.255.255.240
D. 255.255.255.192
Wybór maski 255.255.255.240 jest prawidłowy, ponieważ pozwala podzielić sieć 192.168.20.0 na 16 podsieci, zgodnie z wymaganiem administratora. Maska 255.255.255.240 (w notacji CIDR to /28) oznacza, że 4 bity są używane do identyfikacji podsieci, co umożliwia stworzenie 2^4 = 16 podsieci. Każda z tych podsieci ma 16 adresów, z czego 14 jest dostępnych dla hostów (dwa adresy są zarezerwowane – jeden dla identyfikatora sieci, a drugi dla adresu rozgłoszeniowego). W praktyce, podział na podsieci poprawia zarządzanie ruchem sieciowym oraz zwiększa bezpieczeństwo, ograniczając zasięg potencjalnych ataków. W sieciach lokalnych istotne jest stosowanie takich technik jak VLANy oraz segmentacja, co jest zgodne z najlepszymi praktykami w inżynierii sieci. Taki podział umożliwia administratorom lepsze kontrolowanie dostępu do zasobów oraz monitorowanie ruchu w sieci, co jest kluczowe w kontekście bezpieczeństwa IT.

Pytanie 22

Aby umożliwić transfer danych między siecią w pracowni a siecią ogólnoszkolną o innej adresacji IP, należy zastosować

A. switch
B. router
C. hub
D. access point
Przełącznik, koncentrator i punkt dostępowy to urządzenia, które pełnią różne funkcje w sieciach komputerowych, ale nie są one odpowiednie do rozwiązywania problemu wymiany danych pomiędzy sieciami o różnych adresacjach IP. Przełącznik działa na poziomie warstwy 2 modelu OSI i jest odpowiedzialny za przesyłanie ramek w obrębie jednej sieci lokalnej (LAN). Nie zapewnia jednak możliwości routingu między różnymi sieciami, co jest kluczowe w przypadku wymaganej wymiany danych między sieciami o odmiennych adresacjach IP. Koncentrator, będący urządzeniem pasywnym, po prostu przesyła sygnały do wszystkich podłączonych urządzeń, ale nie potrafi zrozumieć i zarządzać adresacją IP. Natomiast punkt dostępowy, chociaż umożliwia bezprzewodowy dostęp do sieci lokalnej, również nie ma funkcji routingu, a jedynie łączy urządzenia w obrębie tej samej sieci. Typowym błędem w myśleniu jest przekonanie, że każde urządzenie sieciowe może pełnić funkcję rutera, podczas gdy każde z nich ma swoją ściśle określoną rolę. Bezpośrednia wymiana danych wymaga zaawansowanego zarządzania trasami, co jest możliwe tylko dzięki ruterom, które są zaprojektowane do pracy w złożonych środowiskach wielosesyjnych i wieloadresowych.

Pytanie 23

Jakie będą całkowite wydatki na materiały potrzebne do stworzenia 20 kabli połączeniowych typu patchcord, z których każdy ma długość 1,5m, jeśli cena 1 metra bieżącego kabla wynosi 1zł, a cena wtyku to 50 gr?

A. 30 zł
B. 50 zł
C. 40 zł
D. 60 zł
Próba obliczenia łącznego kosztu materiałów do wykonania kabli połączeniowych często prowadzi do błędów, które wynikają z niewłaściwego zrozumienia zastosowanych jednostek oraz ilości potrzebnych materiałów. Na przykład, jeśli ktoś błędnie oszacuje ilość kabla, mogą przyjść do wniosku, że 30 zł to wystarczająca kwota tylko za kabel, co jest nieprawidłowe, ponieważ nie uwzględniają dodatkowego kosztu wtyków. Warto również zauważyć, że pomyłki w obliczeniach mogą wynikać z mylnego założenia, że koszt wtyków jest zbyt niski lub został pominięty całkowicie. Ponadto, odpowiedzi takie jak 40 zł, 60 zł czy 30 zł mogą wynikać z przypadkowego dodawania różnych wartości, które nie odpowiadają rzeczywistym potrzebom projektu. Na przykład, osoba mogąca wybrać opcję 60 zł mogła dodać koszt kabla jako 40 zł, myląc jednostki lub nie uwzględniając ilości kabli. Ważne jest, aby przy obliczeniach materiałowych stosować odpowiednie metodyki kosztorysowania oraz mieć na uwadze standardy branżowe, które sugerują dokładne obliczenia i kalkulacje oparte na rzeczywistych potrzebach projektu. Prawidłowe podejście do wyceniania zasobów jest kluczowe dla efektywnego zarządzania budżetem w projektach inżynieryjnych i technologicznych.

Pytanie 24

Jaką topologię fizyczną charakteryzuje zapewnienie nadmiarowych połączeń między urządzeniami sieciowymi?

A. Pierścieniową
B. Magistralną
C. Siatkową
D. Gwiazdkową
Topologia siatki jest uznawana za jedną z najbardziej niezawodnych struktur w sieciach komputerowych, ponieważ zapewnia nadmiarowe połączenia między urządzeniami. W tej topologii każde urządzenie jest zazwyczaj połączone z wieloma innymi, co pozwala na alternatywne trasy przesyłania danych. Taki układ minimalizuje ryzyko awarii, ponieważ nawet jeśli jedno połączenie przestanie działać, dane mogą być przesyłane inną trasą. Przykłady zastosowań topologii siatki obejmują sieci rozległe (WAN) w dużych organizacjach, gdzie niezawodność i możliwość szybkiego przywrócenia łączności są kluczowe. W praktyce, wdrażając tę topologię, należy przestrzegać standardów takich jak IEEE 802.3 dla Ethernetu, co zapewnia kompatybilność i wydajność. Dobrze zaprojektowana sieć siatkowa zwiększa także wydajność dzięki równoległemu przesyłaniu danych, co jest istotne w aplikacjach wymagających dużej przepustowości. W związku z tym, stosowanie topologii siatki w projektach sieciowych jest zgodne z najlepszymi praktykami w branży, co czyni ją preferowanym wyborem dla krytycznych zastosowań.

Pytanie 25

Administrator sieci komputerowej z adresem 192.168.1.0/24 podzielił ją na 8 równych podsieci. Ile adresów hostów będzie dostępnych w każdej z nich?

A. 26
B. 32
C. 30
D. 28
Odpowiedź 30 jest poprawna, ponieważ przy podziale sieci o adresie 192.168.1.0/24 na 8 równych podsieci, musimy najpierw obliczyć, ile bitów jest potrzebnych do reprezentacji 8 podsieci. Używając wzoru 2^n, gdzie n to liczba bitów, odkrywamy, że 2^3 = 8, co oznacza, że potrzebujemy 3 bitów. Zmieniając maskę sieci, pierwotna maska /24 staje się /27 (24 + 3 = 27). Oznacza to, że w każdej podsieci dostępne będą 32 adresy (2^(32-27)=32), z czego dwa adresy są zarezerwowane: jeden dla adresu sieci, a drugi dla adresu rozgłoszeniowego. Pozostaje zatem 32 - 2 = 30 możliwych adresów hostów w każdej z 8 podsieci. Ta wiedza jest kluczowa w administracji sieci, gdzie efektywne zarządzanie adresacją IP pozwala na lepsze wykorzystanie zasobów sieciowych oraz ich skalowalność.

Pytanie 26

Podczas testowania połączeń sieciowych za pomocą polecenia ping użytkownik otrzymał wyniki przedstawione na rysunku. Jakie może być źródło braku odpowiedzi serwera przy pierwszym teście, zakładając, że domena wp.pl ma adres 212.77.100.101?

Ilustracja do pytania
A. Nieobecność adresów serwera DNS w konfiguracji karty sieciowej
B. Brak domyślnej bramy w ustawieniach karty sieciowej
C. Nieprawidłowy adres IP przypisany do karty sieciowej
D. Brak przypisania serwera DHCP do karty sieciowej
Brak adresów serwera DNS w konfiguracji karty sieciowej powoduje, że komputer nie jest w stanie przetłumaczyć nazwy domeny wp.pl na jej odpowiadający adres IP 212.77.100.101. DNS, czyli Domain Name System, jest kluczowym elementem infrastruktury internetowej, który umożliwia przekształcanie czytelnych dla człowieka nazw domen na adresy IP zrozumiałe dla komputerów. Bez poprawnie skonfigurowanych serwerów DNS, komputer nie może skutecznie nawiązać połączenia z serwerem, co skutkuje błędem przy pierwszej próbie użycia polecenia ping. W praktyce wiele systemów operacyjnych umożliwia automatyczne przypisywanie adresów DNS za pomocą DHCP, jednak w przypadku braku odpowiedniego serwera DHCP lub jego nieprawidłowej konfiguracji, użytkownik musi ręcznie wprowadzić adresy DNS. Dobrymi praktykami jest korzystanie z powszechnie dostępnych serwerów DNS, takich jak te dostarczane przez Google (8.8.8.8 i 8.8.4.4), które są znane z wysokiej wydajności i niezawodności. Prawidłowa konfiguracja serwerów DNS jest kluczowa dla stabilnego i szybkiego działania aplikacji sieciowych oraz ogólnego doświadczenia użytkownika w korzystaniu z Internetu.

Pytanie 27

Jak skonfigurować dziennik w systemie Windows Server, aby rejestrować zarówno udane, jak i nieudane próby logowania użytkowników oraz działania na zasobach dyskowych?

A. aplikacji i usług.
B. systemu.
C. zabezpieczeń.
D. ustawień.
Odpowiedź "zabezpieczeń" jest prawidłowa, ponieważ dziennik zabezpieczeń w systemie Windows Server jest miejscem, w którym rejestrowane są wszelkie zdarzenia związane z bezpieczeństwem, w tym próby logowania użytkowników oraz operacje na zasobach dyskowych. Dziennik ten umożliwia administratorom systemów monitorowanie i analizowanie aktywności użytkowników oraz identyfikowanie potencjalnych zagrożeń. Na przykład, udane i nieudane próby logowania mogą dostarczyć informacji o nieautoryzowanym dostępie, a analiza zmian na poziomie zasobów dyskowych może pomóc w wykryciu nadużyć, takich jak nieautoryzowane modyfikacje plików. Dobre praktyki w zakresie bezpieczeństwa informacji, takie jak te określone w normach ISO/IEC 27001, zalecają regularne przeglądanie dzienników zabezpieczeń w celu oceny skuteczności kontroli zabezpieczeń oraz reagowania na incydenty. Właściwe konfigurowanie i monitorowanie dziennika zabezpieczeń to kluczowy element zarządzania bezpieczeństwem w organizacji.

Pytanie 28

Nowe komponenty komputerowe, takie jak dyski twarde czy karty graficzne, są umieszczane w metalizowanych opakowaniach foliowych, których głównym celem jest zabezpieczenie

A. elementów elektronicznych przed ładunkami elektrostatycznymi
B. komponentów przed wilgocią
C. komponentów przed nagłymi zmianami temperatur w trakcie transportu
D. elementów elektronicznych przed promieniowaniem słonecznym
Odpowiedzi, które mówią o wilgoci, temperaturze czy słońcu, nie do końca rozumieją, po co są te metalizowane opakowania. Ochrona przed wilgocią jest ważna, ale to nie jest główny cel takiego pakowania. Często podzespoły komputerowe pakowane są w hermetyczne torebki, które lepiej chronią przed wilgocią. Zmiany temperatury też mogą być problemem, ale te opakowania nie są do tego przystosowane; tutaj lepiej sprawdzają się jakieś izotermiczne kontenery. Jeśli chodzi o światło słoneczne, to może szkodzić materiałom wrażliwym na UV, ale w transporcie podzespołów nie jest to kluczowa kwestia. Największym zagrożeniem są ładunki elektrostatyczne, ale jeżeli nie uwzględniamy ochrony przed innymi czynnikami, to można źle zrozumieć, jak działają normy i procedury pakowania. Dlatego ważne, by w logistyce i produkcji pamiętać o zasadach ochrony przed ESD, żeby nie narażać inwestycji w nowe technologie i utrzymywać dobrą jakość produktów.

Pytanie 29

Które z tych określeń nie odpowiada charakterystyce kabla światłowodowego?

A. ekranowany
B. 12 - włóknowy
C. jednomodowy
D. wielomodowy
Wybór odpowiedzi, które wskazują na "jednomodowy", "wielomodowy" czy "12-włóknowy" jako niepasujące do kabli światłowodowych, opiera się na błędnym zrozumieniu ich konstrukcji i funkcji. Kable światłowodowe są klasyfikowane głównie na podstawie sposobu przesyłania sygnału – jednomodowego lub wielomodowego. Kable jednomodowe, które mają pojedyncze włókno, są idealne do długodystansowego przesyłania sygnału, ponieważ umożliwiają znacznie mniejsze straty optyczne oraz eliminują problemy z rozpraszaniem sygnału. Z kolei kable wielomodowe, które posiadają wiele włókien, są bardziej odpowiednie w zastosowaniach, gdzie odległości są krótsze, a koszt budowy sieci musi być niższy. Określenie "12-włóknowy" odnosi się do liczby włókien w kablu i jest istotnym parametrem dla planowania i projektowania sieci optycznych. Prawidłowe zrozumienie tych klasyfikacji jest kluczowe w kontekście planowania infrastruktury telekomunikacyjnej oraz optymalizacji wydajności sieci. Zatem, każdy z tych terminów jest istotny i ma odpowiednie zastosowanie w kontekście kabli światłowodowych, co pokazuje, że odpowiedzi te nie pasują do postawionego pytania.

Pytanie 30

Jakie jest najbardziej typowe dla topologii gwiazdy?

A. zatrzymanie sieci wskutek awarii terminala
B. centralne zarządzanie siecią
C. niskie zużycie kabli
D. trudności w lokalizacji usterek
Topologia gwiazdy charakteryzuje się tym, że wszystkie węzły sieci są podłączone do centralnego punktu, którym najczęściej jest przełącznik lub koncentrator. Taki układ umożliwia łatwe zarządzanie siecią, ponieważ centralny punkt kontroluje wszystkie połączenia oraz komunikację pomiędzy urządzeniami. W przypadku awarii jednego z terminali, nie wpływa to na działanie pozostałych węzłów, co zwiększa niezawodność całego systemu. Przykładem zastosowania topologii gwiazdy jest sieć lokalna (LAN) w biurze, gdzie wszystkie komputery są podłączone do jednego switcha. Taki sposób organizacji sieci pozwala na łatwą lokalizację problemów, ponieważ można szybko zidentyfikować uszkodzenie konkretnego urządzenia bez wpływu na resztę sieci. Zgodnie z najlepszymi praktykami branżowymi, topologia gwiazdy jest często preferowana w nowoczesnych instalacjach sieciowych, ponieważ łączy w sobie wydajność, łatwość w zarządzaniu oraz bezpieczeństwo.

Pytanie 31

W komputerze zainstalowano nowy dysk twardy o pojemności 8 TB i podzielono go na dwie partycje, z których każda ma 4 TB. Jaki typ tablicy partycji powinien być zastosowany, aby umożliwić takie partycjonowanie?

A. SWAP
B. GPT
C. MBR
D. FAT32
Wybór MBR dla dysku 8 TB to zły pomysł, bo MBR ma sporo ograniczeń, które nie pasują do większych serwerów. To już starsze rozwiązanie i tylko szeregów partycji do 2 TB oraz max cztery podstawowe partycje. Gdy chcesz podzielić dysk na więcej partycji, MBR po prostu nie daje rady. A partycja SWAP to już w ogóle nie to, bo to przestrzeń wymiany, a nie na przechowywanie danych użytkowników. FAT32 też nie jest w tym wypadku dobrym wyborem, bo to system plików, a nie typ tablicy partycji. Ma też swoje ograniczenia, np. 4 GB na plik. Jak się wybierze złą tablicę partycji, to potem mogą być kłopoty przy instalacji systemu, z zarządzaniem danymi i nawet z utratą danych. Trzeba to dobrze ogarnąć, żeby nie było problemów w przyszłości.

Pytanie 32

W klasycznym adresowaniu, adres IP 74.100.7.8 przyporządkowany jest do

A. klasy A
B. klasy C
C. klasy B
D. klasy D
Adres IP 74.100.7.8 należy do klasy A, ponieważ pierwsza okteta (74) mieści się w zakresie od 1 do 126. Klasa A jest zarezerwowana dla dużych sieci i pozwala na przydzielenie znacznej liczby adresów IP, co czyni ją idealną dla organizacji, które potrzebują dużej liczby hostów. W adresowaniu klasowym, pierwsza okteta definiuje klasę adresu: klasa A (1-126), klasa B (128-191), klasa C (192-223), klasa D (224-239) i klasa E (240-255). Przykładowo, organizacje takie jak duże korporacje czy dostawcy usług internetowych często korzystają z klasy A, aby przydzielić adresy IP dla swoich serwerów i urządzeń. Znajomość klasyfikacji adresów IP jest istotna w kontekście routingu i zarządzania sieciami, gdyż pozwala na efektywne planowanie i wdrażanie architektury sieciowej, a także na minimalizację problemów związanych z konfliktem adresów. Klasa A wspiera również możliwość zastosowania CIDR (Classless Inter-Domain Routing), co umożliwia bardziej elastyczne zarządzanie przestrzenią adresową.

Pytanie 33

ACPI to akronim, który oznacza

A. program, który umożliwia znalezienie rekordu rozruchowego systemu
B. zestaw połączeń łączących równocześnie kilka elementów z możliwością komunikacji
C. zaawansowany interfejs zarządzania konfiguracją i energią
D. test weryfikacji funkcjonowania podstawowych komponentów
Wybór innych odpowiedzi wynika z tego, że źle rozumiesz funkcję ACPI i jego zastosowania. Na przykład, pierwsza opcja, która mówi o testowaniu działania podzespołów, dotyczy procesów diagnostycznych. To zajmują się inne narzędzia, jak POST (Power-On Self-Test). ACPI nie testeruje sprzętu, ale zajmuje się zarządzaniem energią i konfiguracją. Kolejna odpowiedź, która odnosi się do szukania rekordu rozruchowego systemu, bardziej dotyczy bootowania i rozruchu systemu, co też nie jest zadaniem ACPI. Tak naprawdę, ACPI działa na wyższym poziomie, integrując różne aspekty zarządzania energią, ale nie zajmuje się bezpośrednio bootowaniem. Ostatnia odpowiedź, mówiąca o ścieżkach łączących komponenty, też wprowadza w błąd, bo to nie ma związku z zarządzaniem energią ani konfiguracją, tylko dotyczy architektury systemów komputerowych. Generalnie, te błędne odpowiedzi pokazują, jak typowo myślimy o sprzęcie i oprogramowaniu, nie zwracając uwagi na to, jak ważne są standardy zarządzania energią, co prowadzi do nieporozumień w tym, jak różne komponenty działają i współpracują w systemie.

Pytanie 34

Transmisję danych bezprzewodowo realizuje interfejs

A. IrDA
B. HDMI
C. LFH60
D. DVI
IrDA (Infrared Data Association) to standard bezprzewodowej transmisji danych wykorzystujący podczerwień. Jego główną zaletą jest możliwość wymiany informacji między urządzeniami, takimi jak telefony komórkowe, laptopy czy drukarki, w odległości do kilku metrów. IrDA jest szczególnie ceniona za niskie zużycie energii oraz prostotę wdrożenia, co czyni ją idealnym rozwiązaniem w urządzeniach mobilnych. W praktyce, standard ten był szeroko stosowany w urządzeniach osobistych do przesyłania plików, jak zdjęcia czy kontakty, bez potrzeby stosowania kabli. Jednakże, z biegiem lat, technologia ta została w dużej mierze zastąpiona przez inne metody przesyłania danych, takie jak Bluetooth czy Wi-Fi. Warto zaznaczyć, że IrDA wymaga bezpośredniej linii wzroku między urządzeniami, co może ograniczać jej zastosowanie w niektórych sytuacjach. Mimo to, ze względu na swoją prostotę i efektywność w określonych warunkach, IrDA pozostaje ważnym standardem w historii technologii komunikacyjnej.

Pytanie 35

Czym nie jest program antywirusowy?

A. AVAST
B. AVG
C. PacketFilter
D. NOD32
PacketFilter to technologia i narzędzie służące do analizy i filtrowania ruchu sieciowego na podstawie określonych reguł. Nie jest to program antywirusowy, ponieważ jego głównym celem nie jest ochrona przed szkodliwym oprogramowaniem, lecz zarządzanie i kontrolowanie ruchu w sieci. W praktyce PacketFilter może być wykorzystywany w zaporach sieciowych (firewallach) do blokowania lub przepuszczania pakietów danych w zależności od ich źródła, celu, protokołu czy portu. Przykładem użycia może być stworzenie reguł w firewallu, które blokują wszystkie pakiety przychodzące na port 80, co jest standardowym portem dla HTTP, aby zabezpieczyć sieć przed nieautoryzowanym dostępem. W branży IT oraz w zarządzaniu bezpieczeństwem sieciowym, standardem stało się stosowanie wielowarstwowej ochrony, łączącej różne podejścia, w tym zapory ogniowe, systemy wykrywania włamań i programy antywirusowe. Wiedza o różnych technologiach, takich jak PacketFilter, jest zatem kluczowa dla skutecznej ochrony zasobów informatycznych.

Pytanie 36

Kable światłowodowe nie są szeroko używane w lokalnych sieciach komputerowych z powodu

A. wysokich kosztów elementów pośredniczących w transmisji
B. niskiej odporności na zakłócenia elektromagnetyczne
C. niskiej przepustowości
D. znacznych strat sygnału podczas transmisji
Kable światłowodowe są uznawane za zaawansowane rozwiązanie w zakresie transmisji danych, jednak ich zastosowanie w lokalnych sieciach komputerowych bywa ograniczone z powodu dużych kosztów elementów pośredniczących w transmisji. Elementy te, takie jak przełączniki światłowodowe, konwertery mediów oraz panele krosowe, są droższe niż ich odpowiedniki dla kabli miedzianych. W praktyce, przy niewielkim zasięgu i ograniczonej liczbie urządzeń w lokalnych sieciach, inwestycja w światłowody nie zawsze jest uzasadniona ekonomicznie. Niemniej jednak, w przypadkach wymagających wysokiej przepustowości i niskich opóźnień, takich jak centra danych czy sieci szkieletowe, kable światłowodowe wykazują swoje zalety. Stanowią one standard w projektowaniu nowoczesnych rozwiązań telekomunikacyjnych, zapewniając nie tylko odpowiednią przepustowość, ale również znacznie mniejsze straty sygnału na dużych odległościach, co czyni je nieprzecenionym elementem infrastruktury IT.

Pytanie 37

Jakie urządzenie jest używane do mocowania pojedynczych żył kabla miedzianego w złączach?

Ilustracja do pytania
A. szukacz kabli
B. obcinacz izolacji
C. zaciskarka RJ45
D. nóż KRONE
Zaciskarka RJ45 służy do zarabiania wtyków RJ45, typowo stosowanych w instalacjach sieciowych Ethernet. Proces ten polega na zaciskaniu końcówek przewodów na stykach wtyku, co nie znajduje zastosowania przy mocowaniu pojedynczych żył w złączach typu IDC. Szukacz kabli jest narzędziem diagnostycznym, którego główną funkcją jest identyfikacja i śledzenie przebiegu kabli w ścianach lub innych trudno dostępnych miejscach, co nie ma związku z fizycznym mocowaniem przewodów. Obcinacz izolacji z kolei, jak sama nazwa wskazuje, wykorzystywany jest do usuwania zewnętrznej powłoki izolacyjnej z kabli, nie zaś do ich mocowania w złączach. Błędne postrzeganie funkcji tych narzędzi często wynika z niedostatecznego zrozumienia ich specjalistycznych zastosowań oraz różnych etapów pracy z instalacjami kablowymi. Kluczowe jest rozpoznanie narzędzi właściwych dla danego zadania w telekomunikacji oraz ich prawidłowe użycie, co bezpośrednio wpływa na jakość i trwałość instalacji. Prawidłowe przypisanie narzędzi do ich funkcji operacyjnych jest niezbędne dla efektywnej pracy technicznej w każdej instalacji sieciowej.

Pytanie 38

Po wykonaniu podanego polecenia w systemie Windows: ```net accounts /MINPWLEN:11``` liczba 11 zostanie przydzielona dla

A. maksymalnej ilości dni ważności konta.
B. minimalnej liczby minut, przez które użytkownik może być zalogowany.
C. maksymalnej liczby dni pomiędzy zmianami haseł użytkowników.
D. minimalnej liczby znaków w hasłach użytkowników.
Wartość 11 ustawiona przez komendę 'net accounts /MINPWLEN:11' odnosi się do minimalnej liczby znaków, które muszą być zawarte w hasłach użytkowników systemu Windows. Praktyka ustalania minimalnej długości haseł jest kluczowym elementem polityki bezpieczeństwa, mającym na celu ochronę kont użytkowników przed atakami typu brute force, w których hakerzy próbują odgadnąć hasła przez generowanie różnych kombinacji. Zgodnie z najlepszymi praktykami w zakresie bezpieczeństwa, zaleca się, aby hasła miały co najmniej 12 znaków, co dodatkowo zwiększa ich odporność na przełamanie. Ustawienie minimalnej długości hasła na 11 znaków jest krokiem w kierunku zapewnienia użytkownikom większego poziomu bezpieczeństwa. Warto pamiętać, że im dłuższe i bardziej złożone hasło, tym trudniej je złamać, dlatego organizacje powinny regularnie aktualizować polityki haseł oraz edukować użytkowników na temat znaczenia silnych haseł oraz stosowania menedżerów haseł.

Pytanie 39

Ile domen kolizyjnych znajduje się w sieci przedstawionej na rysunku?

Ilustracja do pytania
A. 1
B. 6
C. 4
D. 5
Istnieje wiele błędnych przekonań dotyczących liczby domen kolizyjnych w sieciach złożonych z różnych urządzeń sieciowych. Jednym z nich jest założenie że każde urządzenie takie jak komputer czy port w urządzeniu automatycznie tworzy nową domenę kolizyjną co jest nieprawidłowe w kontekście działania huba. Huby działają na poziomie warstwy fizycznej i nie mają zdolności do zarządzania kolizjami w sieci. Wszystkie urządzenia podłączone do huba współdzielą tę samą domenę kolizyjną co oznacza że kolizje mogą występować w dowolnym momencie gdy dwa urządzenia próbują przesyłać dane jednocześnie. Z kolei switche rozdzielają domeny kolizyjne na poziomie warstwy drugiej co oznacza że każde urządzenie podłączone do switcha ma swoją własną domenę kolizyjną. Stąd myślenie że switch nie wpływa na liczbę domen kolizyjnych jest błędne. Nieprawidłowe jest również przypisywanie kolizji jedynie do problemów z przepustowością ponieważ wpływa to także na opóźnienia i niezawodność komunikacji. Właściwe zrozumienie topologii sieci i funkcji urządzeń takich jak huby i switche jest kluczowe dla projektowania efektywnych architektur sieciowych które minimalizują wpływ kolizji i optymalizują wydajność sieci.

Pytanie 40

Jak wiele urządzeń może być podłączonych do interfejsu IEEE1394?

A. 55
B. 63
C. 1
D. 8
Odpowiedzi sugerujące, że można podłączyć 1, 8 lub 55 urządzeń do portu IEEE 1394 są nieprawidłowe i wynikają z pewnych nieporozumień dotyczących architektury tej technologii. Przykładowo, odpowiedź wskazująca na 1 urządzenie jest mylna, ponieważ IEEE 1394 jest systemem zbudowanym na zasadzie topologii magistrali, co oznacza, że porty mogą obsługiwać wiele urządzeń jednocześnie. Odpowiedź o 8 urządzeniach może wynikać z błędnej interpretacji maksymalnej liczby urządzeń w niektórych wariantach zastosowań, jednak standardowy limit wynosi 63. Z kolei podanie 55 jako liczby podłączonych urządzeń również jest mylące, ponieważ nie odnosi się do normy, która jasno określa górny limit. Takie pomyłki mogą wynikać z dezorientacji związanej z innymi standardami komunikacyjnymi lub z błędnych założeń dotyczących architektury sieciowej. W rzeczywistości, połączenie tak dużej liczby urządzeń jest możliwe dzięki zastosowaniu adresowania i identyfikacji każdego z nich w sieci, co stanowi kluczowy element funkcjonowania IEEE 1394. Zrozumienie tych zasad jest istotne dla inżynierów i techników pracujących z urządzeniami elektronicznymi, aby efektywnie projektować i integrować systemy z wieloma komponentami.