Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 20 czerwca 2025 18:56
  • Data zakończenia: 20 czerwca 2025 19:44

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Tempomat to system, który pozwala na utrzymanie stałej prędkości pojazdu. Który element pełni rolę jego części roboczej?

A. Modulator hydrauliczny
B. Nastawnik przepustnicy
C. Siłownik sprzęgła
D. Pompa hamulcowa
Nastawnik przepustnicy to naprawdę ważny element w tempomacie, bo to on kontroluje otwarcie przepustnicy silnika. Dzięki temu możemy jechać stałą prędkością. Działa to tak, że gdy na przykład zbliżamy się do wzniesienia, to nastawnik zwiększa otwarcie przepustnicy, żeby silnik miał więcej mocy i nie zwolnił. W nowoczesnych autach tempomaty często łączą się z systemami bezpieczeństwa, jak adaptacyjny tempomat, który zmienia prędkość w zależności od tego, jak blisko jest inny samochód. Fajnie, że mechanika i elektronika są zgodne z normami, bo dzięki temu użytkownicy mogą czuć się bezpiecznie. Warto też pamiętać, że dobre ustawienia nastawnika przepustnicy mogą pomóc zaoszczędzić paliwo, co jest istotne dla kierowców, którzy chcą mieć mniejsze koszty eksploatacji.

Pytanie 2

Wskaźnik temperatury chłodziwa w trakcie jazdy samochodem pokazał wartość przekraczającą 110 °C (czerwone pole). Co to oznacza?

A. może być oznaką zatarcia silnika
B. może świadczyć o awarii klimatyzacji
C. może sugerować niski poziom oleju
D. może wskazywać na uszkodzenie układu chłodzenia
Przekroczenie temperatury płynu chłodzącego powyżej 110 °C wskazuje na poważny problem, najczęściej związany z awarią układu chłodzenia. Układ chłodzenia silnika ma kluczowe znaczenie dla jego prawidłowego funkcjonowania, gdyż jego zadaniem jest odprowadzanie nadmiaru ciepła wytwarzanego podczas pracy silnika. W przypadku awarii, na przykład z powodu uszkodzenia termostatu, przecieku w układzie chłodzenia lub zatykania chłodnicy, temperatura może szybko wzrosnąć. W takich sytuacjach, ignorowanie wskaźnika temperatury może prowadzić do poważniejszych uszkodzeń silnika, takich jak zatarcie tłoków czy uszkodzenie uszczelki głowicy. Standardy motoryzacyjne zalecają regularne przeglądy układu chłodzenia oraz kontrolę poziomu płynu chłodzącego, aby zapobiec tym niebezpiecznym sytuacjom. Proaktywnym podejściem jest również przynajmniej raz w roku sprawdzanie stanu komponentów układu chłodzenia, co może znacznie zredukować ryzyko wystąpienia awarii.

Pytanie 3

Podczas przeglądu układu zawieszenia, co należy sprawdzić, aby ocenić stan amortyzatorów?

A. Szczelność i wycieki oleju
B. Stan przewodów elektrycznych
C. Napięcie pasków klinowych
D. Kolor płynu chłodzącego
Sprawdzanie szczelności i wycieków oleju w amortyzatorach jest kluczowe, ponieważ te komponenty zawierają ciecz hydrauliczną, która tłumi drgania. Jeśli amortyzator jest nieszczelny, ciecz może wyciekać, co prowadzi do utraty jego efektywności. To może skutkować gorszym tłumieniem nierówności drogi, co wpływa na komfort jazdy oraz bezpieczeństwo. Nieszczelność amortyzatora może prowadzić do niestabilności pojazdu, szczególnie podczas pokonywania zakrętów lub jazdy po nierównościach. W praktyce, kontrola amortyzatorów jest standardową procedurą podczas przeglądów technicznych pojazdów, a wykrycie wycieków oleju jest sygnałem do ich wymiany. Prawidłowo działające amortyzatory są niezbędne dla zachowania optymalnej przyczepności kół, co ma bezpośrednie przełożenie na drogę hamowania oraz ogólną kontrolę nad pojazdem. Dobrym zwyczajem jest regularne monitorowanie stanu amortyzatorów, nie czekając na pierwsze objawy zużycia, co może zapobiec poważniejszym problemom z zawieszeniem.

Pytanie 4

Jaka powinna być minimalna grubość okładzin ściernych klocków hamulcowych?

A. od 0,5 cm do 1 cm
B. od 0,5 mm do 1 mm
C. od 1,5 mm do 2 mm
D. od 1,5 cm do 2 cm
Minimalna grubość okładzin ściernych klocków hamulcowych, wynosząca od 1,5 mm do 2 mm, jest kluczowym parametrem zapewniającym bezpieczeństwo i efektywność układu hamulcowego. Grubość ta została określona na podstawie standardów branżowych, które uwzględniają zarówno wymogi dotyczące bezpieczeństwa, jak i wydajności. W praktyce, grubość okładzin poniżej 1,5 mm może prowadzić do nieodpowiedniego hamowania, zwiększonego zużycia elementów układu oraz ryzyka uszkodzenia tarczy hamulcowej. Regularna kontrola grubości okładzin jest konieczna, aby zapewnić ich odpowiednią efektywność i uniknąć niebezpiecznych sytuacji na drodze. Przykładowo, w samochodach osobowych, zaleca się wymianę klocków hamulcowych, gdy osiągną one minimalną grubość, zwłaszcza w kontekście intensywnego użytkowania lub jazdy w trudnych warunkach. Tylko przestrzeganie tych standardów zapewnia nieprzerwaną skuteczność hamowania oraz bezpieczeństwo podróżujących.

Pytanie 5

Kierowca ma problem z uruchomieniem pojazdu. Wał korbowy się obraca, jednak silnik nie startuje. Zanim przeprowadzisz diagnozę układu zapłonowego, powinieneś najpierw zbadać układ

A. elektryczny alternatora
B. zasilania paliwem
C. napędowy
D. wydechowy
Zdiagnozowanie układu zasilania paliwem jest kluczowym krokiem w procesie diagnostycznym silnika, szczególnie gdy wał korbowy się obraca, ale silnik nie zapala. Oznacza to, że mechanika silnika funkcjonuje, jednak brak odpowiedniego paliwa lub jego niewłaściwe dostarczenie do cylindrów uniemożliwia zapłon. W pierwszej kolejności należy sprawdzić, czy paliwo dociera do silnika w odpowiednich ilościach i ciśnieniu. Może to obejmować kontrolę pompy paliwowej, filtrów, a także wtryskiwaczy. Przykładowo, zablokowany filtr paliwa może ograniczać przepływ, a uszkodzona pompa paliwowa nie będzie w stanie dostarczyć odpowiedniego ciśnienia. Standardy diagnostyczne, takie jak te określone przez ASE (Automotive Service Excellence), podkreślają znaczenie systematycznego podejścia do diagnostyki, w którym układ zasilania paliwem jest diagnozowany przed układem zapłonowym, aby wykluczyć najczęstsze przyczyny problemów z uruchamianiem silnika.

Pytanie 6

Nadmierny luz pierścieni w gniazdach tłoka silnika spalinowego może prowadzić do

A. wzrostu zużycia oleju silnikowego
B. wzrostu zużycia paliwa
C. wzrostu ciśnienia sprężania
D. spadku stopnia sprężania
Luz pierścieni tłokowych nie wpływa bezpośrednio na ciśnienie sprężania w silniku, co jest mylnym przekonaniem. Zwiększone ciśnienie sprężania jest wynikiem efektywnego uszczelnienia komory spalania, co osiąga się poprzez prawidłowo dopasowane pierścienie. Nadmierny luz pierścieni może prowadzić do ich niewłaściwego przylegania do ścian cylindrów, co z kolei obniża ciśnienie sprężania, a nie je zwiększa. Takie nieprawidłowe zrozumienie roli pierścieni prowadzi do niebezpiecznych błędów w diagnostyce usterek silników. Z kolei zmniejszony stopień sprężania również nie jest bezpośrednio związany z luzem pierścieni, choć może być skutkiem ich zużycia. Kluczowe jest zrozumienie, że stopień sprężania zależy od wielu czynników, w tym geometrii komory spalania oraz stanu zaworów. Warto również zauważyć, że nadmierny luz pierścieni nie prowadzi automatycznie do większego zużycia paliwa; to zjawisko może być spowodowane innymi czynnikami, takimi jak ustawienia wtrysku paliwa czy problemy z układem zapłonowym. W praktyce, zamiast diagnozować problemy na podstawie niepoprawnych założeń, inżynierowie powinni korzystać z systematycznych metod analizy, takich jak testy ciśnienia sprężania oraz inspekcje wizualne stanu pierścieni i tłoków.

Pytanie 7

Jaką częścią łączy się wał korbowy z tłokiem?

A. sworznia
B. zaworu
C. korbowodu
D. popychacza
Wiesz, odpowiedź, którą zaznaczyłeś, to korbowód. To naprawdę ważny element w silnikach spalinowych i innych mechanizmach. Jego zadaniem jest przekształcanie ruchu posuwistego tłoka na ruch obrotowy wału korbowego. Bez korbowodu wszystko by się rozjechało. Ciekawostka: korbowody są zwykle wykonane z materiałów takich jak stal czy aluminium wzmocnione kompozytami, bo muszą wytrzymać naprawdę duże obciążenia. Mówiąc o silnikach samochodowych, to jego działanie jest kluczowe dla wydajności całego silnika. W projektowaniu korbowodów zwraca się też uwagę na to, żeby były jak najlżejsze, ale nadal wystarczająco mocne. To ma ogromne znaczenie zwłaszcza w sportach motorowych.

Pytanie 8

W systemie chłodzenia silnika, ilość płynu krążącego w obiegu kontrolowana jest przez

A. czujnik temperatury cieczy
B. pompę cieczy
C. wentylator chłodnicy
D. termostat
Termostat odgrywa kluczową rolę w układzie chłodzenia silnika, regulując przepływ płynu chłodzącego w obiegu chłodzenia. Jego zadaniem jest otwieranie lub zamykanie przepływu płynu w zależności od temperatury silnika. Po uruchomieniu silnika, termostat pozostaje zamknięty, co pozwala na szybkie nagrzanie się silnika do optymalnej temperatury roboczej. Po osiągnięciu tej temperatury, termostat otwiera się, umożliwiając przepływ płynu chłodzącego przez chłodnicę, co skutkuje obniżeniem temperatury silnika. Dzięki tym właściwościom, termostat przyczynia się do efektywnego i stabilnego działania silnika, co ma kluczowe znaczenie dla wydajności oraz trwałości jednostki napędowej. W praktyce, regularna kontrola stanu termostatu jest zalecana w ramach przeglądów technicznych, a jego wymiana powinna być przeprowadzana zgodnie z zaleceniami producenta pojazdu, aby zapewnić optymalne warunki pracy silnika oraz zapobiec przegrzaniu lub zbyt niskiej temperaturze pracy.

Pytanie 9

Oparzenia spowodowane gorącymi elementami oraz cieczami mogą wystąpić w trakcie

A. pielęgnacji karoserii
B. instalacji części synchronizatorów
C. zajmowania się działającym silnikiem
D. sprawdzania komponentów silnika
Odpowiedź "obsługi pracującego silnika" jest prawidłowa, ponieważ oparzenia gorącymi częściami i płynami najczęściej zdarzają się w trakcie pracy silnika, gdy jego elementy osiągają wysokie temperatury. W takich sytuacjach, szczególnie przy kontaktach z elementami układu chłodzenia, układem wydechowym czy innymi gorącymi komponentami, ryzyko oparzeń jest znacznie zwiększone. Przykładem może być wymiana oleju silnikowego, podczas której silnik musi być rozgrzany do pracy, a kontakt z gorącym olejem lub innymi cieczami może prowadzić do poważnych oparzeń. Zgodnie z normami BHP w przemyśle motoryzacyjnym, pracownicy powinni nosić odpowiednie środki ochrony osobistej, takie jak rękawice odporne na wysoką temperaturę oraz odzież ochronną, aby minimalizować ryzyko urazów. Weryfikacja procedur bezpieczeństwa oraz odpowiednie szkolenia z zakresu obsługi silników przyczyniają się do zmniejszenia liczby wypadków związanych z oparzeniami.

Pytanie 10

Jaką kwotę należy zapłacić za wymianę piasty koła w pojeździe, jeżeli cena piasty wynosi 250 zł, czas pracy to 1,4 godziny, a koszt roboczogodziny to 150 zł? Uwaga: uwzględnij 5% rabat na części zamienne oraz usługi.

A. 210 zł
B. 437 zł
C. 360 zł
D. 460 zł
Całkowity koszt wymiany piasty koła pojazdu oblicza się, biorąc pod uwagę zarówno cenę części zamiennej, jak i koszt robocizny. Cena piasty wynosi 250 zł, a czas wykonania wynosi 1,4 godziny, co przy stawce 150 zł za roboczogodzinę daje koszt robocizny równy 210 zł (1,4 godz. * 150 zł/godz.). Suma kosztów części i robocizny to 250 zł + 210 zł = 460 zł. Jednak należy uwzględnić 5% rabat na części zamienne i usługi. Rabat obliczamy na 460 zł: 460 zł * 0,05 = 23 zł. Po odjęciu rabatu od całkowitego kosztu, otrzymujemy 460 zł - 23 zł = 437 zł. Ta odpowiedź jest zgodna z zasadami kalkulacji kosztów w naprawach samochodowych, które uwzględniają zarówno ceny części, jak i robocizny oraz ewentualne rabaty, co jest standardową praktyką w branży. Warto również pamiętać, że niektóre warsztaty oferują dodatkowe zniżki na usługi, co może wpłynąć na ostateczną cenę usługi.

Pytanie 11

Jaką metodą wykonuje się wały korbowe stosowane w silnikach spalinowych samochodów sportowych?

A. łączenia
B. odlewu
C. kucia
D. obróbki skrawaniem
Wały korbowe w silnikach spalinowych samochodów sportowych są najczęściej wytwarzane metodą kucia ze względu na wysokie wymagania dotyczące wytrzymałości oraz odporności na zmęczenie materiału. Proces kucia pozwala uzyskać jednorodną strukturę materiału, co znacząco zwiększa jego właściwości mechaniczne. Kucie na gorąco, stosowane w produkcji wałów korbowych, umożliwia formowanie skomplikowanych kształtów, które są konieczne do prawidłowego działania silnika. Ponadto, dzięki kuciu, możliwe jest osiągnięcie wysokiej precyzji wymiarowej, co jest kluczowe w zastosowaniach wyścigowych, gdzie nawet najmniejsza różnica w tolerancjach może wpłynąć na osiągi pojazdu. W praktyce, producenci stosują materiały stalowe o dużej wytrzymałości, co jest zgodne z najlepszymi praktykami w branży motoryzacyjnej, zapewniając jednocześnie długą żywotność i niezawodność komponentów. Dodatkowo, kute wały korbowe są często poddawane obróbce cieplnej w celu dalszej poprawy ich właściwości mechanicznych, co jest standardem w produkcji elementów silników wyczynowych.

Pytanie 12

W trakcie pracy w warsztacie powłoki ochronne, stosowane na powierzchni elementów karoserii pojazdu, uzyskuje się poprzez

A. fosforanowanie
B. metalizowanie ogniowe
C. platerowanie
D. natryskiwanie
Platerowanie, fosforanowanie i metalizowanie ogniowe to różne techniki, które nie są bezpośrednio związane z optymalnym zastosowaniem powłok antykorozyjnych na elementach nadwozia pojazdów. Platerowanie polega na nakładaniu cienkowarstwowych powłok metalowych na podłoże, co może nie zapewniać odpowiedniej ochrony przed korozją w dłuższym okresie. Ta metoda jest stosunkowo kosztowna i nie zawsze gwarantuje równomierne pokrycie, co jest kluczowe w kontekście ochrony przed czynnikami atmosferycznymi. Fosforanowanie, z drugiej strony, jest procesem chemicznym, który tworzy na powierzchni metalowej cienką warstwę fosforanów. Choć ta technika może poprawić przyczepność powłok malarskich, to sama w sobie nie jest wystarczająca jako samodzielna forma ochrony przed korozją, szczególnie w trudnych warunkach eksploatacyjnych. Metalizowanie ogniowe, które polega na pokrywaniu elementów metalowych stopionym metalem, również ma swoje ograniczenia, ponieważ może prowadzić do nierównomiernego pokrycia oraz problemów z przyczepnością. Użytkownicy mogą mylnie sądzić, że te metody oferują podobny poziom ochrony jak natryskiwanie, co jest nieprecyzyjne. W rzeczywistości, natryskiwanie pozwala na uzyskanie znacznie lepszej jakości powłok, co jest kluczowe dla długotrwałej ochrony przed korozją i zapewnienia bezpieczeństwa eksploatacji pojazdów.

Pytanie 13

Większa ilość zaworów ssących w silniku ma bezpośredni wpływ na

A. szybsze napełnianie cylindra
B. większe zużycie paliwa
C. wolniejsze opróżnianie cylindra
D. nadmiarowy pobór powietrza
Wielu użytkowników silników myli wpływ liczby zaworów na różne aspekty pracy silnika, co prowadzi do niepoprawnych wniosków. Odpowiedzi sugerujące, że większa liczba zaworów prowadzi do wolniejszego opróżniania cylindra, są nieprawidłowe, ponieważ więcej zaworów oznacza szybszy przepływ spalin, a zatem efektywniejsze opróżnianie cylindra. Zużycie paliwa niekoniecznie zwiększa się wraz z większą liczbą zaworów. W rzeczywistości, jeśli silnik jest odpowiednio zaprojektowany, większa liczba zaworów może w rzeczywistości poprawić efektywność spalania, co prowadzi do obniżenia zużycia paliwa. Nie jest również prawdą, że większa liczba zaworów powoduje nadmiarowy pobór powietrza; wręcz przeciwnie, umożliwia lepsze i bardziej stabilne napełnianie cylindrów. Przykładem może być silnik V8, który z reguły posiada 16 zaworów, co zapewnia odpowiednie napełnianie i opróżnianie cylindrów, a tym samym lepsze osiągi. Błędne zrozumienie tych zasad może prowadzić do mylnych interpretacji przy doborze silników czy przy modyfikacjach w projektowaniu jednostek napędowych.

Pytanie 14

Aby zmierzyć odległość między elektrodami świecy zapłonowej, należy zastosować

A. mikrometr do średnic.
B. suwmiarkę.
C. szczelinomierz.
D. wzorcową płytkę.
Szczelinomierz to narzędzie pomiarowe, które jest idealnie przystosowane do pomiaru przerwy między elektrodami świecy zapłonowej. Dzięki swojej budowie, szczelinomierz pozwala na dokładne określenie wymiaru szczeliny, co jest kluczowe dla prawidłowego funkcjonowania świecy zapłonowej. Utrzymanie odpowiedniej przerwy między elektrodami jest istotne, ponieważ wpływa na efektywność zapłonu mieszanki paliwowej, co z kolei przekłada się na osiągi silnika oraz jego oszczędność paliwa. Zbyt mała przerwa może prowadzić do niepełnego spalania i zwiększonej emisji spalin, natomiast zbyt duża może skutkować trudnościami w uruchomieniu silnika oraz niestabilną pracą. Użycie szczelinomierza, zwłaszcza w kontekście regularnych przeglądów i konserwacji, jest zgodne z najlepszymi praktykami w branży motoryzacyjnej. Przykładowo, podczas wymiany świec zapłonowych warto sprawdzić ich przerwę, aby upewnić się, że silnik będzie pracował optymalnie.

Pytanie 15

Do elementów systemu bezpieczeństwa pasywnego zalicza się

A. zestaw głośnomówiący do telefonu
B. pas bezpieczeństwa z napinaczem pasa
C. system stabilizacji toru jazdy
D. asystent parkowania
Pas bezpieczeństwa z napinaczem pasa jest kluczowym elementem biernego systemu bezpieczeństwa w pojazdach. Jego głównym zadaniem jest ochrona pasażerów przed skutkami nagłych zatrzymań oraz kolizji. Napinacz pasa działa w momencie zdarzenia, automatycznie napinając pas, co minimalizuje luz, a tym samym zmniejsza ryzyko obrażeń ciała. Dzięki temu pasażer jest lepiej utrzymywany w swoim miejscu, co ogranicza ruch ciała podczas zderzenia. W praktyce, zgodnie z normami bezpieczeństwa, każdy nowoczesny pojazd powinien być wyposażony w pasy bezpieczeństwa z napinaczami, co potwierdzają regulacje takie jak ECE R16. Warto również zaznaczyć, że pasy z napinaczami są często stosowane w połączeniu z innymi systemami, takimi jak poduszki powietrzne, co znacznie zwiększa poziom ochrony pasażerów w przypadku wypadku. Ich zastosowanie jest nie tylko standardem, ale również kluczowym elementem odpowiedzialności producentów samochodów za bezpieczeństwo użytkowników.

Pytanie 16

Jak odbywa się identyfikacja pojazdu?

A. prawa jazdy
B. dokumentacji AC
C. dokumentacji OC
D. tabliczki znamionowej
Identyfikacja pojazdu za pomocą tabliczki znamionowej jest kluczowym elementem w procesie rejestracji oraz weryfikacji pojazdów. Tabliczka ta zawiera unikalny numer VIN (Vehicle Identification Number), który jest przypisany do każdego pojazdu i pozwala na jego jednoznaczną identyfikację. Dzięki temu możliwe jest uzyskanie istotnych informacji dotyczących historii pojazdu, takich jak jego dane techniczne, historia wypadków, czy zmiany właścicieli. W praktyce, tabliczki znamionowe są umieszczane w standardowych lokalizacjach, takich jak deska rozdzielcza, w oknie przedniej szyby lub na wewnętrznej stronie drzwi kierowcy. Znajomość lokalizacji tabliczki oraz umiejętność odczytywania z niej informacji jest niezbędna dla osób zajmujących się handlem pojazdami używanymi, a także dla instytucji zajmujących się kontrolą stanu technicznego pojazdów. W związku z tym, zaznajomienie się z zasadami identyfikacji pojazdów za pomocą tabliczki znamionowej jest kluczowe dla zapewnienia bezpieczeństwa na drogach oraz ochrony przed oszustwami związanymi z rejestracją pojazdów.

Pytanie 17

Jakie materiały stosuje się do produkcji wysoko obciążonych pierścieni tłokowych?

A. z stopów aluminium
B. z stali nierdzewnej
C. z stali żaroodpornej
D. z żeliwa sferoidalnego
Pierścienie tłokowe wysoko obciążone wykonuje się z żeliwa sferoidalnego (inaczej nazywanego żeliwem sferoidalnym lub duktalnym) ze względu na jego korzystne właściwości mechaniczne oraz odporność na ścieranie. Żeliwo sferoidalne charakteryzuje się lepszą wytrzymałością na rozciąganie oraz większą plastycznością w porównaniu do innych typów żeliwa, co czyni je idealnym materiałem do zastosowań w silnikach spalinowych oraz innych urządzeniach pracujących pod dużym obciążeniem. Dzięki swojej strukturze, żeliwo sferoidalne jest w stanie wytrzymać wysokie ciśnienia i temperatury, co jest kluczowe w kontekście pracy silników. W przemyśle motoryzacyjnym stosuje się je do produkcji pierścieni tłokowych, które muszą skutecznie uszczelniać komorę spalania, a także minimalizować zużycie paliwa. Zgodnie z normami branżowymi, takie pierścienie powinny utrzymać swoje właściwości w trudnych warunkach eksploatacyjnych, co w przypadku żeliwa sferoidalnego jest gwarantowane przez jego unikalne właściwości fizyczne i chemiczne.

Pytanie 18

Przed zamontowaniem nowych tarcz hamulcowych w pojeździe należy

A. tarcze odtłuścić.
B. sprawdzić bicie tarcz.
C. przeszlifować tarcze papierem ściernym.
D. zmierzyć grubość tarcz.
Odtłuszczanie tarcz hamulcowych przed ich montażem jest kluczowym krokiem, który zapewnia optymalne działanie układu hamulcowego. Tarczę należy dokładnie oczyścić ze wszelkich zanieczyszczeń, takich jak oleje, smary czy tłuszcze, które mogą się na niej znajdować. Zanieczyszczenia te mogą prowadzić do nieprawidłowej pracy hamulców, obniżając ich skuteczność oraz zwiększając zużycie okładzin hamulcowych. Odtłuszczenie działa również na poprawę przyczepności okładzin do tarczy, co wpływa na stabilność hamowania. W praktyce, do odtłuszczania tarcz wykorzystuje się dedykowane preparaty chemiczne, które są łatwo dostępne w sklepach motoryzacyjnych. Istotne jest również, aby po odtłuszczeniu, nie dotykać powierzchni roboczej tarczy gołymi rękami, aby nie nanosić na nią nowych zanieczyszczeń. Warto zaznaczyć, że wiele warsztatów stosuje procedury zgodne z wytycznymi producentów pojazdów, co podkreśla znaczenie tego procesu w zapewnieniu bezpieczeństwa jazdy.

Pytanie 19

Przygotowując pojazd do dłuższego przechowywania, należy

A. podnieść ciśnienie w oponach do maksymalnej wartości określonej przez producenta
B. spuścić zużyty olej z silnika i napełnić zbiornik paliwem
C. wymienić olej silnikowy oraz filtr oleju
D. spuścić płyn hamulcowy
Zlanie starego oleju z silnika i zalanie paliwem to podejście, które może prowadzić do poważnych problemów. Paliwo nie pełni funkcji smarującej i nie jest odpowiednie do długotrwałego przechowywania silnika. W rzeczywistości, zostawienie starego oleju w silniku może powodować osadzanie się zanieczyszczeń, co w dłuższej perspektywie prowadzi do korozji elementów silnika oraz gromadzenia się kwasów, które mogą uszkodzić uszczelki i inne komponenty silnika. Zwiększenie ciśnienia w ogumieniu do maksymalnej wartości podanej przez producenta również nie jest zalecane. Choć odpowiednie ciśnienie w oponach jest ważne, nadmierne ciśnienie może prowadzić do nierównomiernego zużycia opon oraz ich uszkodzenia. Ostatecznie spuszczenie płynu hamulcowego nie jest odpowiednie dla długotrwałego przechowywania pojazdu. Płyn hamulcowy jest higroskopijny, co oznacza, że absorbuje wilgoć, co może prowadzić do korozji układu hamulcowego. Dbanie o prawidłowe funkcjonowanie układów pojazdu w trakcie długotrwałego przechowywania powinno opierać się na zasadach konserwacji, a nie na działaniach, które mogłyby wprowadzić dodatkowe zagrożenia.

Pytanie 20

Płyn o najwyższej temperaturze wrzenia to?

A. DOT 4
B. DA 1
C. DOT 3
D. R3
Niezrozumienie różnic między płynami hamulcowymi i ich właściwościami może prowadzić do wyboru niewłaściwego produktu, co jest kluczowym błędem w kontekście bezpieczeństwa. DOT 3, choć popularny, ma niższą temperaturę wrzenia, co czyni go mniej odpowiednim do intensywnego użytkowania, szczególnie w sytuacjach, gdy hamulce są narażone na ekstremalne warunki pracy. Wybór R3 jako płynu hamulcowego jest także niezgodny z normami, ponieważ nie jest to standardowy płyn hamulcowy akceptowany w przemyśle. Natomiast DA 1 również nie spełnia wymagań dotyczących właściwości hydraulicznych, co sprawia, że jego zastosowanie w systemach hamulcowych może prowadzić do awarii. Typowym błędem jest zakładanie, że wszystkie płyny hamulcowe są równoważne. Każdy płyn hamulcowy ma swoje specyfikacje, a niektóre z nich są zaprojektowane do pracy w warunkach, które mogą szybko przekroczyć możliwości innych, co zwiększa ryzyko wypadków. Właściwy dobór płynu hamulcowego powinien być oparty na analizie wymagań producenta oraz wytrzymałości materiałów, co jest kluczowe dla prawidłowego działania systemu hamulcowego i bezpieczeństwa użytkowników pojazdów. Dlatego ważne jest, aby odpowiednio dobierać płyny, zwracając uwagę na standardy i zalecenia rynkowe.

Pytanie 21

Zawartość wody w analizowanym płynie hamulcowym nie może przekraczać

A. 5%
B. 3%
C. 1%
D. 10%
Zawartość wody w płynach hamulcowych jest kluczowym czynnikiem wpływającym na ich skuteczność oraz bezpieczeństwo użytkowania. Zgodnie z normami branżowymi, takimi jak DOT (Department of Transportation), maksymalna zawartość wody w płynach hamulcowych nie powinna przekraczać 1%. Przekroczenie tego poziomu może prowadzić do obniżenia temperatury wrzenia płynu hamulcowego, co skutkuje ryzykiem pojawienia się kawitacji w układzie hamulcowym podczas intensywnego hamowania. Przykładem praktycznym może być sytuacja, w której kierowca korzysta z pojazdu w warunkach wysokiego obciążenia, takich jak jazda górska, gdzie hamulce są intensywnie używane. W takim przypadku, nawet niewielka ilość wody może doprowadzić do utraty efektywności hamulców, co stwarza poważne zagrożenie dla bezpieczeństwa. Dlatego regularne kontrole i wymiana płynów hamulcowych, zgodnie z zaleceniami producenta, są kluczowe dla utrzymania sprawności układu hamulcowego i zapewnienia bezpieczeństwa na drodze.

Pytanie 22

Zanim przeprowadzisz pomiar ciśnienia sprężania w silniku wysokoprężnym czterocylindrowym, należy najpierw usunąć

A. wtryskiwacz z analizowanego cylindra
B. wszystkie świec żarowych
C. świecę zapłonową z analizowanego cylindra
D. wszystkie świece zapłonowe
Wymontowanie wszystkich świec żarowych przed badaniem ciśnienia sprężania w czterocylindrowym silniku wysokoprężnym jest kluczowym krokiem, który zapewnia dokładność pomiaru. Świece żarowe są odpowiedzialne za podgrzewanie mieszanki powietrzno-paliwowej w silniku wysokoprężnym, co może wpływać na wartość ciśnienia sprężania. Jeśli świece pozostaną zamontowane, mogą one wprowadzać dodatkowe opory i zmieniać parametry sprężania, co prowadzi do błędnych odczytów. Standardy branżowe zalecają demontaż świec żarowych w celu uzyskania optymalnych warunków pomiarowych. Przykładowo, aby zmierzyć ciśnienie sprężania, należy mieć pewność, że nie ma żadnych elementów, które mogą zakłócać proces. Regularne sprawdzanie i konserwacja świec żarowych jest również zalecane, aby zapewnić ich sprawne działanie oraz prawidłowe funkcjonowanie silnika. Dbanie o te szczegóły jest częścią dobrych praktyk w diagnostyce silników i pozwala na osiągnięcie lepszych wyników podczas przeprowadzania testów.

Pytanie 23

Częścią systemu chłodzenia nie jest

A. termostat
B. przekładnia ślimakowa
C. czujnik temperatury
D. pompa wody
Przekładnia ślimakowa nie jest elementem układu chłodzenia silnika, ponieważ pełni zupełnie inną funkcję, związana głównie z przenoszeniem napędu i momentu obrotowego w mechanizmach. Układ chłodzenia silnika składa się z takich elementów jak pompa wody, czujnik temperatury oraz termostat, które współpracują w celu utrzymania optymalnej temperatury pracy silnika. Pompa wody jest odpowiedzialna za cyrkulację płynu chłodzącego w obiegu, co jest kluczowe dla efektywnego odprowadzania ciepła. Czujnik temperatury monitoruje temperaturę płynu chłodzącego, co pozwala na bieżąco kontrolować działanie układu. Termostat natomiast reguluje przepływ płynu chłodzącego, otwierając lub zamykając obieg, co zapobiega przegrzaniu silnika. W związku z tym, zrozumienie roli każdego z tych elementów oraz ich współpracy jest kluczowe dla prawidłowego funkcjonowania silnika i jego układu chłodzenia.

Pytanie 24

Aby zredukować tarcie w mechanizmie różnicowym, stosuje się

A. smar stały
B. olej przekładniowy
C. płyn hydrauliczny
D. olej silnikowy
Olej przekładniowy to substancja smarująca, która została zaprojektowana z myślą o specyficznych wymaganiach mechanizmów różnicowych w pojazdach. Jego główną funkcją jest redukcja tarcia między ruchomymi częściami, co z kolei minimalizuje zużycie i wydłuża żywotność podzespołów. W przeciwieństwie do innych rodzajów olejów, olej przekładniowy zawiera dodatki, które poprawiają jego właściwości smarne oraz zapobiegają pienieniu się, co jest kluczowe w warunkach dużych obciążeń i zmiennych prędkości pracy. Zastosowanie oleju przekładniowego jest zgodne z zaleceniami producentów układów napędowych, co wpływa na ich niezawodność i efektywność. Dobór właściwego oleju jest istotny, ponieważ niewłaściwy może prowadzić do przegrzewania się przekładni, co skutkuje uszkodzeniem mechanizmu różnicowego. W praktyce, regularna wymiana oleju przekładniowego jest kluczowym elementem konserwacji pojazdów, co jest zgodne z najlepszymi praktykami utrzymania pojazdów.

Pytanie 25

Wymiana klocków hamulcowych na tylnej osi w pojazdach z systemem Electronic Power Board lub Sensotronic Brake Control wiąże się z

A. jednoczesną wymianą tarcz i klocków hamulcowych
B. odpowietrzeniem układu hamulcowego
C. wymianą płynu hamulcowego
D. dezaktywacją zacisków hamulcowych
Wymiana klocków hamulcowych wymaga zrozumienia, jak działa układ hamulcowy i co trzeba zrobić w czasie konserwacji. Na przykład, odpowiedzi takie jak wymiana płynu hamulcowego czy odpowietrzenie układu nie są za bardzo trafione, jeśli mówimy o pojazdach z Electronic Power Board lub Sensotronic Brake Control. Wymiana płynu to coś, co się zaleca, ale nie jest to konieczne przy wymianie klocków. Odpowietrzenie też jest ważne, ale bardziej w innych sytuacjach, a nie przy samej wymianie klocków w systemach z elektroniką. W nowoczesnych układach, które automatyzują wiele rzeczy, jak regulacja hamowania, dezaktywacja zacisków jest tym, co chroni przed zacięciem czy uszkodzeniem. A jak ktoś sugeruje wymianę tarcz i klocków na raz, to nie zawsze ma sens, bo może to zwiększać koszty. Ważne jest, żeby wiedzieć, kiedy i dlaczego robić konkretne rzeczy, bo to pozwala uniknąć dodatkowych wydatków i zapewnia bezpieczeństwo na drodze.

Pytanie 26

Areometr działa w oparciu o zmianę głębokości zanurzenia pływaka pomiarowego w elektrolicie w zależności od

A. gęstości elektrolitu
B. temperatury krzepnięcia elektrolitu
C. temperatury wrzenia elektrolitu
D. właściwości chemicznych elektrolitu
Tematy związane z temperaturą wrzenia i krzepnięcia elektrolitu nie mają większego wpływu na to, jak działa areometr. Te temperatury dotyczą cech fizycznych cieczy, ale nie wpływają bezpośrednio na pomiar gęstości, co jest najważniejsze dla areometrów. Jasne, że zmiany temperatury mogą zmieniać objętość cieczy, a przez to gęstość, ale to nie jest to, co decyduje o działaniu samego urządzenia. Dla dokładnych pomiarów gęstości trzeba utrzymywać stabilne warunki temperaturowe, co powinno być normą w każdym labie. Właściwości chemiczne elektrolitu mogą wpływać na przewodnictwo i reakcje, a nie na gęstość w taki sposób, żeby były bezpośrednio mierzone przez areometr. Często ludzie myślą, że różne cechy cieczy, jak temperatura wrzenia czy krzepnięcia, mają znaczący wpływ na wyniki pomiarów, co prowadzi do nieporozumień. Ważne jest, żeby zrozumieć, że areometr w pierwszej kolejności mierzy gęstość cieczy, co nie zależy od jej chemicznych właściwości ani temperatur, o ile nie są one skrajne i nie psują stanu skupienia cieczy.

Pytanie 27

Masa własna pojazdu to?

A. masa pojazdu z typowym wyposażeniem: paliwem, olejami, smarami oraz cieczami w ilościach nominalnych, bez kierowcy
B. maksymalna masa ładunku oraz osób, którą pojazd może przewozić
C. masa pojazdu razem z masą osób i przedmiotów, które się w nim znajdują
D. masa pojazdu z osobami oraz ładunkiem, gdy jest dopuszczony do ruchu na drodze
Masa własna pojazdu, określana jako masa pojazdu z jego normalnym wyposażeniem (paliwem, olejami, smarami i cieczami w ilościach nominalnych, bez kierującego), jest kluczowym parametrem w kontekście bezpieczeństwa i efektywności użytkowania pojazdu. Zdefiniowanie masy własnej jest niezbędne dla odpowiedniego obliczania parametrów eksploatacyjnych, takich jak maksymalna ładowność, która uwzględnia dodatkowe osoby i ładunek. Przykładowo, znając masę własną, można precyzyjnie obliczyć, ile dodatkowego ładunku pojazd może bezpiecznie przewieźć, co jest szczególnie ważne w branży transportowej, gdzie przekroczenie dozwolonej masy całkowitej pojazdu może prowadzić do poważnych konsekwencji prawnych oraz zwiększonego ryzyka wypadków. Standardy dotyczące obliczania masy własnej są regulowane przez przepisy prawa, które precyzują, jakie składniki muszą być uwzględnione, aby zapewnić jednolitość i bezpieczeństwo na drogach. Praktyczne zastosowanie tej wiedzy pozwala na optymalizację kosztów operacyjnych oraz zwiększenie efektywności transportu.

Pytanie 28

Zanim przeprowadzisz pomiar ciśnienia oleju w silniku, powinieneś

A. odłączyć akumulator
B. rozgrzać silnik
C. wykręcić świece zapłonowe
D. zamknąć przepustnicę
Rozgrzewka silnika przed pomiarem ciśnienia oleju jest kluczowym krokiem, który zapewnia dokładność i rzetelność pomiarów. W trakcie pracy silnika, olej silnikowy osiąga odpowiednią temperaturę roboczą, co wpływa na jego lepkość i ciśnienie. Zimny olej ma wyższą lepkość, co może prowadzić do fałszywych odczytów ciśnienia. Ponadto, rozgrzanie silnika pozwala na pełne krążenie oleju w systemie, co jest istotne dla uzyskania właściwych warunków do pomiaru. Praktycznie, jeśli pomiar ciśnienia oleju zostanie wykonany na zimnym silniku, odczyt może być niższy niż rzeczywiste ciśnienie pracy, co może doprowadzić do błędnych diagnoz i nieodpowiednich działań serwisowych. Standardy branżowe zalecają, aby przed przystąpieniem do pomiaru oleju silnikowego, silnik był rozgrzany do temperatury pracy, co gwarantuje pełną efektywność układu smarowania oraz eliminuje ryzyko uszkodzeń związanych z niewłaściwym poziomem ciśnienia oleju.

Pytanie 29

Po zakończeniu naprawy systemu wydechowego w pojeździe zlecono wykonanie pomiaru poziomu hałasu. Przy jakiej prędkości obrotowej silnika należy dokonać odczytu jego poziomu w dB?

A. Przy prędkości 1 000-15 000 obr/min.
B. Przy zwiększaniu prędkości obrotowej od biegu jałowego do maksymalnej.
C. Przy 75% maksymalnej prędkości obrotowej.
D. Przy maksymalnej prędkości obrotowej.
Pomiary hałasu w pojazdach wymagają precyzyjnych procedur, aby uzyskane wyniki były wiarygodne i miały zastosowanie w praktyce. Odczyt przy maksymalnej prędkości obrotowej silnika nie jest zalecany, ponieważ w tym zakresie silnik może działać w warunkach skrajnych, co prowadzi do zniekształcenia wyników. Zbyt wysoka prędkość obrotowa może zmieniać charakterystykę dźwięków emitowanych przez silnik i układ wydechowy, co utrudnia dokładną ocenę hałasu. Z kolei pomiar podczas stopniowego zwiększania prędkości obrotowej od biegu jałowego do maksymalnej nie dostarcza stabilnych danych, ponieważ hałas zmienia się w sposób nieliniowy w zależności od obrotów, co może prowadzić do niejednoznacznych wyników. Odpowiedź sugerująca zakres 1 000-15 000 obr/min również jest błędna, ponieważ pomiar hałasu powinien być przeprowadzany w ściśle określonych warunkach, które nie obejmują tak szerokiego zakresu obrotów. Tego rodzaju podejście może prowadzić do nieprawidłowego wnioskowania na temat efektywności układu wydechowego i jego wpływu na emisję hałasu, a co za tym idzie, na zgodność z obowiązującymi normami prawnymi. W praktyce, stosowanie się do 75% prędkości maksymalnej obrotowej silnika stanowi najlepszą praktykę, która pozwala na realistyczną i wiarygodną ocenę hałasu, spełniającą wymagania prawne i techniczne.

Pytanie 30

Jak wiele znaków zawiera numer VIN?

A. 15 znaków
B. 17 znaków
C. 13 znaków
D. 11 znaków
Numer identyfikacyjny pojazdu, znany jako VIN (Vehicle Identification Number), składa się z 17 znaków, co czyni go unikalnym dla każdego pojazdu. VIN został wprowadzony, aby zapewnić jednoznaczną identyfikację pojazdów na całym świecie. Składa się z kombinacji liter i cyfr, które zawierają istotne informacje, takie jak producent, rok produkcji, miejsce produkcji oraz unikalny numer seryjny pojazdu. Przykładowo, pierwsze trzy znaki VIN to tzw. WMI (World Manufacturer Identifier), które identyfikują producenta. Wiedza na temat VIN jest kluczowa dla takich procesów jak rejestracja pojazdu, ubezpieczenia, a także przy transakcjach sprzedaży, ponieważ pozwala na szybkie sprawdzenie historii pojazdu oraz jego stanu prawnego. Zgodnie z międzynarodowymi standardami ISO 3779, długość VIN powinna być stała, co ułatwia zarówno producentom, jak i użytkownikom identyfikację i śledzenie pojazdów.

Pytanie 31

Podczas przeglądu okresowego pojazdu samochodowego z silnikiem ZS wykonano czynności ujęte w tabeli. Jaki był koszt wykonania tej usługi, bez materiałów, jeżeli cena roboczogodziny w zakładzie wynosi 80 zł brutto.

Lp.CzynnośćCzas wykonania
w godzinach
1.Wymiana przegubu kulowego napędowego z osłoną gumową1,6
2.Wymiana 1 szt. końcówki drążka kierowniczego0,5

A. 200 zł
B. 146 zł
C. 186 zł
D. 168 zł
Wszystkie niepoprawne odpowiedzi wynikają z błędnych obliczeń lub nieporozumień dotyczących zasad kalkulacji kosztów robocizny. W przypadku podanych opcji, można zauważyć, że odpowiedzi takie jak 186 zł, 146 zł czy 200 zł nie uwzględniają prawidłowego czasu pracy oraz stawki. Na przykład, przyjmując błędne założenie co do czasu potrzebnego na wykonanie usługi, można dojść do niepoprawnych wniosków, takich jak 186 zł, co mogłoby sugerować uwzględnienie zbyt dużej liczby roboczogodzin lub niepoprawną stawkę. Odpowiedzi, które sugerują 146 zł lub 200 zł, mogą wynikać z dodania lub odjęcia niewłaściwych wartości, co prowadzi do nieporozumień w zakresie kalkulacji. Kluczowym błędem jest nieprzestrzeganie standardów obliczeń, które opierają się na prostych zasadach matematycznych. Dobrą praktyką jest zawsze weryfikować każdą wartość, zanim zostanie wprowadzona do końcowego obliczenia, co pozwala uniknąć typowych błędów myślowych. Poprawne obliczenie kosztów robocizny jest istotne nie tylko dla właścicieli zakładów, ale również dla klientów, którzy pragną zrozumieć, za co płacą. Dlatego warto zwracać uwagę na dokładność i rzetelność przy tworzeniu wycen usług.

Pytanie 32

Pomiar zużycia gładzi cylindrów wykonuje się przy użyciu

A. mikrometru
B. głębokomościomierza
C. suwmiarki modułowej
D. średnicówki czujnikowej
Użycie średnicówki czujnikowej do pomiaru zużycia gładzi cylindrów jest najlepszym rozwiązaniem, ponieważ umożliwia uzyskanie wysokiej precyzji i dokładności pomiarów. Średnicówki czujnikowe, zwane także czujnikami średnicy lub czujnikami cylindrycznymi, są narzędziami pomiarowymi, które pozwalają na bezpośrednie mierzenie średnic otworów, wałów czy cylindrów. Dzięki zastosowaniu mechanizmu pomiarowego z odczytem cyfrowym lub analogowym, średnicówki te oferują dokładność do 0,001 mm. Praktycznym zastosowaniem średnicówki czujnikowej jest kontrola wymiarów w procesie produkcji silników, gdzie zachowanie odpowiednich tolerancji wymiarowych jest kluczowe dla prawidłowego funkcjonowania. W branży motoryzacyjnej standardy takie jak ISO 2768 określają wymagania dotyczące tolerancji wymiarowych, dlatego wykorzystanie średnicówki czujnikowej jest zgodne z tymi normami. Dodatkowo, pomiar za pomocą tego narzędzia może być wspomagany przez systemy komputerowe, co pozwala na łatwe archiwizowanie i analizowanie danych pomiarowych.

Pytanie 33

W współczesnych silnikach benzynowych stopień kompresji to mniej więcej

A. 1:6
B. 11:1
C. 1:11
D. 6:1
Stopień sprężania w silnikach benzynowych to bardzo ważny parametr, który ma wpływ na efektywność i wydajność silnika. Odnośnie do pierwszych dwóch odpowiedzi, 1:11 i 6:1, to wartości, które nie pasują do obecnych silników. 1:11 jest błędny, bo sugeruje, że sprężanie paliwa jest zbyt wysokie dla typowego silnika, co mogłoby prowadzić do detonacji. Z kolei 6:1 to coś, co było standardem kiedyś, ale teraz mamy wyższe stopnie sprężania, żeby poprawić wydajność i osiągi. Odpowiedź 1:6 w ogóle nie ma sensu, bo sugeruje coś zupełnie odwrotnego do sprężania, co pokazuje, że można się pomylić. Jeśli się tego nie rozumie, to może być problem z użytkowaniem i serwisowaniem aut. Ważne, żeby zrozumieć, że wysoki stopień sprężania w nowych silnikach to efekt zaawansowanej inżynierii i dążenie do lepszej mocy i efektywności paliwowej.

Pytanie 34

Jakie urządzenie jest używane do pomiaru ciśnienia w ogumieniu samochodowym?

A. Tensiometr
B. Komparator
C. Manometr
D. Baroskop
Tensiometr, choć brzmi podobnie do manometru, jest narzędziem używanym do pomiaru napięcia powierzchniowego cieczy, a nie ciśnienia w oponach. To częsty błąd, bo nazwa może być myląca, ale oba te urządzenia działają w zupełnie innych dziedzinach fizyki. Komparator jest urządzeniem stosowanym do porównywania wielkości mechanicznych, takich jak długość czy średnica, i nie ma zastosowania w pomiarze ciśnienia. Może być używany w warsztatach, ale do zupełnie innych celów, np. sprawdzania równoległości lub koncentryczności elementów. Baroskop z kolei to przyrząd do obserwacji zmian ciśnienia atmosferycznego. Nie jest używany w motoryzacji do pomiaru ciśnienia w oponach. Może być użyteczny w meteorologii, ale nie w warsztacie samochodowym. Wszystkie te odpowiedzi pokazują, jak ważne jest rozróżnianie terminologii technicznej, co pozwala uniknąć błędów w pracy warsztatowej. Prawidłowe rozumienie i stosowanie specjalistycznych narzędzi jest kluczowe dla skutecznego wykonywania zadań związanych z obsługą i naprawą pojazdów samochodowych. Warto zwracać uwagę na to, jakie narzędzia są dedykowane do jakich zadań, co może poprawić efektywność i bezpieczeństwo pracy. Moim zdaniem, każdy mechanik powinien znać podstawowe przyrządy pomiarowe i ich zastosowania, co jest fundamentem jego wiedzy zawodowej.

Pytanie 35

Jak przeprowadza się pomiar ciśnienia oleju?

A. zawsze przed wymianą oleju w silniku
B. na rozgrzanym silniku
C. zawsze po wymianie oleju w silniku
D. na zimnym silniku
Pomiar ciśnienia oleju powinien być wykonywany na rozgrzanym silniku, ponieważ tylko w takich warunkach można uzyskać wiarygodne i miarodajne odczyty. Gdy silnik osiągnie optymalną temperaturę roboczą, olej staje się bardziej płynny, co umożliwia lepsze krążenie w układzie smarowania. Wysokie ciśnienie oleju na rozgrzanym silniku świadczy o prawidłowym funkcjonowaniu pompy olejowej oraz o tym, że olej dotarł do wszystkich kluczowych elementów silnika, takich jak panewki, wał korbowy czy głowica cylindra. Pomiar ciśnienia oleju w takich warunkach pozwala na ocenę stanu technicznego silnika oraz na wczesne wykrycie potencjalnych problemów, takich jak zbyt niskie ciśnienie, co może prowadzić do poważnych uszkodzeń komponentów silnika. Przykładowo, w silnikach spalinowych, ciśnienie oleju powinno mieścić się w określonym zakresie, zazwyczaj od 1,5 do 4 barów, w zależności od konstrukcji i producenta, co powinno być zawsze konsultowane z dokumentacją techniczną producenta.

Pytanie 36

Jaką funkcję pełni termostat w silniku spalinowym?

A. regulowania obiegu cieczy chłodzącej
B. dopalania paliwa
C. chłodzenia powietrza
D. wtrysku paliwa
Termostat w silniku spalinowym odgrywa kluczową rolę w regulacji obiegu cieczy chłodzącej, co jest niezbędne dla utrzymania optymalnej temperatury pracy silnika. W momencie, gdy silnik jest zimny, termostat pozostaje zamknięty, co pozwala na szybkie nagrzewanie się płynu chłodzącego. Gdy temperatura osiągnie ustawioną wartość, termostat otwiera się, umożliwiając przepływ cieczy chłodzącej przez chłodnicę, co zapobiega przegrzewaniu silnika. Przykładowo, w nowoczesnych silnikach stosuje się termostaty z elektroniczną kontrolą, które mogą dostosować otwarcie w zależności od warunków pracy silnika, co prowadzi do większej efektywności paliwowej i zmniejszenia emisji spalin. Ponadto, właściwe działanie termostatu wpływa na żywotność silnika oraz jego osiągi, co jest zgodne z najlepszymi praktykami inżynieryjnymi w branży motoryzacyjnej.

Pytanie 37

Zgięty wahacz w pojeździe należy

A. wyprostować w niskiej temperaturze
B. wyprostować w wysokiej temperaturze
C. wzmocnić dodatkowym elementem
D. wymienić na nowy
Wymiana zgiętego wahacza na nowy jest zdecydowanie najlepszym rozwiązaniem w przypadku uszkodzenia tego kluczowego elementu zawieszenia pojazdu. Wahacz odpowiada za stabilność oraz komfort jazdy, a jego deformacja może prowadzić do poważnych problemów z geometrą zawieszenia, co wpływa na bezpieczeństwo pojazdu. W praktyce, wahacze wykonane są z materiałów takich jak stal lub aluminium, które po zgięciu mogą stracić swoje właściwości mechaniczne. Nawet jeśli wahacz wydaje się być wyprostowany, w jego strukturze mogą pozostać mikropęknięcia, które z czasem mogą prowadzić do dalszych uszkodzeń. Wymiana wahacza na nowy zapewnia pełną niezawodność oraz zgodność z normami producenta, co jest kluczowe dla prawidłowego funkcjonowania układu zawieszenia. Dodatkowo, nowe wahacze są projektowane z uwzględnieniem najnowszych standardów i technologii, co może przyczynić się do poprawy osiągów pojazdu oraz jego trwałości. W sytuacji wystąpienia zgięcia wahacza zawsze należy zwrócić uwagę na jego wymianę, a nie na naprawę, aby zachować maksymalne bezpieczeństwo i komfort jazdy.

Pytanie 38

W systemie klimatyzacyjnym parownik umiejscowiony jest

A. obok sprężarki klimatyzacji
B. za wentylatorem chłodnicy
C. obok nagrzewnicy
D. obok chłodnicy silnika
Parownik w układzie klimatyzacji znajduje się blisko nagrzewnicy, co ma kluczowe znaczenie dla efektywnego działania systemu. Parownik jest elementem, w którym czynnik chłodniczy odparowuje, pochłaniając ciepło z wnętrza pojazdu. Dzięki temu obniża temperaturę powietrza, które następnie jest kierowane do kabiny. Umieszczenie parownika przy nagrzewnicy umożliwia wymianę ciepła, co jest niezbędne do uzyskania komfortowej temperatury w kabinie, zarówno latem, jak i zimą. W rzeczywistości, gdy klimatyzacja jest włączona, parownik efektywnie współpracuje z nagrzewnicą, aby zapewnić optymalne warunki termiczne. W praktyce, serwisowanie układu klimatyzacji powinno obejmować kontrolę stanu parownika, aby zapobiec zjawisku zamarzania, które może prowadzić do pogorszenia wydajności. Właściwe umiejscowienie i konserwacja parownika zgodnie z wytycznymi producenta oraz standardami branżowymi są kluczowe dla długotrwałej i niezawodnej pracy systemu klimatyzacyjnego.

Pytanie 39

Aby zmierzyć bicie boczne tarczy sprzęgła, należy zastosować

A. mikrometr.
B. średnicówkę mikrometryczną.
C. diagnoskop.
D. czujnik zegarowy.
Czujnik zegarowy jest urządzeniem pomiarowym, które doskonale nadaje się do precyzyjnego określania bicia bocznego tarczy sprzęgła. Dzięki swojej budowie, czujnik zegarowy umożliwia dokładne pomiary małych odchyleń, co jest kluczowe dla zapewnienia prawidłowej pracy komponentów mechanicznych. Przykładowo, w procesie ustawiania sprzęgła w pojazdach, czujnik zegarowy pozwala na szybkie i dokładne określenie, czy tarcza jest zainstalowana prawidłowo, co w konsekwencji wpływa na efektywność przenoszenia momentu obrotowego. Zgodnie z najlepszymi praktykami w branży motoryzacyjnej, regularne sprawdzanie bicia bocznego tarczy sprzęgła z wykorzystaniem czujnika zegarowego jest zalecane, aby zminimalizować ryzyko awarii i przedłużyć żywotność elementów układu napędowego. Należy również zwrócić uwagę na kalibrację czujnika, aby zapewnić jego dokładność oraz wiarygodność odczytów, co jest niezbędne w kontekście diagnostyki pojazdów.

Pytanie 40

Jaką metodą mierzy się wielkość bicia tarczy hamulcowej?

A. mikrometrem
B. suwmiarką modułową
C. czujnikiem zegarowym
D. mikroskopem warsztatowym
Czujnik zegarowy to narzędzie pomiarowe, które jest powszechnie stosowane w branży motoryzacyjnej do precyzyjnego pomiaru wielkości bicia tarczy hamulcowej. Jego zasada działania opiera się na analogowym wskaźniku, który wskazuje zmiany w pozycji tarczy w stosunku do osi obrotu. Pomiar bicia jest kluczowy, ponieważ nadmierne bicie tarcz hamulcowych może prowadzić do nierównomiernego zużycia klocków hamulcowych, a także do wibracji podczas hamowania, co wpływa na bezpieczeństwo. W praktyce, czujnik zegarowy jest zamocowany na stabilnej podstawie, a jego końcówka dotyka powierzchni tarczy hamulcowej. Podczas obracania tarczy, wskazówka zegara pokazuje wszelkie odchylenia, co pozwala technikom na skuteczną diagnozę i konserwację układów hamulcowych, zgodnie z najlepszymi praktykami branżowymi. Użycie czujnika zegarowego jest zgodne z wytycznymi wielu producentów pojazdów, którzy zalecają regularne sprawdzanie geometrii tarcz hamulcowych w ramach przeglądów technicznych.