Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 24 kwietnia 2025 20:14
  • Data zakończenia: 24 kwietnia 2025 20:23

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Przyczyną dźwięków pojawiających się w systemie napędowym pojazdu, które nasilają się podczas skrętów lub zawracania, jest uszkodzenie

A. przekładni kierowniczej
B. przegubu napędowego
C. skrzyni biegów
D. sprzęgła
Przegub napędowy jest kluczowym elementem układu napędowego pojazdu, który umożliwia przenoszenie momentu obrotowego z silnika na koła, zwłaszcza podczas skręcania. Stuki, które mogą występować podczas manewrów skrętnych, często są wynikiem uszkodzenia przegubów, które nie są w stanie skutecznie absorbować ruchów zawieszenia. W przypadku przegubów, ich uszkodzenie objawia się charakterystycznym dźwiękiem, który jest słyszalny podczas zmiany kierunku jazdy. Użytkownicy powinni być świadomi, że regularne sprawdzanie stanu przegubów napędowych oraz ich odpowiednia konserwacja mogą znacząco zmniejszyć ryzyko awarii. W dobrych praktykach branżowych zaleca się wymianę przegubów w momencie stwierdzenia ich zużycia lub pojawienia się jakichkolwiek niepokojących dźwięków, aby uniknąć kosztownych napraw związanych z uszkodzeniem innych komponentów układu napędowego. Pamiętajmy również, że przeguby napędowe podlegają różnym obciążeniom, co sprawia, że ich wytrzymałość i sprawność są kluczowe dla bezpieczeństwa i komfortu jazdy.

Pytanie 2

Wskaźnik temperatury chłodziwa w trakcie jazdy samochodem pokazał wartość przekraczającą 110 °C (czerwone pole). Co to oznacza?

A. może świadczyć o awarii klimatyzacji
B. może być oznaką zatarcia silnika
C. może sugerować niski poziom oleju
D. może wskazywać na uszkodzenie układu chłodzenia
Przekroczenie temperatury płynu chłodzącego powyżej 110 °C wskazuje na poważny problem, najczęściej związany z awarią układu chłodzenia. Układ chłodzenia silnika ma kluczowe znaczenie dla jego prawidłowego funkcjonowania, gdyż jego zadaniem jest odprowadzanie nadmiaru ciepła wytwarzanego podczas pracy silnika. W przypadku awarii, na przykład z powodu uszkodzenia termostatu, przecieku w układzie chłodzenia lub zatykania chłodnicy, temperatura może szybko wzrosnąć. W takich sytuacjach, ignorowanie wskaźnika temperatury może prowadzić do poważniejszych uszkodzeń silnika, takich jak zatarcie tłoków czy uszkodzenie uszczelki głowicy. Standardy motoryzacyjne zalecają regularne przeglądy układu chłodzenia oraz kontrolę poziomu płynu chłodzącego, aby zapobiec tym niebezpiecznym sytuacjom. Proaktywnym podejściem jest również przynajmniej raz w roku sprawdzanie stanu komponentów układu chłodzenia, co może znacznie zredukować ryzyko wystąpienia awarii.

Pytanie 3

Woda używana do mycia aut w myjni musi być odprowadzana

A. bezpośrednio do kanalizacji deszczowej
B. do wykopu w ziemi na zewnątrz myjni
C. bezpośrednio do systemu kanalizacji komunalnej
D. do separatorów ściekowych
Odpowiedzi sugerujące odprowadzanie wody do kanalizacji ścieków komunalnych, wykopu w ziemi czy kanalizacji burzowej są niepoprawne z kilku kluczowych powodów. Odprowadzanie wody z myjni samochodowej bezpośrednio do kanalizacji ścieków komunalnych jest niewłaściwe, ponieważ woda ta zawiera substancje chemiczne, które mogą negatywnie wpływać na system oczyszczania ścieków oraz jakość wody w odbiornikach. Zanieczyszczenia mogą przekraczać dopuszczalne normy, co stawia pod znakiem zapytania zgodność z regulacjami ochrony środowiska. Przeniesienie odpowiedzialności za oczyszczanie zanieczyszczonej wody na system komunalny jest nieetyczne i może skutkować wysokimi karami finansowymi. Odprowadzanie wody do wykopu w ziemi poza pomieszczeniem myjni również budzi poważne wątpliwości, ponieważ może prowadzić do bezpośredniego zanieczyszczenia gleb i wód gruntowych, co jest zabronione przepisami ochrony środowiska. Natomiast kierowanie ścieków do kanalizacji burzowej jest kolejnym błędem, gdyż nie jest ona przystosowana do odbioru zanieczyszczonych wód, co może prowadzić do ich wypływu do rzek czy jezior, zagrażając lokalnym ekosystemom. Kluczowe jest, aby myjnie samochodowe stosowały odpowiednie technologie, takie jak separatorów ściekowych, które zgodnie z normami środowiskowymi, skutecznie usuwały zanieczyszczenia przed ich odprowadzeniem.

Pytanie 4

Jaką metodą można naprawić chłodnicę wykonaną z miedzi lub mosiądzu?

A. klejenia
B. zgrzewania
C. spawania
D. lutowania
Zgrzewanie, spawanie oraz klejenie to techniki, które w określonych warunkach mogą być stosowane do łączenia metali, jednak nie są one odpowiednie do naprawy chłodnic wykonanych z miedzi i mosiądzu. Zgrzewanie opiera się na procesie lokalnego topnienia metali w kontakcie z elektrodami pod wpływem prądu elektrycznego. Choć zgrzewanie może być efektywne w przypadku niektórych materiałów, to w kontekście chłodnic może prowadzić do uszkodzenia struktury metalu oraz obniżenia właściwości przewodzących. Spawanie, z kolei, polega na łączeniu materiałów poprzez ich stopienie i dodanie materiału wypełniającego, co często wymaga wysokich temperatur. Spawanie miedzi czy mosiądzu jest skomplikowane, ponieważ może powodować utlenianie oraz deformację materiału, a także wprowadzać naprężenia, które mogą prowadzić do pęknięć. Klejenie, chociaż może być skuteczne w niektórych zastosowaniach, nie zapewnia wystarczającej wytrzymałości ani odporności na wysokie temperatury i ciśnienia, które występują w chłodnicach. W rezultacie, wybór niewłaściwej metody naprawy może prowadzić do awarii urządzenia, a w konsekwencji do niebezpiecznych sytuacji, takich jak wycieki chłodziwa. Dlatego kluczowe jest stosowanie sprawdzonych metod, takich jak lutowanie, które gwarantują długoterminową trwałość i bezpieczeństwo systemów chłodniczych.

Pytanie 5

Zbyt niskie ciśnienie powietrza w oponie jednego z kół osi przedniej może prowadzić do

A. ściągania pojazdu w kierunku koła z niższym ciśnieniem
B. ściągania pojazdu w stronę koła z wyższym ciśnieniem
C. zużycia lewej strony bieżnika koła lewego lub prawej strony bieżnika koła prawego
D. zużycia środkowej części bieżnika
Zbyt niskie ciśnienie powietrza w oponie jednego koła osi przedniej prowadzi do sytuacji, w której pojazd 'ściąga' w stronę koła z niższym ciśnieniem. Wynika to z różnicy w przyczepności oraz sił działających na pojazd. Opona z niższym ciśnieniem ma większą powierzchnię styku z nawierzchnią, co wpływa na stabilność pojazdu, a także na kierowanie nim. W praktyce, kierowca powinien regularnie kontrolować ciśnienie w oponach zgodnie z zaleceniami producenta, co wpływa na bezpieczeństwo jazdy oraz ekonomikę paliwową. Niskie ciśnienie może prowadzić do nadmiernego zużycia opon, co jest niezgodne z zasadami dobrej praktyki w zakresie eksploatacji pojazdów. Regularne przeglądy stanu opon oraz ich właściwe napompowanie to kluczowe aspekty dbania o bezpieczeństwo i komfort jazdy. Dodatkowo, zgodnie z normami branżowymi, monitorowanie ciśnienia powietrza powinno być praktykowane przed każdą dłuższą podróżą, aby uniknąć nieprzewidzianych problemów na drodze.

Pytanie 6

W trakcie regularnej inspekcji systemu hamulcowego przeprowadza się pomiar

A. przenikalności cieplnej
B. temperatury krzepnięcia płynu hamulcowego
C. lepkości płynu hamulcowego
D. temperatury wrzenia płynu hamulcowego
Pomiar lepkości płynu hamulcowego jest ważny, ale nie jest najważniejszy podczas kontroli hamulców. Oczywiście, lepkość ma wpływ na to, jak płyn funkcjonuje w systemie, ale w kontekście bezpieczeństwa to nie jest aż tak kluczowe. Temperatura krzepnięcia płynu hamulcowego także jest w sumie istotna, ale w codziennym użytkowaniu rzadko kiedy ma znaczenie, bo raczej nie jeździmy w ekstremalnych warunkach. W systemach hamulcowych nie zdarza się, by płyn zamarzał tak często, żeby to wpływało na bezpieczeństwo. A przenikalność cieplna płynów? To nie jest coś, co się typowo rozważa na co dzień. Lepiej skupić się na temperaturze wrzenia, bo to ona naprawdę decyduje o efektywności hamowania. Skupianie się na nieodpowiednich parametrach może prowadzić do błędnych wniosków i to nie jest dobre dla bezpieczeństwa jazdy.

Pytanie 7

Jakie substancje wykorzystuje się do konserwacji przegubów krzyżakowych?

A. oleju silnikowego
B. smaru stałego
C. oleju przekładniowego
D. silikonu
Użycie oleju silnikowego do smarowania przegubów krzyżakowych jest niewłaściwe, ponieważ tego typu olej nie jest przystosowany do pracy w warunkach dużego obciążenia i nie zapewnia wystarczającej przyczepności do metalowych powierzchni. Oleje silnikowe mają tendencję do spływania, co prowadzi do niewystarczającego zabezpieczenia przed korozją i zużyciem. Zastosowanie oleju przekładniowego również nie jest odpowiednie, ponieważ jego formuła nie została zaprojektowana z myślą o długotrwałym smarowaniu przegubów. Oleje te, mimo że są doskonałe do smarowania przekładni, mogą nie utrzymywać się na powierzchniach przegubów w wystarczającej ilości. Silikon, będący materiałem stosowanym głównie jako uszczelniacz, nie nadaje się do smarowania mechanicznemu. Jego właściwości nie są odpowiednie do redukcji tarcia w ruchomych częściach, co może prowadzić do szybszego zużycia mechanizmów. Typowym błędem przy wyborze środka smarnego jest zakładanie, że wszystkie oleje i smary działają podobnie, co nie jest prawdą. Właściwy wybór środka do smarowania jest kluczowy dla zapewnienia długotrwałej i niezawodnej pracy mechanizmów.

Pytanie 8

W samochodzie zauważono nierówną pracę silnika przy wyższych obrotach. Na początku należy zweryfikować

A. opory w układzie napędowym
B. drożność filtra paliwa
C. ciśnienie w układzie smarowania
D. szczelność układu chłodzenia
Drożność filtra paliwa jest kluczowym aspektem, który wpływa na właściwą pracę silnika. Filtr paliwa ma za zadanie zatrzymywanie zanieczyszczeń i zanieczyszczeń w paliwie, co zapewnia czystość układu paliwowego. Nierówna praca silnika przy wyższych prędkościach obrotowych może być spowodowana niedostatecznym dopływem paliwa do komory spalania, co może wynikać z zatykania się filtra. W praktyce, kiedy filtr jest zanieczyszczony, silnik nie otrzymuje odpowiedniej ilości paliwa, co może prowadzić do spadku mocy i niestabilnego biegu. Dobre praktyki serwisowe sugerują regularną wymianę filtra paliwa zgodnie z zaleceniami producenta pojazdu, a także kontrolę jego stanu w przypadku wystąpienia problemów z pracą silnika. Warto również zwrócić uwagę na jakość paliwa, gdyż niskiej jakości paliwo może szybciej zatykać filtr. Zrozumienie tej zasady pozwala na szybsze diagnozowanie problemów i skuteczniejsze działania naprawcze.

Pytanie 9

Wałek napędowy oraz koło talerzowe stanowią element mechanizmu w pojeździe

A. napędu wycieraczek
B. przekładni kierowniczej
C. napędu układu rozrządu
D. przekładni głównej
Wałek atakujący i koło talerzowe to naprawdę kluczowe części w przekładni głównej Twojego pojazdu. To one odpowiadają za to, że moc z silnika może dotrzeć do kół, co w efekcie sprawia, że auto w ogóle może jechać. Wałek atakujący, czyli wałek wejściowy, jest bezpośrednio podpięty do silnika i przekazuje tę żądaną energię do całej przekładni. A koło talerzowe w połączeniu z zębatką zmienia kierunek obrotów i przekształca je w ruch, który napędza koła. Fajnie jest zrozumieć, jak te elementy działają, bo to pomoże w diagnostyce i serwisowaniu układów napędowych w pojazdach. Jak coś w tej przekładni nie działa jak trzeba, to mogą być poważne problemy, dlatego warto regularnie kontrolować, a niekiedy wymieniać płyny, żeby wszystko śmigało jak w zegarku, zgodnie z tym, co piszą producenci i branżowe standardy.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Jakie elementy są częścią układu chłodzenia silnika spalinowego?

A. Pompa wody, chłodnica, termostat
B. Wał korbowy, tłoki, panewki
C. Alternator, rozrusznik, akumulator
D. Gaźnik, filtr powietrza, kolektor dolotowy
Układ chłodzenia silnika spalinowego jest kluczowym elementem, który zapewnia właściwą temperaturę pracy silnika, co wpływa na jego wydajność i trwałość. W skład tego układu wchodzą elementy takie jak pompa wody, chłodnica i termostat. Pompa wody jest odpowiedzialna za cyrkulację płynu chłodzącego przez cały układ, co pomaga w odbieraniu nadmiaru ciepła z silnika. Chłodnica odgrywa rolę w oddawaniu tego ciepła do atmosfery, czyniąc to poprzez przepływ powietrza przez jej żebra. Termostat natomiast reguluje obieg płynu chłodzącego w zależności od temperatury silnika, co pozwala na szybsze osiągnięcie optymalnej temperatury roboczej. Dobrze działający układ chłodzenia zapobiega przegrzewaniu się silnika oraz minimalizuje ryzyko uszkodzenia jego części, co jest zgodne z dobrymi praktykami w branży motoryzacyjnej. Ważne jest, aby regularnie kontrolować stan płynu chłodzącego i sprawność poszczególnych komponentów układu chłodzenia, co zapewnia długą i bezawaryjną pracę silnika.

Pytanie 12

Zainstalowanie wtryskiwaczy w dolotowym kolektorze silnika ma miejsce w systemie zasilania

A. wtryskowym z układem bezpośrednim
B. gaźnikowym
C. wtryskowym z wtryskiem pośrednim
D. wtryskowym jednopunktowym
Umieszczenie wtryskiwaczy w kolektorze dolotowym silnika w układzie z wtryskiem pośrednim ma kluczowe znaczenie dla optymalizacji procesu spalania mieszanki paliwowo-powietrznej. Wtryskiwacze w tym układzie dostarczają paliwo do kolektora dolotowego, gdzie następuje jego wymieszanie z powietrzem zanim trafi do cylindrów silnika. Takie podejście umożliwia lepsze rozprężenie paliwa i zapewnia bardziej jednorodną mieszankę, co wpływa na efektywność spalania oraz redukcję emisji. Wtrysk pośredni jest często stosowany w silnikach benzynowych, gdzie kluczowe jest uzyskanie optymalnej mieszanki w różnych warunkach pracy silnika. Praktycznym przykładem zastosowania tego rozwiązania są silniki samochodowe, które wykorzystują technologię wielopunktowego wtrysku, co pozwala na lepsze dostosowanie parametrów pracy silnika do zmieniających się warunków, co przekłada się na większą moc oraz oszczędność paliwa. W branży motoryzacyjnej standardy emisji spalin, takie jak Euro 6, wymuszają na producentach stosowanie bardziej zaawansowanych układów wtryskowych, co sprawia, że wtryskiwanie pośrednie staje się coraz bardziej popularne jako efektywne rozwiązanie.

Pytanie 13

Zjawisko to występuje najczęściej przy niskich prędkościach oraz dużych naciskach - w sytuacjach niewystarczającego smarowania lub jego braku. W takich warunkach, występy oraz nierówności powierzchni są ze sobą złączane, a potem poddawane ścinaniu. Jakiego rodzaju zużycia dotyczy ten opis?

A. Adhezyjnego
B. Chemicznego
C. Elektrochemicznego
D. Mechanicznego
Zjawiska zużycia chemicznego i elektrochemicznego są związane z reakcjami chemicznymi, które zachodzą pomiędzy materiałami. W przypadku zużycia chemicznego, proces ten polega na reakcji materiału narzędzia z substancjami chemicznymi, takimi jak kwasy czy zasady, prowadząc do degradacji ich struktury. Natomiast zużycie elektrochemiczne zachodzi w obecności elektrolitów, gdzie różnice potencjałów mogą powodować korozję materiału. Przykłady, takie jak korozja w środowisku morskim, ilustrują ten problem, jednak nie mają one związku z opisanym zjawiskiem, które dotyczy interakcji mechanicznych na poziomie mikroskalowym. Wybierając odpowiedź na pytanie, niektórzy mogą pomylić adhezyjne zużycie z chemicznym lub elektrochemicznym, co jest powszechnym błędem. Prowadzi to do nieporozumień, ponieważ zjawisko adhezyjne opiera się na mechanicznych interakcjach między powierzchniami, podczas gdy pozostałe typy zużycia są związane z reakcjami chemicznymi, które nie zachodzą w tych specyficznych warunkach. Dlatego kluczowe jest zrozumienie, że przy małych prędkościach i dużych naciskach, to właśnie siły adhezyjne mają decydujące znaczenie dla zużycia, a nie reakcje chemiczne czy elektrochemiczne.

Pytanie 14

Jakie jest łączne wydatki na naprawę systemu smarowania, jeśli cena pompy oleju wynosi 145 zł, filtr oleju kosztuje 45 zł, a cena oleju silnikowego to 160 zł? Czas potrzebny na naprawę to 150 minut przy stawce za godzinę roboczą wynoszącej 100 zł?

A. 450 zł
B. 600 zł
C. 650 zł
D. 550 zł
Odpowiedzi, które wskazują na inne wartości kosztów całkowitych, mogą wynikać z różnorodnych błędów w obliczeniach. Na przykład, jeśli ktoś obliczył tylko sumę kosztów części, pomijając koszt robocizny, może dojść do wniosku, że całkowity koszt naprawy wynosi 350 zł. Jednak nie uwzględnienie robocizny jest poważnym błędem, ponieważ to właśnie prace warsztatowe często stanowią znaczną część całkowitych wydatków. Innym popularnym błędem jest niepoprawne przeliczenie czasu naprawy na godziny. Zamiast 150 minut, można błędnie pomyśleć o tej wartości jako o pełnych godzinach, co prowadzi do znacznego zaniżenia kosztów. Dodatkowo, osoby zazwyczaj nie biorą pod uwagę stawki za roboczogodzinę, co jest istotnym czynnikiem w kalkulacji końcowej. Warto również zauważyć, że w branży motoryzacyjnej przyjęte praktyki wskazują na konieczność szczegółowego przedstawienia kosztów naprawy klientowi, uwzględniając wszystkie elementy składające się na ostateczną cenę. Dlatego też dokładność obliczeń jest kluczowa dla transparentności oraz zadowolenia klienta.

Pytanie 15

Aby ocenić efektywność działania hamulców poprzez pomiar siły hamowania, należy wykorzystać

A. płytę najazdową
B. urządzenie rolkowe
C. opóźnieniomierz
D. drogomierz
Urządzenie rolkowe jest narzędziem przeznaczonym do pomiaru siły hamowania w pojazdach. Działa na zasadzie przeprowadzenia testu na hamulcach poprzez symulację warunków drogowych. Podczas testu pojazd jest umieszczany na rolkach, które obracają się w ruchu przeciwnym do kierunku jazdy. W momencie aktywacji hamulców, urządzenie mierzy siłę, z jaką hamulce działają na koła, co pozwala na ocenę ich skuteczności. Oprócz pomiaru siły hamowania, urządzenie rolkowe może również oceniać stabilność hamulców oraz ich równomierność działania na poszczególnych kołach. Stosowanie takich urządzeń jest zgodne z normami branżowymi, takimi jak ISO 3888 czy ECE R13. W praktyce, wykorzystanie urządzeń rolkowych podczas przeglądów technicznych i diagnostyki pojazdów pozwala na precyzyjne dostosowanie układów hamulcowych do wymagań bezpieczeństwa ruchu drogowego, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników dróg.

Pytanie 16

Gdzie jest zamocowany czujnik spalania stukowego?

A. na kolektorze wydechowym
B. w głowicy
C. na misce olejowej
D. na bloku silnika
Zamocowanie czujnika spalania stukowego w innych lokalizacjach, takich jak miska olejowa, głowica czy kolektor wydechowy, może prowadzić do poważnych problemów w wykrywaniu detonacji. Miska olejowa, będąca częścią smarowania silnika, nie jest miejscem, gdzie mogłyby być efektywnie monitorowane drgania generowane przez spalanie. Umieszczony tam czujnik mógłby nie tylko nie rejestrować istotnych sygnałów, ale także być narażony na wpływ wibracji wynikających z ruchu tłoków, co wprowadzałoby dodatkowy szum i mogłoby prowadzić do fałszywych odczytów. Głowica silnika, choć może wydawać się odpowiednim miejscem, jest narażona na wysokie temperatury i ciśnienia, które mogą wpływać na żywotność czujnika oraz jego dokładność. Z kolei montaż czujnika na kolektorze wydechowym również nie jest rekomendowany, ponieważ w tym miejscu występują drgania o innym charakterze, które mogą być mylnie interpretowane przez czujnik, prowadząc do nieprawidłowych korekt w procesie spalania. Takie pomyłki w lokalizacji czujnika są typowymi błędami myślowymi, które wynikają z niezrozumienia funkcji tego elementu w kontekście całego systemu zarządzania silnikiem. Kluczowe jest zrozumienie, że precyzyjne lokalizowanie czujników jest nie tylko sprawą techniczną, ale również kluczowym elementem we wdrażaniu efektywnych rozwiązań w inżynierii motoryzacyjnej.

Pytanie 17

Z jakich elementów składa się system napędowy pojazdu?

A. Skrzynia biegów, półosie napędowe, koła pojazdu
B. Silnik, wał napędowy, stabilizator
C. Układ kierowniczy, skrzynia biegów, wał napędowy, tylny most
D. Silnik, sprzęgło, skrzynia biegów
Zespół napędowy w samochodzie to naprawdę ważna sprawa, bo to właśnie on sprawia, że pojazd rusza z miejsca. W skład tego zespołu wchodzi silnik, sprzęgło i skrzynia biegów. Silnik to takie serce auta, które zamienia paliwo na moc. Sprzęgło z kolei pozwala nam na zmiany biegów – jest to kluczowe, gdy chcemy przyspieszyć lub zwolnić. A skrzynia biegów dopasowuje moc silnika do potrzeb jazdy, co sprawia, że możemy jechać z różnymi prędkościami. Przykładowo, w nowoczesnych autach automatyczne skrzynie biegów są super, bo kierowca nie musi się martwić o zmiany biegów, tylko może skupić się na drodze. Te elementy muszą być ze sobą dobrze zgrane, co jest istotne dla efektywności i bezpieczeństwa – w końcu każdy chce jeździć bezpiecznie i komfortowo.

Pytanie 18

Numer VIN (Vehicle Identification Number) pojazdu jest zbudowany

A. z 18 znaków
B. z 14 znaków
C. z 10 znaków
D. z 17 znaków
Numer identyfikacyjny pojazdu VIN (Vehicle Identification Number) rzeczywiście składa się z 17 znaków. Jest to międzynarodowy standard, który został wprowadzony w 1981 roku, aby umożliwić jednoznaczną identyfikację pojazdów. Struktura VIN zawiera różnorodne informacje, takie jak producent, typ pojazdu, miejsce produkcji, rok produkcji oraz unikalny numer seryjny. Przykładowo, pierwsze trzy znaki VIN przedstawiają WMI (World Manufacturer Identifier), który identyfikuje producenta i jego lokalizację. Kolejne pięć znaków to VDS (Vehicle Descriptor Section), który określa cechy pojazdu, takie jak jego model, silnik oraz inne parametry techniczne. Ostatnie dziewięć znaków to VIS (Vehicle Identifier Section), który jest unikalnym numerem pojazdu. Dzięki tej standaryzacji możliwe jest łatwe śledzenie historii pojazdów, co jest kluczowe w kontekście wymiany informacji pomiędzy producentami, dealerami oraz organami rejestracyjnymi.

Pytanie 19

W systemach smarowania silnika najczęściej wykorzystuje się pompy

A. wirowe
B. zębate
C. membranowe
D. wyporowe
W układach smarowania silnika, pompy wyporowe czy wirowe, mimo że mają swoje miejsce, nie są najczęściej stosowane w silnikach spalinowych. Pompy wyporowe działają na zasadzie wyporu cieczy i są bardziej do zmiennych zastosowań, a niekoniecznie tam, gdzie potrzebne jest stałe ciśnienie. A w silnikach ważne jest, żeby to ciśnienie smarowania było stabilne, co nie zawsze da się osiągnąć pompami wyporowymi. Co do pomp wirowych, to one lepiej się sprawdzają tam, gdzie liczy się wysoki przepływ, ale niekoniecznie wysokie ciśnienie. Dlatego nie są one najlepszym rozwiązaniem do silników, w których ciśnienie oleju jest kluczowe dla smarowania. Pompy membranowe z kolei, chociaż używane w hydraulice, są dość wrażliwe na uszkodzenia i mają ograniczenia w wydajności, dlatego nie są polecane w silnikach. Często zdarza się mylnie sądzić, że każda z tych pomp może działać w roli pompy smarującej, ale ich budowa i sposób działania nie spełniają norm dla układów smarowania silników spalinowych. Użycie nieodpowiedniej pompy może skutkować słabym smarowaniem, co w dłuższym czasie może prowadzić do poważnych awarii silnika.

Pytanie 20

Dynamiczne niewyważenie koła występuje, gdy

A. masa jest nierównomiernie rozłożona - skoncentrowana po jednej stronie.
B. opona ma większą masę.
C. masa jest nierównomiernie rozłożona - po różnych stronach.
D. felga ma większą masę.
Nierównomiernie rozłożona masa skupiona po jednej stronie nie prowadzi do prawidłowego zrozumienia problemu niewyważenia dynamicznego. Tego typu sytuacja może powodować, że koło będzie w pewnym momencie zrównoważone, co nie jest tym samym co niewyważenie dynamiczne. Ważne jest, aby zrozumieć różnicę między niewyważeniem statycznym a dynamicznym. Niewyważenie statyczne występuje wtedy, gdy masa nie jest równomiernie rozłożona wokół osi obrotu, co prowadzi do drgań w osi pionowej. Z kolei niewyważenie dynamiczne, które jest kluczowe w tym pytaniu, odnosi się do sytuacji, w której masa jest nierównomiernie rozmieszczona wzdłuż obwodu koła, co powoduje wibracje w osi poziomej. Odpowiedzi związane z większą masą opony lub felgi również nie są odpowiednie, ponieważ ciężar samych elementów nie jest decydujący, ale ich rozkład. Wprowadza to w błąd, ponieważ w rzeczywistości to rozkład masy na całej powierzchni koła ma największe znaczenie dla jego stabilności. Dlatego kluczowe jest, aby zwracać uwagę na równomierne rozłożenie masy podczas montażu kół, aby uniknąć problemów związanych z niewyważeniem dynamicznym, które mogą prowadzić do niepożądanych wibracji, a w konsekwencji uszkodzeń układu zawieszenia oraz zwiększonego zużycia paliwa.

Pytanie 21

Co oznacza skrót LPG?

A. mieszanka gazu propan-butan
B. sprężony gaz ziemny
C. metanol
D. paliwo wodorowe
Odpowiedź 'mieszanina gazu propan-butan' jest trafna, bo LPG, czyli gaz płynny, to popularne paliwo, które głównie składa się z propanu i butanu. W normalnych warunkach to gaz, ale gdy jest zimno lub pod dużym ciśnieniem, może zmieniać się w ciecz. Dzięki temu łatwiej go transportować i przechowywać. LPG używa się w wielu miejscach – od ogrzewania domów, przez kuchnie, aż po samochody, gdzie bywa alternatywą dla benzyny. Co ważne, paliwo to jest bardziej ekologiczne, bo produkuje mniej dwutlenku węgla niż tradycyjne paliwa. Jeśli systemy zasilania LPG są dobrze zaprojektowane, to są też bezpieczne, więc nic dziwnego, że cieszą się dużym uznaniem zarówno wśród ludzi, jak i w przemyśle.

Pytanie 22

Która z żarówek pełni funkcję zarówno świateł mijania, jak i drogowych?

A. H4
B. HI
C. H7
D. H3
Wybór innych typów żarówek, takich jak H7, H3 czy HI, do zastosowań jako źródło światła mijania i drogowego nie jest poprawny, ponieważ każdy z tych typów ma swoje specyficzne przeznaczenie i konstrukcję. Żarówka H7 jest zazwyczaj stosowana w nowoczesnych reflektorach jako oddzielne źródło światła drogowego lub mijania, ale nie może pełnić obu funkcji jednocześnie z powodu braku podwójnego włókna. Jest to typowa pomyłka, którą popełniają użytkownicy, zakładając, że każda żarówka może działać w podwójnej roli. H3 jest żarówką stosowaną głównie w światłach przeciwmgielnych i nie ma zdolności do emitowania obu rodzajów strumienia świetlnego. W tym kontekście, wybór HI również nie jest uzasadniony, ponieważ jest to typ żarówki przeznaczony wyłącznie do jednego z trybów (najczęściej jako światła drogowe). Błędy te mogą wynikać z niepełnej wiedzy na temat konstrukcji i zastosowania różnych typów żarówek. Współczesne systemy oświetleniowe stają się coraz bardziej złożone, a ich prawidłowy dobór jest kluczowy dla bezpieczeństwa na drodze. Wybierając odpowiednią żarówkę, należy kierować się nie tylko ich przeznaczeniem, ale również kompatybilnością z systemem elektrycznym pojazdu, co jest szczególnie istotne w kontekście obowiązujących norm i przepisów dotyczących oświetlenia w motoryzacji.

Pytanie 23

Analizując jakość naprawy systemu wtrysku w silniku wysokoprężnym, co należy zweryfikować?

A. poziom emisji dwutlenku węgla
B. obecność kodów błędów kategorii B
C. obecność kodów błędów kategorii P
D. poziom emisji tlenków azotu
Występowanie kodów usterek typu B, emisja dwutlenku węgla oraz emisja tlenków azotu to kwestie, które mogą być istotne w kontekście ogólnej diagnostyki silnika, ale nie są one właściwymi wskaźnikami do oceny jakości naprawy układu wtryskowego silnika o zapłonie samoczynnym. Kody usterek typu B koncentrują się głównie na systemach nadwozia i są mniej związane z parametrami silnika, co czyni je mniej użytecznymi w kontekście układu wtryskowego. Emisja dwutlenku węgla, który jest naturalnym produktem spalania, może wskazywać na ogólną efektywność silnika, ale nie dostarcza bezpośrednich informacji o stanie układu wtryskowego. Z kolei emisja tlenków azotu, będąca wynikiem spalania paliwa w wysokotemperaturowych warunkach, może być analizowana w kontekście norm ekologicznych, ale nie jest wskaźnikiem na poziomie diagnostycznym dla samego układu wtryskowego. Typowym błędem myślowym jest skupienie się na ogólnych wskaźnikach emisji, które mogą być efektem wielu czynników, nie tylko jakości naprawy, zamiast na specyficznych kodach usterek, które są kluczowe dla diagnostyki i naprawy. Właściwe zrozumienie różnicy między tymi kategoriami kodów i emisji jest istotne dla skutecznej diagnostyki i zachowania standardów jakości w naprawach motoryzacyjnych.

Pytanie 24

Podczas montażu pierścieni uszczelniających Simmera wyjętych ze skrzyni biegów należy

A. zamienić miejscami
B. wymienić na nowe
C. zregenerować, gdy uległy zniszczeniu
D. pozostawić w oryginalnych gniazdach
Regeneracja uszkodzonych pierścieni uszczelniających Simmera może wydawać się rozwiązaniem ekonomicznym, jednak takie podejście wiąże się z poważnymi ryzykami. Pierścienie te, wykonane z materiałów elastycznych, po długotrwałym użytkowaniu tracą swoje właściwości uszczelniające. Proces regeneracji zazwyczaj polega na ich czyszczeniu, co w praktyce nie gwarantuje przywrócenia oryginalnych parametrów technicznych. Zastosowanie regenerowanych pierścieni może prowadzić do ich przedwczesnego zużycia, a w efekcie do wycieków fluidów, co jest szczególnie niebezpieczne w przypadku układów smarnych. Wymiana miejscami uszczelnień również jest błędnym podejściem, gdyż każdy pierścień jest projektowany do konkretnych gniazd w skrzyni biegów. Ich zamiana może zaburzyć integralność całego układu uszczelniającego, prowadząc do nierównomiernego zużycia i potencjalnych awarii. Pozostawienie zużytych pierścieni w ich gniazdach z kolei nie rozwiązuje problemu, ponieważ ich degradacja sprawia, że nie będą one spełniały swojej funkcji, co skutkuje nieszczelnością. W kontekście standardów branżowych, zaleca się wymianę wszelkich uszczelnień i o-ringów na nowe w trakcie serwisowania lub naprawy, co jest kluczowe dla zachowania bezpieczeństwa użytkowania oraz efektywności działania urządzeń mechanicznych. Dlatego kluczowe jest stosowanie się do najlepszych praktyk dotyczących wymiany tych kluczowych elementów, aby uniknąć kosztownych napraw w przyszłości.

Pytanie 25

Po prawidłowej realizacji naprawy związanej z wymianą czujnika prędkości obrotowej koła?

A. kontrolka ABS wyłączy się automatycznie po osiągnięciu odpowiedniej prędkości jazdy
B. należy dziesięciokrotnie uruchomić silnik w celu przeprowadzenia samodiagnozy układu ABS
C. należy odłączyć klemę masową akumulatora na 15 sekund
D. konieczne jest ponowne przeprowadzenie diagnostyki układu oraz usunięcie kodów błędów
Odłączenie klem masowej akumulatora na 15 sekund w celu resetu układów elektronicznych mogłoby rzeczywiście wpływać na stan niektórych systemów w pojeździe, jednak nie jest to standardowe podejście do układów ABS po wymianie czujnika prędkości obrotowej. Tego typu działanie nie zmienia faktu, że kontrolka ABS może pozostać aktywna, a system niekoniecznie przeprowadzi pełną samodiagnozę. W przypadku układów ABS, które są zaawansowane technologicznie, ważne jest, aby po wymianie czujnika przeprowadzić odpowiednie testy diagnostyczne zamiast liczyć na reset systemu przez odłączenie zasilania. Ponadto, samodzielne uruchamianie silnika dziesięciokrotnie w celu „samodiagnozy” nie jest uzasadnione, ponieważ system ABS dokonuje oceny i diagnostyki w trakcie normalnej pracy pojazdu. Co więcej, ponowna diagnostyka układu oraz usunięcie ewentualnych kodów błędów powinny być nieodłącznie związane z każdą interwencją w układach elektronicznych pojazdu. Dlatego ważne jest, aby mechanicy stosowali się do najlepszych praktyk i standardów diagnostycznych, aby uniknąć błędnych wniosków oraz zapewnić pełną funkcjonalność systemów bezpieczeństwa w pojazdach.

Pytanie 26

Jakie będą łączne koszty części potrzebnych do wymiany szczęk hamulcowych w samochodzie osobowym z bębnowym układem hamulcowym, jeśli cena za komplet szczęk na przód wynosi 80 zł (jedna oś), a na tył 120 zł (jedna oś)?

A. 200,00 zł
B. 180,00 zł
C. 240,00 zł
D. 400,00 zł
Wybór błędnej odpowiedzi może wynikać z kilku typowych nieporozumień związanych z obliczeniem całkowitych kosztów części do wymiany szczęk hamulcowych. Często błędne podejście do tego zagadnienia polega na pominięciu faktu, że całkowity koszt należy zsumować niezależnie dla przodu i tyłu pojazdu. Na przykład, niektóre osoby mogą pomylić się, sądząc, że całkowity koszt części można przeliczyć tylko na podstawie jednej osi, co prowadzi do odpowiedzi takich jak 240 zł (80 zł + 120 zł + 40 zł), co nie ma uzasadnienia. Inni mogą mylnie traktować koszty jako stałe, nie uwzględniając, że różne osie mają różne ceny części. Dodatkowo, zrozumienie ogólnych zasad kosztorysowania jest niezbędne, aby unikać błędów w przyszłości. Ważne jest, aby mieć na uwadze, że poprawne kalkulacje są kluczowe dla efektywnego zarządzania naprawami i konserwacją pojazdów, co potwierdzają standardy branżowe w dziedzinie motoryzacji. Dlatego umiejętność precyzyjnego obliczania kosztów części zamiennych nie tylko oszczędza czas, ale również pozwala uniknąć nieprzyjemnych niespodzianek finansowych w trakcie eksploatacji samochodu.

Pytanie 27

Głównym celem smaru używanego w piastach kół tylnych jest przede wszystkim

A. uzupełnienie wolnych przestrzeni
B. utrzymanie w dobrym stanie elementów piasty
C. zmniejszenie współczynnika tarcia
D. odprowadzanie nadmiaru ciepła
Smar w piastach kół tylnych pełni różne funkcje, lecz nie każda z nich jest kluczowa w kontekście optymalizacji działania układu. Konserwacja elementów piasty, o której mowa w jednej z odpowiedzi, odnosi się do utrzymania ich w dobrym stanie, jednak sama konserwacja nie jest głównym celem smaru. W rzeczywistości, chociaż smar może wspierać konserwację poprzez redukcję zużycia, jego najważniejszą rolą jest obniżenie współczynnika tarcia. Można również mylić funkcję smaru jako mechanizmu odprowadzającego ciepło. Oczywiście, smar może mieć pewny wpływ na temperaturę pracy, ale jego podstawowe zadanie nie polega na aktywnym odprowadzaniu ciepła. Zamiast tego, ciepło powstaje głównie w wyniku tarcia, które smar ma za zadanie ograniczyć. Ponadto, wypełnianie pustych przestrzeni w piastach jest drugorzędne. Smar może w pewnym stopniu wypełniać te przestrzenie, jednak jego kluczową funkcją jest zmniejszenie tarcia, co jest konieczne dla zapewnienia efektywności działania układów mechanicznych. Typowe błędy myślowe w tym kontekście polegają na nieprawidłowym postrzeganiu roli smaru. Użytkownicy często koncentrują się na jego ochronnych właściwościach, ignorując fundamentalną rolę w optymalizacji ruchu mechanicznego. Właściwe zrozumienie funkcji smaru jest niezbędne dla prawidłowej diagnostyki i utrzymania układów napędowych.

Pytanie 28

Jaki jest podstawowy cel regulacji geometrii zawieszenia?

A. Zmniejszenie zużycia paliwa
B. Zapewnienie stabilności prowadzenia pojazdu
C. Poprawa wyglądu pojazdu
D. Zwiększenie mocy silnika
Podstawowym celem regulacji geometrii zawieszenia jest zapewnienie stabilności prowadzenia pojazdu. Geometria zawieszenia odnosi się do ustawienia kątów kół w stosunku do siebie i do nawierzchni drogi. Prawidłowe ustawienie kątów, takich jak zbieżność, kąt pochylenia kół czy wyprzedzenie osi sworznia zwrotnicy, ma kluczowy wpływ na stabilność pojazdu podczas jazdy. Kiedy kąty te są prawidłowo ustawione, pojazd prowadzi się pewniej, zmniejsza się jego podatność na niekontrolowane zmiany toru jazdy oraz poprawia reakcję na ruchy kierownicy. Nieodpowiednia geometria może prowadzić do niestabilnego zachowania pojazdu, co jest szczególnie niebezpieczne przy dużych prędkościach. Z mojego doświadczenia wynika, że regularna kontrola i regulacja geometrii zawieszenia jest jedną z najważniejszych czynności serwisowych, które mają bezpośredni wpływ na bezpieczeństwo na drodze. Zapewnienie stabilności prowadzenia pojazdu to nie tylko kwestia komfortu, ale przede wszystkim bezpieczeństwa kierowcy i pasażerów. Dlatego warto zwracać uwagę na to, by geometria zawieszenia była zawsze odpowiednio wyregulowana.

Pytanie 29

Najbardziej efektywną metodą ochrony antykorozyjnej nadwozia w trakcie produkcji jest

A. malowanie blach farbami chlorokauczukowymi
B. cynkowanie części nadwozia
C. montowanie osłon z plastiku
D. pokrywanie metalu pastami uszczelniającymi
Metody takie jak powlekanie blach pastami uszczelniającymi, zakładanie osłon plastikowych oraz powlekanie blach farbami chlorokauczukowymi mają swoje zastosowania, jednak nie oferują odpowiedniego poziomu ochrony antykorozyjnej, jaką zapewnia cynkowanie. Powlekanie blach pastami uszczelniającymi, choć może zapobiegać wnikaniu wody do wnętrza elementów nadwozia, nie chroni przed korozją w dłuższej perspektywie, ponieważ pasta może ulegać degradacji pod wpływem warunków atmosferycznych. Zakładanie osłon plastikowych może chronić przed mechanicznymi uszkodzeniami, jednak nie stanowi efektywnej bariery przed działaniem czynników korozyjnych, takich jak wilgoć czy sole drogowe. Farby chlorokauczukowe, mimo że oferują pewną formę ochrony, są bardziej stosowane w kontekście ochrony przed chemikaliami, a ich trwałość w warunkach atmosferycznych nie dorównuje trwałości cynku. Wybór tych metod często wynika z błędnego przekonania o ich skuteczności, co może prowadzić do przedwczesnej korozji nadwozia. W praktyce, aby zapewnić odpowiednią ochronę, producenci powinni stosować kompleksowe podejście, które uwzględnia różnorodne metody zabezpieczeń, jednak cynkowanie pozostaje najlepszym rozwiązaniem w kontekście długotrwałej ochrony przed rdzą, zgodnie z przyjętymi standardami branżowymi.

Pytanie 30

Mikrometr z noniuszem podaje wyniki pomiarów z precyzją

A. 0,10 mm
B. 0,05 mm
C. 0,02 mm
D. 0,01 mm
Noniusz mikrometra, znany z wysokiej precyzji pomiarów, wskazuje dokładność 0,01 mm. Taki poziom dokładności jest kluczowy w zastosowaniach inżynieryjnych oraz laboratoryjnych, gdzie wymagana jest precyzyjna obróbka materiałów czy też montaż elementów. Dzięki takiej rozdzielczości, użytkownicy mogą z łatwością określić niewielkie wymiary, co jest istotne w kontekście tolerancji produkcyjnych. Na przykład, w przemyśle motoryzacyjnym, gdzie każdy milimetr ma znaczenie, pomiary realizowane z dokładnością do 0,01 mm umożliwiają osiągnięcie wysokiej jakości wykonania detali. Standardy branżowe, takie jak ISO 2768, nakładają obowiązek stosowania precyzyjnych narzędzi pomiarowych w procesie wytwarzania, co potwierdza znaczenie mikrometrów z noniuszem. Oprócz zastosowań przemysłowych, mikrometry są również stosowane w badaniach naukowych, gdzie precyzyjne pomiary są kluczowe dla uzyskania wiarygodnych wyników. To sprawia, że wiedza o dokładności mikrometrów jest istotnym elementem kształcenia inżynieryjnego.

Pytanie 31

W trakcie wypadku rolą napinacza pasa bezpieczeństwa jest

A. zmniejszenie nacisku pasa na ludzkie ciało, gdy jest on zbyt duży
B. ułatwienie wypięcia pasa tuż po zamortyzowaniu uderzenia
C. jak najszybsze, mocne związanie ciała człowieka z konstrukcją pojazdu
D. zablokowanie zwijacza, co uniemożliwi rozwinięcie pasa
Napinacz pasa bezpieczeństwa odgrywa kluczową rolę w systemie zabezpieczeń pojazdu. Jego głównym zadaniem jest jak najszybsze i ściśle związanie ciała pasażera z konstrukcją pojazdu w momencie zderzenia. Dzięki temu, podczas nagłego hamowania lub kolizji, napinacz minimalizuje ryzyko przesunięcia się ciała pasażera do przodu, co mogłoby prowadzić do poważnych obrażeń. Warto zauważyć, że napinacze działają na zasadzie mechanizmu automatyzacji, który w momencie detekcji wypadku błyskawicznie napina pas, co zostało zaprojektowane zgodnie z normami bezpieczeństwa, takimi jak ECE R16 w Europie. Przykładowo, w nowoczesnych pojazdach, systemy napinaczy współpracują z poduszkami powietrznymi, co jeszcze bardziej zwiększa poziom ochrony pasażerów. Prawidłowe działanie napinacza jest zatem kluczowe dla zapewnienia bezpieczeństwa podczas jazdy oraz w sytuacjach kryzysowych, co podkreśla jego znaczenie w inżynierii motoryzacyjnej.

Pytanie 32

Jaką czynność należy wykonać w pierwszej kolejności, udzielając pomocy osobie rażonej prądem elektrycznym?

A. zawiadomienie przełożonego o wystąpieniu wypadku.
B. bezpieczne oddzielenie poszkodowanego od źródła prądu.
C. informowanie dostawcy energii elektrycznej o potrzebie odłączenia napięcia.
D. sprawdzenie tętna oraz oddechu osoby poszkodowanej.
Pierwszą czynnością przy udzielaniu pomocy osobie, która została porażona prądem elektrycznym, jest bezpieczne uwolnienie jej od źródła porażenia. W praktyce oznacza to, że pomocnik powinien najpierw zadbać o własne bezpieczeństwo oraz ocenić sytuację. Wyłączenie prądu jest kluczowe, ale nie zawsze jest to możliwe w danym momencie. Dlatego w pierwszej kolejności należy zastosować środki, które minimalizują ryzyko dalszych obrażeń, takie jak użycie izolujących narzędzi (np. kij z materiału nieprzewodzącego) do odsunięcia poszkodowanego od źródła prądu. Ważne jest, aby nie dotykać personelu bezpośrednio, gdyż można również zostać porażonym. Gdy osoba jest już bezpieczna, można przejść do oceny jej stanu zdrowia, takiej jak sprawdzenie tętna i oddychania. W sytuacjach kryzysowych, jak porażenie prądem, dobre praktyki i standardy bezpieczeństwa, np. zgodne z wytycznymi Krajowego Centrum Ratownictwa Medycznego, sugerują, że priorytetem jest zawsze bezpieczeństwo ratownika oraz osoby poszkodowanej.

Pytanie 33

Oparzenia spowodowane gorącymi elementami oraz cieczami mogą wystąpić w trakcie

A. instalacji części synchronizatorów
B. sprawdzania komponentów silnika
C. zajmowania się działającym silnikiem
D. pielęgnacji karoserii
Odpowiedź "obsługi pracującego silnika" jest prawidłowa, ponieważ oparzenia gorącymi częściami i płynami najczęściej zdarzają się w trakcie pracy silnika, gdy jego elementy osiągają wysokie temperatury. W takich sytuacjach, szczególnie przy kontaktach z elementami układu chłodzenia, układem wydechowym czy innymi gorącymi komponentami, ryzyko oparzeń jest znacznie zwiększone. Przykładem może być wymiana oleju silnikowego, podczas której silnik musi być rozgrzany do pracy, a kontakt z gorącym olejem lub innymi cieczami może prowadzić do poważnych oparzeń. Zgodnie z normami BHP w przemyśle motoryzacyjnym, pracownicy powinni nosić odpowiednie środki ochrony osobistej, takie jak rękawice odporne na wysoką temperaturę oraz odzież ochronną, aby minimalizować ryzyko urazów. Weryfikacja procedur bezpieczeństwa oraz odpowiednie szkolenia z zakresu obsługi silników przyczyniają się do zmniejszenia liczby wypadków związanych z oparzeniami.

Pytanie 34

Podczas przeprowadzania próby drogowej zauważono, że pojazd samoczynnie skręca w lewą stronę. Aby ustalić przyczynę oraz ewentualny zakres naprawy, na początku należy

A. wymienić opony na osi przedniej
B. sprawdzić ustawienie kątów kół kierowanych
C. ocenić luzy w układzie kierowniczym
D. zweryfikować ciśnienie w oponach
Zarówno kontrola kątów kół kierowanych, jak i sprawdzanie luzów w układzie kierowniczym oraz wymiana opon osi przedniej to działania, które mogą być istotne w kontekście problemów z geometrią i stanem technicznym pojazdu, ale nie są one pierwszymi krokami w diagnozowaniu problemu z samoczynnym zbaczaniem pojazdu. Kontrola kątów kół kierowanych, obejmująca ustawienie zbieżności oraz kątów pochylenia, ma na celu zapewnienie, że pojazd jedzie prosto. Niewłaściwe ustawienie kątów może prowadzić do trudności w kierowaniu, ale nie powinno być pierwszym krokiem, ponieważ często jest to efekt, a nie przyczyna problemu. Sprawdzanie luzów w układzie kierowniczym jest równie ważne, jednak luz może występować w różnych miejscach i rzadko jest przyczyną samoczynnego zbaczania na prostych odcinkach. Co do wymiany opon osi przedniej, to takie działanie może przynieść chwilową poprawę, jednak nie rozwiązuje problemu, jeśli przyczyną jest niewłaściwe ciśnienie, które należy skontrolować wcześniej. Zatem, mylenie kolejności działań oraz niewłaściwe rozumienie podstawowych zasad diagnostyki pojazdów może prowadzić do nieefektywnego zarządzania naprawami i potencjalnych zagrożeń na drodze.

Pytanie 35

Jakim narzędziem dokonujemy pomiaru średnicy czopa głównego wału korbowego?

A. sprawdzianem pierścieniowym
B. mikrometrem
C. średnicówką trójpunktową
D. czujnikiem zegarowym
Czujnik zegarowy, choć jest cennym narzędziem do pomiarów, nie jest odpowiedni do bezpośredniego pomiaru średnicy czopa głównego wału korbowego. Jego zastosowanie ogranicza się głównie do pomiarów różnicowych i sprawdzania odchyleń od normy na powierzchniach, co czyni go mniej precyzyjnym w kontekście pomiaru średnicy. Z kolei średnicówka trójpunktowa, mimo że jest to narzędzie precyzyjne, może nie być odpowiednia dla specyficznych kształtów czopów głównych, które mogą wprowadzać błędy pomiarowe. Co więcej, pomiar średnicy za pomocą sprawdzianu pierścieniowego, który jest narzędziem kalibracyjnym używanym do weryfikacji wymiarów zewnętrznych, również nie jest najlepszym wyborem; sprawdziany te nie dają dokładnych wyników dla wałów o małych tolerancjach. Pomiar średnicy czopa głównego wymaga narzędzi, które są w stanie dostarczyć odpowiednią precyzję, a wszystkie wymienione metody pomiarowe mogą prowadzić do błędnych wyników. W praktyce, korzystanie z niewłaściwych narzędzi pomiarowych może skutkować poważnymi konsekwencjami, takimi jak niewłaściwe dopasowanie wałów, co w dłuższej perspektywie prowadzi do awarii silnika lub zwiększonego zużycia mechanizmów.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

W skład systemu kierowniczego nie zalicza się

A. końcówka drążka kierowniczego
B. drążek reakcyjny
C. przekładnia ślimakowa
D. drążek kierowniczy
Drążek reakcyjny jest komponentem, który nie należy do układu kierowniczego. W skrócie, układ kierowniczy pojazdu składa się z elementów odpowiedzialnych za kontrolowanie kierunku jazdy, co obejmuje drążek kierowniczy, końcówkę drążka kierowniczego oraz przekładnię ślimakową. Drążek reakcyjny jest stosowany w systemach hydraulicznych, a jego funkcja polega na przenoszeniu sił reakcyjnych, co nie jest konieczne do bezpośredniego działania układu kierowniczego. Zastosowanie drążków kierowniczych oraz ich końcówek jest kluczowe dla zapewnienia precyzyjnego manewrowania pojazdem, co jest regulowane przez normy takie jak ISO 26262 dotyczące bezpieczeństwa funkcjonalnego. W praktyce, właściwe zrozumienie funkcji poszczególnych elementów układu kierowniczego pozwala na efektywniejsze projektowanie oraz serwisowanie pojazdów, co z kolei wpływa na bezpieczeństwo jazdy.

Pytanie 38

Aby ocenić stan techniczny systemu smarowania silnika, na początku należy

A. ocenić stan pompy olejowej
B. przeprowadzić pomiar ciśnienia w systemie smarowania
C. zweryfikować czystość filtrów olejowych
D. sprawdzić poziom oleju w silniku
Pominięcie sprawdzenia poziomu oleju w silniku i rozpoczęcie oceny od innych czynności, takich jak analiza czystości filtrów olejowych, stanu pompy olejowej czy pomiaru ciśnienia w układzie smarowania, może prowadzić do poważnych konsekwencji. Filtry olejowe, mimo że są istotne dla skutecznego funkcjonowania układu smarowania, nie mogą pełnić roli pierwszego kroku oceny, jeśli poziom oleju nie jest odpowiedni. Czystość filtrów jest bezpośrednio związana z jakością oleju i jego poziomem; zanieczyszczony filtr przy niskim poziomie oleju nie będzie w stanie prawidłowo spełniać swojej funkcji, co może prowadzić do poważnych uszkodzeń silnika. Podobnie, ocena stanu pompy olejowej jest istotna, jednak jeśli olej nie jest w odpowiedniej ilości, pompa nie będzie mogła dostarczyć go do wszystkich niezbędnych miejsc. Przy pomiarze ciśnienia, jego wynik może być mylący, jeżeli poziom oleju jest niewłaściwy, ponieważ ciśnienie może być sztucznie zawyżone lub zaniżone przez niewłaściwą ilość płynu. Kluczowym błędem myślowym jest założenie, że można przeprowadzić kompleksową ocenę układu smarowania bez najpierw upewnienia się, że olej jest w odpowiednim stanie i ilości. Takie podejście niezgodne jest z praktykami serwisowymi i może prowadzić do wyższych kosztów napraw oraz zmniejszonej efektywności silnika.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.