Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 15 kwietnia 2025 11:34
  • Data zakończenia: 15 kwietnia 2025 11:52

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Punkty umieszczane na powierzchni monitorowanego obiektu, które sygnalizują zmiany lokalizacji elementów obiektu, to punkty

A. kontrolne
B. odniesienia
C. wiążące
D. kontrolowane
Wybór odpowiedzi związanej z punktami kontrolnymi może wynikać z mylnego zrozumienia roli, jaką te punkty pełnią w kontekście monitorowania obiektów. Punkty kontrolne są rzeczywiście używane w geodezji, jednak ich funkcja jest nieco inna. Służą one głównie jako odniesienie dla pomiarów, a nie jako punkty, które samodzielnie sygnalizują zmiany w położeniu obiektu. Z kolei odpowiedzi takie jak 'punkty odniesienia' i 'punkty wiążące' mogą mylnie sugerować, że chodzi o lokalizacje, które mają jedynie znaczenie orientacyjne lub są związane z innymi procesami. W praktyce, punkty odniesienia są statycznymi punktami, które służą do pomocy w lokalizacji innych obiektów, ale nie są same w sobie zaprojektowane do monitorowania zmian. Typowym błędem myślowym jest pomylenie funkcji monitorowania z funkcją lokalizacji; można uznać, że skoro punkty są używane w procesach pomiarowych, to automatycznie pełnią taką samą rolę w kontekście obserwacji zmian. W rzeczywistości, dla skutecznego monitorowania, niezbędne jest użycie punktów kontrolowanych, które są zaprojektowane do dokładnego śledzenia przemieszczeń i deformacji obiektów w określonym czasie.

Pytanie 4

Który z poniższych elementów terenu zalicza się do pierwszej kategorii dokładnościowej?

A. Boisko sportowe
B. Drzewo przyuliczne
C. Budynek szkoły
D. Linia brzegowa jeziora
Budynek szkoły to coś, co możemy spokojnie wrzucić do pierwszej grupy dokładnościowej, jeśli mówimy o analizie terenowej i geodezyjnej. W tej grupie są obiekty, które mają naprawdę wysoką precyzję. To znaczy, że ich lokalizacja jest dokładnie określona i można je wykorzystać w różnych sytuacjach, jak planowanie przestrzenne czy urbanistyka. Jak to z budynkami bywa, zwłaszcza tymi publicznymi, jak szkoły, mają one duże znaczenie dla analizy przestrzennej, bo ich lokalizacja wpływa na to, jak dostępne są usługi dla ludzi w okolicy. Kiedy tworzymy mapy społeczne czy sprawdzamy dostęp do edukacji, precyzyjna lokalizacja szkół jest super ważna, żeby ocenić jakość życia i infrastruktury w danym miejscu. A wiesz, stosowanie standardów jak ISO 19115, które dotyczą metadanych geograficznych, pomaga w tym, żeby te dane były zebrane i użyte tak, jak trzeba. To naprawdę ważne dla dalszych analiz.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jakie elementy powinno zawierać sprawozdanie techniczne z przeprowadzonej pracy geodezyjnej?

A. mapę z analizy terenowej
B. rysunek z pomiaru sytuacyjnego
C. spis współrzędnych punktów
D. wykaz zastosowanych metod pomiarowych
Wykaz zastosowanych metod pomiarowych jest kluczowym elementem sprawozdania technicznego z pracy geodezyjnej, ponieważ dostarcza informacji o technikach i narzędziach użytych w trakcie realizacji projektu. Przykładowo, w dokumentacji dotyczącej pomiarów geodezyjnych, takich jak niwelacja, triangulacja czy pomiar GPS, szczegółowe opisanie metod umożliwia innym specjalistom zrozumienie oraz powtórzenie badania, co jest zgodne z zasadami dobrej praktyki w geodezji. Wykaz ten powinien również zawierać informacje o poziomie precyzji pomiarów oraz warunkach, w jakich zostały one przeprowadzone. Standardy geodezyjne oraz normy takie jak ISO 17123 wskazują na konieczność dokumentowania metod, aby zapewnić jednolitość oraz transparentność procesów pomiarowych. W praktyce, dobrze przygotowane sprawozdanie techniczne nie tylko zwiększa wiarygodność wyników, ale również ułatwia przyszłą interpretację oraz porównywanie danych.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jeśli zmierzono kąt pionowy w dwóch ustawieniach lunety, uzyskując wyniki: KL = 95,0030g, KP = 304,9980g, to jaki ma wartość błąd indeksu?

A. +10cc
B. +5cc
C. +20cc
D. +15cc
Rozważając inne możliwe odpowiedzi, warto zauważyć, że pomyłki w obliczeniach wartości błędu indeksu często wynikają z niezrozumienia relacji pomiędzy kątami pomierzonymi a teoretycznymi wartościami. Na przykład, wybór +10cc mógłby sugerować, że pomiar został zinterpretowany jako mniejszy błąd, co jest mylnym wnioskiem przy skomplikowanej analizie kątów. Inne opcje, takie jak +20cc, +15cc, także mogą wynikać z błędnego założenia o pełnym obrocie lunety. Zrozumienie podstaw metody pomiarowej oraz znajomość geodezyjnych norm i praktyk jest kluczowe. Kiedy luneta jest nieodpowiednio skalibrowana, pomiary mogą przynieść zafałszowane wyniki. Należy pamiętać, że błąd indeksu jest istotny dla precyzyjnych pomiarów w geodezji, a jego właściwe obliczenie ma kluczowe znaczenie dla dokładności całego procesu pomiarowego. Dlatego też każdy, kto pracuje z instrumentami geodezyjnymi, powinien być świadomy potencjalnych źródeł błędów oraz regularnie dokonywać kalibracji sprzętu.

Pytanie 10

Jeśli dokonano poniższych pomiarów kąta pionowego: w pierwszym ustawieniu lunety KL = 83,3400g oraz w drugim ustawieniu lunety KP = 316,6700g, to wartość kąta nachylenia α wynosi

A. 83,3350g
B. 83,3400g
C. 16,6700g
D. 16,6650g
Aby obliczyć wartość kąta nachylenia α na podstawie odczytów lunety, należy zastosować odpowiednią formułę, która polega na odjęciu wartości odczytu w położeniu I od wartości odczytu w położeniu II. W tym przypadku, odczyt w położeniu II wynosi 316,6700g, a w położeniu I 83,3400g. Obliczenie tego daje: α = KP - KL = 316,6700g - 83,3400g = 233,3300g. Jednak, aby uzyskać kąt nachylenia w kontekście geodezyjnym, należy zauważyć, że kąt nachylenia w kontekście pomiarów geodezyjnych jest często wyrażany jako kąt w stosunku do poziomu, a nie w bezwzględnych jednostkach. W takim przypadku, odpowiednia wartość α, jaką otrzymujemy (16,6650g), odnosi się do różnicy wysokości lub kątów nachylenia. W praktyce, poprawne obliczenie kątów nachyleń jest kluczowe w wielu zastosowaniach geodezyjnych oraz inżynieryjnych, takich jak budowa dróg, mostów czy budynków, gdzie precyzyjne pomiary wysokości i nachyleń mają fundamentalne znaczenie dla bezpieczeństwa oraz trwałości konstrukcji.

Pytanie 11

Na mapie zasadniczej symbol literowy oznacza budynek mieszkalny jednorodzinny

A. md
B. mj
C. mz
D. mt
Odpowiedź 'mj' jest poprawna, ponieważ oznaczenie budynku mieszkalnego jednorodzinnego na mapie zasadniczej zgodne jest ze standardami określonymi w Polskiej Normie PN-ISO 19108. W tej normie przypisano symbol literowy 'mj' dla budynków mieszkalnych jednorodzinnych. W praktyce oznaczenie to jest istotne dla urbanistów, architektów i innych profesjonalistów zajmujących się planowaniem przestrzennym, ponieważ umożliwia szybkie i jednoznaczne zidentyfikowanie rodzaju obiektu na mapie. Na przykład, w dokumentacji urbanistycznej, podczas analizy terenu pod zabudowę, oznaczenie 'mj' pozwala na łatwe rozróżnienie budynków mieszkalnych jednorodzinnych od innych typów zabudowy, co jest kluczowe w procesie projektowania oraz oceny wpływu planowanej zabudowy na środowisko. Dodatkowo, znajomość tych oznaczeń jest niezbędna podczas przeglądów administracyjnych, gdzie precyzyjna interpretacja mapy zasadniczej jest wymagana do podejmowania decyzji dotyczących wydawania pozwoleń na budowę lub zmian w zagospodarowaniu przestrzennym.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Który z poniższych obiektów wymaga obowiązkowego wytyczenia geodezyjnego oraz inwentaryzacji powykonawczej?

A. Sygnał drogowy.
B. Ogrodzenie stałe.
C. Przyłącze wodociągowe
D. Plac zabaw.
Przyłącze wodociągowe podlega obowiązkowemu wytyczeniu geodezyjnemu oraz inwentaryzacji powykonawczej, ponieważ jest to element infrastruktury technicznej, który ma istotne znaczenie dla organizacji przestrzennej oraz funkcjonowania sieci wodociągowej. Wytyczenie geodezyjne pozwala na precyzyjne określenie jego lokalizacji w terenie, co jest kluczowe dla uniknięcia kolizji z innymi instalacjami, co może prowadzić do kosztownych napraw i zakłóceń w dostawie wody. Inwentaryzacja powykonawcza ma na celu dokumentację stanu przyłącza po zakończeniu prac budowlanych, co jest istotne z punktu widzenia zarządzania infrastrukturą oraz jej późniejszej eksploatacji. Przykładem może być sytuacja, w której inwestor budowlany zleca wykonanie przyłącza wodociągowego, a następnie po zakończeniu prac geodeta przeprowadza inwentaryzację, aby potwierdzić zgodność wykonanego przyłącza z projektem. Zgodnie z obowiązującymi w Polsce przepisami prawa budowlanego oraz standardami geodezyjnymi, takie działania są niezbędne w celu zapewnienia bezpieczeństwa użytkowania oraz ochrony interesów publicznych.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Wykonano pomiary niwelacyjne w celu utworzenia punktu szczegółowego osnowy wysokościowej. Jaka jest maksymalna długość tego ciągu, jeśli składa się z 4 stanowisk i nie zostały przekroczone dozwolone długości celowych?

A. 600 m
B. 400 m
C. 250 m
D. 150 m
Maksymalna długość ciągu niwelacyjnego wynosząca 400 m jest zgodna z powszechnie przyjętymi normami w geodezji, które określają dopuszczalne długości dla różnych technik niwelacji. Przy niwelacji precyzyjnej, długość jednego stanowiska nie powinna przekraczać 200 m, co oznacza, że w przypadku czterech stanowisk maksymalna długość ciągu wynosi 4 x 100 m = 400 m. Taki układ zapewnia wystarczającą dokładność pomiarów, umożliwiając redukcję błędów systematycznych i losowych. W praktyce, długość ta jest również dostosowywana do warunków terenowych, rodzaju używanego sprzętu niwelacyjnego oraz wymagań projektu. Standardy, takie jak PN-EN 28720, podkreślają znaczenie dokładności w niwelacji, co ma kluczowe znaczenie w budownictwie, tworzeniu map czy projektowaniu infrastruktury. Dodatkowo, planując pomiary, warto uwzględnić warunki atmosferyczne oraz potencjalne przeszkody, co może mieć wpływ na jakość pomiarów. 400 m to optymalna długość, która przy odpowiednich technikach pomiarowych zapewnia precyzyjne wyniki.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Jaki błąd jest wskaźnikiem precyzji tyczenia?

A. Błąd względny tyczenia
B. Błąd średni tyczenia
C. Błąd graniczny tyczenia
D. Błąd przypadkowy tyczenia
Błąd średni tyczenia to naprawdę ważna sprawa, jeśli chodzi o dokładność w pomiarach. Mówiąc prościej, to średnia różnica między tym, co zmierzyliśmy, a tym, co jest rzeczywiste. Dzięki temu wiemy, jak dobrze nam idzie w terenie. W praktyce, na przykład przy ustalaniu granic działki, precyzyjność pomiaru jest kluczowa. Jeśli coś pójdzie nie tak, mogą pojawić się konflikty z sąsiadami. No i w dokumentach geodezyjnych też musimy być dokładni. W branży są różne normy, jak te z ISO/TS, które pokazują, jakie błędy są akceptowalne. To naprawdę dowodzi, jak istotny jest błąd średni w geodezji. Analizując go, geodeci mogą zdecydować, czy trzeba coś poprawić czy powtórzyć pomiary, co zdecydowanie wpływa na jakość danych geodezyjnych.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Który z wymienionych elementów terenowych, przy realizacji pomiarów sytuacyjnych metodą ortogonalną, dopuszcza domiar prostokątny nieprzekraczający 25 m?

A. Tama
B. Pomnik
C. Grobla
D. Skwer
W przypadku pozostałych odpowiedzi, takich jak skwer, tama i grobla, pojawia się istotny problem związany z dopuszczalnym domiarem prostokątnym, który jest znacznie większy od 25 m i nie spełnia wymogów metody ortogonalnej w kontekście pomiarów sytuacyjnych. Skwer to przestrzeń publiczna, która zazwyczaj obejmuje większe obszary i wymaga bardziej szczegółowych pomiarów, które mogą sięgać nawet kilkudziesięciu metrów, co znacząco wykracza poza podany limit. Z kolei tama oraz grobla to obiekty inżynieryjne, których pomiar wymaga nie tylko precyzyjnych technik, ale i zrozumienia specyfiki ich struktury oraz funkcji w systemie hydrologicznym. Przy pomiarach tych obiektów kluczowe jest uwzględnianie zarówno ich długości, jak i zmienności terenu, co może generować znaczne odchylenia od wymaganego domiaru. Z perspektywy praktycznej, błędne podejście do pomiarów tych obiektów, polegające na stosowaniu domiaru prostokątnego, może prowadzić do poważnych błędów w odwzorowaniu rzeczywistości geograficznej, co w konsekwencji wpływa na planowanie i zarządzanie przestrzenią. Dlatego kluczowe jest, aby geodeci byli świadomi różnic w podejściu do pomiarów różnych typów obiektów i stosowali odpowiednie standardy, które zapewnią dokładność i rzetelność wykonanych prac.

Pytanie 24

Aby zmierzyć szczegóły sytuacyjne metodą ortogonalną, geodeta ustawił linię pomiarową AB, którą zmierzył ruletką pięć razy. Jeśli otrzymał następujące wyniki: 160,10 m; 160,12 m; 180,12 m; 160,11 m; 160,13 m, to długość boku AB jest obarczona błędem

A. systematycznym
B. przypadkowym
C. grubym
D. pozornym
Błędy przypadkowe są wynikiem nieprzewidywalnych fluktuacji, które mogą występować podczas pomiaru. W przypadku pomiaru długości boku AB, różnice w danych mogą wynikać z różnych czynników, takich jak zmiana warunków atmosferycznych, błędy w odczycie lub niewielkie różnice w technice pomiarowej. Choć błędy przypadkowe mogą wpływać na wyniki, nie są one odpowiednie do opisu zaobserwowanego problemu, ponieważ nie ma informacji wskazujących na ich losowy charakter. Błędne jest również sugerowanie, że pomiar mógłby być obarczony błędem systematycznym, który odnosi się do regularnych, powtarzalnych błędów, takich jak te wynikające z niedoskonałości narzędzi pomiarowych. W analizowanym przypadku błąd grubym oznacza istotną anomalię, podczas gdy błędy systematyczne mają tendencję do generowania podobnych wyników w całym pomiarze. Odpowiedzi dotyczące błędu pozornego są także nieprawidłowe, ponieważ błędy pozorne są związane z niewłaściwą interpretacją wyników, a nie z samymi pomiarami. Wnioskując, błędy myślowe wynikają z niepełnego zrozumienia różnicy między rodzajami błędów oraz ich wpływem na wiarygodność pomiarów. Dobrze zrozumiane rodzaje błędów są kluczowe dla prawidłowego przeprowadzania pomiarów geodezyjnych oraz zapewnienia ich precyzji.

Pytanie 25

Jaką osnowę powinno się założyć do geodezyjnej obsługi dużego zakładu przemysłowego, którego realizacja przebiegać będzie w etapach?

A. Realizacyjną jednorzędową
B. Realizacyjną typu A
C. Realizacyjną dwurzędową
D. Realizacyjną wydłużoną
Osnowa realizacyjna dwurzędowa to świetny wybór, jeśli chodzi o geodezję w dużych zakładach. Szczególnie, gdy prace są podzielone na etapy. Taka osnowa jest bardzo precyzyjna i elastyczna, a to naprawdę ważne przy inwestycjach, które rozwijają się w tempie błyskawicy. W praktyce to oznacza, że geodeci mogą szybko dostosować pomiary do zmieniających się warunków na budowie, co ułatwia kontrolowanie postępu w różnych częściach projektu. Dzięki osnowie dwurzędowej, możliwe jest równoczesne robienie kilku pomiarów, co znacząco przyspiesza realizację inwestycji. Na przykład w trakcie budowy fabryki można jednocześnie zajmować się pomiarami pod fundamenty, instalacjami technicznymi i rozmieszczaniem sieci infrastrukturalnych. To zdecydowanie zwiększa efektywność całego przedsięwzięcia. I co ważne, zgodne z normami, takimi jak PN-EN ISO 17123, użycie takiej osnowy w dużych projektach to klucz do zachowania wysokich standardów dokładności i rzetelności pomiarów.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jaki jest błąd względny w pomiarze odcinka długości 250,00 m, jeśli jego długość zmierzono z błędem średnim ±5 cm?

A. 1/500
B. 1/100
C. 1/5000
D. 1/50
Analizując pozostałe odpowiedzi, można zauważyć, że wiele z nich opiera się na błędnych założeniach dotyczących obliczania błędu względnego. Przyjmując, że błąd pomiarowy wynosi 5 cm, niektóre odpowiedzi, takie jak 1/100 czy 1/50, mogą wydawać się na pierwszy rzut oka atrakcyjne, ale nie uwzględniają rzeczywistego kontekstu pomiaru. Odpowiedź 1/100 sugeruje, że błąd pomiarowy stanowi 1% całkowitej długości, co jest znacznie wyolbrzymione, biorąc pod uwagę, że 5 cm to tylko 0,02% z 250 m. Podobnie, odpowiedź 1/50 również jest nieprawidłowa, ponieważ wskazuje na dużo większy błąd względny, niż jest to rzeczywiście zasadne. Typowym błędem myślowym w takich przypadkach jest niewłaściwe przeliczenie jednostek lub niedocenianie wpływu skali na błąd pomiarowy. Odpowiedzi te mogą wskazywać na brak zrozumienia, jak proporcjonalnie mały błąd w stosunku do dużych wartości może wpływać na obliczenia. W praktyce inżynieryjnej i naukowej ważne jest, aby analizy były dokładne i zgodne z uznanymi standardami, takimi jak normy ISO dotyczące metrologii, które promują precyzyjne i konsekwentne podejście do pomiarów i obliczeń.

Pytanie 33

Który z wymienionych dokumentów nie należy do operatu technicznego przekazywanego do Państwowego Zasobu Geodezyjnego i Kartograficznego?

A. Sprawozdanie techniczne
B. Dziennik pomiarowy
C. Opis topograficzny punktu osnowy pomiarowej
D. Certyfikat rektyfikacji sprzętu geodezyjnego
Certyfikat rektyfikacji sprzętu geodezyjnego nie jest dokumentem, który należy przekazać do Państwowego Zasobu Geodezyjnego i Kartograficznego (PZGiK) w ramach operatu technicznego. Operat techniczny jest zbiorem dokumentów, które potwierdzają wykonanie prac geodezyjnych i składają się z elementów takich jak dziennik pomiarowy, sprawozdanie techniczne oraz opis topograficzny punktu osnowy pomiarowej. Certyfikat rektyfikacji dotyczy jedynie stanu oraz kalibracji sprzętu geodezyjnego i jest istotny w kontekście zapewnienia jakości pomiarów, jednak nie stanowi elementu operatu. W praktyce, operat techniczny jest kluczowy dla weryfikacji i archiwizacji danych geodezyjnych, co jest niezbędne dla utrzymania standardów w branży. Zgodnie z przepisami prawa, dokumentacja ta musi być starannie przygotowana, aby zapewnić jej zgodność z obowiązującymi normami. Dobrą praktyką jest regularne przeglądanie i aktualizowanie procedur dotyczących dokumentacji operatów technicznych, co przyczynia się do lepszej organizacji pracy geodetów i podnosi jakość świadczonych usług.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Jakie jest pole powierzchni kwadratowej działki na mapie w skali 1:2000, jeżeli na mapie w skali 1:500 wynosi ono 4,00 cm2?

A. 5 mm2
B. 50 mm2
C. 25 mm2
D. 10 mm2
Błędy w obliczaniach polegają głównie na niedokładnym zrozumieniu, jak skala wpływa na pole powierzchni. Wiele osób może mylnie sądzić, że zmiana skali przelicza się w sposób liniowy, co prowadzi do mylnego założenia, że pole powierzchni również zmienia się liniowo. W rzeczywistości, zmiana skali ma charakter kwadratowy. Przykładowo, jeśli osoba oblicza pole na nowej skali bez uwzględnienia przeliczenia na mm², mogłoby to prowadzić do błędnych wyników, takich jak 5 mm² czy 10 mm², które nie uwzględniają rzeczywistej różnicy w skali. Ponadto, osoby mogą zapominać o przeliczeniu jednostek, co skutkuje niepoprawnym oszacowaniem powierzchni. Każdy projektant map czy inżynier musi być świadomy tych zasad, aby unikać poważnych błędów w dokumentacji i projektowaniu, które mogą prowadzić do niezgodności w danych. Precyzyjność w obliczeniach powierzchni jest kluczowa dla zapewnienia zgodności z normami branżowymi oraz dla poprawnego wykonania projektów w budownictwie czy urbanistyce. Zrozumienie, jak skala wpływa na pomiary, jest fundamentalnym aspektem dla profesjonalistów zajmujących się geodezją i kartografią.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Pomiar kątów za pomocą tachimetru elektronicznego w dwóch pozycjach lunety nie usuwa błędu

A. indeksu
B. inklinacji
C. kolimacji
D. centrowania
Pomimo różnych podejść do pomiaru kątów, błędy związane z inklinacją, kolimacją i indeksem są często mylone z błędem centrowania. Inklinacja odnosi się do nachylenia instrumentu względem płaszczyzny poziomej, co może prowadzić do niewłaściwych pomiarów, jeśli nie zostanie skorygowane. Błąd kolimacji z kolei dotyczy różnicy między kierunkiem, w którym wskazuje luneta, a rzeczywistym kierunkiem obiektu. W przypadku pomiarów kątów, kolimacja musi być regularnie sprawdzana, aby zapewnić dokładność wyników. Błąd indeksu, związany z różnicą w odczytach kątów przy różnych położeniach lunety, również nie jest bezpośrednio związany z centrowaniem, ale z właściwościami samego instrumentu. Często wynika z tolerancji produkcyjnych i może być skorygowany poprzez kalibrację. Typowe błędy myślowe prowadzące do zamiany tych pojęć pojawiają się, gdy pomiar kątów traktowany jest jako jednoznaczny proces, bez uwzględnienia, że każde z tych pojęć odnosi się do różnych aspektów precyzji pomiaru. Zrozumienie różnic między tymi błędami jest kluczowe dla skutecznej geodezyjnej praktyki, gdyż każdy z nich wymaga zastosowania innego podejścia do eliminacji błędów pomiarowych.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.

Strona wykorzystuje pliki cookies do poprawy doświadczenia użytkownika oraz analizy ruchu. Szczegóły