Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 9 kwietnia 2025 16:57
  • Data zakończenia: 9 kwietnia 2025 17:12

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas podłączania czujnika ruchu typu NC do panelu alarmowego w konfiguracji 3EOL/NC, konieczne jest umieszczenie w tym czujniku, odpowiednio podłączonych, trzech

A. fototranzystorów
B. kondensatorów
C. rezystorów
D. diody
Podłączenie czujki ruchu typu NC (normalnie zamknięty) w konfiguracji 3EOL/NC wymaga zastosowania odpowiednich rezystorów, które są kluczowe dla zapewnienia poprawnej pracy systemu alarmowego. W przypadku czujek ruchu, rezystory służą do monitorowania stanu obwodu, co pozwala na wykrycie sabotażu oraz sygnalizację alarmu w momencie, gdy czujka jest aktywowana. Standardowo w tej konfiguracji stosuje się rezystory o wartości 1kΩ dla każdego z trzech kanałów, co umożliwia efektywne zbalansowanie systemu oraz dostarczenie informacji o ewentualnych uszkodzeniach. Dobrą praktyką jest również stosowanie rezystorów w odpowiednich wartościach, aby uniknąć fałszywych alarmów oraz zapewnić stabilność działania czujki w różnych warunkach środowiskowych. W praktyce, zastosowanie rezystorów zwiększa niezawodność systemów alarmowych, co jest kluczowe w kontekście ochrony obiektów.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Jaka jest przybliżona wartość pasożytniczej częstotliwości lustrzanej (Fl) w zakresie AM dla sygnału radiowego o częstotliwości nośnej fs = 1 450 kHz oraz częstotliwości pośredniej odbiornika fp = 465 kHz (fl=f<Sub>s+2fp)?

A. 1,45 MHz
B. 930 kHz
C. 1915 kHz
D. 2,38 MHz
Wybór wartości innej niż 2,38 MHz zazwyczaj wynika z nieprawidłowego zrozumienia wzoru na pasożytniczą częstotliwość lustrzaną. Najczęściej popełnianym błędem jest pominięcie czynników związanych z częstotliwościami używanymi w obliczeniach. Na przykład, niektórzy mogą założyć, że częstotliwość lustrzana jest tylko sumą częstotliwości nośnej i pośredniej, co jest nieprawidłowe, ponieważ w tym przypadku należy uwzględnić dodatkowy czynnik mnożenia przez 2 dla częstotliwości pośredniej. Wartością, która może być mylona z wynikami obliczeń, jest częstotliwość nośna (1,45 MHz), która nie uwzględnia wpływu częstotliwości pośredniej. W przypadku odpowiedzi jako 930 kHz, mylone jest z zastosowaniem jedynie częstotliwości pośredniej bez jej podwajania. Odpowiedzi, które sugerują błędne wartości, wskazują na brak zrozumienia jak ważne jest dokładne stosowanie formuł przy obliczeniach związanych z sygnałami radiowymi. W praktyce, zrozumienie tych zależności jest niezbędne do prawidłowego projektowania systemów odbiorczych i zapewnienia ich efektywności, co jest kluczowe w standardach radiowych, w których działają stacje nadawcze i odbiorcze. Dlatego istotne jest przyswojenie odpowiednich zasad obliczeniowych i ich zastosowanie w rzeczywistych scenariuszach, aby móc skutecznie radzić sobie z problemami związanymi z odbiorem sygnałów.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Układ cyfrowy sekwencyjny wyróżnia się tym, że sygnał na wyjściu

A. jest uzależniony od aktualnej informacji wejściowej oraz od uprzednich informacji wyjściowych
B. jest uzależniony od aktualnej informacji wejściowej, ale nie jest uzależniony od uprzednich informacji wyjściowych
C. nie jest uzależniony od aktualnej informacji wejściowej ani od uprzednich informacji wyjściowych
D. nie jest uzależniony od aktualnej informacji wejściowej, natomiast zależy od uprzednich informacji wyjściowych
Błędne odpowiedzi na zadane pytanie wskazują na nieporozumienie dotyczące fundamentalnych zasad działania układów cyfrowych sekwencyjnych. W szczególności, wiele osób może mylić układy sekwencyjne z układami kombinacyjnymi, które charakteryzują się tym, że ich sygnał wyjściowy zależy wyłącznie od bieżących sygnałów wejściowych. Sytuacja, w której sygnał wyjściowy nie zależy od wcześniejszych stanów, jest typowa dla układów kombinacyjnych, takich jak bramki logiczne. Układy sekwencyjne, dzięki swojej pamięci, mogą reagować na zmiany w czasie, co pozwala na realizację bardziej złożonych funkcji. Często pojawiającym się błędem jest także założenie, że wyjście może być uzależnione tylko od przeszłych stanów, co prowadzi do nieprawidłowych interpretacji działania systemów. W rzeczywistości, układy sekwencyjne zawsze łączą oba te aspekty – aktualne stany wejściowe oraz historię sygnałów. Zrozumienie tego mechanizmu jest kluczowe dla projektantów systemów cyfrowych, ponieważ niewłaściwe podejście może prowadzić do poważnych błędów w projektowaniu i wdrażaniu systemów. Dla przykładu, w projektowaniu liczników, ignorowanie wpływu wcześniejszych stanów może prowadzić do błędnych wyników zliczania, co jest nie do zaakceptowania w wielu aplikacjach przemysłowych. W związku z tym, niezwykle istotne jest, aby przedstawić układy sekwencyjne jako całość, gdzie zarówno bieżące, jak i przeszłe stany są nieodłącznymi elementami w procesie podejmowania decyzji przez układ.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

W dokumentacji technicznej multimetru stwierdzono, że potrafi on wyświetlać wyniki pomiarów w formacie trzy i pół cyfry. Jaką najwyższą liczbę jednostek jest w stanie pokazać ten multimetr?

A. 3999
B. 39999
C. 1999
D. 19999
Odpowiedź 1999 jest jak najbardziej trafna! Multimetry z oznaczeniem 'trzy i pół cyfry' mogą wyświetlać liczby do 1999. To oznaczenie oznacza, że pierwsza cyfra może być tylko 0 albo 1, a pozostałe mogą być od 0 do 9. Dlatego dostajemy zakres od 000 do 1999. Praktycznie oznacza to, że ten typ multimetru jest w stanie zmierzyć wartości do 2000 jednostek. Multimetry tego typu są super przydatne, szczególnie przy pomiarach napięcia, prądu i oporu. Są to sprzęty, które każdy, kto zaczyna przygodę z elektroniką, powinien mieć. Dobrze się sprawdzają też w różnych przemysłowych zastosowaniach, zwłaszcza przy konserwacji urządzeń elektronicznych. Warto z nich korzystać, bo są proste w obsłudze i dobrze pokazują wyniki.

Pytanie 14

Parametr Vpp, który znajduje się w dokumentacji technicznej wzmacniacza mocy o niskiej częstotliwości, wskazuje na wartość

A. maksymalną sygnału
B. skuteczną sygnału
C. między szczytową sygnału
D. średnią sygnału
Wybór innych odpowiedzi, takich jak skuteczna, maksymalna czy średnia sygnału, prowadzi do nieporozumień dotyczących charakterystyki napięcia w kontekście wzmacniaczy mocy. Skuteczne napięcie, czyli wartość skuteczna (RMS), odnosi się do wartości, która odpowiada stałemu napięciu generującemu taką samą moc na obciążeniu. To pojęcie jest stosowane szeroko w obliczeniach dotyczących energii elektrycznej, ale nie odnosi się bezpośrednio do maksymalnych wartości napięcia sygnału audio. Z kolei maksymalne napięcie może sugerować wartość szczytową, jednak nie precyzuje, że chodzi o różnicę między dwoma szczytami w przypadku sygnałów sinusoidalnych. Średnia wartość napięcia w kontekście sygnałów zmiennych jest z kolei wartością nieprzydatną w analizie dynamicznej, ponieważ nie odzwierciedla rzeczywistych możliwości sygnału audio przekazywanego przez wzmacniacz. Wartości te mogą prowadzić do błędnych wniosków o wydajności wzmacniacza, co w praktyce może skutkować niewłaściwym doborem komponentów lub nieadekwatnymi rozwiązaniami w projektach audio. Kluczowe jest, aby inżynierzy rozumieli różnice między tymi parametrami, aby efektywnie projektować i analizować systemy audio zgodnie z branżowymi standardami. W praktyce, nieznajomość tych różnic może prowadzić do zniekształceń dźwięku, niewłaściwego dopasowania impedancji i w rezultacie do niezadowolenia z jakości przekazywanego sygnału.

Pytanie 15

Która z podanych cech nie charakteryzuje się właściwościami idealnego wzmacniacza operacyjnego?

A. Nieskończenie wielka rezystancja wyjściowa
B. Nieskończenie szeroki zakres przenoszenia
C. Nieskończenie wielka rezystancja wejściowa
D. Nieskończenie wielkie różnicowe wzmocnienie napięciowe
Wzmacniacze operacyjne są kluczowym elementem w elektronice analogowej, a znajomość ich właściwości jest niezbędna do ich prawidłowego zastosowania. Jedną z fundamentalnych cech idealnego wzmacniacza operacyjnego jest nieskończenie duża rezystancja wejściowa. Tego rodzaju rezystancja pozwala na minimalizację wpływu wzmacniacza na sygnał wejściowy, co jest istotne w aplikacjach, gdzie istotne są bardzo małe sygnały. W praktyce, oznacza to, że idealny wzmacniacz operacyjny nie pobiera praktycznie żadnego prądu z sygnału wejściowego, co jest pożądane w pomiarach i amplifikacji sygnałów. Szerokie pasmo przenoszenia jest również kluczowym parametrem, który pozwala na efektywne wzmacnianie sygnałów o różnych częstotliwościach, co jest niezbędne w systemach komunikacyjnych i obróbczych. Kolejnym ważnym aspektem jest nieskończenie duże różnicowe wzmocnienie napięciowe, które pozwala na bardzo dużą amplifikację różnicy napięć na wejściach, co jest istotne w zastosowaniach takich jak wzmacniacze instrumentacyjne. Wybierając wzmacniacz operacyjny do konkretnego zastosowania, należy zawsze uwzględnić te parametry, aby zapewnić optymalne działanie systemu. Wstępne założenia dotyczące parametrów idealnych są podstawą do analizy rzeczywistych wzmacniaczy operacyjnych, które zawsze będą miały ograniczenia techniczne i różnice w charakterystyce, ale ich projektowanie powinno dążyć do zbliżenia się do ideału.

Pytanie 16

W systemach zabezpieczeń obwodowych wykorzystuje się

A. czujniki dymu i ciepła
B. czujniki zalania
C. czujniki gazów usypiających
D. bariery podczerwieni
Bariery podczerwieni stanowią jeden z kluczowych elementów nowoczesnych systemów ochrony obwodowej. Działają na zasadzie detekcji ruchu poprzez analizowanie zmian w promieniowaniu podczerwonym, które emitują obiekty w ich zasięgu. Dzięki tej technologii możliwe jest szybkie wykrycie nieautoryzowanego dostępu do chronionego obszaru. Bariery podczerwieni są często stosowane w użytku zewnętrznym, gdzie mogą monitorować duże obszary, takie jak ogrody, parkingi czy tereny przemysłowe. Zgodnie z normami EN 50131, detektory te powinny być odpowiednio umieszczone, aby minimalizować ryzyko fałszywych alarmów, co jest kluczowe dla efektywności systemu. W praktyce, bariery podczerwieni są wykorzystywane w połączeniu z innymi systemami zabezpieczeń, takimi jak kamery monitoringu czy alarmy, co zwiększa ich skuteczność. Odpowiednie ich zainstalowanie oraz konfiguracja są zgodne z najlepszymi praktykami w branży ochrony, co zapewnia wysoki poziom bezpieczeństwa.

Pytanie 17

Aby wymienić uszkodzony rezystor, należy

A. odczytać wartość jego rezystancji z dokumentacji lub schematu
B. zmierzyć jego rezystancję
C. przygotować rezystor o rezystancji o 50% mniejszej
D. przygotować rezystor o tych samych wymiarach
Aby prawidłowo wymienić uszkodzony rezystor, kluczowym krokiem jest odczytanie wartości jego rezystancji ze schematu lub dokumentacji. Taki dokument zawiera szczegółowe informacje na temat wszystkich komponentów elektronicznych w danym układzie, w tym ich specyfikacji, takich jak wartość rezystancji, tolerancja oraz moc znamionowa. Stosując się do schematu, możemy uniknąć zastosowania niewłaściwego rezystora, co mogłoby doprowadzić do dalszych uszkodzeń w układzie. W praktyce, rezystory są często klasyfikowane według standardowych kodów kolorów, które również mogą być wykorzystane do szybkiej identyfikacji ich wartości. Warto także pamiętać, że zastosowanie rezystora o nieodpowiedniej rezystancji może wpłynąć na działanie całego obwodu, prowadząc do nieprawidłowego funkcjonowania urządzenia. Dlatego precyzyjne odczytywanie dokumentacji i schematów jest częścią dobrych praktyk w elektronice, która zapewnia niezawodność i bezpieczeństwo systemów elektronicznych.

Pytanie 18

W skład urządzenia pomiarowego w automatycznym systemie regulacji wchodzi

A. wyłącznie czujnik
B. przetwornik z członem wykonawczym
C. czujnik oraz przetwornik
D. przetwornik oraz regulator
Urządzenie pomiarowe w automatyce to kluczowa sprawa! Składa się z czujnika i przetwornika. Czujnik to ten, który mierzy różne wartości, jak temperatura czy ciśnienie, i przekształca je na sygnał elektryczny. Na przykład, termopara to fajny czujnik, który właśnie tak działa – mierzy temperaturę i daje napięcie, które jest proporcjonalne do tej temperatury. Przetwornik z kolei zmienia ten sygnał elektryczny tak, żeby regulator mógł go zrozumieć. W praktyce to oznacza, że sygnał analogowy, jak na przykład napięcie z czujnika, zamienia się w sygnał cyfrowy, który komputery mogą analizować. Zintegrowany układ czujnika i przetwornika daje super możliwości, jeśli chodzi o monitorowanie i kontrolowanie różnych procesów, co jest mega istotne w wielu branżach, na przykład w przemyśle chemicznym czy automatyce budynkowej. Fajnie jest wiedzieć, że odpowiednie dobieranie czujników i przetworników w automatyzacji zapewnia precyzję i niezawodność systemów regulacji.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Która z funkcji w oprogramowaniu EDA zajmuje się wyznaczaniem ścieżek przy projektowaniu układów PCB?

A. Routing
B. Annotation
C. RuleCheck
D. Placing
Routing to kluczowa funkcja w programach EDA (Electronic Design Automation), która odpowiada za wytyczanie ścieżek w projektowaniu obwodów drukowanych (PCB). Proces ten polega na automatycznym lub półautomatycznym tworzeniu połączeń między komponentami na płycie, zgodnie z określonymi regułami projektowymi i wymaganiami elektrycznymi. Dobrze zaprojektowany routing nie tylko zapewnia prawidłowe połączenia, ale również minimalizuje interferencje elektromagnetyczne, optymalizuje długości ścieżek oraz ułatwia proces produkcji. W praktyce, inżynierowie często korzystają z algorytmów routingu, które uwzględniają różne czynniki, takie jak szerokość ścieżek, odstępy między nimi, a także charakterystykę sygnałów. Zgodnie z najlepszymi praktykami, routing powinien być wykonywany z uwzględnieniem zasad projektowania, takich jak DFM (Design for Manufacturing) i DFT (Design for Testability), co przyczynia się do efektywności produkcji i późniejszej diagnostyki.

Pytanie 21

Kiedy impedancja falowa linii Zf oraz impedancja obciążenia Zobc są równe, to linia długa

A. stanowi dla sygnału wejściowego zwarcie
B. nie jest dostosowana falowo
C. stanowi dla sygnału wejściowego przerwę
D. jest dostosowana falowo
Wybór odpowiedzi, która sugeruje, że linia nie jest dopasowana falowo, odzwierciedla nieporozumienie podstawowej zasady dotyczącej impedancji w systemach transmisyjnych. Impedancja falowa linii Zf i impedancja obciążenia Zobc powinny być zgodne dla osiągnięcia optymalnych wyników. Gdy te wartości są różne, dochodzi do odbicia sygnału na styku linii i obciążenia, co prowadzi do strat energii i zniekształcenia sygnału. Odbicia te mogą wywoływać zakłócenia, które w kontekście przesyłania danych mogą prowadzić do błędów w interpretacji sygnału, co jest szczególnie istotne w systemach cyfrowych. Przykłady takich błędów można zaobserwować w systemach telekomunikacyjnych, gdzie niewłaściwe dopasowanie impedancji może skutkować degradowaniem jakości połączenia lub całkowitym zerwaniem transmisji. Konsekwencją braku dopasowania falowego są również zjawiska takie jak przesunięcie fazowe i zwiększenie wzmocnienia w niektórych częściach systemu, co prowadzi do trudności w synchronizacji. Dlatego kluczowe jest, aby inżynierowie projektujący systemy transmisyjne zwracali szczególną uwagę na dopasowanie impedancji, stosując techniki takie jak użycie transformatorów impedancyjnych czy dopasowanych filtrów, aby zminimalizować ryzyko odbić sygnału i poprawić wydajność systemu.

Pytanie 22

W jaki sposób należy połączyć wyjście układu TTL z wejściem układu CMOS, gdy oba układy są zasilane napięciem +5 V?

A. Zastosować diodę separującą
B. Rozdzielić wejście-wyjście kondensatorem
C. Zastosować rezystor podciągający
D. Rozdzielić wejście-wyjście trymerem
Zastosowanie rezystora podciągającego do połączenia wyjścia układu TTL z wejściem układu CMOS jest właściwym rozwiązaniem, ponieważ pozwala na zapewnienie odpowiedniego poziomu napięcia na wejściu układu CMOS, co jest kluczowe dla jego poprawnej pracy. Układy CMOS charakteryzują się wysoką impedancją wejściową, co oznacza, że są bardzo wrażliwe na poziomy napięcia. Rezystor podciągający, podłączony do zasilania, pozwala na utrzymanie wysokiego poziomu logicznego (1) na wejściu nawet, gdy wyjście układu TTL jest w stanie wysokiej impedancji. Przykładem zastosowania tego rozwiązania może być sytuacja, gdy wyjście TTL jest odłączone lub nieaktywne, co mogłoby prowadzić do stanów nieokreślonych na wejściu CMOS. Właściwe wartości rezystora podciągającego są zazwyczaj w zakresie od 1 kΩ do 10 kΩ, co zapewnia odpowiednią równowagę między szybkością reakcji a poborem prądu. Dobre praktyki w zakresie projektowania układów cyfrowych zalecają stosowanie rezystorów podciągających, aby uniknąć przypadkowych przełączeń i zagwarantować stabilność działania układów współpracujących.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

W dokumentacji urządzenia podano, że zakres napięcia zasilania wynosi od 10,8 V do 14,4 V. Wskaż odpowiednie ustawienie zasilacza w momencie uruchamiania tego układu.

A. 18,7 V
B. 10,1 V
C. 13,8 V
D. 15,4 V
Wybór napięcia zasilania 13,8 V jest właściwy, ponieważ mieści się w określonym zakresie napięcia zasilania urządzenia, wynoszącym od 10,8 V do 14,4 V. Ustalając napięcie na poziomie 13,8 V, zapewniamy stabilne zasilanie, które jest optymalne dla wielu urządzeń elektronicznych, w tym systemów telekomunikacyjnych i innych aplikacji wymagających precyzyjnego zasilania. Utrzymanie napięcia w tym zakresie nie tylko zapewnia prawidłową pracę układu, ale także minimalizuje ryzyko uszkodzenia komponentów. W praktyce, wiele zasilaczy ma możliwość precyzyjnego ustawienia napięcia, co pozwala na dostosowanie do specyficznych wymagań urządzenia. Zgodnie ze standardami branżowymi, takich jak IEC 60950, ważne jest, aby unikać zasilania urządzeń napięciem powyżej ich maksymalnych specyfikacji, co może prowadzić do uszkodzeń termicznych lub innych awarii. Dlatego też, wybór 13,8 V jako napięcia zasilania jest nie tylko poprawny, ale również praktycznie zalecany dla zapewnienia długotrwałej i niezawodnej pracy układu.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Która z wymienionych liczb nie stanowi reprezentacji w systemie BCD8421?

A. 11111111
B. 10011001
C. 00000000
D. 01100110
Liczba 11111111 nie pasuje do kodu BCD8421. Mówiąc prościej, ten kod służy do zapisywania cyfr od 0 do 9 w systemie binarnym, a każda cyfra zajmuje 4 bity. W BCD8421 każda cyfra dziesiętna ma swój własny zapis binarny: 0000 dla 0, 0001 dla 1, 0010 dla 2 itd. A tu mamy osiem jedynek, co jest problematyczne, bo nie ma takiej cyfry dziesiętnej, która mogłaby się tak zapisać. BCD8421 jest szczególnie przydatny w różnych urządzeniach pomiarowych, gdzie ważne jest, żeby dane były dokładnie odwzorowane i łatwe do przetworzenia. Korzystanie z tego kodu pozwala uniknąć błędów w zaokrągleniach, które mogłyby się pojawić w standardowym zapisie binarnym. Tak więc, znajomość BCD8421 i jego prawidłowe użycie naprawdę ułatwia późniejszą pracę z danymi.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

W przypadku wzmacniaczy prądu stałego nie wykorzystuje się sprzężenia pojemnościowego pomiędzy poszczególnymi stopniami, ponieważ kondensator

A. tak jak dioda, umożliwia przepływ sygnału tylko w jednym kierunku
B. nie przekazuje składowej stałej sygnału
C. działa jak zwarcie dla sygnału stałego
D. prowadzi do przerwy dla sygnału o wysokiej częstotliwości
Kiedy analizujemy odpowiedzi, które mogą wydawać się trafne na pierwszy rzut oka, łatwo jest popaść w pułapki myślowe, które prowadzą do błędnych wniosków. W przypadku pierwszej odpowiedzi, która sugeruje, że kondensator stanowi zwarcie dla sygnału stałego, musimy zrozumieć, że zwarcie oznacza, iż sygnał nie może przejść przez kondensator. W rzeczywistości, kondensator nie przepuszcza składowej stałej, a nie jest tożsame z zwarciem. Druga odpowiedź, twierdząca, że kondensator nie przenosi składowej stałej sygnału, jest zbliżona do prawdy, ale nie oddaje pełnego kontekstu, w jakim kondensatory są używane. Wyklucza to zrozumienie ich roli w obwodzie, jako urządzeń, które mogą być używane do separacji sygnałów. Trzecia odpowiedź, mówiąca o kondensatorze jako przerwie dla sygnału o dużej częstotliwości, jest myląca, ponieważ kondensatory w rzeczywistości przewodzą składowe zmienne, a ich reaktancja zmniejsza się wraz ze wzrostem częstotliwości. Ostatnia opcja, która porównuje kondensator do diody, jest nieprecyzyjna, ponieważ kondensatory nie przewodzą prądu w jednym kierunku, tylko przechowują ładunek, a ich działanie jest całkowicie odmienne. Dlatego ważne jest, aby zrozumieć zasady działania kondensatorów, ich zastosowanie w obwodach oraz jak mogą wpływać na różne składowe sygnału, aby unikać typowych błędów myślowych w analizie układów elektronicznych.

Pytanie 35

Jakie narzędzie powinno zostać użyte do podłączenia czujnika (zasilanie +12 V oraz masa, styki alarmowe i sabotażowe w konfiguracji NC) do centrali alarmowej?

A. Wkrętak
B. Lutownica
C. Zaciskarka
D. Odsysacz
Odsysacz, lutownica i zaciskarka to narzędzia, które mogą być używane w różnych kontekstach związanych z pracami elektrycznymi i elektronicznymi, jednak nie są one odpowiednie do konkretnego zadania, jakim jest podłączenie czujki do centrali alarmowej. Odsysacz jest narzędziem stosowanym głównie w lutowaniu do usuwania nadmiaru lutowia, co nie ma zastosowania w bezpośrednich połączeniach elektrycznych w systemach alarmowych. Jego użycie mogłoby w rzeczywistości zaszkodzić połączeniom, zamiast je poprawić. Lutownica, z kolei, jest narzędziem przeznaczonym do trwałego łączenia elementów elektronicznych poprzez lutowanie, co w kontekście czujek alarmowych często nie jest wymagane ani praktykowane. Zastosowanie lutownicy mogłoby prowadzić do nieodwracalnych uszkodzeń komponentów, które nie są przystosowane do lutowania. Zaciskarka, choć użyteczna przy pracy z kablami i złączkami, nie jest właściwym narzędziem do zmiany konfiguracji śrubowych połączeń, które są standardem w większości instalacji alarmowych. Tego rodzaju pomyłki mogą prowadzić do nieprawidłowego podłączenia, co skutkuje błędami w funkcjonowaniu systemu alarmowego, a w konsekwencji do jego awarii. W praktyce, stosowanie odpowiednich narzędzi i technik jest kluczowe dla zapewnienia, że instalacja będzie działać prawidłowo i bezpiecznie.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.