Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 9 kwietnia 2025 15:30
  • Data zakończenia: 9 kwietnia 2025 15:52

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jednym z rezultatów wykonania poniższego polecenia jest ```sudo passwd -n 1 -x 5 test```

A. automatyczne zablokowanie konta użytkownika test po pięciokrotnym wprowadzeniu błędnego hasła
B. wymuszenie konieczności stosowania haseł o długości minimum pięciu znaków
C. zmiana aktualnego hasła użytkownika na test
D. ustawienie możliwości zmiany hasła po jednym dniu
Pomimo że niektóre odpowiedzi mogą wydawać się logiczne, każda z nich nie oddaje rzeczywistego działania polecenia. Zmiana hasła bieżącego użytkownika na 'test' nie jest możliwa przez to polecenie. Komenda 'passwd' służy do zarządzania hasłami użytkowników, ale nie zmienia hasła bezpośrednio na wartość określoną w poleceniu. Ustawianie wymogu minimalnej długości hasła na pięć znaków nie jest też zadaniem tej komendy, ponieważ '-n' i '-x' dotyczą tylko czasu ważności haseł, a nie ich długości. Dodatkowo, automatyczna blokada konta po pięciokrotnym błędnym podaniu hasła jest zupełnie inną funkcjonalnością, która nie jest realizowana przez polecenie 'passwd'. W rzeczywistości takie zabezpieczenia ustawia się w konfiguracji PAM (Pluggable Authentication Module) lub w plikach konfiguracyjnych systemu, a nie poprzez tego rodzaju polecenia. Te nieporozumienia mogą wynikać z mylnego przekonania, że każda komenda dotycząca haseł ma szeroką funkcjonalność, podczas gdy każda z opcji ma swoje specyficzne zastosowanie. W kontekście bezpieczeństwa systemów operacyjnych kluczowe jest zrozumienie funkcji, jakie pełnią poszczególne komendy oraz ich parametry, aby właściwie zarządzać polityką bezpieczeństwa haseł i kont użytkowników.

Pytanie 2

Urządzenie sieciowe funkcjonujące w trzeciej warstwie modelu ISO/OSI, posługujące się adresami IP, to

A. router.
B. przełącznik.
C. wzmacniacz.
D. most.
Hub, bridge i repeater to sprzęty, które nie działają na warstwie sieci w modelu ISO/OSI, więc nie nadają się do tego, co robi router. Hub to urządzenie, które działa na warstwie fizycznej i tylko przesyła sygnały do wszystkich podłączonych urządzeń, nie analizując adresów IP. Dlatego hub nie radzi sobie z zarządzaniem ruchem w sieci, co powoduje sporo problemów i kolizji. Bridge działa na warstwie łącza danych i łączy dwa segmenty tej samej sieci, ale nie decyduje o routingu na podstawie adresów IP. Z drugiej strony, repeater też działa na warstwie fizycznej, ale tylko wzmacnia sygnał, żeby zwiększyć zasięg, więc też nie kieruje pakietami na podstawie adresów. W sumie te urządzenia nie mogą zrobić tego, co robi router, czyli zarządzać trasami i optymalizować ruch. Więc mylenie ich z routerem może prowadzić do błędnych wniosków o sieciach komputerowych.

Pytanie 3

Aby w systemie Windows nadać użytkownikowi możliwość zmiany czasu systemowego, potrzebna jest przystawka

A. certmgr.msc
B. eventvwr.msc
C. services.msc
D. secpol.msc
Odpowiedź 'secpol.msc' jest poprawna, ponieważ to narzędzie, znane jako Zasady zabezpieczeń lokalnych, umożliwia administratorom zarządzanie uprawnieniami użytkowników w systemie Windows. W ramach tego narzędzia można skonfigurować różne polityki bezpieczeństwa, w tym przydzielanie praw użytkownikom, które są niezbędne do zmiany czasu systemowego. W praktyce, aby przydzielić użytkownikowi to prawo, należy otworzyć 'secpol.msc', przejść do sekcji 'Zasady lokalne', a następnie do 'Przydzielanie praw użytkowników'. Tutaj można znaleźć i edytować prawo 'Zmień systemowy czas'. Przykład zastosowania to sytuacja, w której użytkownik musi dostosować czas na serwerze lub komputerze w celu synchronizacji z innymi systemami, co jest kluczowe w środowiskach, gdzie precyzyjny czas jest istotny, jak w serwerach do baz danych. Zgodnie z dobrymi praktykami bezpieczeństwa, ograniczanie dostępu do takich uprawnień powinno być realizowane z rozwagą, aby nie dopuścić do nieautoryzowanych zmian w systemie.

Pytanie 4

W systemach Windows istnieje możliwość przypisania użytkownika do dowolnej grupy za pomocą panelu

A. fsmgmt
B. certsrv
C. lusrmgr
D. services
Odpowiedź "lusrmgr" jest poprawna, ponieważ jest to przystawka systemowa w systemach Windows, która umożliwia zarządzanie lokalnymi użytkownikami i grupami. Dzięki lusrmgr administratorzy mogą dodawać, edytować oraz przypisywać użytkowników do różnych grup, co jest kluczowym aspektem zarządzania dostępem w systemach operacyjnych. Przykładowo, przypisując użytkowników do grupy 'Administratorzy', przyznajemy im pełne uprawnienia do zarządzania systemem, co może być istotne w kontekście zapewnienia odpowiednich ról użytkowników w organizacji. W praktyce, korzystanie z lusrmgr pozwala na skuteczne zarządzanie politykami bezpieczeństwa i uprawnieniami, co jest zgodne z najlepszymi praktykami w zakresie administracji systemami IT, gdzie kontrola dostępu jest niezbędna dla ochrony danych i zasobów. Ponadto, narzędzie to wspiera implementację zasady minimalnych uprawnień, co jest kluczowe w kontekście bezpieczeństwa informacyjnego.

Pytanie 5

Wpis przedstawiony na ilustracji w dzienniku zdarzeń klasyfikowany jest jako zdarzenie typu

Ilustracja do pytania
A. Inspekcja niepowodzeń
B. Informacje
C. Ostrzeżenia
D. Błędy
Wpisy w dzienniku zdarzeń są kluczowym elementem zarządzania systemem informatycznym i służą do monitorowania jego stanu oraz analizy jego działania. Poprawna odpowiedź Informacje dotyczy zdarzeń, które rejestrują normalne operacje systemu. W przeciwieństwie do błędów czy ostrzeżeń zdarzenia informacyjne nie wskazują na jakiekolwiek problemy lecz dokumentują pomyślne wykonanie akcji lub rozpoczęcie usług systemowych jak w przypadku startu usługi powiadamiania użytkownika. Takie informacje są istotne w kontekście audytu systemu i analizy wydajności ponieważ umożliwiają administratorom systemów IT śledzenie działań i optymalizację procesów. Zgodnie z dobrymi praktykami branżowymi regularne monitorowanie zdarzeń informacyjnych pozwala na wczesne wykrycie potencjalnych problemów zanim przekształcą się w poważniejsze awarie. Przykładowo wiedza o czasie uruchamiania usług może pomóc w diagnozowaniu opóźnień lub nieefektywności systemu. Standardy takie jak ITIL zalecają szczegółową dokumentację tego typu zdarzeń aby zapewnić pełną transparentność i możliwość późniejszej analizy co jest nieocenione w dużych środowiskach korporacyjnych.

Pytanie 6

Wykonanie polecenia fsck w systemie Linux będzie skutkować

A. weryfikacją integralności systemu plików
B. znalezieniem pliku
C. prezentacją parametrów plików
D. zmianą uprawnień do pliku
Polecenie fsck (file system check) jest narzędziem w systemie Linux, które służy do sprawdzania integralności systemu plików. Jego głównym zadaniem jest wykrywanie i naprawianie błędów w strukturze systemu plików, co jest kluczowe dla utrzymania stabilności i wydajności systemu. Regularne używanie fsck jest zalecane, zwłaszcza po nieprawidłowym zamknięciu systemu, np. w wyniku awarii zasilania. Dzięki fsck administratorzy mogą zidentyfikować uszkodzone sektory, które mogą prowadzić do utraty danych, a także naprawić niezgodności w metadanych systemu plików. Użycie fsck może również obejmować dodatkowe opcje, takie jak automatyczna naprawa wykrytych błędów, co czyni to narzędzie nieocenionym w zarządzaniu serwerami i systemami plików. W praktyce, aby uruchomić fsck, często używa się polecenia w formie: 'fsck /dev/sda1', gdzie '/dev/sda1' to partycja, która ma być sprawdzona. Należy jednak pamiętać, aby unikać jego używania na zamontowanych systemach plików, ponieważ może to prowadzić do dalszych uszkodzeń.

Pytanie 7

Jakie będzie rezultatem dodawania liczb 10011012 i 110012 w systemie binarnym?

A. 1101101
B. 1110001
C. 1101100
D. 1100110
Odpowiedź 1100110 jest poprawna, ponieważ suma liczb 1001101 i 11001 w systemie binarnym daje właśnie ten wynik. Przy dodawaniu w systemie binarnym stosujemy zasady analogiczne do dodawania w systemie dziesiętnym. Każda kolumna sumy reprezentuje wartość, która jest potęgą liczby 2. W tym przypadku dodajemy od prawej do lewej: 1+1=10 (co oznacza 0, a przenosimy 1), następnie 0+0+1 (przeniesione) = 1, potem 1+1=10 (przenosimy 1), a na końcu 1+1+1 (przeniesione) = 11 (co daje 1 z przeniesieniem 1 do wyższej kolumny). Ostateczny wynik to 1100110. Umiejętność sumowania w systemie binarnym ma kluczowe znaczenie w informatyce, szczególnie w kontekście operacji na bitach oraz w programowaniu niskopoziomowym, gdzie przetwarzanie danych opiera się na systemach binarnych. Wiedza ta jest także fundamentem dla zrozumienia działania komputerów oraz algorytmów, które posługują się reprezentacją binarną danych.

Pytanie 8

W systemie Linux można uzyskać listę wszystkich założonych kont użytkowników, wykorzystując polecenie

A. who -HT
B. id -u
C. finger (bez parametrów)
D. cat /etc/passwd
Odpowiedzi, które nie są poprawne, wprowadzają w błąd co do sposobu uzyskiwania informacji o kontach użytkowników w systemie Linux. Użycie polecenia 'who -HT' jest niedokładne, ponieważ to polecenie jest przeznaczone do wyświetlania aktualnie zalogowanych użytkowników oraz ich aktywności, a nie do przeglądania wszystkich istniejących kont. Istotne jest zrozumienie, że 'who' jest używane do monitorowania sesji w czasie rzeczywistym, co ma ograniczoną przydatność w kontekście zarządzania użytkownikami. Kolejna odpowiedź, 'id -u', zwraca tylko identyfikator użytkownika (UID) aktualnie zalogowanego użytkownika, a zatem nie dostarcza informacji o innych kontach w systemie. Miałem na myśli, że ten typ błędnego wnioskowania polega na myleniu kontekstu polecenia z jego rzeczywistym zastosowaniem. Z kolei polecenie 'finger' bez parametrów, mimo że może dostarczyć pewnych informacji o użytkownikach, jest zależne od tego, czy usługa finger jest zainstalowana i skonfigurowana, co sprawia, że jego użycie jest niepewne. Ponadto, 'finger' zazwyczaj nie wyświetla pełnej listy użytkowników w systemie, a jedynie tych, którzy mają aktywne sesje lub są zarejestrowani w bazie danych finger. Dlatego ważne jest, aby rozumieć, jakie informacje są dostępne za pomocą różnych poleceń i zastosować to w praktyce, korzystając z narzędzi, które rzeczywiście odpowiadają na zadane pytanie.

Pytanie 9

/dev/sda: Czas odczytu z pamięci podręcznej: 18100 MB w 2.00 sekundy = 9056.95 MB/sek. Przedstawiony wynik wykonania polecenia systemu Linux jest używany do diagnostyki

A. układu graficznego
B. karty sieciowej
C. dysku twardego
D. pamięci operacyjnej
Odpowiedź dotycząca diagnostyki dysku twardego jest prawidłowa, ponieważ wynik polecenia '/dev/sda: Timing cached reads' odnosi się do wydajności operacji odczytu na poziomie systemu plików. Wartość 18100 MB w 2 sekundy, co odpowiada 9056.95 MB/s, jest wskaźnikiem szybkości, z jaką system operacyjny może odczytać dane z pamięci podręcznej dysku twardego. Tego typu informacje są istotne dla administratorów systemów, którzy chcą monitorować i optymalizować wydajność pamięci masowej. W kontekście praktycznym, można wykorzystać tę diagnozę do identyfikacji problemów z wolnym dostępem do danych, co może wpływać na ogólną wydajność serwerów czy komputerów. Warto również zauważyć, że regularne monitorowanie tych parametrów oraz ich analiza w kontekście obciążenia systemu są zgodne z dobrą praktyką w zarządzaniu infrastrukturą IT.

Pytanie 10

Aby procesor działał poprawnie, konieczne jest podłączenie złącza zasilania 4-stykowego lub 8-stykowego o napięciu

A. 3,3 V
B. 7 V
C. 24 V
D. 12 V
Odpowiedź 12 V jest prawidłowa, ponieważ procesory komputerowe wymagają zasilania o odpowiednim napięciu, które pozwala na ich prawidłowe działanie. Większość nowoczesnych płyt głównych korzysta z 4-stykowych lub 8-stykowych złączy zasilania CPU, które są standardem w branży. Standardowe napięcie 12 V jest niezbędne do zasilania nie tylko procesora, ale także innych komponentów systemu, takich jak karty graficzne i dyski twarde. W przypadku niewłaściwego napięcia, na przykład 3,3 V, system nie będzie działał poprawnie, gdyż nie dostarczy wystarczającej mocy do prawidłowego działania procesora. W praktyce, przy podłączaniu zasilacza do płyty głównej, warto zwrócić uwagę na właściwe złącza oraz upewnić się, że zasilacz spełnia wymagania prądowe określone przez producenta komponentów. Przykładem może być sytuacja, w której zasilacz o zbyt niskim napięciu lub niewystarczającej mocy może prowadzić do niestabilności systemu, a nawet jego awarii.

Pytanie 11

Według specyfikacji JEDEC standardowe napięcie zasilania modułów RAM DDR3L o niskim napięciu wynosi

A. 1,65 V
B. 1,50 V
C. 1,35 V
D. 1,20 V
Wybór 1,20 V jako napięcia dla modułów DDR3L to nietrafiony pomysł, bo to napięcie w ogóle nie pasuje do żadnej normy pamięci DDR3L. W sumie, 1,20 V to napięcie, które odpowiada DDR4, a te są jeszcze bardziej oszczędne niż DDR3L. Co do 1,50 V, to jest to standard dla DDR3, a nie DDR3L, co pokazuje, że jest między nimi spora różnica. Napięcie 1,65 V to już max dla DDR3, a to w ogóle nie współgra z ideą oszczędzania energii, którą mamy w DDR3L. Osoby, które za bardzo skupiają się na tych napięciach, mogą pomyśleć, że niskonapięciowe moduły zniosą wyższe wartości, a to może prowadzić do złych decyzji przy doborze pamięci. Ważne, żeby wiedzieć, że używanie złego napięcia może prowadzić do niestabilności systemu i czasami nawet uszkodzenia komponentów. Dlatego znajomość tych norm JEDEC i odpowiednich napięć jest mega ważna przy wykorzystywaniu pamięci RAM.

Pytanie 12

Określ zakres adresów IP z klasy A, który wykorzystywany jest do adresacji prywatnej w sieciach komputerowych?

A. 10.0.0.0 - 10.255.255.255
B. 172.16.0.0. - 172.31.255.255
C. 192.168.0.0 - 192.168.255.255
D. 127.0.0.0 - 127.255.255.255
Zakres adresów IP od 10.0.0.0 do 10.255.255.255 to klasa A i jest jednym z trzech rezerwowych zakresów dla prywatnych adresów IP. Te adresy nie są routowane w Internecie, więc świetnie nadają się do używania w lokalnych sieciach. Dzięki temu można stworzyć wiele prywatnych sieci, bez obaw o konflikt z adresami publicznymi. Klasa A jest szczególnie fajna dla dużych firm, które potrzebują mnóstwa adresów IP, bo pozwala na przydzielenie aż 16 milionów adresów w jednym zakresie. Wyobraź sobie korporację z biurami na różnych kontynentach, która chce, żeby każde biuro miało dostęp do swojej lokalnej sieci, dbając przy tym o bezpieczeństwo i prywatność. Co ciekawe, administracja sieci może wykorzystać te prywatne adresy razem z NAT-em, żeby mieć połączenie z Internetem, co jest naprawdę popularne w współczesnych infrastrukturach IT.

Pytanie 13

Termin "10 W" w dokumentacji technicznej dotyczącej głośnika komputerowego wskazuje na jego

A. zakres działania
B. moc
C. częstotliwość
D. napięcie
Zapis '10 W' w dokumentacji technicznej głośnika komputerowego odnosi się do mocy, co jest kluczowym parametrem w określaniu wydajności urządzenia. Moc, mierzona w watach (W), wskazuje na maksymalną ilość energii, jaką głośnik może przetworzyć, co bezpośrednio wpływa na jego zdolność do generowania dźwięku przy określonym poziomie głośności. W praktyce, głośniki o wyższej mocy mogą emitować głośniejsze dźwięki bez zniekształceń, co jest szczególnie ważne w kontekście zastosowań multimedialnych, takich jak gry komputerowe czy oglądanie filmów. Standardy branżowe, takie jak IEC 60268 dotyczące akustyki w systemach audio, podkreślają znaczenie mocy jako kluczowego wskaźnika jakości głośnika. Dobrą praktyką jest dobieranie głośników mocy odpowiadającej amplifikatorowi, aby uniknąć problemów z przesterowaniem lub uszkodzeniem sprzętu. Wiedza na temat mocy głośnika pozwala użytkownikom na podejmowanie lepszych decyzji zakupowych i optymalizację swojego systemu audio.

Pytanie 14

Złącze widoczne na obrazku pozwala na podłączenie

Ilustracja do pytania
A. myszy
B. drukarki
C. monitora
D. modemu
Złącze przedstawione na zdjęciu to złącze VGA (Video Graphics Array), które jest standardem w przesyłaniu analogowego sygnału wideo z komputera do monitora. Złącze VGA jest łatwo rozpoznawalne dzięki 15-pinowemu układowi w trzech rzędach. Wprowadzony w 1987 roku przez firmę IBM, VGA stał się podstawowym standardem w urządzeniach komputerowych przez wiele lat, zapewniając jakość obrazu na poziomie rozdzielczości 640x480 pikseli. Dziś, mimo że technologia cyfrowa, jak HDMI i DisplayPort, zyskuje na popularności, VGA nadal znajduje zastosowanie w starszych urządzeniach oraz w sytuacjach, gdzie prostota i kompatybilność są kluczowe. W kontekście podłączenia monitora, złącze VGA jest często spotykane w projektorach i monitorach starszych generacji, co pozwala na wykorzystanie istniejącej infrastruktury oraz sprzętu. Warto zauważyć, że korzystanie ze złączy VGA wymaga również kabli o odpowiedniej jakości, by zminimalizować zakłócenia sygnału i zapewnić możliwie najlepszą jakość obrazu. Dobrym podejściem jest również unikanie zbyt długich przewodów, co może prowadzić do degradacji sygnału.

Pytanie 15

Jak wygląda schemat połączeń bramek logicznych?

Ilustracja do pytania
A. przerzutnik
B. multiplekser
C. sterownik przerwań
D. sumator
Kontroler przerwań nie jest związany z bramkami logicznymi w sposób przedstawiony na schemacie Kontrolery przerwań to specjalistyczne układy które służą do zarządzania żądaniami przerwań w systemach mikroprocesorowych Ich zadaniem jest priorytetyzacja i obsługa sygnałów przerwań co jest kluczowe dla efektywnego zarządzania zasobami procesora Multiplekser natomiast jest urządzeniem które wybiera jedną z wielu dostępnych linii wejściowych i przesyła ją do wyjścia na podstawie sygnałów sterujących choć używa bramek logicznych to jego schemat różni się od przedstawionego na rysunku Sumator to kolejny układ logiczny który realizuje operacje dodawania binarnego W jego najprostszej formie sumator służy do dodawania dwóch bitów generując sumę i przeniesienie Schemat sumatora również różni się od przedstawionego na rysunku i nie zawiera charakterystycznych sprzężeń zwrotnych które są kluczowe dla działania przerzutników Głównym błędem przy rozpoznawaniu poszczególnych układów jest nieodpowiednie zrozumienie ich funkcji i struktury W przypadku przerzutnika kluczowe jest jego działanie w zależności od sygnału zegara co nie ma miejsca w przypadku kontrolera przerwań czy multipleksera Poprawna identyfikacja układów wymaga zrozumienia ich roli w systemach cyfrowych oraz zdolności do rozpoznawania charakterystycznych cech każdego z tych układów

Pytanie 16

Główny sposób zabezpieczania danych w sieciach komputerowych przed dostępem nieautoryzowanym to

A. tworzenie kopii zapasowych danych
B. autoryzacja dostępu do zasobów serwera
C. tworzenie sum kontrolnych plików
D. używanie macierzy dyskowych
Autoryzacja dostępu do zasobów serwera jest kluczowym mechanizmem ochrony danych w sieciach komputerowych, ponieważ zabezpiecza przed nieuprawnionym dostępem użytkowników do informacji i zasobów systemowych. Proces ten opiera się na identyfikacji użytkownika oraz przydzieleniu mu odpowiednich uprawnień, co umożliwia kontrolowanie, kto ma prawo do wykonania konkretnych operacji, takich jak odczyt, zapis czy modyfikacja danych. Przykładem zastosowania autoryzacji może być system zarządzania bazą danych, w którym administrator przypisuje różne poziomy dostępności na podstawie ról użytkowników. W praktyce wdrażanie autoryzacji może obejmować wykorzystanie takich protokołów jak LDAP (Lightweight Directory Access Protocol) lub Active Directory, które umożliwiają centralne zarządzanie użytkownikami oraz ich uprawnieniami. Dobre praktyki w tej dziedzinie zalecają stosowanie wielopoziomowej autoryzacji, aby zwiększyć bezpieczeństwo, na przykład poprzez łączenie haseł z tokenami lub biometrią.

Pytanie 17

Aby odzyskać dane z dysku, który został sformatowany, warto użyć programu typu

A. IRC
B. recovery
C. p2p
D. sniffer
Odpowiedzi "IRC", "p2p" i "sniffer" nie są właściwe w kontekście odzyskiwania danych z sformatowanego dysku, ponieważ każda z tych koncepcji dotyczy zupełnie innych zadań i technologii. IRC (Internet Relay Chat) to protokół komunikacyjny służący do wymiany wiadomości w czasie rzeczywistym, a jego zastosowanie nie ma nic wspólnego z odzyskiwaniem danych. Użytkownicy mogą błędnie myśleć, że IRC mógłby być użyty do przesyłania danych, jednak w rzeczywistości jego funkcjonalność ogranicza się do komunikacji, a nie do manipulacji danymi na dyskach. P2P (peer-to-peer) to model sieciowy, w którym użytkownicy mogą wymieniać pliki bezpośrednio między sobą, co również nie ma zastosowania w procesie odzyskiwania danych z dysku. Użytkownicy mogą założyć, że P2P może być używane do odzyskiwania danych, ale jest to mylne, ponieważ P2P nie oferuje funkcji skanowania ani przywracania danych. Sniffer to narzędzie do monitorowania i przechwytywania pakietów danych w sieci, co również nie ma związku z odzyskiwaniem danych z nośników pamięci. Użytkownicy mogą błędnie sądzić, że takie narzędzie mogłoby pomóc w analizie danych, jednak sniffer nie ma zdolności do interakcji z systemem plików ani przywracania usuniętych informacji. W związku z tym, wybór odpowiednich narzędzi i technik do odzyskiwania danych jest kluczowy dla skuteczności całego procesu.

Pytanie 18

Wskaż program do składu publikacji

A. MS Word
B. MS Excel
C. MS Visio
D. MS Publisher
Wybór programów takich jak MS Visio, MS Excel czy MS Word w kontekście DTP wskazuje na pewne nieporozumienia dotyczące funkcji i przeznaczenia tych aplikacji. MS Visio jest narzędziem do tworzenia diagramów i schematów, które wykorzystywane jest głównie w inżynierii, architekturze oraz zarządzaniu projektami. Jego główną funkcją jest wizualizacja danych, co nie ma związku z tworzeniem materiałów publikacyjnych. MS Excel to program arkusza kalkulacyjnego, który koncentruje się na analizie danych, obliczeniach i tworzeniu wykresów, co również nie jest związane z projektowaniem graficznym czy publikowaniem treści. Z kolei MS Word, będący edytorem tekstu, jest bardzo popularny w tworzeniu dokumentów, ale nie jest to narzędzie dedykowane do skomplikowanego układu graficznego. Choć Word oferuje pewne możliwości formatowania, jego funkcjonalność w zakresie DTP jest ograniczona w porównaniu do MS Publisher. Warto pamiętać, że w kontekście projektowania publikacji, kluczowe znaczenie ma umiejętność wyboru odpowiednich narzędzi, które są zoptymalizowane do specyficznych zadań. Niedokładne rozumienie, które programy są przeznaczone do DTP, może prowadzić do nieefektywnego wykorzystania oprogramowania i niezadowalających rezultatów końcowych. Dlatego istotne jest, aby przed wyborem narzędzi do publikacji zrozumieć ich funkcje oraz zastosowanie w praktyce.

Pytanie 19

Który z podanych adresów IP v.4 należy do klasy C?

A. 191.11.0.10
B. 10.0.2.0
C. 126.110.10.0
D. 223.0.10.1
Adres IP 223.0.10.1 należy do klasy C, ponieważ jego pierwsza okteta (223) mieści się w przedziale od 192 do 223. Klasa C jest zaprojektowana dla mniejszych sieci, które wymagają większej liczby hostów i charakteryzuje się możliwością adresowania do 2^21 (około 2 miliona) adresów IP, co czyni ją szczególnie przydatną dla organizacji z umiarkowaną ilością urządzeń. W praktyce, w sieciach klasy C, tradycyjnie używa się maski podsieci 255.255.255.0, co pozwala na utworzenie 256 adresów w danej podsieci, z czego 254 mogą być używane dla hostów. Klasa C jest najczęściej stosowana w biurach oraz mniejszych przedsiębiorstwach, gdzie potrzeba jest większa niż w przypadku klas A i B, ale nie na tyle duża, by wymagać bardziej skomplikowanych rozwiązań. Dobrą praktyką jest także wykorzystanie adresów z puli klasy C do tworzenia VLAN-ów, co zwiększa bezpieczeństwo i poprawia zarządzanie ruchem sieciowym.

Pytanie 20

Który z protokołów umożliwia szyfrowane połączenia?

A. TELNET
B. SSH
C. DNS
D. DHCP
SSH, czyli Secure Shell, to super ważny protokół, który pozwala nam bezpiecznie łączyć się z komputerami zdalnie i przesyłać dane. Co to znaczy? Ano to, że wszystko co wysyłasz między swoim komputerem a serwerem jest zaszyfrowane. Dzięki temu nikt nie może łatwo podejrzeć, co robisz, ani nie ma szans na manipulację tymi danymi. W praktyce SSH jest często stosowane do logowania się do serwerów, co sprawia, że nawet twoje hasła są bezpieczne podczas przesyłania. Są różne standardy, jak RFC 4251, które mówią, jak powinno to wyglądać pod względem bezpieczeństwa i dlatego SSH to naprawdę niezbędne narzędzie w zarządzaniu IT. Co więcej, SSH umożliwia różne sposoby uwierzytelniania, na przykład klucze publiczne, co jeszcze bardziej podnosi poziom ochrony. Ostatecznie, SSH jest ulubieńcem wielu administratorów, zwłaszcza tam, gdzie ochrona danych jest kluczowa, jak w zarządzaniu bazami danych czy przy transferach plików za pomocą SCP.

Pytanie 21

Jakie oprogramowanie służy do sprawdzania sterowników w systemie Windows?

A. debug
B. replace
C. sfc
D. verifier
Wybrane odpowiedzi sfc, debug oraz replace nie odnoszą się do kwestii weryfikacji sterowników w systemie Windows. Sfc, czyli System File Checker, jest narzędziem, które monitoruje integralność plików systemowych i naprawia uszkodzone lub brakujące pliki, co ma na celu zapewnienie stabilności i bezpieczeństwa samego systemu, a nie konkretnego monitorowania i analizowania sterowników. Debug, z kolei, to narzędzie do analizy i debugowania programów, które jest stosowane głównie przez programistów do diagnostyki kodu, a nie do weryfikacji działania sterowników systemowych. Natomiast replace to polecenie używane w kontekście zamiany plików, które również nie jest związane z testowaniem i analizą sterowników. Typowe błędy myślowe obejmują mylenie różnych narzędzi systemowych i ich funkcji, co prowadzi do wyciągania błędnych wniosków na temat ich zastosowania. Kluczowe jest zrozumienie, że każde z tych narzędzi pełni specyficzną rolę, a ich zastosowanie musi być zgodne z określonymi potrzebami diagnostycznymi systemu. W kontekście analizy sterowników, Driver Verifier jest jedynym odpowiednim narzędziem, które dostarcza informacji niezbędnych do rozwiązania problemów związanych z ich działaniem.

Pytanie 22

Wynikiem dodawania dwóch liczb binarnych 1101011 oraz 1001001 jest liczba w systemie dziesiętnym

A. 180
B. 402
C. 170
D. 201
Suma dwóch liczb binarnych 1101011 i 1001001 daje wynik 10110100 w systemie binarnym. Aby przekształcić ten wynik na system dziesiętny, możemy zastosować wzór, w którym każda cyfra binarna jest mnożona przez odpowiednią potęgę liczby 2. Obliczamy to w następujący sposób: 1*2^7 + 0*2^6 + 1*2^5 + 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 0*2^0, co daje 128 + 0 + 32 + 16 + 0 + 0 + 2 + 0 = 178. Jednak oczywiście, błąd sumowania w odpowiedziach prowadzi do innej wartości. Warto pamiętać, że umiejętność konwersji między systemami liczbowymi jest kluczowa w informatyce i inżynierii, ponieważ pozwala na efektywne przetwarzanie i przechowywanie danych. W praktyce, znajomość tych zasad jest niezbędna przy programowaniu, cyfrowym przetwarzaniu sygnałów oraz w projektowaniu urządzeń elektronicznych, gdzie system binarny jest podstawowym językiem komunikacji.

Pytanie 23

Najskuteczniejszym zabezpieczeniem sieci bezprzewodowej jest

A. protokół WPA2
B. protokół WEP
C. protokół SSH
D. protokół WPA
Protokół WPA2 (Wi-Fi Protected Access 2) jest uważany za najbezpieczniejszy standard zabezpieczeń sieci bezprzewodowych dostępny do tej pory. WPA2 wprowadza silniejsze mechanizmy szyfrowania, w tym AES (Advanced Encryption Standard), który jest znacznie bardziej odporny na ataki niż starsze metody szyfrowania, takie jak TKIP (Temporal Key Integrity Protocol). Implementacja WPA2 w sieciach Wi-Fi pozwala na skuteczną ochronę przed nieautoryzowanym dostępem oraz zapewnia integralność przesyłanych danych. Przykładem zastosowania WPA2 jest konfiguracja domowej sieci Wi-Fi, w której użytkownik zabezpiecza swoje połączenie, aby chronić prywatne informacje przed hakerami. Warto również zaznaczyć, że WPA2 wspiera protokół 802.1X, co pozwala na wdrożenie systemu autoryzacji, co dodatkowo zwiększa poziom bezpieczeństwa. Aktualizacje i korzystanie z silnych haseł w połączeniu z WPA2 są kluczowe dla utrzymania bezpieczeństwa sieci.

Pytanie 24

W systemie Linux, polecenie usermod -s dla danego użytkownika umożliwia

A. blokadę jego konta
B. zmianę jego powłoki systemowej
C. przypisanie go do innej grupy
D. zmianę jego katalogu domowego
Pierwsza z błędnych odpowiedzi sugeruje, że polecenie usermod -s służy do zablokowania konta użytkownika. W rzeczywistości, zablokowanie konta można zrealizować za pomocą opcji -L w poleceniu usermod, co jest zupełnie inną operacją. Zablokowanie konta nie jest związane z powłoką systemową, a bardziej z dostępem użytkownika do systemu, co jest kluczowe w kontekście zarządzania bezpieczeństwem. Kolejna omówiona pomyłka dotyczy przypisywania użytkownika do nowej grupy. Ta operacja jest realizowana poprzez użycie opcji -G, co jest całkowicie odrębną funkcjonalnością. Użytkownicy mogą być przypisywani do różnych grup w celu uzyskania odpowiednich uprawnień, jednak nie ma to związku z powłoką, która działa niezależnie od grup. Ostatnia niepoprawna koncepcja dotyczy zmiany katalogu domowego użytkownika. Ta operacja również jest realizowana za pomocą polecenia usermod, lecz z użyciem opcji -d. W związku z powyższym, użytkownicy mogą pomylić te różne funkcjonalności, co często prowadzi do nieporozumień w kontekście administracji systemem Linux. Kluczowe jest zrozumienie, że każda z operacji ma swoją specyfikę i konieczne jest właściwe użycie odpowiednich opcji, aby osiągnąć zamierzony cel w zarządzaniu użytkownikami.

Pytanie 25

Wtyczka zaprezentowana na fotografii stanowi element obwodu elektrycznego zasilającego

Ilustracja do pytania
A. napędy CD
B. stację dysków
C. procesor ATX12V
D. wewnętrzne dyski SATA
Przedstawiona na zdjęciu wtyczka to typowy złącze zasilania ATX12V stosowane w nowoczesnych komputerach osobistych. ATX12V jest kluczowym elementem niezbędnym do zasilania procesora, dostarczającym dodatkowe 12V niezbędne do jego poprawnego działania. Wtyczka ta jest zazwyczaj czteropinowa, jak na zdjęciu, i jest podłączana bezpośrednio z zasilacza do gniazda na płycie głównej obok procesora. Ten typ złącza jest standardem w branży komputerowej i jego zastosowanie jest istotne ze względu na rosnące zapotrzebowanie energetyczne nowoczesnych procesorów. Obecność takiego złącza pozwala na stabilną i efektywną pracę komputera, zwłaszcza w zadaniach wymagających dużej mocy obliczeniowej, jak gry komputerowe czy obróbka wideo. W praktyce, instalacja złącza ATX12V jest jednym z fundamentalnych kroków podczas montażu zestawu komputerowego, a jego poprawne podłączenie zapewnia niezawodność i trwałość systemu.

Pytanie 26

Jaką maksymalną ilość rzeczywistych danych można przesłać w ciągu 1 sekundy przez łącze synchroniczne o wydajności 512 kbps, bez użycia sprzętowej i programowej kompresji?

A. W przybliżeniu 5 kB
B. W przybliżeniu 55 kB
C. Ponad 64 kB
D. Więcej niż 500 kB
Wybór innych odpowiedzi, takich jak "Ponad 500 kB" czy "Ponad 64 kB", wynika z błędnego zrozumienia podstawowych zasad przesyłu danych w sieciach komputerowych. Przede wszystkim, warto zauważyć, że łącze o przepustowości 512 kbps odnosi się do ilości bitów, które mogą być przesyłane w ciągu jednej sekundy, a nie bezpośrednio do bajtów. 1 kilobit to 1/8 kilobajta, zatem konwersja na bajty jest kluczowa dla uzyskania właściwego wyniku. Stąd wynika, że prawidłowe przeliczenie daje 64 kB, ale to tylko teoretyczna wartość. W praktyce, protokoły sieciowe wprowadzają dodatkowe obciążenie, co oznacza, że rzeczywista ilość przesyłanych danych będzie niższa. Często występującym błędem jest niebranie pod uwagę overheadu związanego z nagłówkami pakietów czy różnymi protokołami komunikacyjnymi. Na przykład, w protokole TCP/IP, część pasma jest wykorzystywana na nagłówki, co wpływa na rzeczywistą przepustowość. W rezultacie, odpowiadając na pytanie, możemy stwierdzić, że przesyłanie danych na poziomie 500 kB czy 64 kB bez uwzględnienia strat przynosi błędne wnioski. Kluczowe jest zrozumienie, że praktyczne zastosowania w sieciach komputerowych wymagają uwzględnienia strat związanych z protokołami, co przyczynia się do bardziej realistycznych prognoz przesyłania danych.

Pytanie 27

Protokół stosowany w sieciach komputerowych do zarządzania zdalnym terminalem w modelu klient-serwer, który nie gwarantuje bezpieczeństwa przekazywanych danych i funkcjonuje tylko w formacie tekstowym, to

A. Telnet
B. Internet Protocol
C. Secure Shell
D. Remote Desktop Protocol
Telnet to protokół komunikacyjny, który umożliwia zdalne łączenie się z innymi komputerami w sieciach komputerowych, głównie w architekturze klient-serwer. Działa on w trybie tekstowym, co oznacza, że użytkownik może wprowadzać polecenia i otrzymywać odpowiedzi w formie tekstowej. Telnet nie zapewnia jednak żadnego szyfrowania danych, co sprawia, że przesyłane informacje są narażone na podsłuch przez osoby trzecie. Mimo tych ograniczeń, Telnet był szeroko wykorzystywany do zarządzania urządzeniami sieciowymi, serwerami oraz do zdalnego dostępu do systemów. Przykładem zastosowania Telnetu jest konfiguracja routerów i przełączników w sieciach lokalnych, gdzie administrator może wprowadzać polecenia do urządzenia zdalnie. W praktyce, z uwagi na brak bezpieczeństwa, Telnet został w dużej mierze zastąpiony przez bardziej bezpieczne protokoły, takie jak SSH (Secure Shell), które zapewniają szyfrowanie danych i autoryzację użytkowników. Jednak zrozumienie Telnetu jest istotne w kontekście ewolucji protokołów komunikacyjnych oraz zarządzania sieciami.

Pytanie 28

Jakie polecenie uruchamia edytor polityk grup w systemach z rodziny Windows Server?

A. services.msc
B. gpedit.msc
C. dcpromo.exe
D. regedit.exe
Polecenie gpedit.msc uruchamia Edytor Zasad Grup, który jest kluczowym narzędziem w systemie Windows Server, umożliwiającym administratorom konfigurację i zarządzanie zasadami grup. Edytor ten pozwala na modyfikację ustawień polityki na poziomie lokalnym lub w ramach domeny, co jest niezbędne do zapewnienia odpowiedniej kontroli nad środowiskiem systemowym. Przykładowo, administrator może wykorzystać gpedit.msc do wprowadzenia restrykcji dotyczących korzystania z konkretnych aplikacji lub do skonfigurowania ustawień zabezpieczeń, takich jak polityki haseł czy ustawienia zapory. Zgodnie z najlepszymi praktykami w zarządzaniu IT, korzystanie z Zasad Grup jest zalecane w celu centralizacji i uproszczenia zarządzania komputerami w sieci. Dzięki temu można zapewnić jednolite standardy bezpieczeństwa oraz ułatwić administrację systemami operacyjnymi. Warto również zaznaczyć, że narzędzie to współdziała z Active Directory, co umożliwia aplikację polityk na wielu komputerach w sieci, co znacznie zwiększa efektywność zarządzania. Poznanie i umiejętność korzystania z gpedit.msc są podstawowymi umiejętnościami, które każdy administrator systemów Windows powinien posiadać.

Pytanie 29

Która z przedstawionych na rysunkach topologii jest topologią siatkową?

Ilustracja do pytania
A. D
B. C
C. B
D. A
Topologia siatki charakteryzuje się tym że każdy węzeł sieci jest połączony bezpośrednio z każdym innym węzłem co zapewnia wysoką odporność na awarie Jeśli jedno połączenie zawiedzie dane mogą być przesyłane inną drogą co czyni tę topologię bardziej niezawodną niż inne rozwiązania W praktyce topologia siatki znajduje zastosowanie w systemach wymagających wysokiej dostępności i redundancji takich jak sieci wojskowe czy systemy komunikacji krytycznej W topologii pełnej siatki każdy komputer jest połączony z każdym innym co zapewnia maksymalną elastyczność i wydajność Jednak koszty wdrożenia i zarządzania taką siecią są wysokie ze względu na liczbę wymaganych połączeń Z tego powodu częściej spotykana jest topologia częściowej siatki gdzie nie wszystkie węzły są bezpośrednio połączone ale sieć nadal zachowuje dużą odporność na awarie Topologia siatki jest zgodna z dobrymi praktykami projektowania sieci w kontekście niezawodności i bezpieczeństwa Przykłady jej zastosowania można znaleźć również w zaawansowanych sieciach komputerowych gdzie niezawodność i bezpieczeństwo są kluczowe

Pytanie 30

Jaką klasę reprezentuje adres IPv4 w postaci binarnej 00101000 11000000 00000000 00000001?

A. Klasy B
B. Klasy D
C. Klasy A
D. Klasy C
Adres IPv4 przedstawiony w postaci binarnej 00101000 11000000 00000000 00000001 odpowiada adresowi dziesiętnemu 40.192.0.1. Klasyfikacja adresów IPv4 opiera się na pierwszych bitach adresów. Adresy klasy A zaczynają się od bitów 0, co oznacza, że możliwe wartości pierwszego bajtu wahają się od 0 do 127. Adres 40.192.0.1 należy do tego zakresu, więc jest klasy A. Adresy klasy A są używane do przydzielania dużych bloków adresów IP dla dużych organizacji, ponieważ oferują one największą liczbę adresów w danej sieci. Przykłady zastosowania adresów klasy A obejmują duże firmy i organizacje rządowe, które potrzebują szerokiego zakresu adresów do obsługi swoich urządzeń. W praktyce zastosowanie adresacji klasy A pozwala na efektywne zarządzanie dużymi sieciami, co jest zgodne z standardami przydzielania adresów IP określonymi przez IANA i RIPE.

Pytanie 31

Jaką konfigurację sieciową może posiadać komputer, który należy do tej samej sieci LAN co komputer z adresem 192.168.1.10/24?

A. 192.168.1.11 i 255.255.0.0
B. 192.168.0.11 i 255.255.0.0
C. 192.168.1.11 i 255.255.255.0
D. 192.168.0.11 i 255.255.255.0
Adres IP 192.168.1.11 z maską 255.255.255.0 jest całkiem nieźle skonfigurowany. Działa, bo oba komputery są w tej samej podsieci, co znaczy, że mają wspólną część adresu. W przypadku tej maski, pierwsze trzy oktety (czyli 192.168.1) identyfikują sieć, a ostatni oktet (11) to jakby numer konkretnego komputera w tej sieci. Czyli można powiedzieć, że komputery z adresami w zakresie od 192.168.1.1 do 192.168.1.254 mogą się dogadać bez potrzeby używania routera, co jest dość ważne dla wydajności w lokalnych sieciach. Pamiętaj, żeby unikać konfliktów adresów, bo w tej samej podsieci każdy komp musi mieć unikalny adres IP. Maski podsieci, jak ta, są popularne w małych sieciach i ułatwiają konfigurację, więc to dobry wybór.

Pytanie 32

W systemie Linux uprawnienia pliku wynoszą 541. Właściciel ma możliwość:

A. wyłącznie wykonania
B. odczytu i wykonania
C. zmiany
D. odczytu, zapisu i wykonania
W ustawieniach uprawnień systemu Linux, liczba 541 oznacza konkretne przydzielenie dostępu dla właściciela, grupy i innych użytkowników. Właściciel ma prawo do odczytu (4) oraz wykonania (1) pliku, co razem daje 5. Wskazanie, że właściciel może odczytać i wykonać plik jest zgodne z zasadami przydzielania uprawnień. W praktyce, uprawnienia te są niezwykle istotne w kontekście bezpieczeństwa systemu, ponieważ umożliwiają kontrolowanie, kto ma dostęp do danych i w jaki sposób mogą być one wykorzystywane. Dla programisty lub administratora systemu znajomość uprawnień jest kluczowa przy zarządzaniu dostępem do plików oraz przy konfigurowaniu środowiska pracy. Przykładowo, przy tworzeniu skryptów, które mają być wykonywane przez różnych użytkowników, ważne jest, aby odpowiednio ustawić te uprawnienia, aby zapewnić ich bezpieczeństwo oraz prawidłowe działanie. Zrozumienie tego mechanizmu stanowi fundament dobrej praktyki w administracji systemów operacyjnych typu Unix.

Pytanie 33

Określ rezultat wykonania zamieszczonego polecenia.

A. Wyznaczona data wygaśnięcia konta Test
B. Skonfigurowany czas aktywności konta Test
C. Wymuszona zmiana hasła na koncie Test w ustalonym terminie
D. Zweryfikowana data ostatniego logowania na konto Test
Polecenie 'net user Test /expires:12/09/20' ustawia datę wygaśnięcia konta użytkownika o nazwie Test na 12 września 2020 roku. W systemach Windows zarządzanie kontami użytkowników jest kluczowym aspektem administracji systemem, a polecenie net user jest powszechnie używane do konfiguracji różnych atrybutów konta. Ustawienie daty wygaśnięcia konta jest istotne z perspektywy bezpieczeństwa, umożliwiając administratorom kontrolowanie dostępu do zasobów systemowych. Przykładowo, jeżeli konto jest wykorzystywane przez tymczasowego pracownika lub w ramach projektu, administrator może ustalić automatyczne wygaśnięcie konta po zakończeniu pracy, co zapobiega nieautoryzowanemu dostępowi w przyszłości. Dobrym praktykom w zarządzaniu kontami użytkowników jest regularne przeglądanie i aktualizowanie dat wygaśnięcia kont, aby zapewnić zgodność z polityką bezpieczeństwa organizacji oraz minimalizować ryzyko nadużyć.

Pytanie 34

Zainstalowanie w komputerze przedstawionej karty pozwoli na

Ilustracja do pytania
A. podłączenie dodatkowego urządzenia peryferyjnego, takiego jak skaner lub ploter
B. bezprzewodowe połączenie z siecią LAN z użyciem interfejsu BNC
C. rejestrację, przetwarzanie oraz odtwarzanie obrazu telewizyjnego
D. zwiększenie wydajności magistrali komunikacyjnej komputera
Karta przedstawiona na obrazku to karta telewizyjna, która umożliwia rejestrację przetwarzanie oraz odtwarzanie sygnału telewizyjnego. Takie karty są używane do odbierania sygnału telewizyjnego na komputerze pozwalając na oglądanie telewizji bez potrzeby posiadania oddzielnego odbiornika. Karta tego typu zazwyczaj obsługuje różne standardy sygnału telewizyjnego takie jak NTSC PAL i SECAM co czyni ją uniwersalnym narzędziem do odbioru telewizji z różnych regionów świata. Ponadto karty te mogą mieć wbudowane funkcje nagrywania co pozwala na zapisywanie programów telewizyjnych na dysku twardym do późniejszego odtwarzania. Dzięki temu użytkownik może łatwo zarządzać nagranymi materiałami korzystając z oprogramowania do edycji i archiwizacji. Karty telewizyjne często współpracują z aplikacjami które umożliwiają zaawansowane funkcje takie jak zmiana kanałów planowanie nagrań czy dodawanie efektów specjalnych podczas odtwarzania. Montaż takiej karty w komputerze zwiększa jego funkcjonalność i pozwala na bardziej wszechstronne wykorzystanie urządzenia w kontekście multimediów.

Pytanie 35

Jaką wartość liczbową ma BACA zapisaną w systemie heksadecymalnym?

A. 47821 (10)
B. 1011101011001010 (2)
C. 1100101010111010 (2)
D. 135316 (8)
Zgadza się! Twoja odpowiedź 1011101011001010 w systemie binarnym jest trafna, bo liczba BACA w heksadecymalnym odpowiada tej samej wartości w binarnym. Jak to działa? Wystarczy przetłumaczyć każdy znak z heksadecymalnego na binarny. Na przykład: B to 1011, A to 1010, C to 1100 i A znowu to 1010. Łącząc to wszystko dostajemy 1011101011001010. W praktyce, zrozumienie konwersji między systemami liczbowymi jest mega ważne, zwłaszcza w programowaniu i inżynierii komputerowej, bo to pomaga w zarządzaniu danymi w pamięci czy komunikacji między systemami. Dobrze jest też znać standardy, jak np. IEEE 754, które pokazują, jak reprezentować liczby zmiennoprzecinkowe. Wiedza na ten temat naprawdę wspiera lepsze zarządzanie danymi oraz optymalizację algorytmów, co jest kluczowe, gdy chodzi o precyzyjne obliczenia.

Pytanie 36

Ataki mające na celu zakłócenie funkcjonowania aplikacji oraz procesów działających w urządzeniu sieciowym określane są jako ataki typu

A. spoofing
B. DoS
C. smurf
D. zero-day
Atak typu DoS (Denial of Service) ma na celu zablokowanie dostępu do usługi lub aplikacji, przeciążając zasoby serwera poprzez generowanie dużej liczby żądań w krótkim czasie. Taki atak może uniemożliwić prawidłowe działanie systemu, co w praktyce oznacza, że użytkownicy nie mogą korzystać z danej usługi. W kontekście sieciowym, atak DoS jest często realizowany poprzez wykorzystanie flaw w protokołach komunikacyjnych lub przez wysyłanie dużych pakietów danych, które skutkują wyczerpaniem zasobów serwera. Przykładem zastosowania tej wiedzy w praktyce jest zabezpieczanie sieci za pomocą zapór ogniowych oraz systemów wykrywania intruzów, które monitorują i blokują podejrzane wzorce ruchu. Zgodnie z najlepszymi praktykami branżowymi, organizacje powinny wdrażać strategie obrony wielowarstwowej, aby zminimalizować ryzyko ataków DoS, m.in. poprzez skalowanie zasobów serwerowych oraz zastosowanie sieci CDN, która może rozproszyć ruch do wielu lokalizacji.

Pytanie 37

Aby sprawdzić minimalny czas ważności hasła w systemie Windows, stosuje się polecenie

A. net accounts
B. net time
C. net user
D. net group
Polecenia 'net user', 'net time' oraz 'net group' nie są odpowiednie do sprawdzania minimalnego okresu ważności hasła w systemie Windows. 'Net user' umożliwia zarządzanie kontami użytkowników, jednak nie zawiera opcji bezpośredniego sprawdzania ani ustawiania minimalnego okresu ważności haseł. Z kolei 'net time' używane jest do synchronizacji czasu z innymi komputerami w sieci, co nie ma związku z polityką haseł. Natomiast 'net group' służy do zarządzania grupami użytkowników w systemie, co również nie dotyczy ustawień haseł. Typowym błędem myślowym jest zakładanie, że każde polecenie związane z 'net' dotyczy haseł, podczas gdy każde z tych poleceń ma swoje specyficzne zastosowania. W kontekście najlepszych praktyk w zakresie bezpieczeństwa, kluczowe jest stosowanie odpowiednich narzędzi do odpowiednich zadań, aby skutecznie zarządzać bezpieczeństwem systemu. Zrozumienie funkcji każdego z poleceń pozwala uniknąć nieefektywnych praktyk oraz nieporozumień, które mogą prowadzić do poważnych luk w zabezpieczeniach.

Pytanie 38

Okablowanie pionowe w sieci strukturalnej łączy się

A. w pośrednim punkcie rozdzielczym do gniazda abonenckiego
B. w głównym punkcie rozdzielczym z pośrednimi punktami rozdzielczymi
C. w głównym punkcie rozdzielczym do gniazda abonenckiego
D. w gnieździe abonenckim
Okablowanie pionowe w sieci strukturalnej to naprawdę ważny element, łączący główny punkt rozdzielczy z pośrednimi punktami. Ten główny punkt, zwany MDF, to jakby centrum, gdzie schodzą się różne sygnały, a jego rola to rozdzielanie ich do różnych miejsc w budynku. Pośrednie punkty, IDF, pomagają w dostarczaniu tych sygnałów do konkretnych lokalizacji, co sprawia, że cała sieć działa lepiej i jest bardziej elastyczna. W dużych obiektach, jak biura czy centra handlowe, ma to ogromne znaczenie, bo ułatwia zarządzanie siecią i zmniejsza zakłócenia sygnału. Warto pamiętać, że projektując takie okablowanie, trzeba trzymać się norm, takich jak ANSI/TIA-568, które mówią, jakie trasy kablowe są najlepsze oraz jakie wymagania powinny spełniać przewody, żeby wszystko działało jak należy.

Pytanie 39

Jaki rodzaj kabla powinien być użyty do podłączenia komputera w miejscu, gdzie występują zakłócenia elektromagnetyczne?

A. FTP Cat 5e
B. UTP Cat 6
C. UTP Cat 5
D. UTP Cat 5e
Odpowiedź FTP Cat 5e jest prawidłowa, ponieważ ten typ kabla jest wyposażony w ekranowanie, które skutecznie redukuje zakłócenia elektromagnetyczne. Ekranowanie w kablu FTP (Foiled Twisted Pair) polega na zastosowaniu foliowego ekranu, który otacza pary skręconych przewodów, co zabezpiecza sygnały przed wpływem zewnętrznych źródeł zakłóceń, takich jak urządzenia elektroniczne czy inne kable. W środowiskach, gdzie mogą występować takie zakłócenia, jak w biurach, fabrykach czy pomieszczeniach ze sprzętem generującym silne pole elektromagnetyczne, użycie kabla FTP znacząco poprawia stabilność połączeń i jakość przesyłanych danych. Standardy takie jak ISO/IEC 11801 oraz ANSI/TIA-568-C rekomendują stosowanie ekranowanych kabli w warunkach, gdzie zakłócenia są powszechne. W praktyce, zastosowanie FTP Cat 5e zapewnia nie tylko większą odporność na zakłócenia, ale także lepszą wydajność transmisji na dłuższych dystansach, co jest kluczowe w nowoczesnych infrastrukturach sieciowych.

Pytanie 40

Po podłączeniu działającej klawiatury do któregokolwiek z portów USB nie ma możliwości wyboru awaryjnego trybu uruchamiania systemu Windows. Jednakże, klawiatura funkcjonuje prawidłowo po uruchomieniu systemu w standardowym trybie. Co to sugeruje?

A. uszkodzone porty USB
B. uszkodzony kontroler klawiatury
C. uszkodzony zasilacz
D. niepoprawne ustawienia BIOS-u
Niepoprawne ustawienia BIOS-u mogą być przyczyną problemów z rozpoznawaniem urządzeń peryferyjnych, takich jak klawiatura, w trybie awaryjnym systemu Windows. Ustawienia BIOS-u odpowiadają za inicjalizację sprzętu przed załadowaniem systemu operacyjnego. Jeśli opcje dotyczące USB lub klawiatury są nieprawidłowo skonfigurowane, to system nie będzie w stanie zidentyfikować klawiatury w trybie awaryjnym. Przykładowo, opcja związana z włączeniem wsparcia dla USB może być wyłączona, co skutkuje brakiem możliwości używania klawiatury w trakcie uruchamiania. W praktyce, aby rozwiązać ten problem, użytkownik powinien wejść do BIOS-u (zazwyczaj przy pomocy klawisza DEL, F2 lub F10 tuż po włączeniu komputera) i sprawdzić, czy ustawienia dotyczące USB są aktywne. W zależności od płyty głównej, może być również konieczne włączenie opcji „Legacy USB Support”, która umożliwia wykrycie starszych urządzeń USB. Dbanie o poprawne ustawienia BIOS-u jest kluczowe, aby zapewnić prawidłowe działanie systemu operacyjnego w różnych trybach.