Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 19 lutego 2025 18:39
  • Data zakończenia: 19 lutego 2025 18:53

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Poślizg silnika indukcyjnego osiągnie wartość 1, gdy

A. wirnik silnika zostanie dogoniony.
B. silnik znajdzie się w stanie jałowym.
C. silnik zostanie zasilony prądem przeciwnym.
D. wirnik silnika będzie w bezruchu.
Zrozumienie zasad działania silników indukcyjnych jest kluczowe dla efektywnej ich eksploatacji, dlatego warto przyjrzeć się błędnym koncepcjom, które mogą prowadzić do mylnych wniosków. W przypadku, gdy wirnik silnika zostaje dopędzony, oznacza to, że jego prędkość zbliża się do prędkości synchronizacyjnej, co prowadzi do zmniejszenia poślizgu, a nie do uzyskania wartości równej 1. Takie zjawisko występuje w silnikach, które są zasilane zmiennym prądem i wymagają odpowiedniego momentu obrotowego, aby zrównoważyć obciążenie. Z kolei pozostawienie silnika na biegu jałowym skutkuje poślizgiem mniejszym niż 1, ponieważ wirnik wciąż kręci się, choć bez obciążenia. Zasilanie silnika przeciwprądem to sytuacja, w której występuje odwrócenie kierunku prądu w uzwojeniach, co skutkuje przeciwnym działaniem momentu obrotowego, ale nie powoduje poślizgu równego 1 w klasycznym sensie. Typowym błędem myślowym jest zrozumienie poślizgu jako czegoś, co można kontrolować niezależnie od fizycznych parametrów pracy silnika. W rzeczywistości poślizg jest wskaźnikiem funkcjonowania silnika i jest ściśle powiązany z jego obciążeniem oraz dynamiką pracy. Wiedza na temat poślizgu jest zatem fundamentalna dla inżynierów i techników zajmujących się automatyką i energetyką.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Wiatrołap jest oświetlany dwoma żarówkami. Żarówki w oprawach są włączane przez wyłącznik zmierzchowy. Gdy jedna z żarówek przestała świecić, jakie kroki należy podjąć, aby zidentyfikować i usunąć potencjalne przyczyny tej usterki?

A. Sprawdzić działanie wyłącznika, zweryfikować oprawę i przewody
B. Zamienić żarówkę, która nie świeci, sprawdzić funkcjonowanie wyłącznika oraz oprawy oświetleniowej
C. Wymienić żarówkę, która się nie świeci, sprawdzić przewody i oprawę oświetleniową
D. Zweryfikować przewody, sprawdzić działanie wyłącznika, wymienić żarówkę
Analizując inne odpowiedzi, można zauważyć, że skupiają się one na fragmentarycznych rozwiązaniach, co może prowadzić do niepełnej diagnozy problemu. Na przykład, wymiana tylko żarówki, bez sprawdzenia innych elementów instalacji, może spowodować, że użytkownik nie zauważyłby dalszych problemów, na przykład uszkodzenia przewodów lub wyłącznika. Zignorowanie konieczności weryfikacji przewodów może prowadzić do sytuacji, w której nowa żarówka również przestanie działać z powodu braku zasilania, co byłoby nieefektywnym i kosztownym rozwiązaniem. Podobnie, choć sprawdzenie działania wyłącznika jest istotne, nie powinno być to jedyne działanie, ponieważ uszkodzenie oprawy oświetleniowej też może być przyczyną problemu. Takie podejście jest typowe dla błędów myślowych, gdzie użytkownicy koncentrują się na jednym elemencie systemu, zaniedbując jego całościową analizę. Praktyczne podejście do diagnozowania usterek elektrycznych wymaga holistycznego spojrzenia na całą instalację, co zapewnia skuteczną identyfikację i eliminację problemów. Właściwe postępowanie zgodne z zasadami bezpieczeństwa i dobrymi praktykami branżowymi powinno obejmować kompleksowe sprawdzenie wszystkich komponentów systemu oświetleniowego, co jest kluczowe dla utrzymania efektywności energetycznej i niezawodności instalacji.

Pytanie 4

Aby ocenić efektywność ochrony przez automatyczne odcięcie zasilania w systemie TN instalacji elektrycznej, konieczne jest

A. zweryfikowanie ciągłości połączeń w instalacji
B. określenie czasu oraz prądu zadziałania wyłącznika RCD
C. przeprowadzenie pomiarów impedancji pętli zwarcia
D. wykonanie pomiaru rezystancji uziemienia
Sprawdzanie ciągłości połączeń w instalacji, chociaż ważne dla ogólnego bezpieczeństwa, nie jest bezpośrednio związane z oceną skuteczności wyłączenia zasilania w systemie TN. Często można mylnie sądzić, że zapewnienie ciągłości połączeń jest wystarczające do zapewnienia bezpieczeństwa użytkowników. Jednakże nawet jeśli ciągłość połączenia jest zachowana, nie gwarantuje to, że zabezpieczenia, takie jak wyłączniki różnicowoprądowe (RCD), zadziałają w odpowiednim czasie. Wyznaczanie czasu i prądu zadziałania wyłącznika RCD jest również istotne, ale nie dostarcza informacji o impedancji pętli zwarcia, która jest kluczowa do oceny, czy ochrona przed zwarciami jest wystarczająca. Mierzenie rezystancji uziemienia to kolejny ważny aspekt, ale jego wyniki nie zastąpią pomiaru impedancji pętli zwarcia, który jest bezpośrednim wskaźnikiem skuteczności działania zabezpieczeń przy wystąpieniu niebezpiecznych sytuacji. W związku z tym, pomiar impedancji pętli zwarcia powinien być priorytetem dla inżynierów i techników zajmujących się instalacjami elektrycznymi, aby zapewnić ich właściwe działanie w sytuacjach awaryjnych.

Pytanie 5

Która z wymienionych przyczyn może być odpowiedzialna za zwęglenie izolacji na końcu przewodu fazowego w okolicy zacisku w puszce rozgałęźnej?

A. Zbyt duży przekrój używanego przewodu
B. Poluzowanie śruby mocującej w puszce
C. Niewystarczająca wartość prądu roboczego
D. Wzrost napięcia zasilającego na skutek przepięcia
Poluzowanie się śruby zacisku w puszce rozgałęźnej to jedna z najczęstszych przyczyn zwęglenia izolacji przewodów. Gdy śruba zacisku nie jest odpowiednio dokręcona, może dojść do niewłaściwego kontaktu między przewodem a zaciskiem. Taki luźny kontakt generuje dodatkowe ciepło, co w dłuższej perspektywie prowadzi do degradacji materiałów izolacyjnych. W praktyce, w sytuacji gdy przewód nie jest stabilnie zamocowany, może wystąpić także arczenie, co dodatkowo zwiększa ryzyko uszkodzenia izolacji. Z tego powodu, podczas instalacji elektrycznych, kluczowe jest przestrzeganie standardów dotyczących momentu dokręcenia oraz regularna kontrola stanu złącz. Należy również zwrócić uwagę na jakość używanych materiałów, które powinny spełniać normy PN-EN 60947-1 oraz PN-IEC 60364. Regularne przeglądy mogą pomóc w identyfikacji potencjalnych problemów zanim staną się one poważne, a tym samym zwiększyć bezpieczeństwo instalacji.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Który z wymienionych elementów chroni nakrętki przed poluzowaniem?

A. Podkładka sprężysta
B. Tuleja redukcyjna
C. Tuleja kołnierzowa
D. Podkładka dystansowa
Podkładka sprężysta, znana również jako podkładka naciskowa, to element konstrukcyjny stosowany w wielu zastosowaniach inżynieryjnych, którego głównym celem jest zapewnienie odpowiedniego docisku oraz zabezpieczenie połączeń gwintowych przed luzowaniem. Działa ona poprzez wytworzenie siły sprężystej, która przeciwdziała odkręcaniu się nakrętek, co jest szczególnie istotne w aplikacjach narażonych na wibracje. W praktyce, podkładki sprężyste są powszechnie stosowane w motoryzacji, budownictwie, a także w produkcji maszyn. Zgodnie z normami DIN, takich jak DIN 127 i DIN 137, podkładki te powinny być odpowiednio dobrane do zastosowań, co wpływa na ich efektywność w zapobieganiu luzowaniu. Należy również zwrócić uwagę na materiał, z którego podkładki są wykonane. Na przykład, podkładki ze stali nierdzewnej są odporne na korozję i sprawdzają się w trudnych warunkach atmosferycznych, co znacząco przedłuża żywotność połączenia. Użycie podkładek sprężystych jest wskazane w przypadku połączeń, gdzie występują zmienne obciążenia i wstrząsy, co czyni je niezastąpionymi w nowoczesnej inżynierii.

Pytanie 11

Zgodnie z aktualnymi przepisami prawa budowlanego, w nowych budynkach konieczne jest montowanie gniazdek z zabezpieczeniami.

A. w sypialniach.
B. we wszystkich pomieszczeniach.
C. w holach.
D. w łazienkach.
Odpowiedź 'w łazienkach' jest poprawna, ponieważ zgodnie z obowiązującymi przepisami prawa budowlanego oraz normami bezpieczeństwa, w łazienkach powinny być instalowane gniazda z kołkami ochronnymi. Gniazda te mają na celu zwiększenie bezpieczeństwa użytkowników poprzez minimalizację ryzyka porażenia prądem elektrycznym, co jest szczególnie istotne w pomieszczeniach narażonych na wilgoć. Właściwe zastosowanie takich gniazd w łazienkach jest zgodne z normą PN-IEC 60364-7-701, która reguluje wymagania dotyczące instalacji elektrycznych w pomieszczeniach mokrych. Praktycznie oznacza to, że wszelkie urządzenia elektryczne, które mogą być używane w łazienkach, powinny być podłączone do gniazd z zabezpieczeniem przeciwporażeniowym, co znacznie podnosi poziom bezpieczeństwa użytkowników. Na przykład, podłączenie pralki czy suszarki do gniazd z kołkami ochronnymi jest kluczowe, aby zapewnić pełne bezpieczeństwo w codziennym użytkowaniu. W związku z tym, projektując nowe budynki, warto stosować się do tych wymogów, aby chronić użytkowników przed potencjalnymi zagrożeniami elektrycznymi.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Izolację przewodu YDY 5x6 450/700 V należy kontrolować induktorem przy napięciu

A. 500 V
B. 1000 V
C. 2500 V
D. 250 V
Pomiar rezystancji izolacji przewodu YDY 5x6 450/700 V powinien być przeprowadzany przy użyciu induktora na napięciu 1000 V. Taki poziom napięcia jest zgodny z normami i standardami branżowymi, które zalecają używanie wyższych napięć w celu uzyskania dokładnych i wiarygodnych wyników pomiarów izolacji. Przy pomiarze rezystancji izolacji na napięciu 1000 V można skutecznie sprawdzić, czy izolacja przewodu wytrzymuje wymagane napięcia robocze oraz czy nie występują mikrouszkodzenia, które mogłyby prowadzić do awarii. Przykładem zastosowania pomiaru na takim poziomie napięcia jest testowanie instalacji elektrycznych w budynkach przemysłowych, gdzie zabezpieczenie przed porażeniem prądem jest kluczowe. Dobrą praktyką jest także przeprowadzanie takich pomiarów w cyklu konserwacyjnym, aby zapobiec ewentualnym uszkodzeniom i zapewnić bezpieczeństwo użytkowników.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Jaką rurę instalacyjną przedstawia symbol RKLF 20?

A. Sztywną o przekroju 20 mm2
B. Sztywną o średnicy 20 mm
C. Karbowaną o średnicy 20 mm
D. Karbowaną o przekroju 20 mm2
Odpowiedź 'Karbowaną o średnicy 20 mm' jest prawidłowa, ponieważ symbol RKLF odnosi się do rur karbowanych, które charakteryzują się elastycznością i możliwością łatwego formowania. Rura o średnicy 20 mm jest standardowym rozmiarem stosowanym w instalacjach elektrycznych i telekomunikacyjnych, co czyni ją praktycznym wyborem w projektach budowlanych. Kiedy stosuje się rury karbowane, ich struktura pozwala na łatwe dopasowanie do różnych kształtów oraz ułatwia układanie w trudnych warunkach, co jest istotne w przypadku instalacji w miejscach o ograniczonej przestrzeni. Rury te są również odporne na działanie czynników atmosferycznych i chemicznych, co zwiększa ich trwałość. Zgodnie z obowiązującymi standardami w branży budowlanej, użycie rur karbowanych w instalacjach elektrycznych zapewnia bezpieczeństwo oraz zgodność z przepisami. W związku z tym, znajomość oznaczeń takich jak RKLF jest kluczowa dla każdego profesjonalisty zajmującego się instalacjami. Przykładem zastosowania są instalacje w budynkach mieszkalnych oraz przemysłowych, gdzie elastyczność rur karbowanych pozwala na zminimalizowanie ryzyka uszkodzeń i ułatwienie konserwacji.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Prace przeprowadzane pod napięciem w instalacji domowej wymagają użycia narzędzi izolowanych o minimalnym poziomie napięcia izolacji

A. 120 V
B. 1000 V
C. 500 V
D. 250 V
Wybór wartości 500 V jako minimalnego napięcia izolacji dla narzędzi używanych w pracach pod napięciem w instalacjach mieszkaniowych jest zgodny z normami bezpieczeństwa, które nakładają wymogi dotyczące odpowiedniego poziomu izolacji. Narzędzia izolowane o napięciu 500 V są powszechnie stosowane w branży elektrycznej, aby zapewnić bezpieczeństwo podczas wykonywania czynności konserwacyjnych lub naprawczych. Takie narzędzia są zaprojektowane w taki sposób, aby minimalizować ryzyko porażenia prądem elektrycznym, a ich izolacja powinna być testowana w odpowiednich warunkach. Przykłady takich narzędzi to wkrętaki, szczypce czy kombinerki, które mają oznaczenia jakościowe i są produkowane zgodnie z międzynarodowymi standardami, takimi jak IEC 60900, które definiują wymagania dla narzędzi izolowanych. Użycie narzędzi o odpowiedniej izolacji nie tylko chroni technika, ale także zapewnia, że prace są wykonywane zgodnie z najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego.

Pytanie 29

Aby zmierzyć wartości elektryczne o stałym przebiegu, należy zastosować miernik o budowie

A. elektromagnetycznym
B. magnetoelektrycznym
C. elektrodynamicznym
D. ferrodynamicznym
Miernik o ustroju magnetoelektrycznym jest szczególnie odpowiedni do pomiaru wielkości elektrycznych o przebiegu stałym, ponieważ jego działanie opiera się na interakcji pola magnetycznego z prądem elektrycznym, co pozwala na dokładne i stabilne odczyty. W urządzeniach tych zastosowane są magnesy trwałe oraz ruchome cewki, co zapewnia wysoką czułość i precyzję pomiaru. Przykładem zastosowania mierników magnetoelektrycznych są laboratoria badawcze oraz instalacje przemysłowe, gdzie wymagane są dokładne pomiary prądu stałego, na przykład podczas testowania elementów elektronicznych. Standardy branżowe, takie jak IEC 61010, podkreślają istotność stosowania odpowiednich technik pomiarowych, co sprawia, że wybór miernika magnetoelektrycznego jest zgodny z dobrymi praktykami w zakresie bezpieczeństwa i dokładności pomiarów. Dodatkowo, mierniki te są często wykorzystywane w sprzęcie pomiarowym, takim jak multimetry, które są niezbędne w codziennej pracy inżynierów i techników w różnych branżach.

Pytanie 30

W obiekcie zasilanym napięciem 400 V (3/N/PE 50Hz) zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody - 12 kW - obwód trójfazowy
2. zmywarka - 3,5 kW - obwód jednofazowy
3. kuchenka elektryczna - 9,5 kW - obwód trójfazowy
4. pralka automatyczna - 4,5 kW - obwód jednofazowy

Każde z urządzeń stanowi odrębny obwód w tablicy rozdzielczej. Jakie wyłączniki instalacyjne należy zastosować z odpowiednimi wartościami prądu znamionowego, według kolejności dla każdego urządzenia (w kolejności 1,2,3,4)?

A. 20 A, 16 A, 16 A, 20 A
B. 16 A, 20 A, 20 A, 16 A
C. 16 A, 20 A, 20 A, 16 A
D. 20 A, 16 A, 20 A, 16 A
Wybór innych wartości prądów znamionowych dla wyłączników instalacyjnych może prowadzić do niewłaściwej ochrony odbiorników i stwarzać ryzyko ich uszkodzenia, a nawet pożaru. Dla przykładu, zastosowanie wyłącznika o prądzie 16 A dla kuchenki elektrycznej o mocy 9,5 kW w obwodzie 3-fazowym jest błędne, ponieważ moc ta wymaga przynajmniej 20 A. Prąd znamionowy wyłączników powinien być zawsze dobrany na podstawie obliczeń mocy i zastosowanej metody ochrony. Wybór zbyt niskiego prądu znamionowego może prowadzić do częstego wyłączania się zabezpieczenia, co nie tylko jest niewygodne, ale także może doprowadzić do uszkodzenia urządzenia przez nienależyte zasilanie. Z kolei użycie wyłącznika o zbyt wysokim prądzie może nie zapewnić odpowiedniej ochrony przed przeciążeniem, co stwarza ryzyko przegrzania i uszkodzenia przewodów. W normach instalacyjnych oraz w praktyce inżynierskiej kluczowe jest przestrzeganie zasad doboru zabezpieczeń, które uwzględniają zarówno moc odbiorników, jak i ich charakterystykę. Istotne jest również, aby uwzględniać współczynniki obciążenia, które mogą wpływać na rzeczywisty pobór prądu przez urządzenia. Dlatego też właściwe zrozumienie i stosowanie tych zasad jest niezbędne dla zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Przystępując do działań konserwacyjnych, takich jak wymiana uszkodzonych elementów instalacji elektrycznej, należy postępować w następującej kolejności:

A. odłączyć instalację od źródła zasilania, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, oznakować obszar prac
B. zabezpieczyć przed przypadkowym włączeniem, oznakować obszar prac, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
C. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
D. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, odłączyć instalację od źródła zasilania
Poprawna odpowiedź skupia się na fundamentalnych zasadach bezpieczeństwa, które powinny być przestrzegane podczas wykonywania prac konserwacyjnych w instalacjach elektrycznych. Kluczowym krokiem jest wyłączenie instalacji spod napięcia, co zapobiega przypadkowemu porażeniu prądem podczas pracy. Po wyłączeniu instalacji, zabezpieczenie miejsca pracy przed przypadkowym załączeniem jest kolejnym istotnym krokiem; może to obejmować zablokowanie dostępu do przycisków włączających lub umieszczenie odpowiednich osłon. Następnie, potwierdzenie braku napięcia za pomocą odpowiednich narzędzi pomiarowych, takich jak wskaźniki napięcia, jest niezbędne, aby upewnić się, że instalacja jest bezpieczna do pracy. Ostatecznie, oznakowanie miejsca prac jest kluczowe, aby ostrzec innych o prowadzonych działaniach. Ta kolejność działań jest zgodna z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które podkreślają znaczenie systematycznego podejścia do prac konserwacyjnych. W praktyce, stosowanie się do tych zasad może znacząco zmniejszyć ryzyko wypadków i poprawić bezpieczeństwo personelu.

Pytanie 33

Którym z kluczy nie da się skręcić stojana silnika elektrycznego śrubami jak przedstawiona na ilustracji?

Ilustracja do pytania
A. Płaskim.
B. Oczkowym.
C. Imbusowym.
D. Nasadowym.
Odpowiedź "imbusowym" jest poprawna, ponieważ klucz imbusowy jest przeznaczony do stosowania ze śrubami, które mają gniazdo sześciokątne wewnętrzne. W przypadku przedstawionym na ilustracji mamy do czynienia z klasyczną śrubą o sześciokątnej główce, co oznacza, że do jej dokręcenia można zastosować inne rodzaje kluczy, takie jak klucz nasadowy, oczkowy lub płaski. Każdy z tych kluczy posiada odpowiedni kształt, który umożliwia odpowiednie dopasowanie do główki śruby, co zapewnia efektywne przenoszenie momentu obrotowego. Klucz nasadowy jest powszechnie używany w mechanice, ponieważ jego konstrukcja pozwala na łatwe dokręcanie oraz odkręcanie śrub w trudnodostępnych miejscach. Klucz oczkowy z kolei umożliwia precyzyjne dokręcanie w ciasnych przestrzeniach, a klucz płaski jest podstawowym narzędziem w warsztatach mechanicznych. Wiedza na temat właściwego doboru narzędzi jest kluczowa dla zapewnienia efektywności i bezpieczeństwa pracy w każdej aplikacji mechanicznej.

Pytanie 34

Który z wymienionych czynników wpływa na częstotliwość, z jaką powinno się przeprowadzać okresowe kontrole instalacji elektrycznej?

A. Warunki zewnętrzne, którym instalacja jest poddawana
B. Kształt budynku w przestrzeni
C. Liczba urządzeń zasilanych z tej instalacji
D. Metoda montażu instalacji
Warunki zewnętrzne, na jakie jest narażona instalacja, mają kluczowe znaczenie dla określenia częstotliwości okresowych kontroli instalacji elektrycznej. W praktyce oznacza to, że instalacje znajdujące się w trudnych warunkach, takich jak znaczne zmiany temperatur, wilgotność, zanieczyszczenia chemiczne czy fizyczne uszkodzenia, wymagają częstszej inspekcji. Na przykład, instalacje elektryczne w zakładach przemysłowych, gdzie mogą występować agresywne substancje chemiczne, powinny być sprawdzane regularnie, aby zminimalizować ryzyko awarii i zapewnić bezpieczeństwo pracowników. Ponadto, normy branżowe, takie jak PN-EN 60364, zaznaczają, że różne środowiska pracy mają różne wymagania dotyczące przeglądów. Przykładowo, instalacje w budynkach użyteczności publicznej powinny być kontrolowane co najmniej raz w roku, ale w warunkach ekstremalnych, takich jak miejsca o dużym natężeniu ruchu lub narażone na czynniki zewnętrzne, kontrole powinny być dokonywane jeszcze częściej. Dbanie o regularne przeglądy pozwala na identyfikację potencjalnych zagrożeń i utrzymanie wysokiego poziomu bezpieczeństwa.

Pytanie 35

Wkładka topikowa bezpiecznika oznaczona symbolem gL służy do ochrony

A. silników przed przeciążeniami oraz zwarciami
B. urządzeń półprzewodnikowych przed zwarciami
C. przewodów przed przeciążeniami oraz zwarciami
D. urządzeń półprzewodnikowych przed przeciążeniami
Wkładka topikowa bezpiecznika oznaczona symbolem gL jest przeznaczona do zabezpieczania przewodów przed przeciążeniami i zwarciami. Oznaczenie gL wskazuje na to, że wkładki te są dostosowane do ochrony obwodów o charakterystyce A, co oznacza, że mogą one wyłączyć obwód w przypadku wystąpienia nadmiernego prądu, który może prowadzić do uszkodzenia instalacji elektrycznej. Przykładem zastosowania wkładek gL są instalacje oświetleniowe oraz obwody zasilające gniazdka, gdzie istnieje ryzyko przeciążenia spowodowanego podłączeniem wielu urządzeń. Takie bezpieczniki są zgodne z międzynarodowymi standardami IEC 60269, które określają wymagania dotyczące wkładek topikowych. Stosowanie wkładek gL w obwodach prądowych pozwala na skuteczną ochronę przed uszkodzeniami, co jest istotne zarówno z punktu widzenia bezpieczeństwa, jak i efektywności energetycznej instalacji.

Pytanie 36

Jaka maksymalna wartość impedancji pętli zwarcia może występować w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby ochrona przed porażeniem była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego obwodu powinien wyłączyć instalacyjny wyłącznik nadprądowy C10?

A. 4,6 Ω
B. 8,0 Ω
C. 7,7 Ω
D. 2,3 Ω
Odpowiedź 2,3 Ω jest poprawna, ponieważ jest zgodna z wymaganiami dotyczącymi impedancji pętli zwarcia w trójfazowych obwodach elektrycznych. W takich systemach, aby zapewnić skuteczną ochronę przeciwporażeniową, impedancja pętli zwarcia powinna być na tyle niska, aby wyłącznik nadprądowy mógł szybko zareagować na zwarcie. Wyłącznik C10, który ma prąd znamionowy 10 A, wymaga maksymalnej impedancji pętli zwarcia równej 2,3 Ω, aby przy zwarciu wyzwolił się w czasie nieprzekraczającym 0,4 s. Przykładem zastosowania tej zasady jest instalacja w budynkach mieszkalnych, gdzie ochrona przed porażeniem prądem jest kluczowa. W praktyce, aby uzyskać odpowiednią impedancję, projektanci instalacji elektrycznych muszą uwzględnić odpowiednie przekroje przewodów oraz ich długość, a także zainstalować zabezpieczenia, które umożliwią szybkie odcięcie zasilania w przypadku uszkodzenia izolacji. W kontekście norm, można przywołać normę PN-EN 60364, która szczegółowo opisuje wymagania dotyczące ochrony osób i mienia przed skutkami działania prądu elektrycznego.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Którym zestawem przyrządów pomiarowych można w przypadku braku watomierza wyznaczyć moc czynną pobieraną przez silnik elektryczny zasilany z instalacji jednofazowej?

Amperomierz
Częstościomierz
Waromierz
Amperomierz
Częstościomierz
Woltomierz
Omomierz
Waromierz
Woltomierz
Amperomierz
Waromierz
Woltomierz
ABCD

A. B.
B. C.
C. A.
D. D.
Odpowiedź D jest prawidłowa, ponieważ zestaw przyrządów składający się z amperomierza i woltomierza jest wystarczający do pomiaru mocy czynnej silnika elektrycznego zasilanego z instalacji jednofazowej. W obwodach jednofazowych moc czynna obliczana jest na podstawie wzoru P = U * I * cos(φ), gdzie U to napięcie, I to natężenie prądu, a cos(φ) to współczynnik mocy. Amperomierz umożliwia pomiar natężenia prądu, natomiast woltomierz pozwala na pomiar napięcia. Znajomość wartości obu tych parametrów pozwala na obliczenie mocy czynnej silnika. Przykładowo, jeśli zmierzymy napięcie w obwodzie jako 230 V i natężenie prądu jako 10 A, a współczynnik mocy ustalimy na 0,8, moc czynna wyniesie P = 230 * 10 * 0,8 = 1840 W. Taka metoda jest zgodna z praktykami stosowanymi w elektrotechnice i jest szeroko akceptowana w branży.

Pytanie 40

Co oznacza oznaczenie IP00 widoczne na obudowie urządzenia elektrycznego?

A. Brak klasy ochronności przed porażeniem.
B. Brak ochrony przed wilgocią i pyłem.
C. Najwyższy poziom ochrony.
D. Wykorzystanie separacji ochronnej.
Napis IP00 na obudowie urządzenia elektrycznego oznacza brak ochrony przed wilgocią i kurzem. Klasyfikacja IP (Ingress Protection) jest standardem opracowanym przez Międzynarodową Organizację Normalizacyjną (IEC), który określa poziomy ochrony oferowane przez obudowy urządzeń elektrycznych. W przypadku IP00, brak jakiejkolwiek cyfry oznacza, że urządzenie nie jest chronione ani przed wnikaniem ciał stałych, ani przed wilgocią. W praktyce oznacza to, że takie urządzenia powinny być używane w suchych, czystych i kontrolowanych warunkach, przez co minimalizuje się ryzyko uszkodzenia komponentów w wyniku nadmiernego zapylenia lub kontaktu z wodą. Przykładem zastosowania urządzeń oznaczonych jako IP00 mogą być niektóre elementy wewnętrzne systemów elektronicznych, które są odpowiednio zabezpieczone w zamkniętych obudowach i nie są narażone na działanie czynników zewnętrznych.