Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 23 maja 2025 23:30
  • Data zakończenia: 23 maja 2025 23:52

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaką wartość ma korekta kątowa dla jednego kąta w zamkniętym ciągu poligonowym, jeżeli ciąg ten zawiera 5 kątów, a odchylenie kątowe wynosi fα = +30cc?

A. Vk = -6cc
B. Vk = +5cc
C. Vk = +6cc
D. Vk = -5cc
W przypadku analizy błędów w odpowiedziach, kluczowe jest zrozumienie, że użycie nieprawidłowych wartości poprawek kątowych może prowadzić do poważnych konsekwencji w kontekście geodezyjnych pomiarów. Odpowiedzi takie jak Vk = +6cc lub Vk = -5cc mogą wynikać z niepoprawnego zrozumienia zasady obliczania poprawki kątowej. Warto pamiętać, że poprawka kątowa zawsze musi uwzględniać całkowity błąd pomiarowy i jego wpływ na sumę kątów zamykających poligon. Wartości te ignorują istotny aspekt, jakim jest konieczność uwzględnienia odchyłki kątowej w kontekście zamknięcia n-kąta, co powinno być podstawowym założeniem przy obliczeniach. Przykładowo, przy założeniu, że błąd wynosi +30cc, a poligon ma 5 kątów, każdy kąt powinien być skorygowany, aby suma kątów wyniosła 540°, co prowadzi do poprawki na -6cc. Stąd jakiekolwiek inne wartości są błędne albo wynikają z nieporozumienia w danym kontekście, co może prowadzić do dalszych błędów w analizie geometrycznej i geodezyjnej. W branży geodezyjnej, dokładność i precyzja są kluczowe, a błędne odpowiedzi mogą prowadzić do nieprawidłowego sporządzenia map lub innej dokumentacji, co ma poważne konsekwencje w praktyce inżynierskiej.

Pytanie 2

Cyfra 2 w oznaczeniu 2/5, użytym przy oznaczaniu w terenie punktów hektometrowych utworzonych podczas wytyczania w terenie linii profilu podłużnego, wskazuje na

A. numer hektometra w konkretnej sekcji kilometra
B. liczbę hektometrów w danym kilometrze trasy
C. kompletną liczbę kilometrów od startu trasy
D. całkowitą liczbę metrów w jednym odcinku trasy
Wybór niepoprawnej odpowiedzi może wynikać z nieporozumienia dotyczącego systemu oznaczania. Na przykład, odpowiedź wskazująca na numer hektometra w danym kilometrze sugeruje, że cyfra 2 odnosi się do odcinka hektometrowego, co jest mylące. W rzeczywistości nie stosuje się takiego zapisu w kontekście punktów pomiarowych. Koncepcja ta może prowadzić do błędnych założeń, ponieważ punkt 2 w schemacie 2/5 nie odnosi się do jednostek hektometrycznych, które są używane na bardziej lokalnym poziomie. Z kolei odniesienie do pełnej liczby metrów w jednym odcinku trasy pomija kluczowy aspekt systemu, który wyraźnie definiuje pełne kilometry. Może to być mylące, zwłaszcza gdy rozważamy różnice w jednostkach pomiarowych. Trzeba również brać pod uwagę, że standardy branżowe, które regulują oznaczanie tras, jasno określają, jak powinny być przedstawiane odległości, co jeszcze bardziej podkreśla, że numeracja kilometrów jest fundamentalna dla właściwego zrozumienia struktury tras. Często popełnianym błędem jest niezweryfikowanie kontekstu, w jakim są używane konkretne oznaczenia, co skutkuje wyborem odpowiedzi, które wydają się mieć sens, ale w rzeczywistości są sprzeczne z ustalonymi normami. Ważne jest, aby zawsze odnosić się do najnowszych standardów i praktyk w branży, aby unikać nieporozumień.

Pytanie 3

Jeśli odcinek o długości 1 cm na mapie odpowiada rzeczywistej odległości 50 m w terenie, to w jakiej skali została stworzona ta mapa?

A. 1:5000
B. 1:500
C. 1:1000
D. 1:10 000
Odpowiedź 1:5000 jest jak najbardziej trafna. Skala mapy to taki ważny temat, bo mówi nam, jak długości na mapie mają się do tych prawdziwych w terenie. Tu mamy 1 cm na mapie, co odpowiada 50 m w rzeczywistości. Jak to przeliczymy, to 50 m to 5000 cm. To znaczy, że 1 cm na mapie to 5000 cm w terenie, co zapisujemy jako 1:5000. Taka informacja jest super ważna przy robieniu map, bo pozwala dobrze oddać to, co mamy w realu. Kiedy korzystasz z mapy w skali 1:5000, łatwo możesz planować różne rzeczy, na przykład budowę czy nawigację. Tego typu mapy są często wykorzystywane w sprawach takich jak urbanistyka czy geodezja, gdzie potrzebujemy przedstawienia terenu w szczegółowy sposób. Rozumienie skali mapy pozwala lepiej czytać dane przestrzenne i podejmować mądrzejsze decyzje na bazie tego, co widzimy na mapie.

Pytanie 4

W trakcie stabilizacji punktu poziomej osnowy 1 klasy, w jego otoczeniu oraz jako jego ochrona, utworzono cztery punkty

A. przeniesienia
B. poboczniki
C. kierunkowe
D. podcentra
Odpowiedzi kierunkowe, podcentra i przeniesienia nie są odpowiednie w kontekście stabilizacji punktu poziomej osnowy 1 klasy. Kierunkowe punkty pomiarowe służą do określenia kierunków, a nie stabilizacji punktów, co ogranicza ich użyteczność w kontekście, który opisuje pytanie. Punkty podcentra są stosowane w specyficznych pomiarach, ale ich rola nie obejmuje zabezpieczania punktów osnowy, co czyni je nieadekwatnymi do omawianego zagadnienia. Przeniesienia, które dotyczą przekazywania pomiarów z jednego miejsca do drugiego, również nie spełniają funkcji zabezpieczających. W praktyce, wybór właściwych punktów pomocniczych jest kluczowy i opiera się na ich charakterystyce i zastosowaniu. Niepoprawne odpowiedzi z reguły wynikają z nieporozumienia dotyczącego roli i znaczenia różnych typów punktów w systemie osnowy geodezyjnej. Warto zaznaczyć, że w geodezji istotne jest zrozumienie, że każdy typ punktu ma swoje specyficzne zastosowanie, a ich niewłaściwe zastosowanie prowadzi do błędów pomiarowych oraz obniżenia jakości wyników. W związku z tym, kluczowe jest, aby przed przystąpieniem do pomiarów dobrze zrozumieć różnice między różnymi typami punktów oraz ich przeznaczenie, aby uniknąć typowych pułapek myślowych w geodezyjnej praktyce.

Pytanie 5

Wskazanie lokalizacji pikiet w terenie oznacza zdefiniowanie miejsca, w którym podczas dokonywania pomiaru

A. powinno być ustawione lustro lub łata
B. powinno znajdować się stanowisko instrumentu
C. powinien znajdować się obserwator
D. powinien być pomiarowy
Wybór odpowiedzi, które nie odnosi się do ustawienia lustra lub łaty, wskazuje na nieporozumienie dotyczące podstawowych zasad pomiarów geodezyjnych. Odpowiedzi sugerujące, że obserwator czy pomiarowy powinien stać w danym miejscu, są błędne, ponieważ nie uwzględniają roli narzędzi pomiarowych w procesie zbierania danych. Obserwator nie jest odpowiedzialny za bezpośrednie pomiary, lecz pełni rolę nadzorczą, weryfikując poprawność ustawienia sprzętu. Ponadto, wskazanie, że stanowisko instrumentu powinno znajdować się w konkretnym miejscu, jest mylące, ponieważ kluczowe jest, aby instrument był skierowany na lustro bądźłatę, a nie tylko znajdował się w określonym punkcie. Zrozumienie, że lustro/łata to elementy, które odpowiadają za właściwe odczyty, jest fundamentalne dla prawidłowego przeprowadzania pomiarów. Właściwe ustawienie instrumentu jest ważne, lecz to interakcja między instrumentem a lustrem/łatą decyduje o dokładności pomiarów. Mylenie roli poszczególnych elementów może prowadzić do poważnych błędów w obliczeniach i interpretacji wyników, co jest nieakceptowalne w praktyce geodezyjnej. Zgodne z normami pomiarowymi, kluczowe jest, aby każdy z elementów procesu pomiarowego był właściwie zrozumiany i stosowany, aby zapewnić wiarygodność i dokładność uzyskiwanych danych.

Pytanie 6

Jakim znakiem geodezyjnym powinno się zaznaczyć punkt sytuacyjnej osnowy pomiarowej na twardej nawierzchni drogi?

A. Bolec metalowy
B. Palik drewniany
C. Słupek betonowy
D. Słupek marmurowy
Bolec metalowy jest odpowiedni do oznaczania punktów osnowy pomiarowej na utwardzonych nawierzchniach, takich jak jezdnie, ze względu na swoje właściwości trwałości oraz odporności na uszkodzenia mechaniczne. W praktyce geodezyjnej, stosowanie bolców metalowych pozwala na precyzyjne wytyczanie punktów, które są często narażone na mechaniczne obciążenia wynikające z ruchu drogowego. Metalowy bolec można łatwo zamontować w nawierzchni, co minimalizuje konieczność ingerencji w strukturę jezdni, w przeciwieństwie do słupków betonowych czy marmurowych, które wymagają bardziej skomplikowanego przygotowania terenu. Dodatkowo, standardy pomiarowe, takie jak normy ISO dotyczące geodezji, zalecają stosowanie trwałych i łatwych do identyfikacji znaczników, co czyni bolec metalowy najlepszym wyborem. W praktyce, zastosowanie bolców metalowych zapewnia długotrwałą widoczność punktów pomiarowych, co jest kluczowe dla dokładności i wiarygodności pomiarów geodezyjnych.

Pytanie 7

Na precyzję pomiarów niwelacyjnych nie wpływa

A. wyważenie łat niwelacyjnych
B. poziomowanie libelli niwelacyjnej
C. kolejność dokonywanych pomiarów
D. odległość między niwelatorem a łatami
Kolejność wykonywanych odczytów w niwelacji nie ma wpływu na dokładność pomiarów, ponieważ kluczowe są inne aspekty techniczne, takie jak poziomowanie i spionizowanie instrumentu oraz prawidłowe ustawienie łat. W praktyce niwelacyjnym, jeżeli wszystkie pomiary są wykonywane zgodnie z wymaganiami i standardami, to niezależnie od kolejności odczytów wynik końcowy będzie taki sam, pod warunkiem, że nie popełniono błędów w innych etapach procesu. Standardy takie jak PN-EN 17123-1:2018 określają procedury, które minimalizują błędy pomiarowe. Przykładowo, jeżeli niwelator jest starannie spoziomowany, a łatka jest poprawnie ustawiona w pionie, uzyskane wyniki będą wiarygodne niezależnie od tego, w jakiej kolejności zrealizujemy pomiary. To podejście może być stosowane w różnych projektach budowlanych i inżynieryjnych, co podkreśla znaczenie rzetelności technicznej nad subiektywną interpretacją kolejności działań.

Pytanie 8

Znając, że kontrola pomiarów z łaty w tachimetrii klasycznej wyrażona jest równaniem 2s = g + d, oblicz wartość odczytu z łaty kreski środkowej, jeśli odczyt z łaty kreski górnej wynosi g = 2 200 mm, a odczyt z łaty kreski dolnej to d = 1 600 mm?

A. s = 1,8 m
B. s = 1,9 m
C. s = 1,7 m
D. s = 2,0 m
Odpowiedź s = 1,9 m jest poprawna i wynika z zastosowania wzoru 2s = g + d, gdzie g to odczyt z łaty kreski górnej, a d to odczyt z łaty kreski dolnej. W tym przypadku mamy g = 2200 mm i d = 1600 mm. Podstawiając te wartości do wzoru, otrzymujemy: 2s = 2200 mm + 1600 mm, co daje 2s = 3800 mm. Dzieląc przez 2, uzyskujemy s = 1900 mm, co po przeliczeniu na metry daje 1,9 m. Takie obliczenia są kluczowe w tachimetrii, gdzie precyzyjne pomiary wysokości są niezbędne do określenia różnic terenu oraz do tworzenia dokładnych modeli topograficznych. Zastosowanie tego wzoru jest szerokie, od prac inżynieryjnych po geodezję, gdzie precyzja jest kluczowa dla sukcesu projektów budowlanych i infrastrukturalnych. Dobre praktyki w tej dziedzinie wymagają również odpowiedniej kalibracji sprzętu oraz uwzględnienia czynników atmosferycznych, które mogą wpływać na pomiary.

Pytanie 9

Błąd w osi celowej niwelatora o charakterze niepoziomym zalicza się do kategorii błędów

A. pozornych
B. systematycznych
C. przypadkowych
D. średnich
Odpowiedzi średnie, pozorne oraz przypadkowe są typami błędów, które różnią się od błędów systematycznych w swoim charakterze i źródłach. Błąd średni, na przykład, odnosi się do różnic w pomiarach, które mogą być spowodowane nieprzewidywalnymi okolicznościami, takimi jak zmiany warunków atmosferycznych czy wpływ zakłóceń zewnętrznych. W praktyce oznacza to, że takie błędy mogą się kumulować lub rozpraszać w czasie, co czyni je trudniejszymi do zidentyfikowania i skorygowania. Z kolei błąd pozorny to błędny wynik pomiaru, który powstaje na skutek nieprawidłowej interpretacji danych, co może prowadzić do mylnych wniosków. W kontekście pomiarów geodezyjnych, błędy pozorne mogą być wynikiem błędów ludzkich, takich jak niewłaściwe odczytywanie wyników lub błędne założenia dotyczące użytych parametrów. Natomiast błąd przypadkowy, który ma losowy charakter, jest zwykle spowodowany nieprzewidywalnymi czynnikami, co sprawia, że nie można go łatwo skorygować ani przewidzieć. W geodezji, każdy z tych błędów wymaga innego podejścia do analizy i korekcji, co podkreśla znaczenie zrozumienia ich różnorodności oraz systematycznego podejścia do pomiarów, aby osiągnąć jak najwyższą dokładność i wiarygodność wyników.

Pytanie 10

Jakie informacje nie są umieszczane na szkicu polowym podczas pomiaru szczegółów terenowych z zastosowaniem metody ortogonalnej?

A. Numery obiektów budowlanych
B. Wysokości punktów terenu
C. Domiary prostokątne
D. Szczegóły terenowe sytuacyjne
Poprawną odpowiedzią jest stwierdzenie, że na szkicu polowym z pomiaru szczegółów terenowych metodą ortogonalną nie zamieszcza się wysokości punktów terenu. Szkic polowy służy do przedstawienia szczegółów sytuacyjnych, takich jak numery budynków czy tereny użytkowe, które są kluczowe dla analizy zagospodarowania przestrzennego. W przypadku pomiaru ortogonalnego skupiamy się na odwzorowaniu kształtów i układów w pionie i poziomie, co ułatwia późniejsze prace geodezyjne i kartograficzne. Wysokości punktów terenu, które są istotne w kontekście modelowania terenu, są zazwyczaj rejestrowane osobno, w ramach pomiarów wysokościowych, a następnie łączone z danymi sytuacyjnymi w procesie tworzenia map. Takie podejście jest zgodne z normami geodezyjnymi, które promują precyzję i efektywność w zbieraniu danych.

Pytanie 11

Które z wymienionych obiektów przestrzennych są zaliczane do drugiej kategorii szczegółów terenowych?

A. Tory kolejowe
B. Linie brzegowe
C. Boiska sportowe
D. Ściany oporowe
Boiska sportowe są obiektami przestrzennymi, które należą do drugiej grupy szczegółów terenowych z uwagi na ich funkcjonalność oraz rolę w organizacji przestrzeni. W przeciwieństwie do innych wymienionych obiektów, boiska są projektowane z myślą o aktywnościach rekreacyjnych i sportowych, co czyni je istotnym elementem infrastruktury społecznej. Przykładem zastosowania wiedzy na temat boisk sportowych jest proces planowania terenów miejskich, gdzie uwzględnia się potrzeby społeczności lokalnych, oferując przestrzeń do uprawiania sportu i rekreacji. Dobrą praktyką w projektowaniu boisk jest zapewnienie ich dostępności dla osób z różnymi potrzebami, co jest zgodne z aktualnymi standardami budownictwa oraz przepisami dotyczącymi dostępności. Warto również zwrócić uwagę na zastosowanie nowoczesnych technologii w budowie boisk, takich jak sztuczna nawierzchnia, która zwiększa komfort użytkowania oraz wydłuża okres eksploatacji obiektu.

Pytanie 12

W jaki sposób oraz gdzie są przedstawiane rezultaty wywiadu terenowego?

A. Na szkicach polowych, ołówkiem
B. Na szkicach polowych, kolorem czarnym i czerwonym
C. Na kopii mapy ewidencyjnej lub zasadniczej, kolorem czerwonym
D. Na kopii mapy zasadniczej, kolorem zielonym
Uwidacznianie wyników wywiadu terenowego z wykorzystaniem kolorów i różnych typów map jest kluczowe dla właściwej interpretacji danych geodezyjnych. Kolory używane w dokumentacji mają swoje konkretne znaczenie, a ich niewłaściwy dobór może prowadzić do dezorientacji. W przypadku błędnych odpowiedzi, jak użycie koloru zielonego albo czarnego i czerwonego na szkicach polowych, pojawia się ryzyko, że wyniki badań nie zostaną odpowiednio zinterpretowane. Przykładowo, kolor zielony często jest stosowany w mapach do oznaczania terenów zielonych, co wprowadza dodatkowy zamęt w kontekście wyników wywiadu. Użycie czarnego i czerwonego na szkicach polowych również jest mylące, ponieważ szkice polowe zazwyczaj służą do roboczych notatek, a nie do końcowej dokumentacji wyników. Takie podejście może prowadzić do błędów w komunikacji i interpretacji danych, co jest szczególnie niebezpieczne w kontekście projektów budowlanych czy planowania przestrzennego. Typowym błędem myślowym jest mylenie różnych typów dokumentów i ich zastosowań; na przykład, szkice polowe są narzędziem pomocniczym, a nie dokumentem finalnym. Zrozumienie, że kolor czerwony na mapie ewidencyjnej jest standardem dla wyników wywiadów, jest kluczowe, aby uniknąć nieporozumień i błędów w dalszym etapie prac geodezyjnych.

Pytanie 13

Który wzór powinien być użyty do obliczenia łącznej sumy kątów wewnętrznych w zamkniętym wielokącie?

A. [β] = (n+2)∙200g
B. [β] = Ak − Ap + n∙200g
C. [β] = Ap − Ak + n∙200g
D. [β] = (n−2)∙200g
W odpowiedziach, które nie są prawidłowe, można dostrzec kilka kluczowych błędów koncepcyjnych. Przede wszystkim, niektóre wzory próbują modyfikować podstawowy związek z geometrią poligonów. Na przykład wzór [β] = Ak − Ap + n∙200g oraz [β] = Ap − Ak + n∙200g wprowadzają dodatkowe zmienne Ak i Ap, które nie mają zastosowania w kontekście obliczania sumy kątów wewnętrznych. Kąt wewnętrzny poligonu zależy jedynie od liczby jego boków, a nie od jakichkolwiek wartości zewnętrznych lub zmiennych, które mogłyby wprowadzać niepotrzebny chaos w obliczeniach. Ponadto, wzór [β] = (n+2)∙200g jest również błędny, ponieważ zakłada, że suma kątów rośnie w sposób nielinearny w stosunku do liczby boków, co jest sprzeczne z zasadami geometrii. Często popełnianym błędem jest nieprawidłowe rozumienie roli przelicznika 200g, który ma na celu dostosowanie jednostek, a nie modyfikację samego wzoru. Ważne jest, aby zrozumieć, że każdy poligon zamknięty, niezależnie od kształtu, podlega tym samym zasadom. Dlatego kluczowe jest stosowanie uznanych wzorów i zrozumienie ich podstawowych założeń, aby unikać błędów w obliczeniach i w praktycznych zastosowaniach inżynierskich.

Pytanie 14

Wyznacz przyrost Ayi_2 w osi Y, jeśli zmierzona odległość między punktami 1 i 2 d1-2 = 100,00 m, sinAz1-2 = 0,760400, cosAz1-2 = 0,649455.

A. 6,49 m
B. 7,60 m
C. 76,04 m
D. 64,94 m
Aby obliczyć przyrost Ayi_2 współrzędnych Y, należy skorzystać z długości pomierzonej między punktami 1 i 2 oraz wartości sinus i cosinus kąta azymutalnego. Obliczenia sprowadzają się do zastosowania wzoru: Ayi_2 = d_1-2 * sin(Az_1-2). Wstawiając wartości: Ayi_2 = 100,00 m * 0,760400 = 76,04 m. Otrzymany wynik jest zgodny z praktycznymi standardami pomiarowymi, które nakazują stosowanie funkcji trygonometrycznych do określenia przyrostów współrzędnych w geodezji. Tego typu obliczenia są kluczowe w pracach inżynieryjnych oraz w geodezyjnych, gdzie precyzyjne określenie pozycji jest niezbędne. Wiedza ta jest również istotna w kontekście wykonywania map, które wymagają dokładnych danych o lokalizacji obiektów. Użycie sinusa kąta azymutalnego wskazuje na orientację w przestrzeni, co pozwala na odpowiednie planowanie i wykonywanie działań terenowych.

Pytanie 15

Zasięg terenowy sieci osnowy geodezyjnej w danym powiecie był niesymetryczny. W związku z tym geodeta otrzymał zadanie utworzenia nowej sieci szczegółowej osnowy geodezyjnej. Kto powinien zatwierdzić projekt tej osnowy?

A. Geodeta Powiatowy
B. Marszałek Województwa
C. Geodeta uprawniony
D. Starosta
Zatwierdzenie projektu sieci szczegółowej osnowy geodezyjnej przez starostę jest zgodne z przepisami prawa geodezyjnego i kartograficznego. Starosta, jako przedstawiciel lokalnych władz, ma odpowiedzialność za zagospodarowanie przestrzenne oraz planowanie w swoim powiecie. Proces zatwierdzania projektu osnowy geodezyjnej jest kluczowy, ponieważ wpływa na jakość danych geodezyjnych, które będą wykorzystywane w różnych zastosowaniach, takich jak planowanie inwestycji czy ochrona środowiska. W praktyce, po przygotowaniu projektu przez geodetę, dokumentacja zostaje przedstawiona staroście, który ocenia jego zgodność z obowiązującymi normami oraz celami rozwoju powiatu. Na przykład, w przypadku przewidywanej budowy infrastruktury, starosta może zlecić dodatkowe analizy dotyczące wpływu nowej osnowy na istniejące zasoby geodezyjne. Dobrą praktyką jest również współpraca starosty z geodetami uprawnionymi, aby zapewnić, że projekt jest zgodny z lokalnymi regulacjami i standardami branżowymi.

Pytanie 16

Precyzja graficzna mapy odpowiada długości terenowej, która wynosi 0,1 mm na mapie. Z jaką precyzją został zaznaczony punkt na mapie w skali 1:5000?

A. ± 0,50 m
B. ± 5,00 m
C. ± 50,00 m
D. ± 0,05 m
Wybór odpowiedzi ± 50,00 m, ± 0,05 m lub ± 5,00 m pokazuje, że mamy do czynienia z pewnymi nieporozumieniami, jeśli chodzi o interpretację skali mapy i przeliczanie jednostek. Przy skali 1:5000 ważne jest, żeby zrozumieć, że jednostka na mapie odpowiada pięciokrotnemu powiększeniu w rzeczywistości. Odpowiedź ± 50,00 m jest zdecydowanie za duża, co sugeruje, że mogłeś się pomylić w zrozumieniu skali. Podobnie, ± 0,05 m pomija fakt, że 0,1 mm na mapie to tak naprawdę 0,5 m w terenie, więc ta odpowiedź też nie jest trafiona. Odpowiedź ± 5,00 m pokazuje, że myślisz o większym błędzie pomiarowym, ale nie uwzględnia skali. Te błędy mogą naprawdę wpłynąć na ważne rzeczy, jak planowanie przestrzenne, gdzie precyzyjna lokalizacja punktów ma kluczowe znaczenie. Więc warto zwracać uwagę na detale dotyczące skali i przeliczania jednostek, żeby uniknąć pomyłek i mieć pewność, że wyniki będą rzetelne.

Pytanie 17

Jakie prace geodezyjno-kartograficzne nie wymagają zgłoszenia ani przekazania dokumentacji do Zasobu Geodezyjnego i Kartograficznego?

A. Dotyczące aktualizacji mapy w celach projektowych
B. Powiązane z inwentaryzacją powykonawczą budynków
C. Realizowane w celu określenia objętości mas ziemnych
D. Odniesione do pomiarów sytuacyjno-wysokościowych
Odpowiedź o pracach geodezyjno-kartograficznych, które mają na celu ustalenie objętości mas ziemnych, jest absolutnie trafna. Takie działania zazwyczaj nie wymagają żadnych formalności, jak zgłoszenia czy przekazywania dokumentacji do Zasobu Geodezyjnego i Kartograficznego. W praktyce te prace często są częścią różnych procesów budowlanych, na przykład przy ocenie, ile ziemi musimy wykopać albo nasypać. Myślę, że ustalanie objętości tych mas to naprawdę istotne zadanie, które można robić na podstawie prostych pomiarów w terenie i obliczeń matematycznych. Przy większych projektach budowlanych korzysta się też z nowoczesnych technologii, jak skanowanie 3D czy fotogrametria, co znacznie poprawia dokładność wyników. Dodatkowo, wszystkie te prace są zgodne z aktualnymi normami branżowymi, co zapewnia ich jakość i zgodność z przepisami. Co więcej, ustalanie objętości mas ziemnych jest ważne nie tylko w budownictwie, ale też w gospodarce przestrzennej oraz w ochronie środowiska, gdzie zarządzanie odpadami ziemnymi jest bardzo istotne.

Pytanie 18

Jeżeli rzeczywista długość odcinka wynosi 86,00 m, a jego długość na mapie to 43,00 mm, to w jakiej skali została stworzona mapa, na której ten odcinek został zobrazowany?

A. 1:500
B. 1:250
C. 1:2000
D. 1:1000
Wybór innych odpowiedzi, takich jak 1:500, 1:250 i 1:1000, wynika z błędnego zrozumienia podstawowych zasad dotyczących skalowania w kontekście map. Skala 1:500 sugerowałaby, że 1 mm na mapie odpowiada 500 mm (0,5 m) w terenie, co jest znacznie mniejszym odwzorowaniem rzeczywistości i nie odpowiada podanym wymiarom. Analogicznie, skala 1:250 i 1:1000 implikuje jeszcze mniejsze lub większe wartości w stosunku do faktycznych pomiarów, prowadząc do nieprawidłowych konkluzji. Typowym błędem myślowym jest pomijanie przeliczenia jednostek oraz nieprawidłowe porównanie długości, co skutkuje mylnymi wnioskami. Kluczowe jest zrozumienie, że skala mapy określa dokładność odwzorowania i wpływa na interpretację danych przestrzennych. Dlatego właściwe przeliczenie długości oraz umiejętność ich analizy w kontekście skali są istotne w geodezji i kartografii. W praktyce pomyłki te mogą prowadzić do poważnych konsekwencji w procesach planowania przestrzennego, co podkreśla znaczenie dokładności w pomiarach oraz interpretacji danych.

Pytanie 19

Do trwałych metod stabilizacji punktów osnowy poziomej nie zaliczają się

A. słupy betonowe
B. trzpienie metalowe
C. paliki drewniane
D. rurki stalowe
Wybór metalowych trzpieni, stalowych rurek czy betonowych słupów jako metod stabilizacji punktów osnowy poziomej, mimo że są to materiały bardziej trwałe niż paliki drewniane, może prowadzić do błędnych wniosków na temat najlepszych praktyk w geodezji. Metalowe trzpienie i stalowe rurki, choć charakteryzują się dużą odpornością na warunki atmosferyczne, mogą być niewłaściwie stosowane w miejscach o dużej wilgotności, gdzie korozja stanowi poważny problem. W takich przypadkach zastosowanie powłok ochronnych lub wyboru stali nierdzewnej staje się koniecznością, by zapobiec degradacji. Ponadto, betonowe słupy, chociaż trwałe, mogą wiązać się z wyższymi kosztami oraz wymagają odpowiedniego planowania i wykonania, aby zapewnić stabilność w dłuższym okresie. W geodezji kluczowe jest nie tylko wybranie odpowiednich materiałów, ale również ich właściwe umiejscowienie oraz techniczne aspekty montażu, które zapewniają, że punkty osnowy będą odpowiednio precyzyjne przez wiele lat. Ignorowanie tych aspektów może prowadzić do błędnych pomiarów, co jest przeciwieństwem zamierzonego celu geodezyjnego. Wybór niewłaściwej metody stabilizacji może także zwiększać ryzyko błędów w dokumentacji, co w przypadku projektów budowlanych może mieć poważne konsekwencje.

Pytanie 20

Jakiego zestawu sprzętu należy użyć do przeprowadzenia pomiaru różnic wysokości metodą niwelacji geometrycznej?

A. Niwelator techniczny, statyw, łata niwelacyjna
B. Niwelator precyzyjny, statyw, tyczka z lustrem
C. Teodolit optyczny, statyw, łata niwelacyjna
D. Tachimetr elektroniczny, statyw, tyczka z lustrem
Niwelator techniczny to kluczowe narzędzie do wykonywania dokładnych pomiarów różnic wysokości, które są niezbędne w wielu dziedzinach, takich jak budownictwo, inżynieria lądowa i geodezja. Użycie niwelatora w połączeniu z odpowiednim statywem i łata niwelacyjną zapewnia wysoką precyzję i powtarzalność pomiarów. Niwelator techniczny działa na zasadzie emisji promieni świetlnych, które umożliwiają precyzyjne określenie różnicy wysokości pomiędzy punktami. W praktyce, operator ustawia niwelator na statywie w punkcie odniesienia, a następnie korzysta z łaty niwelacyjnej umieszczonej na punkcie, którego wysokość chcemy zmierzyć. Różnice wysokości odczytuje się z podziałki na łacie, co pozwala na uzyskanie dokładnych wartości. Stosowanie takich narzędzi nie tylko spełnia normy branżowe, ale również zapewnia zgodność z wymaganiami projektów budowlanych, gdzie precyzja jest kluczowa dla sukcesu realizacji. Warto również zaznaczyć, że metody niwelacji geometrycznej są powszechnie stosowane w praktyce do różnorodnych zastosowań, w tym do projektowania i budowy infrastruktury, co czyni je istotnym elementem edukacji technicznej.

Pytanie 21

Wyniki przeprowadzonego wywiadu terenowego powinny być oznaczone na kopii mapy zasadniczej przy użyciu koloru

A. grafitowym
B. czarnym
C. niebieskim
D. czerwonym
Zastosowanie czarnego, niebieskiego czy grafitowego koloru do oznaczania wyników wywiadu terenowego na mapie zasadniczej może prowadzić do szeregu nieporozumień oraz utrudnień w analizie danych. Często w praktyce geodezyjnej czarny kolor jest zarezerwowany do przedstawiania podstawowych danych, takich jak kontury terenu czy siatka geodezyjna. Oznaczanie wyników wywiadu tym kolorem może sprawić, że będą one mylone z innymi, kluczowymi informacjami, co z kolei prowadzi do błędnej interpretacji danych. Użycie niebieskiego koloru również może być problematyczne, ponieważ w kartografii jest on często stosowany do przedstawiania elementów wodnych, takich jak rzeki czy jeziora, co może wprowadzać w błąd. Z kolei grafitowy, jako odcień szarości, nie wyróżnia się na mapie, co czyni go nieefektywnym narzędziem do oznaczania szczególnych wyników wywiadu. Z tego powodu, niepoprawne podejście do wyboru kolorów może prowadzić do chaotycznej prezentacji danych, co jest sprzeczne z dobrymi praktykami w geodezji i kartografii. Kluczowe jest stosowanie jednoznacznych i rozpoznawalnych kolorów, które nie kolidują z innymi informacjami na mapie, aby zapewnić klarowność i poprawność interpretacji wyników.

Pytanie 22

Długość odcinka zmierzonego na mapie w skali 1:500 to 11,1 cm. Jaka jest rzeczywista długość tego odcinka w terenie?

A. 55,5 m
B. 22,2 m
C. 2,22 m
D. 5,55 m
Skala 1:500 oznacza, że 1 cm na mapie odpowiada 500 cm w rzeczywistości. Jak chcesz obliczyć rzeczywistą długość, to wystarczy, że pomnożysz długość odcinka na mapie przez wartość skali. W tym przypadku: 11,1 cm x 500 to 5550 cm. A jak to przeliczymy na metry, to wychodzi 55,5 m. To typowe zadanie w geodezji. Widać, jak ważne jest zrozumienie skali mapy, szczególnie w pomiarach terenowych. Przykładowo, jak inżynierowie planują budowę, to muszą dobrze przeliczać długości, żeby wszystko pasowało do rzeczywistości. Moim zdaniem, zrozumienie skali jest kluczowe w każdej pracy z pomiarami przestrzennymi, w kartografii czy nawigacji.

Pytanie 23

Cyfra 2 w symbolu 2/5, użytym podczas oznaczania w terenie punktów hektometrowych stworzonych w trakcie wytyczania linii profilu podłużnego, wskazuje na

A. numer hektometra w konkretnym kilometrze
B. całkowitą liczbę kilometrów od początku trasy
C. całkowitą liczbę metrów w jednym odcinku trasy
D. liczbę hektometrów w danym kilometrze trasy
Zrozumienie symboliki używanej w dokumentacji geodezyjnej, takiej jak 2/5, jest kluczowe dla prawidłowej interpretacji danych dotyczących tras. Odpowiedzi sugerujące, że cyfra 2 oznacza numer hektometra w danym kilometrze, pełną liczbę metrów w jednym odcinku trasy, czy liczbę hektometrów w danym kilometrze, prowadzą do fundamentalnych błędów interpretacyjnych. Zapis 2/5 jasno wskazuje, że cyfra w liczniku odnosi się do pełnych kilometrów, a nie hektometrów czy metrów. Pojęcie hektometra odnosi się do jednostki długości, która jest równa 100 metrom, co stanowi znacznie bardziej szczegółowy podział trasy, jednak nie jest ono reprezentowane w tym konkretnym zapisie. Typowym błędem jest mylenie jednostek i nieodpowiednia interpretacja zapisów dotyczących odległości, co może prowadzić do poważnych nieporozumień na etapie planowania i realizacji projektów. Zgodnie z najlepszymi praktykami w geodezji, kluczowe jest rozróżnienie między poszczególnymi jednostkami miary oraz zrozumienie ich zastosowania w kontekście pomiarów terenowych. Ostatecznie, poprawne zrozumienie tych symboli jest niezbędne dla efektywnego zarządzania danymi geodezyjnymi i zapewnienia dokładności w analizach przestrzennych.

Pytanie 24

Pomiar odległości wynoszącej 100,00 m zawiera błąd średni ±5 cm. Jaka jest wartość błędu względnego tej odległości?

A. 1/5000
B. 1/500
C. 1/1000
D. 1/2000
Błąd pomiarowy jest nieodłącznym elementem każdej procedury pomiarowej, a jego właściwe zrozumienie jest kluczowe dla uzyskiwania wiarygodnych wyników. W analizie odległości 100,00 m z błędem średnim ±5 cm, nieprawidłowe odpowiedzi często wynikają z niepoprawnego zastosowania wzorów lub błędnego zrozumienia, czym jest błąd względny. Odpowiedzi, które wskazują na błędy względne takie jak 1/5000, 1/1000 czy 1/500, mogą powstawać przez mylenie błędu względnego z błędem absolutnym, co prowadzi do niepoprawnych obliczeń. Zrozumienie różnicy między błędem absolutnym a względnym jest kluczowe, jako że błąd absolutny odnosi się do konkretnej wartości, natomiast błąd względny jest proporcjonalny do tej wartości. Ponadto, w praktyce inżynierskiej i naukowej, niewłaściwe obliczenia mogą prowadzić do nieprecyzyjnych analiz danych czy wadliwych projektów. Dlatego też, stosowanie standardów metrologicznych oraz odpowiednich procedur obliczeniowych jest niezbędne, aby uniknąć typowych pułapek myślowych, które mogą zafałszować wyniki. Wiedza o tym, jak właściwie wyliczać błąd względny, a także jego kontekst w praktyce pomiarowej, jest niezbędna dla prawidłowego interpretowania wyników i ich analizy.

Pytanie 25

Jakiego typu przyrządów geodezyjnych należy użyć do przeprowadzenia pomiarów w metodzie tachimetrii klasycznej?

A. Teodolitu oraz tyczki
B. Niwelatora oraz łaty niwelacyjnej
C. Niwelatora oraz tyczki
D. Teodolitu oraz łaty niwelacyjnej
Wybór niepoprawnych zestawów przyrządów geodezyjnych często wynika z niepełnego zrozumienia metod pomiarowych. Na przykład, niwelator i tyczka są używane do pomiarów wysokości, ale nie pozwalają na precyzyjne pomiary kątów, co jest kluczowe w tachimetrii. Niwelator służy głównie do poziomowania i ustalania różnic wysokości, lecz nie może być użyty do określenia kątów poziomych. Dlatego jego użycie w kontekście tachimetrii jest niewłaściwe, gdyż nie dostarcza wszystkich niezbędnych danych do pełnej analizy geodezyjnej. Podobnie, teodolit i łata niwelacyjna, choć skutecznie współdziałają w pomiarach kątów i różnic wysokości, nie są skonfigurowane do pracy w ramach tachimetrii, która wymaga innego podejścia. Użycie teodolitu i tyczki również prowadzi do nieprawidłowych wyników, ponieważ tyczki służą do zaznaczania punktów w terenie, ale nie mają funkcji pomiarowych, które są kluczowe w tej metodzie. Przy pomiarach geodezyjnych niezwykle istotne jest zrozumienie, że każdy przyrząd geodezyjny ma swoje specyficzne zastosowanie, a ich niewłaściwe łączenie prowadzi do błędów pomiarowych oraz nieefektywności w realizacji projektów budowlanych. Zrozumienie tych różnic jest kluczowe dla uzyskania dokładnych i wiarygodnych wyników w geodezji.

Pytanie 26

Punkty pomiarowe osnowy sytuacyjnej powinny być stabilizowane w sposób gwarantujący ich jednoznaczne oznakowanie w terenie, podczas

A. pracy w trakcie już rozpoczętego lub planowanego procesu inwestycyjnego
B. inwentaryzacji po zakończeniu budowy obiektu
C. inwentaryzacji po zakończeniu budowy sieci uzbrojenia terenu
D. aktualizacji danych w bazie obiektów topograficznych
Prac w rozpoczętym lub przewidywanym procesie inwestycyjnym są kluczowe dla stabilizacji punktów pomiarowej osnowy sytuacyjnej, gdyż w tym kontekście zapewnia się nie tylko ich dokładność, ale i trwałość w terenie. Stabilizacja punktów pomiarowych ma na celu umożliwienie ich jednoznacznego oznaczenia i pomiaru w obszarach, gdzie prowadzone są działania budowlane lub infrastrukturalne. W procesie inwestycyjnym należy zastosować odpowiednie metody geodezyjne oraz techniki weryfikacji, takie jak pomiary GPS, które umożliwiają precyzyjne ustalenie lokalizacji punktów osnowy. Zgodnie z normami branżowymi, takie jak PN-EN ISO 17123-1, stabilizacja punktów powinna być przeprowadzana zgodnie z określonymi procedurami zapewniającymi ich ochronę przed zniszczeniem lub przemieszczeniem. Przykładami zastosowania mogą być projekty drogowe, budowy budynków, gdzie punkty osnowy stanowią fundament dla dalszych pomiarów geodezyjnych i inwentaryzacyjnych, co podkreśla ich znaczenie dla całego procesu inwestycyjnego.

Pytanie 27

Konstrukcja przestrzennego wcięcia w przód opiera się na połączeniu kątowego wcięcia w przód z techniką

A. niwelacji geometrycznej
B. tachimetryczną
C. niwelacji trygonometrycznej
D. biegunową
Wielu ludzi może mieć problem z różnicowaniem metod niwelacji, co czasami prowadzi do złych wyborów. Metoda biegunowa, która opiera się na pomiarze kątów i odległości z jednego punktu, nie bierze pod uwagę kilku ważnych spraw przy przestrzennym wcięciu w przód. Moim zdaniem, trochę mylące jest też myślenie, że metoda tachimetryczna, mimo swojego zaawansowania, dotyczy tylko pomiaru kątów i odległości, a to jakoś nie wystarcza do dokładnych obliczeń wysokości. A jeśli chodzi o niwelację geometryczną, to chociaż działa w pomiarze różnic wysokości, to nie wykorzystuje kątów w taki sposób, żeby skutecznie zastosować wcięcie w przód. Często też mylą się pojęcia związane z tymi metodami, co prowadzi do pomyłek i źle dobranych technik w pracy geodezyjnej. Ważne jest, żeby zrozumieć, że każda z tych metod ma swoje plusy i minusy, a niwelacja trygonometryczna to tylko jedno z wielu narzędzi, które umożliwiają precyzyjne pomiary w terenie. Dobrze zrozumiane podstawy tych metod i ich odpowiednie zastosowanie są kluczowe dla każdego geodety.

Pytanie 28

Azymut węzłowy został obliczony na podstawie 4 ciągów poligonowych, w których zarejestrowano:
− ciąg nr I - 5 kątów,
− ciąg nr II - 4 kąty,
− ciąg nr III - 3 kąty,
− ciąg nr IV - 2 kąty.
Który z ciągów ma największą wagę?

A. Ciąg IV
B. Ciąg II
C. Ciąg III
D. Ciąg I
Ciąg II oraz Ciąg III mogą wydawać się na pierwszy rzut oka odpowiednimi odpowiedziami, lecz ich błędne rozumienie wagi obliczeń geodezyjnych prowadzi do nieprawidłowych wniosków. Waga pomiarów kątowych w poligonach nie jest bezpośrednio związana z ilością pomiarów, ale z ich jakością i powiązaniem z błędami pomiarowymi. Zrozumienie tego aspektu jest kluczowe w geodezji, aby odpowiednio ocenić niezawodność wyników. Ciąg I, który zawiera 5 kątów, nie ma większej wagi, tylko dlatego, że ma więcej pomiarów, ponieważ każdy dodatkowy kąt wprowadza potencjalne błędy i niepewność. W praktyce, kąt w ciągu, który ma mniejszą ilość pomiarów, będzie bardziej wiarygodny. Warto również zauważyć, że w geodezyjnych metodach obliczeniowych, takich jak triangulacja czy poligonowanie, większa liczba pomiarów nie zawsze przekłada się na lepsze wyniki. Często występuje zależność pomiędzy ilością pomiarów a ich jakością. Dlatego dla właściwego zrozumienia tematu, kluczowe jest uwzględnienie zasadności pomiarów i ich wpływu na końcowe rezultaty. Zbyt duża liczba pomiarów wprowadza ryzyko kumulacji błędów i niepewności, co jest sprzeczne z dążeniem do uzyskania jak najwyższej precyzji.

Pytanie 29

Jaką osnowę powinno się założyć do geodezyjnej obsługi dużego zakładu przemysłowego, którego realizacja przebiegać będzie w etapach?

A. Realizacyjną typu A
B. Realizacyjną jednorzędową
C. Realizacyjną dwurzędową
D. Realizacyjną wydłużoną
Osnowa realizacyjna dwurzędowa to świetny wybór, jeśli chodzi o geodezję w dużych zakładach. Szczególnie, gdy prace są podzielone na etapy. Taka osnowa jest bardzo precyzyjna i elastyczna, a to naprawdę ważne przy inwestycjach, które rozwijają się w tempie błyskawicy. W praktyce to oznacza, że geodeci mogą szybko dostosować pomiary do zmieniających się warunków na budowie, co ułatwia kontrolowanie postępu w różnych częściach projektu. Dzięki osnowie dwurzędowej, możliwe jest równoczesne robienie kilku pomiarów, co znacząco przyspiesza realizację inwestycji. Na przykład w trakcie budowy fabryki można jednocześnie zajmować się pomiarami pod fundamenty, instalacjami technicznymi i rozmieszczaniem sieci infrastrukturalnych. To zdecydowanie zwiększa efektywność całego przedsięwzięcia. I co ważne, zgodne z normami, takimi jak PN-EN ISO 17123, użycie takiej osnowy w dużych projektach to klucz do zachowania wysokich standardów dokładności i rzetelności pomiarów.

Pytanie 30

Miary określające lokalizację mierzonej pikiety nazywają się

A. domiarami prostokątnymi
B. przecięciami
C. kątami wierzchołkowymi
D. domiarami biegunowymi
Wybierając inne odpowiedzi, można napotkać na pewne nieporozumienia dotyczące terminologii geodezyjnej. Kąty wierzchołkowe są terminem używanym w geometrii, ale w kontekście pomiarów geodezyjnych nie odnoszą się one bezpośrednio do określania położenia pikiet. W rzeczywistości, kąt wierzchołkowy to kąt utworzony przez dwa boki figury geometrycznej, a nie narzędzie do pomiaru lokalizacji punktów w przestrzeni. Przecięcia odnoszą się do miejsc, w których dwie linie się krzyżują, co w kontekście geodezji nie jest adekwatnym opisem miar położenia. Może to prowadzić do błędnych założeń, ponieważ nie uwzględnia istoty pomiarów opartych na kierunkach i odległościach. Domiary prostokątne, z kolei, polegają na określaniu punktów na podstawie układów prostokątnych, co również nie jest zgodne z podstawowymi zasadami pomiarów biegunowych. Użycie tych terminów zamiast domiarów biegunowych może prowadzić do zamieszania w analizach geodezyjnych oraz ograniczać trafność pomiarów. Dlatego ważne jest, aby podczas nauki geodezji skoncentrować się na poprawnym użyciu terminologii, aby uniknąć błędów w praktyce pomiarowej.

Pytanie 31

W niwelacji trygonometrycznej przewyższeniem określamy różnicę wysokości między

A. punktem celowania a stanowiskiem instrumentu
B. punktem celowania a horyzontem instrumentu
C. reperami a punktem celowania
D. sąsiednimi reperami
W przypadku niwelacji trygonometrycznej nie każdy pomiar różnicy wysokości pomiędzy różnymi punktami jest traktowany jako przewyższenie. Odpowiedzi, które wskazują na różnice pomiędzy reperami a punktem celowania, pomiędzy punktem celowania a stanowiskiem instrumentu czy sąsiednimi reperami, wprowadzają w błąd, ponieważ nie oddają istoty tego, co oznacza przewyższenie. Repery są punktami o znanej wysokości, które służą jako odniesienie w pomiarach. Chociaż ważne jest określenie różnicy wysokości pomiędzy nimi, to w kontekście przewyższenia istotny jest pomiar w odniesieniu do poziomu horyzontu instrumentu. Często popełnianym błędem jest mylenie różnych punktów odniesienia, co prowadzi do nieprawidłowej interpretacji wyników pomiarów. W geodezji kluczowe jest ścisłe przestrzeganie definicji oraz terminologii, aby unikać nieporozumień, które mogą skutkować poważnymi konsekwencjami w realizowanych projektach. Zrozumienie różnicy między różnicą wysokości a przewyższeniem jest fundamentalne dla każdego geodety oraz inżyniera, który zajmuje się pomiarami terenu oraz projektowaniem, dlatego tak istotne jest przyswojenie właściwych koncepcji i pojęć. Dobre praktyki w branży zalecają ciągłe szkolenie i aktualizację wiedzy w tym zakresie.

Pytanie 32

W jakim dokumencie powinny zostać zapisane wyniki pomiarów liniowych, które nie zostały uwzględnione w dzienniku pomiarowym?

A. Szkicu polowym
B. Dokumencie topograficznym
C. Raporcie technicznym
D. Mapie zasadniczej
Zarządzanie dokumentacją pomiarową w geodezji jest kluczowym aspektem, jednak wybór niewłaściwego dokumentu do rejestracji wyników pomiarów liniowych może prowadzić do nieporozumień i problemów w dalszych pracach. Sprawozdanie techniczne jest bardziej kompleksowym dokumentem, który zazwyczaj obejmuje podsumowanie prac geodezyjnych, wyniki badań, analizy oraz wnioski. Umieszczanie wyników pomiarów liniowych, które nie zostały uwzględnione w dzienniku pomiarowym w sprawozdaniu technicznym, może skutkować ich zniekształceniem, gdyż sprawozdanie to powinno być oparte na pełnych i rzetelnych danych, a nie na przypadkowych zapisach. Mapa zasadnicza, z kolei, jest oficjalnym dokumentem geodezyjnym, który przedstawia szczegółowe informacje o zagospodarowaniu terenu, granicach działek oraz infrastrukturze, a dodawanie nieudokumentowanych wyników pomiarów mogłoby zafałszować jej dane i wprowadzić w błąd użytkowników. Opis topograficzny, choć również istotny, dotyczy bardziej ogólnego opisu ukształtowania terenu, a nie szczegółowych wyników pomiarów. W związku z tym, kluczowe jest zrozumienie, że każdy z tych dokumentów spełnia inną rolę i nie każdy nadaje się do rejestrowania nieudokumentowanych pomiarów liniowych. Odpowiednie podejście do dokumentacji pomiarowej zapewnia integralność i użyteczność danych w przyszłych analizach i projektach.

Pytanie 33

Błąd, który nie wpływa na kartometryczną precyzję mapy, to

A. wysokościowych pomiarów terenowych
B. materiału wyjściowego, na podstawie którego powstała mapa
C. przeniesienia punktów z materiału wyjściowego na oryginał mapy
D. deformacji papieru
Wybór odpowiedzi dotyczącej wysokościowych pomiarów terenowych jako elementu, który nie wpływa na kartometryczną dokładność mapy, jest trafny. Kartometryczna dokładność odnosi się do precyzji i dokładności odwzorowania rzeczywistych położenia obiektów na mapie, co jest determinowane przez wiele czynników, ale nie przez błędy pomiarów wysokościowych. Wysokościowe pomiary terenowe są istotne w kontekście modelowania powierzchni terenu i kształtowania trójwymiarowych przedstawień, lecz nie wpływają na dwuwymiarowe odwzorowanie przestrzenne, które jest kluczowe w kontekście kartometrycznej dokładności. Na przykład, w sytuacjach, gdy mapa jest używana do nawigacji na poziomie gruntu, to błędy w pomiarach wysokości nie mają wpływu na lokalizację punktów na mapie. Również w praktyce kartograficznej, przy zastosowaniu standardów takich jak ISO 19111 dotyczących geograficznych informacji przestrzennych, kluczowe są pomiary poziome, a nie wysokościowe. Zatem, w kontekście kartometrycznej dokładności, błędy w wysokościowych pomiarach terenowych są drugorzędne.

Pytanie 34

Jakiej metody nie należy używać do oceny pionowości komina przemysłowego?

A. fotogrametrycznej
B. stałej prostej
C. trygonometrycznej
D. wcięć kątowych
Metody wcięć kątowych, trygonometrycznej oraz fotogrametrycznej są powszechnie stosowane w analizie pionowości kominów przemysłowych, jednak każda z nich ma swoje ograniczenia, które mogą prowadzić do błędnych wniosków, jeśli nie są zastosowane w odpowiedni sposób. Metoda wcięć kątowych polega na pomiarze kątów między różnymi punktami na obwodzie komina, co może być problematyczne, gdy komin nie jest idealnie cylindryczny lub gdy występują zakłócenia wizualne. Ponadto, ta technika często wymaga skomplikowanych obliczeń, które mogą być podatne na błędy ludzkie. Z kolei metoda trygonometryczna, opierająca się na pomiarach kątów i odległości, może również być obarczona błędami, gdy nie uwzględnia się wpływu warunków atmosferycznych na pomiary. Zmienne takie jak refrakcja atmosferyczna mogą znacznie wpłynąć na dokładność wyników. Metoda fotogrametryczna, chociaż nowoczesna i skuteczna, wymaga zaawansowanego sprzętu oraz odpowiednich umiejętności analitycznych do przetwarzania danych, co może być problematyczne w praktyce. W związku z tym, każdy z tych błędnych wyborów opiera się na założeniu, że są one w pełni niezawodne, podczas gdy w rzeczywistości wymagają one starannego planowania, wykonania oraz weryfikacji. Dlatego kluczowe jest, aby wybierać techniki pomiarowe, które są zgodne z aktualnymi standardami branżowymi, takimi jak normy ISO czy wytyczne stowarzyszeń inżynieryjnych.

Pytanie 35

Jak wielki jest maksymalny dopuszczalny średni błąd lokalizacji punktu w pomiarowej osnowie wysokościowej w odniesieniu do najbliższych punktów wysokościowej osnowy geodezyjnej?

A. 0,03 m
B. 0,07 m
C. 0,01 m
D. 0,05 m
Największy dopuszczalny średni błąd położenia punktu pomiarowej osnowy wysokościowej względem najbliższych punktów wysokościowej osnowy geodezyjnej wynosi 0,05 m. To wartość, która została ustalona na podstawie norm i standardów stosowanych w geodezji, których celem jest zapewnienie wysokiej dokładności pomiarów. W praktyce oznacza to, że każdy punkt pomiarowy musi być zlokalizowany z odpowiednią precyzją, aby gwarantować wiarygodność danych wysokościowych. Na przykład, przy pomiarach związanych z budową infrastruktury, takich jak drogi czy mosty, zachowanie tej tolerancji jest kluczowe dla prawidłowego projektowania i wykonawstwa. Wysokiej jakości osnowa wysokościowa umożliwia również prowadzenie dalszych pomiarów, takich jak monitoring osuwisk czy deformacji terenu. Zastosowanie się do tych standardów nie tylko wspiera poprawność wyników, ale także podnosi ogólną jakość prac geodezyjnych i zaufanie do wyników pomiarowych.

Pytanie 36

Wykonanie mapy zasadniczej dla obszarów z istotnym obecnym lub prognozowanym zainwestowaniem powinno odbywać się w skali

A. 1:2000
B. 1:5000
C. 1:500
D. 1:1000
Odpowiedź 1:2000 jest prawidłowa, ponieważ opracowanie mapy zasadniczej dla terenów o znacznym obecnym lub przewidywanym zainwestowaniu wymaga szczegółowego przedstawienia lokalizacji, granic i charakterystyki terenu. Skala 1:2000 pozwala na dokładne przedstawienie elementów urbanistycznych, takich jak ulice, budynki oraz infrastruktura techniczna. W praktyce, mapy w tej skali stosowane są do projektowania i planowania przestrzennego, co jest kluczowe w kontekście uchwał planistycznych i decyzji administracyjnych. W standardach branżowych, takich jak normy dotyczące geodezji i kartografii, podkreśla się znaczenie precyzyjnych odwzorowań w przypadkach intensywnej zabudowy. Przykładem zastosowania może być przygotowanie dokumentacji do wydania pozwolenia na budowę, gdzie konieczne jest uwzględnienie wszystkich detali infrastrukturalnych i istniejących obiektów, co jest możliwe tylko w takiej skali.

Pytanie 37

Jakie jest pochylenie linii łączącej punkty A i B, które znajdują się na sąsiednich warstwicach, jeśli odległość między nimi wynosi 50 m, a cięcie warstwicowe to 0,5 m?

A. iAB = 10%
B. iAB = 1%
C. iAB = 5%
D. iAB = 0,5%
W przypadku analizy błędnych odpowiedzi warto zwrócić uwagę na podstawowe zasady obliczania pochylenia. Odpowiedzi, które wskazują na wartości 5%, 10% oraz 0,5% wynikają z błędnych interpretacji wzoru na obliczenie tego parametru. Na przykład, pochylenie 5% sugerowałoby, że różnica wysokości wynosi 2,5 m, co jest niezgodne z danymi w pytaniu. 10% wskazywałoby na różnicę wysokości 5 m, a 0,5% na zaledwie 0,25 m. Te błędne koncepcje mogą wynikać z nieprawidłowej analizy proporcji oraz niepoprawnego posługiwania się jednostkami. Powszechnym błędem jest także mylenie pochylenia z innymi miarami, takimi jak kąt nachylenia. W geodezji i inżynierii istotne jest, aby nie tylko stosować poprawne wzory, ale także rozumieć, jak różne parametry wpływają na projektowane obiekty. Warto zaznaczyć, że zgodnie z normami, pochylenie powinno być ustalane na podstawie rzeczywistych pomiarów oraz analiz terenowych, aby zapewnić bezpieczeństwo i efektywność budowy. Dlatego kluczowe jest dokładne przemyślenie każdego kroku w obliczeniach i unikanie typowych pułapek myślowych, które mogą prowadzić do błędnych wniosków.

Pytanie 38

W celu ustabilizowania punktu osnowy realizacyjnej można zastosować

A. narysowany znak
B. znak wykonany z kamienia
C. ceramiczną rurkę
D. drewniany palik
Rurki ceramiczne, namalowane znaki czy paliki drewniane mogą wydawać się dobrą alternatywą do stabilizacji punktów osnowy, ale mają sporo ograniczeń, które mogą komplikować życie geodetom. Rurki ceramiczne, mimo że nie rdzewieją, mogą łatwo się zniszczyć mechanicznie, a ich stabilność w gruncie to już inna sprawa. Znaków namalowanych w ogóle nie polecam - znikają szybko pod wpływem deszczu czy słońca, więc trudno je potem znaleźć. Paliki drewniane, chociaż tanie, nie są za bardzo trwałe i łatwo mogą ulec zniszczeniu przez zwierzęta czy po prostu przez pogodę. Wybór niewłaściwych metod do stabilizacji może prowadzić do błędów w pomiarach, a to może skutkować dużymi problemami w projektach budowlanych. W moim odczuciu, lepiej trzymać się sprawdzonych metod, jak znak z kamienia, żeby uniknąć takich sytuacji.

Pytanie 39

Rezultaty pomiarów kątów i kierunków dotyczące geodezyjnych pomiarów sytuacyjnych oraz wysokościowych zapisuje się z dokładnością

A. 0,0100g
B. 0,1000g
C. 0,0001g
D. 0,0010g
Wybór błędnych odpowiedzi wynika często z nieporozumienia dotyczącego wymagań dotyczących precyzji w pomiarach geodezyjnych. Odpowiedzi takie jak 0,1000g czy 0,0010g sugerują zbyt niską precyzję, która nie jest wystarczająca dla typowych zastosowań geodezyjnych, gdzie wymagana jest znacznie wyższa dokładność. W geodezji, w szczególności w kontekście pomiarów sytuacyjnych i wysokościowych, standardy mówią o dokładności, która w najlepszych praktykach powinna wynosić co najmniej 0,0001g. Odpowiedzi 0,0100g i 0,0010g mogą być interpretowane jako zbyt ogólne lub nieodpowiednie w kontekście precyzyjnych pomiarów, gdzie każdy milimetr może mieć znaczenie. Warto także zwrócić uwagę na fakt, że niektóre pomiary, takie jak pomiary związane z budową infrastruktury, wymagają szczególnej precyzji, aby uniknąć kolizji z innymi obiektami czy niespójności w dokumentacji. Zrozumienie potrzeb związanych z wysoką precyzją pomiarów jest kluczowe, aby uniknąć błędów, które mogą prowadzić do kosztownych konsekwencji. W geodezji należy zawsze dążyć do dokładności, co nie tylko poprawia jakość danych, ale także zwiększa efektywność podejmowanych działań oraz minimalizuje ryzyko błędów w realizacji projektów budowlanych.

Pytanie 40

Jaką kategorię szczegółów terenowych, biorąc pod uwagę wymagania precyzyjności pomiaru, reprezentują budynki mieszkalne?

A. I grupy
B. II grupy
C. III grupy
D. IV grupy
Budynki mieszkalne to ważny element w I grupie szczegółów terenowych. To zgodne z tym, co mówią różne normy i standardy w branży. W sumie, te obiekty mają naprawdę spore znaczenie dla planowania przestrzennego, architektury, no i inżynierii lądowej. Kluczowe jest, żeby dokładnie wiedzieć, gdzie te budynki stoją i jakie mają wymiary. To wpływa na to, jak projektujemy infrastrukturę i urbanizację. Na przykład, jak bierzesz pozwolenie na budowę, to wymiary i lokalizacja muszą być zgodne z miejscowym planem zagospodarowania przestrzennego. Często w takich sytuacjach korzysta się z technologii GPS lub pomiarów geodezyjnych. Dodatkowo, by spełnić standardy budowlane, precyzyjne pomiary to podstawa, żeby wszystko było okej z ochroną środowiska i bezpieczeństwem budowli. Wiedza na temat klasyfikacji tych terenowych szczegółów, w tym budynków mieszkalnych, to naprawdę kluczowa sprawa dla każdego, kto chce pracować w geodezji czy urbanistyce.