Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 15 kwietnia 2025 12:37
  • Data zakończenia: 15 kwietnia 2025 13:03

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Utrzymanie w pełni funkcjonalnych elektronicznych systemów zabezpieczeń powinno być realizowane w okresach określonych normami technicznymi, a jeżeli nie zostały one ustalone - nie rzadziej niż co:

A. trzy miesiące
B. rok
C. miesiąc
D. sześć miesięcy
Odpowiedź "sześć miesięcy" jest zgodna z zaleceniami norm technicznych dotyczących konserwacji systemów zabezpieczeń. Regularna konserwacja, wykonywana co najmniej co sześć miesięcy, jest kluczowa dla utrzymania sprawności systemów oraz zapewnienia ich niezawodności. Systemy zabezpieczeń, takie jak alarmy czy monitoring, wymagają okresowych przeglądów, aby wykryć potencjalne problemy, takie jak zużycie komponentów czy nieprawidłowe działanie czujników. Na przykład, w przypadku systemów alarmowych, nieprzeprowadzenie konserwacji może prowadzić do fałszywych alarmów lub całkowitej awarii systemu, co w sytuacjach kryzysowych może mieć tragiczne skutki. Normy branżowe, takie jak ISO 9001, podkreślają znaczenie regularnych przeglądów w celu zapewnienia jakości i bezpieczeństwa, co potwierdza, że przeprowadzanie konserwacji co sześć miesięcy jest praktyką rekomendowaną przez ekspertów. Dbanie o systemy zabezpieczeń nie tylko zwiększa ich żywotność, ale również podnosi poczucie bezpieczeństwa użytkowników.

Pytanie 2

Do lutownicy transformatorowej powinny być stosowane groty z drutu

A. miedzianego
B. stalowego
C. aluminiowego
D. wolframowego
Grot lutownicy transformatorowej wykonany z miedzianego drutu jest najodpowiedniejszym wyborem ze względu na doskonałe przewodnictwo elektryczne oraz termiczne, które zapewnia efektywne i szybkie nagrzewanie. Miedź jest materiałem o niskiej rezystywności, co oznacza, że umożliwia szybkie dostarczanie energii do miejsca lutowania. Dodatkowo, miedziane groty charakteryzują się wysoką odpornością na korozję, co przedłuża ich żywotność podczas intensywnego użytkowania. W praktyce, stosując miedziane groty, technicy lutownicy uzyskują lepszą jakość połączeń, co jest szczególnie ważne w zastosowaniach elektronicznych, gdzie precyzja jest kluczowa. Przykładem może być lutowanie elementów SMD, gdzie odpowiednia temperatura i kontrola są niezbędne do uniknięcia uszkodzeń delikatnych komponentów. W branży elektronicznej powszechnie uznaje się, że stosowanie miedzianych grotów jest zgodne z najlepszymi praktykami, a ich użycie wspiera osiąganie wysokiej jakości lutów.

Pytanie 3

Która z topologii sieci komputerowych gwarantuje największą niezawodność?

A. Gwiazdy.
B. Pierścienia.
C. Drzewa.
D. Siatki.
Topologia siatki zapewnia najwyższy poziom niezawodności w sieciach komputerowych, ponieważ każda stacja w sieci jest połączona z wieloma innymi stacjami. W przypadku awarii jednego z połączeń, dane mogą być kierowane inną ścieżką, co minimalizuje ryzyko utraty komunikacji. Taki model jest często wykorzystywany w krytycznych aplikacjach, takich jak systemy finansowe czy infrastruktura transportowa, gdzie utrata połączenia może prowadzić do poważnych konsekwencji. Zastosowanie topologii siatki jest zgodne z najlepszymi praktykami w dziedzinie projektowania sieci, gdzie kluczowe jest zapewnienie dużej redundancji i elastyczności. Przykładem może być sieć miejskiego systemu monitoringu, w której wiele kamer jest połączonych w topologii siatki, co zapewnia ciągłość działania nawet w przypadku uszkodzenia kilku połączeń. Dodatkowo, siatki są zgodne z normami takimi jak IEEE 802.11s, które definiują standardy dla mesh networking, co umożliwia ich szerokie zastosowanie w różnych branżach.

Pytanie 4

W przypadku wykorzystania w instalacji sieci komputerowej: panelu krosowego kategorii 7, przewodu S/FTP kategorii 6 oraz gniazd abonenckich kategorii 5e, cała instalacja sieciowa będzie

A. kategorii 7
B. kategorii 3
C. kategorii 6
D. kategorii 5e
Wybór innych kategorii niż 5e dla całej instalacji sieciowej jest błędny z kilku powodów. Nie można zdefiniować kategorii sieci jedynie na podstawie komponentu o najwyższej klasie, jak w przypadku panelu krosowego kategorii 7. Kluczowym aspektem przy ustalaniu klasy instalacji jest najniższa kategoria komponentów, które są w niej użyte. Na przykład, mimo że przewód S/FTP kategorii 6 i panel krosowy kategorii 7 mogą teoretycznie obsługiwać wyższe prędkości, instalacja z gniazdami abonenckimi kategorii 5e ogranicza maksymalną osiągalną prędkość do 1 Gb/s. Zatem, jeżeli w sieci znajdą się elementy o niższej kategorii, cała instalacja zostanie zredukowana do tej najniższej standardu. Możliwość mieszania różnych kategorii w instalacji wymaga przemyślanej strategii, aby nie obniżać ogólnej wydajności. Często popełnianym błędem jest założenie, że wyższa kategoria automatycznie podnosi jakość całego systemu, co nie jest zgodne z rzeczywistością branżową. Właściwe planowanie i zgodność z normami są kluczowe w projektowaniu efektywnych i przyszłościowych sieci komputerowych.

Pytanie 5

Jaką rolę odgrywa urządzenie kontrolno-pomiarowe w systemie automatyki przemysłowej?

A. zawór regulacyjny
B. zawór elektromagnetyczny
C. kontroler
D. przetwornik
Przepustnica, będąca urządzeniem stosowanym w systemach wentylacyjnych i cieplnych, pełni funkcję regulacji przepływu powietrza lub cieczy. Choć istotna w kontekście zarządzania mediami, nie ma ona zdolności pomiarowych, co czyni ją niewłaściwym wyborem w kontekście funkcji kontrolno-pomiarowych. Sterownik, będący centralnym elementem systemów automatyki, działa na podstawie dostarczanych mu sygnałów, jednak jego rola nie polega na bezpośrednim pomiarze parametrów fizycznych. Zamiast tego, sterownik interpretuje dane z przetworników i podejmuje decyzje operacyjne w oparciu o algorytmy. Elektrozawór, z drugiej strony, steruje przepływem cieczy lub gazów w systemach, ale również nie zajmuje się bezpośrednim pomiarem. Typowym błędem myślowym jest mylenie funkcji urządzeń pomiarowych z urządzeniami wykonawczymi i regulacyjnymi. W kontekście automatyki przemysłowej kluczowe jest rozróżnienie pomiędzy pomiarem a kontrolą, ponieważ każde z tych urządzeń pełni odmienną rolę w systemie. Aby systemy były efektywne, konieczne jest zastosowanie przetworników, które dostarczają dokładne dane, niezbędne dla prawidłowego funkcjonowania sterowników oraz elementów wykonawczych.

Pytanie 6

Ochrona podstawowa (przed bezpośrednim kontaktem) w urządzeniach elektrycznych polega na użyciu

A. wyłączników nadprądowych
B. izolowania części czynnych
C. bezpieczników topikowych
D. transformatora separującego
Izolowanie części czynnych jest podstawowym środkiem ochrony przed dotykiem bezpośrednim w urządzeniach elektrycznych, co oznacza, że wszystkie elementy, które mogą być pod napięciem, są oddzielone od dostępnych powierzchni, które mogą być dotykane przez użytkowników. Taki sposób ochrony jest kluczowy, ponieważ minimalizuje ryzyko przypadkowego kontaktu z napięciem oraz potencjalne porażenie prądem. Zastosowanie izolacji w praktyce obejmuje np. użycie obudów wykonanych z materiałów dielektrycznych oraz odpowiedniego projektowania urządzeń, które uniemożliwiają dostęp do części czynnych. W kontekście norm, takich jak IEC 61140, izolacja jest podkreślona jako podstawowy aspekt bezpieczeństwa elektrycznego. Warto również dodać, że izolacja ma różne klasyfikacje, co pozwala na dostosowanie stopnia ochrony do specyficznych warunków pracy urządzenia, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 7

Podstawowym zadaniem czaszy w antenie satelitarnej jest

A. odbicie fal i skierowanie ich ku konwerterowi
B. umożliwienie odbioru określonych częstotliwości sygnału
C. ukierunkowanie konwertera na wybrany satelita
D. umożliwienie zamontowania konwertera pod odpowiednim kątem
Odpowiedzi sugerujące, że czasza w antenie satelitarnej pełni inne funkcje niż odbicie fal do konwertera są mylne. Skierowanie konwertera na wybranego satelitę to zadanie związane z montażem, a nie funkcją czaszy. Odpowiedź ta nie uwzględnia, że czasza sama nie dokonuje wyboru satelity, a to konwerter, który jest umieszczony w ognisku czaszy, odbiera fale radiowe i przetwarza je na sygnał elektroniczny. Umożliwienie montażu konwertera pod odpowiednim kątem również nie jest podstawowym zadaniem czaszy. Czasza, jako element pasywny, ma na celu jedynie skupienie fal, a same kąty montażowe są kwestią ustawienia systemu podczas instalacji, mającego na celu uzyskanie optymalnego kierunku do danego satelity. Natomiast umożliwienie odbioru określonych częstotliwości sygnału odnosi się do konwertera, który dostosowuje się do różnych pasm częstotliwości, a nie do samej czaszy. Takie nieporozumienia mogą wynikać z braku konsekwentnego rozróżniania pomiędzy rolą poszczególnych komponentów w systemie satelitarnym. W praktyce, efektywność całego systemu satelitarnego zależy od precyzyjnego działania wszystkich jego elementów, a czasza, jako kluczowy element, ma przede wszystkim za zadanie skupiać i kierować fale do konwertera, co jest absolutnie fundamentalne w procesie odbioru sygnału.

Pytanie 8

Aby ocenić sprawność kabla krosowego, należy zastosować

A. testera kabli sieciowych, gdy kabel jest podłączony do sieci komputerowej
B. wobulatora, gdy kabel jest odłączony od wszystkich urządzeń
C. wobulatora, gdy kabel jest podłączony do sieci komputerowej
D. testera kabli sieciowych, gdy kabel jest odłączony od wszystkich urządzeń
Wykorzystywanie testera kabli sieciowych przy kablu włączonym do sieci komputerowej może prowadzić do błędnych wyników diagnostycznych. Dzieje się tak, ponieważ inne urządzenia podłączone do sieci mogą wpływać na sygnały przesyłane przez badany kabel, co może skutkować fałszywymi wskazaniami błędów, które nie są rzeczywiście związane z jego stanem. Podobnie, korzystanie z wobulatora w trakcie pracy kabla w sieci komputerowej nie jest zalecane, ponieważ wobulator, który jest urządzeniem do analizy sygnałów, również może być zakłócony przez inne urządzenia, co czyni jego pomiary nieprecyzyjnymi. W przypadku kabla odłączonego od wszystkich urządzeń, możemy uzyskać czystsze wyniki, co pozwala na skuteczną diagnostykę. Warto również zwrócić uwagę, że błędne podejście do testowania kabli może prowadzić do pomijania istotnych problemów, które mogą wpływać na wydajność całej sieci, takich jak uszkodzenia w okablowaniu czy niewłaściwe połączenia. To z kolei może prowadzić do frustracji użytkowników, a także do kosztownych przestojów w pracy systemów. Dlatego do testowania kabli zawsze należy podchodzić z należytą starannością i przestrzegać dobrych praktyk inżynieryjnych, które podkreślają znaczenie izolacji kabla od innych elementów sieci podczas badania jego stanu.

Pytanie 9

Całkowity koszt materiałów potrzebnych do zrealizowania instalacji elektrycznej w mieszkaniu wynosi 2 000 zł brutto. Koszt realizacji instalacji odpowiada 100% wartości brutto materiałów. Jaką sumę trzeba będzie zapłacić za realizację instalacji, jeśli stawka VAT na usługi wynosi 8%?

A. 2 320 zł
B. 4 160 zł
C. 2 160 zł
D. 4 320 zł
Koszt całkowity wykonania instalacji elektrycznej w mieszkaniu wynosi 4 160 zł. W tej kwocie zawarte są zarówno koszty materiałów, jak i usługi. Koszt materiałów wynosi 2 000 zł brutto, co oznacza, że zawiera już podatek VAT na poziomie 8%. Koszt robocizny, który również wynosi 2 000 zł (100% ceny materiałów), nie jest obciążony dodatkowym VAT, ponieważ w tym przypadku usługi budowlane i instalacyjne również mogą być objęte tym samym stawką podatku. Zatem koszt przed podatkiem VAT wynosi 2 000 zł (koszt materiałów) + 2 000 zł (koszt robocizny), co daje 4 000 zł. Następnie należy obliczyć VAT, który wynosi 8% z 4 000 zł, co daje 320 zł. Sumując, 4 000 zł + 320 zł = 4 320 zł, a całkowity koszt z uwzględnieniem VAT to 4 160 zł. Praktyczne zastosowanie tej wiedzy jest kluczowe dla budżetowania projektów budowlanych, a znajomość stawek VAT pozwala na lepsze planowanie finansowe oraz zgodność z przepisami prawa.

Pytanie 10

Jakie dane identyfikuje czytnik biometryczny?

A. kod kreskowy
B. sygnał transpondera
C. linie papilarne
D. zapis magnetyczny
Czytnik biometryczny to takie fajne urządzenie, które potrafi sprawdzić, kim jesteś, na podstawie cech, które masz tylko Ty, jak na przykład linie papilarne. Gdy chodzi o te linie, to czytniki korzystają z różnych technologii, jak skanowanie optyczne, elektrostatyczne czy ultradźwiękowe, żeby złapać ten unikalny wzór z palca. Są one mega popularne w bankach, na lotniskach czy w smartfonach, bo są naprawdę skuteczne i zwiększają bezpieczeństwo. Jak rejestrujesz swoje linie papilarne, to po prostu przykładujesz palec, a system zapisuje ten wzór cyfrowo, żeby później móc go łatwo zweryfikować. Zresztą, to wszystko musi być zgodne z międzynarodowymi standardami, no bo bezpieczeństwo danych jest bardzo istotne. Ogólnie, używanie technologii biometrycznej nie tylko podnosi bezpieczeństwo, ale i sprawia, że korzystanie z systemów jest wygodniejsze, bo nie musisz pamiętać haseł czy nosić kart.

Pytanie 11

Zakres częstotliwości, podany w dokumentacji technicznej wzmacniacza, to

A. częstotliwość graniczna dolna
B. suma częstotliwości granicznych górnej i dolnej
C. różnica między częstotliwością graniczną górną a dolną
D. częstotliwość graniczna górna
Pasmo przenoszenia wzmacniacza to taki zakres częstotliwości, w jakim działa on najlepiej. Można to opisać jako różnicę między górną a dolną częstotliwością graniczną. Tak więc, odpowiedź, którą wybrałeś, jest jak najbardziej trafna. W praktyce jest to mega ważne dla osób projektujących systemy audio, telekomunikacyjne czy inne urządzenia elektroniczne, gdzie jakość sygnału jest kluczowa. Na przykład, wzmacniacze audio zazwyczaj mają pasmo przenoszenia od 20 Hz do 20 kHz, co jest zbliżone do tego, co jesteśmy w stanie usłyszeć. Wzmacniacze operacyjne także mają swoje pasma, które trzeba zawsze brać pod uwagę przy projektach układów. Zrozumienie pasma przenoszenia naprawdę pomaga w optymalizacji projektów i eliminacji zniekształceń, co jest zgodne z tym, co powinno być w dobrym inżynieryjnym podejściu.

Pytanie 12

Jaką rolę odgrywa rejestrator w systemie telewizji dozorowej?

A. Zmienia ogniskową obiektywu
B. Wzmacnia sygnał wizyjny
C. Zapisuje sygnał video
D. Kontroluje ruch kamery
Rejestrator w systemie telewizji dozorowej odgrywa kluczową rolę w procesie monitorowania przez gromadzenie i przechowywanie sygnałów wideo. Jego podstawowym zadaniem jest zapis obrazu z kamer, co pozwala na późniejsze przeglądanie i analizowanie nagranych materiałów. Rejestratory mogą być różnego rodzaju, w tym cyfrowymi rejestratorami wideo (DVR) lub sieciowymi rejestratorami wideo (NVR), które różnią się metodą przechowywania danych. Zastosowanie rejestratorów w systemach CCTV umożliwia nie tylko archiwizację danych na wypadek incydentów, ale także dostarcza materiał dowodowy, który może być użyty w śledztwach lub postępowaniach prawnych. Dobrze skonfigurowany system rejestracji powinien spełniać standardy jakości obrazu, a także zapewniać odpowiednie zabezpieczenia danych, aby chronić prywatność i poufność nagrań. Przykładowo, w przypadku incydentu, operatorzy mogą szybko odtworzyć nagranie, co znacznie przyspiesza proces reakcji na zagrożenie i przyczynia się do poprawy bezpieczeństwa ogólnego obiektu.

Pytanie 13

W trakcie regularnej inspekcji instalacji telewizyjnej należy zwrócić uwagę na

A. jakość sygnału w gniazdku
B. położenie anteny
C. metodę ułożenia przewodów
D. usytuowanie gniazd
Podczas okresowej kontroli instalacji TV kluczowym elementem jest sprawdzenie poziomu sygnału w gniazdku. Sygnał telewizyjny musi mieć odpowiednią moc, aby zapewnić jakość odbioru. Standardy branżowe, takie jak DVB-T lub DVB-S, określają minimalne wartości poziomu sygnału, które powinny być osiągane, aby gwarantować stabilny i bezawaryjny odbiór. Niski poziom sygnału może prowadzić do zniekształceń obrazu, a nawet do jego całkowitego braku. Przykładowo, w instalacjach antenowych, jeśli poziom sygnału jest niższy niż -80 dBm, może to skutkować problemami z odbiorem. Regularne kontrole poziomu sygnału pozwalają na szybką identyfikację problemów, takich jak uszkodzenia kabli czy niewłaściwe ustawienie anteny. W praktyce, technicy często korzystają z mierników sygnału, które umożliwiają precyzyjne określenie moc sygnału i jakości, a także przeprowadzają pomiary w różnych warunkach, aby upewnić się, że instalacja działa optymalnie.

Pytanie 14

Analogowy woltomierz ma skalę od 0 do 100 działek. Jaka jest wartość napięcia, jeżeli pomiar był wykonany w zakresie 200 V, a wskaźnik wskazuje 80 działek?

A. 120 V
B. 80 V
C. 40 V
D. 160 V
Woltomierz analogowy działa na zasadzie wskazywania wartości napięcia na skali w oparciu o wychylenie wskazówki. W przypadku pomiaru w zakresie 200 V, skala analogowa jest wyskalowana na 100 działek, co oznacza, że każda działka odpowiada wartości napięcia równej 2 V (200 V / 100 działek = 2 V/działkę). Jeśli wskazówka wychyla się na 80 działek, to wartość napięcia wynosi 80 działek * 2 V/działkę = 160 V. Przykład ten pokazuje, jak istotne jest zrozumienie skali woltomierza oraz prawidłowe przeliczanie wartości napięcia na podstawie wychylenia. W praktyce, takie pomiary są niezbędne w elektryce i elektronice, gdzie precyzyjne wskazanie napięcia jest kluczowe dla bezpieczeństwa i efektywności systemów. Przestrzeganie odpowiednich standardów pomiarowych, takich jak ISO 9001, jest również ważne w kontekście zapewnienia jakości pomiarów i wiarygodności wyników.

Pytanie 15

Ile żył jest potrzebnych do podłączenia unifonu, jeśli bramofon działa w systemie domofonowym 4+N?

A. 10
B. 8
C. 4
D. 5
Poprawna odpowiedź to 5 żył, ponieważ w systemie domofonowym 4+N unifon wymaga czterech przewodów do przesyłania sygnału audio oraz zasilania, a dodatkowy przewód, zwany N (neutralnym), jest niezbędny dla prawidłowego funkcjonowania systemu. Zastosowanie takiego układu przewodów umożliwia nie tylko komunikację z bramofonem, ale także zapewnia zasilanie i możliwość sterowania zamkiem elektromechanicznym. W systemach domofonowych zgodnych z tą specyfikacją, ważne jest, aby przewody były odpowiednio dobrane do długości instalacji oraz obciążenia, co zapewnia stabilność i niezawodność działania. Dobrą praktyką jest również stosowanie przewodów o odpowiednim przekroju, co zabezpiecza przed spadkami napięcia. W przypadku większych instalacji, rekomenduje się również użycie zasilacza o odpowiedniej mocy, aby zapewnić właściwą funkcjonalność wszystkich urządzeń w systemie. Takie podejście do instalacji pozwala na długotrwałe i bezawaryjne użytkowanie systemu domofonowego.

Pytanie 16

Po uruchomieniu regulowanego zasilacza laboratoryjnego zauważono, że urządzenie nie funkcjonuje, a wskaźnik (dioda LED) nie jest aktywowany. Sprawdzono stan gniazda, do którego podłączono zasilacz i nie wykryto w nim uszkodzeń. Proces lokalizacji awarii w zasilaczu należy rozpocząć od weryfikacji

A. dioda elektroluminescencyjna
B. podzespołów pasywnych
C. bezpiecznika aparatowego
D. prostownika
Sprawdzanie różnych elementów, jak mostek prostowniczy czy dioda LED, w sytuacji, gdy zasilacz przestaje działać, może prowadzić do złych wniosków. Elementy pasywne, takie jak rezystory czy kondensatory, raczej nie są przyczyną nagłego wyłączenia zasilacza, zwłaszcza jeśli nie widać żadnych oznak jego działania. Nawet mostek prostowniczy może być sprawny, a zasilacz i tak nie działa, bo jego awaria nie oznacza, że nie ma prądu. Diody LED, co prawda informują o stanie urządzenia, ale nie są najważniejsze w zasilaniu; ich awaria nie znaczy, że zasilacz na pewno jest zepsuty. Dobrze jest najpierw sprawdzić bezpieczniki, bo to najczęstszy powód problemów. Takie podejście to dobry sposób na diagnostykę, który pokazuje, że najpierw musisz skupić się na najważniejszych elementach.

Pytanie 17

Jak powinna przebiegać prawidłowa sekwencja uruchamiania instalacji telewizyjnej?

A. podłączyć kabel antenowy, zaprogramować kanały, uruchomić odbiornik TV
B. zaprogramować kanały, uruchomić odbiornik TV, podłączyć kabel antenowy
C. podłączyć kabel antenowy, uruchomić odbiornik TV, zaprogramować kanały
D. uruchomić odbiornik TV, zaprogramować kanały, podłączyć kabel antenowy
Prawidłowa kolejność uruchomienia instalacji telewizyjnej to podłączenie kabla antenowego, uruchomienie odbiornika TV, a następnie zaprogramowanie kanałów. Zaczynając od podłączenia kabla antenowego, zapewniamy odbiornikowi dostęp do sygnału telewizyjnego, co jest kluczowe, ponieważ bez tego nie będzie on w stanie odebrać żadnych transmisji. Po upewnieniu się, że kabel antenowy jest prawidłowo podłączony, należy uruchomić odbiornik telewizyjny. W momencie włączenia urządzenia, system operacyjny TV inicjuje potrzebne procesy, które umożliwiają dalszą konfigurację. Ostatecznie, programowanie kanałów jest krokiem, który pozwala na dostosowanie odbiornika do preferencji użytkownika i lokalnych dostępnych stacji. Ta sekwencja działa zgodnie z najlepszymi praktykami instalacyjnymi, ponieważ zapewnia logiczny i efektywny proces konfiguracji, co jest zgodne z zaleceniami producentów sprzętu telewizyjnego. Prawidłowe podejście do instalacji wpływa na ogólne doświadczenia użytkownika oraz funkcjonalność urządzenia, co podkreśla znaczenie przestrzegania ustalonych procedur.

Pytanie 18

Jaką czynność należy wykonać najpierw, gdy podczas serwisowania instalacji antenowej telewizji naziemnej zauważono obniżenie poziomu sygnału antenowego?

A. Wyregulować odbiornik
B. Oczyścić wszystkie złącza
C. Zamienić przewód antenowy
D. Wyregulować ustawienie anteny
Wyregulowanie ustawienia anteny jest kluczowym krokiem w przypadku stwierdzenia spadku poziomu sygnału antenowego. Anteny telewizyjne, w zależności od ich typu i lokalizacji, są zaprojektowane tak, aby odbierały sygnał radiowy z określonego kierunku. Niekiedy, na przykład z powodu zmiany warunków atmosferycznych, przeszkód w terenie czy działań budowlanych, kąt nachylenia lub kierunek anteny mogą wymagać korekty. Regulacja anteny powinna być przeprowadzana zgodnie z zaleceniami producenta oraz obowiązującymi standardami, takimi jak normy DVB-T, które określają wymagania dotyczące jakości sygnału. Przykładem praktycznego zastosowania jest użycie analizatora sygnału, który pozwala precyzyjnie ustawić antenę, aby osiągnąć optymalny poziom odbioru. Warto także pamiętać, że przed rozpoczęciem regulacji warto zidentyfikować, czy nie ma innych problemów z instalacją, takich jak uszkodzenia przewodów czy złączy, co może wpłynąć na jakość sygnału.

Pytanie 19

Maksymalny poziom natężenia dźwięku w biurze dla osoby zajmującej się projektowaniem układów elektronicznych, zgodnie z obowiązującymi normami, nie powinien przekraczać wartości

A. 25 dB
B. 35 dB
C. 45 dB
D. 55 dB
Wybór wartości 25 dB jako dopuszczalnego poziomu hałasu w biurze jest nieodpowiedni, ponieważ jest to wartość znacznie poniżej normy akceptowanej w kontekście biur. Poziom 25 dB odpowiada bardzo cichym pomieszczeniom, takim jak biblioteki czy ciche strefy w mieszkaniach, gdzie występuje minimalna akustyka. W środowisku biurowym, gdzie pracownicy korzystają z komputerów, prowadzą rozmowy telefoniczne lub współpracują z innymi, dźwięki te generują hałas, który naturalnie podnosi poziom hałasu do wartości powyżej 25 dB. Wartość 45 dB również jest nieadekwatna, ponieważ jest zbyt niska dla standardowego biura, w którym dźwięki mogą generować różne urządzenia biurowe oraz aktywność ludzi. Przyjęcie 35 dB jako dopuszczalnej wartości również nie uwzględnia realistycznych warunków biurowych, w których poziom hałasu często przekracza tę wartość, co może prowadzić do obniżonej efektywności pracy oraz dyskomfortu. Kluczowe jest, aby zrozumieć, że normy dotyczące hałasu w miejscu pracy są ustalane po to, aby promować zdrowe i sprzyjające efektywności środowisko pracy, gdzie wartości powyżej 55 dB są powszechnie akceptowane jako dopuszczalne w typowych biurach. Niezrozumienie tych standardów może prowadzić do nieodpowiednich warunków pracy oraz negatywnych skutków zdrowotnych dla pracowników.

Pytanie 20

Jaką rolę w systemie automatyki przemysłowej odgrywa przetwornik?

A. Kontroluje pracę siłownika
B. Przekształca sygnał z czujnika
C. Rejestruje działanie sieci
D. Wizualizuje procesy przemysłowe
Wybór odpowiedzi, która zakłada, że przetwornik rejestruje pracę sieci, jest błędny, ponieważ nie jest to funkcja przypisana do przetworników. Rejestracja pracy sieci to zadanie dla innych urządzeń, takich jak rejestratory danych lub systemy SCADA, które mają za zadanie monitorować i archiwizować informacje o stanie sieci. Przetworniki natomiast koncentrują się na konwersji sygnałów, a nie na ich dokumentacji. Kolejne nieporozumienie dotyczy roli przetwornika jako urządzenia sterującego siłownikami. Stanowisko to jest zarezerwowane dla kontrolerów lub regulatorów, które podejmują decyzje o aktywacji siłowników na podstawie przetworzonych danych. Siłowniki mogą być aktywowane na podstawie sygnałów generowanych przez systemy automatyki, ale to nie przetwornik pełni tę funkcję. Wizualizacja procesów przemysłowych to zadanie dla interfejsów użytkownika i systemów HMI, które przekształcają dane z różnych źródeł, w tym z przetworników, w przystępną formę graficzną. Dlatego kluczowe jest zrozumienie, że każda z tych funkcji jest realizowana przez różne urządzenia w ekosystemie automatyki, a przetwornik jest tylko jednym z elementów, który przekształca i nie wykonuje zadań rejestracyjnych, sterujących ani wizualizacyjnych.

Pytanie 21

Jakie narzędzie jest niezbędne do zainstalowania wtyku kompresyjnego typu F na kablu koncentrycznym?

A. nóż montażowy.
B. obcęgi.
C. śrubokręt.
D. zaciskarkę.
Zaciskarka to narzędzie specjalnie zaprojektowane do montażu wtyków kompresyjnych na kablach koncentrycznych. Dzięki precyzyjnemu mechanizmowi chwytania i zaciskania, pozwala na pewne i trwałe połączenie wtyku z kablem, co jest kluczowe dla uzyskania optymalnej jakości sygnału. Użycie zaciskarki zapewnia, że wtyk jest prawidłowo zamocowany, eliminując ryzyko luzów, które mogłyby prowadzić do zakłóceń sygnału. W branży telekomunikacyjnej oraz w instalacjach antenowych, gdzie jakość sygnału jest kluczowa, stosowanie odpowiednich narzędzi, takich jak zaciskarka, jest zgodne z najlepszymi praktykami. W przypadku kabli koncentrycznych, wtyki kompresyjne oferują lepszą ochronę przed zakłóceniami elektromagnetycznymi, a ich prawidłowy montaż przy użyciu zaciskarki jest niezbędny, aby zapewnić optymalne działanie całego systemu. Warto zwrócić uwagę na standardy, takie jak ISO/IEC 11801, które podkreślają znaczenie odpowiedniego montażu i użycia właściwych narzędzi w celu zapewnienia niezawodności i wydajności systemów transmisji danych.

Pytanie 22

Telewizor nie odbiera żadnych sygnałów z zewnętrznej anteny w transmisji naziemnej, ale poprawnie prezentuje obraz z tunera satelitarnego podłączonego do niego za pomocą przewodu EUROSCART oraz z kamery VHS-C. Wymienione objawy sugerują, że uszkodzony jest moduł

A. wzmacniacza wizji
B. separatora impulsów
C. odchylania poziomego i pionowego
D. wielkiej i pośredniej częstotliwości
Dobra robota! Wskazanie na uszkodzenie modułu wielkiej i pośredniej częstotliwości trafiło w sedno. Ten moduł jest kluczowy do tego, żeby telewizor mógł właściwie demodulować sygnały z anteny. Kiedy telewizor działa z tunera satelitarnego albo z kamery VHS-C, ale nie łapie sygnału z anteny, to raczej coś jest nie tak z obwodami do odbioru sygnału z telewizji naziemnej. To właśnie ten moduł zajmuje się dostosowywaniem częstotliwości sygnału, żeby telewizor mógł go zrozumieć. W praktyce, uszkodzenia mogą być spowodowane zepsuciem komponentów, takich jak kondensatory czy scalaki, co prowadzi do braku obrazu. Warto regularnie sprawdzać antenę i zmierzyć sygnał, żeby zobaczyć, czy wszystko działa jak powinno.

Pytanie 23

Jak monitoruje się jakość sygnału telewizyjnego u poszczególnych abonentów telewizji kablowej?

A. poziom sygnału przesyłanego przez stację czołową do abonentów
B. współczynnik szumów w kanale zwrotnym poszczególnych abonentów
C. poziom sygnału wizyjnego w gniazdach abonenckich różnych użytkowników
D. współczynnik szumów w sygnale dostarczanym przez stację czołową do abonentów
Wszystkie pozostałe odpowiedzi opierają się na niepoprawnych założeniach dotyczących monitorowania jakości sygnału. Poziom sygnału wysyłanego przez stację czołową do abonentów, mimo że istotny, nie odzwierciedla rzeczywistej jakości sygnału odbieranego przez użytkowników. Sygnał może być właściwie nadawany, ale różne czynniki, takie jak tłumienie sygnału w kablu czy zakłócenia, mogą wpływać na jego jakość w gniazdach abonenckich. Z kolei poziom sygnału wizyjnego w gniazdach abonenckich jest również ważny, ale nie dostarcza pełnego obrazu jakości sygnału, ponieważ nie uwzględnia szumów, które mogą występować w kanale zwrotnym. Współczynnik szumów w sygnale wysyłanym przez stację czołową do abonentów jest również niewłaściwym podejściem, ponieważ nie odzwierciedla lokalnych warunków odbioru sygnału, a jedynie jakość nadawanego sygnału. Istotne jest, aby operatorzy telewizyjni zwracali uwagę na konkretne warunki pracy kanałów, wiedząc, że kanał zwrotny dostarcza informacji o ewentualnych problemach, takich jak zakłócenia w sygnale czy problemy z urządzeniami końcowymi. W związku z tym, zrozumienie i monitorowanie współczynnika szumów w kanale zwrotnym jest kluczowe dla zapewnienia wysokiej jakości usług telewizyjnych.

Pytanie 24

Podczas pomiaru ciągłości obwodów za pomocą multimetru z brzęczykiem, dochodzi do aktywacji sygnału dźwiękowego. Co to oznacza?

A. w badanym obwodzie znajduje się źródło prądowe
B. badany obwód jest uszkodzony
C. w badanym obwodzie znajduje się złącze półprzewodnikowe
D. badany obwód jest ciągły
Wybór odpowiedzi, że badany obwód jest przerwany, jest podstawowym błędem w rozumieniu działania multimetru. W rzeczywistości, gdy multimetr nie wydaje dźwięku, wskazuje na przerwany obwód. Przerwa w obwodzie oznacza, że nie ma możliwości przepływu prądu, co jest sprzeczne z sygnałem dźwiękowym generowanym przez urządzenie. Twierdzenie, że badany obwód jest ciągły jest kluczowe dla analizy stanu instalacji elektrycznych. Kolejna koncepcja, którą należy zrozumieć, to fakt, że obecność źródła prądowego w obwodzie nie jest warunkiem koniecznym do wydania dźwięku przez multimetr, ponieważ urządzenie jedynie sprawdza ciągłość przewodów, a nie źródła zasilania. Ponadto, istnienie złącza półprzewodnikowego również nie wpływa na pomiar ciągłości, jako że multimetr w trybie testowania ciągłości zazwyczaj nie jest przystosowany do oceny złożonych parametrów półprzewodników. Dlatego ważne jest, aby unikać typowych błędów myślowych, takich jak mieszanie funkcji multimetru z innymi pomiarami, co prowadzi do błędnych interpretacji wyników. Zrozumienie podstaw działania urządzeń pomiarowych jest kluczowe w działalności związanej z elektrycznością, a także w przestrzeganiu standardów bezpieczeństwa przy pracy z instalacjami elektrycznymi.

Pytanie 25

Jaką rolę odgrywa router w sieci komputerowej?

A. Konwertera danych cyfrowych
B. Konwertera danych analogowych
C. Łącznika segmentów sieci
D. Węzła komunikacyjnego
Wydaje się, że odpowiedzi dotyczące łączenia segmentów sieci, konwersji danych analogowych czy cyfrowych, nie tylko nie oddają rzeczywistej funkcji routera, ale również prowadzą do typowych nieporozumień w kontekście architektury sieciowej. Router jako węzeł komunikacyjny nie jest po prostu łącznikiem segmentów sieci, ponieważ jego rola wykracza poza to, co typowo rozumiemy jako switch czy hub. Routery operują na warstwie trzeciej modelu OSI, gdzie decydują o kierunkach, w jakie pakiety danych powinny być przesyłane, bazując na adresach IP, co jest zupełnie inne od działania urządzeń, które jedynie przesyłają sygnały w obrębie lokalnej sieci. Konwertery danych, zarówno analogowych, jak i cyfrowych, dotyczą przetwarzania sygnałów, co jest zadaniem zupełnie innych urządzeń, takich jak modemy czy bramy (gateways). Tak więc, mylenie routera z konwerterami czy switchami prowadzi do zrozumienia jego funkcji w sposób uproszczony i nieprawidłowy. Aby poprawnie zrozumieć rolę routerów w sieci komputerowej, warto zapoznać się z protokołami routingu, takimi jak OSPF czy BGP, które regulują zasady wymiany informacji między routerami, co jest kluczowe w bardziej złożonych architekturach sieciowych.

Pytanie 26

Jaki element elektroniczny jest określany przez symbole: S-źródło, G-bramka, D-dren?

A. Tyrystor
B. Tranzystor unipolarny
C. Tranzystor bipolarny
D. Trymer
Tyrystory, tranzystory bipolarne oraz trymer to elementy elektroniczne o różnych zastosowaniach i zasadach działania, które nie pasują do opisanego schematu terminali S, G i D. Tyrystor jest urządzeniem półprzewodnikowym, które działa jako przełącznik i jest aktywowany przez impuls prądowy, jednak posiada tylko dwa główne terminale: anody i katody. Jego struktura oraz sposób działania są inne niż w tranzystorze unipolarnym, co prowadzi do nieporozumień w identyfikacji. Tranzystor bipolarny, z kolei, ma trzy terminale: emiter, bazę i kolektor, gdzie prąd przepływa na podstawie sygnału wejściowego z bazy, co różni się od zasady działania tranzystora unipolarnego, gdzie kluczową rolę odgrywa napięcie na bramce. Natomiast trymer jest kondensatorem o regulowanej pojemności, wykorzystywanym głównie w obwodach rezonansowych, co również nie odpowiada opisanemu terminowi. Błędy w analizie pytania mogą prowadzić do mylnego rozumienia podstaw elektroniki, a także do niewłaściwego doboru komponentów w praktycznych zastosowaniach. Zrozumienie różnicy między tymi elementami jest kluczowe dla skutecznego projektowania systemów elektronicznych, co wymaga znajomości ich właściwości i funkcji. Przy projektowaniu obwodów, istotne jest stosowanie odpowiednich elementów w zależności od wymagań aplikacji i standardów branżowych.

Pytanie 27

Napięcie spadające pomiędzy zasilaczem a urządzeniem zasilanym nieznacznie przekracza maksymalnie dozwoloną wartość. Jakie działania może podjąć instalator w takiej sytuacji?

A. Użyć przewodu o mniejszym przekroju
B. Zrezygnować z realizacji połączenia
C. Połączyć dwie żyły (lub więcej) równolegle
D. Wykorzystać przewód aluminiowy o identycznym przekroju
Rezygnacja z połączenia, kiedy spadek napięcia jest za duży, to nie najlepszy pomysł. Takie podejście może tylko unikać problemów, zamiast je rozwiązywać. Możliwe, że stracisz energię, a to wpłynie na sprzęt, który jest zasilany. Użycie mniejszego przewodu to również zły krok, bo to zwiększa opór, a problem z napięciem tylko się pogłębia. Wydaje się, że wybór przewodu aluminiowego za niższą cenę jest dobry, ale pamiętaj, że aluminium jest znacznie gorsze w przewodnictwie niż miedź, co prowadzi do większego oporu i spadku napięcia. Kiedy projektujesz instalacje, musisz naprawdę zrozumieć, jak kluczowe jest dobre dobranie przewodów i ich przekrojów, żeby wszystko działało bezpiecznie i efektywnie. Ignorowanie tych zasad może prowadzić do poważnych awarii, a nawet grozić pożarem, co czyni takie podejścia ryzykownymi. Dlatego lepiej trzymać się standardów branżowych, jak PN-IEC 60364, bo to podstawa dobrego projektowania i budowy instalacji elektrycznych.

Pytanie 28

Który z komponentów półprzewodnikowych ma czterowarstwową budowę typu n-p-n-p?

A. Tranzystor bipolarny
B. Tyrystor
C. Dioda LED
D. Warikap
Tyrystor to ciekawy element półprzewodnikowy, który ma cztery warstwy, czyli taką strukturę n-p-n-p. Dzięki temu działa tak, jak działa, i dlatego jest używany w różnych sytuacjach, na przykład w prostownikach czy falownikach. Moim zdaniem, jego właściwości są naprawdę fajne, zwłaszcza w tych aplikacjach, gdzie trzeba kontrolować duże prądy. Tyrystory przewodzą prąd w jednym kierunku i po wyłączeniu nie potrzebują, żeby ktoś im dał impuls, by znowu przestały przewodzić. To bardzo przydatne w automatyce i systemach zasilania, bo można je stosować tam, gdzie szybka zmiana stanu jest niezbędna. Warto pamiętać, że w elektronice dobrze jest ich używać w urządzeniach, które muszą radzić sobie z wysokimi napięciami i prądami. W sumie, są naprawdę ważnym elementem nowoczesnych układów elektronicznych.

Pytanie 29

Przy inspekcji naprawianego urządzenia z aktywnym celownikiem laserowym technik serwisowy może być narażony na

A. krwawienie podskórne
B. uszkodzenie wzroku
C. poparzenie dłoni
D. wysuszenie skóry dłoni
Uszkodzenie wzroku to poważne zagrożenie w przypadku pracy z urządzeniami emitującymi lasery, które są powszechnie stosowane w serwisie technicznym. Promieniowanie laserowe o wysokiej intensywności może prowadzić do trwałych uszkodzeń siatkówki, co w wielu przypadkach kończy się utratą wzroku. Pracownicy serwisowi powinni stosować odpowiednie środki ochrony osobistej, takie jak okulary ochronne przystosowane do danych długości fal laserowych. Ważne jest również, aby przestrzegać standardów bezpieczeństwa, takich jak te określone przez Międzynarodową Organizację Normalizacyjną (ISO) oraz normy OSHA w zakresie bezpieczeństwa pracy z laserami. Użycie celowników laserowych powinno być zawsze poprzedzone oceną ryzyka oraz zapewnieniem odpowiednich warunków pracy, aby zminimalizować ryzyko uszkodzeń. Szkolenia z zakresu bezpieczeństwa pracy z laserami są kluczowe, aby pracownicy byli świadomi zagrożeń oraz umieli skutecznie reagować w sytuacjach awaryjnych. Przykłady zastosowań laserów w serwisie obejmują precyzyjne pomiary, spawanie i cięcie materiałów, gdzie bezpieczeństwo oczu powinno być priorytetem.

Pytanie 30

Zaciski wyjściowe przekaźnika czujnika ruchu nie są oznaczone literami

A. NC
B. NO
C. COM
D. IN
Wybór odpowiedzi NC, NO lub COM może sugerować pewne nieporozumienia związane z funkcjonowaniem zacisków przekaźnikowych. Zacisk NC, oznaczający 'normally closed', jest używany w sytuacjach, gdzie obwód jest domyślnie zamknięty i otwiera się w momencie aktywacji czujnika. Z kolei NO, czyli 'normally open', oznacza obwód, który jest otwarty do momentu, gdy czujnik jest aktywowany, co prowadzi do jego zamknięcia. Oba te oznaczenia są typowe dla wyjść przekaźnikowych, ale nie służą do wskazania wejścia. W przypadku czujników ruchu, które mają za zadanie zarejestrować ruch i przekazać sygnał do innych urządzeń, kluczowe jest zrozumienie, że zacisk IN jest odpowiedzialny za przyjmowanie sygnału, co jest fundamentalne dla działania całego systemu. Użycie terminów związanych z przekaźnikami, takich jak NC czy NO, może prowadzić do błędnych wniosków o funkcji urządzenia, a tym samym do nieprawidłowej instalacji. Właściwe opanowanie oznaczeń zacisków ułatwia diagnostykę i serwisowanie, co jest zgodne z normami branżowymi, które zalecają jednoznaczność w dokumentacji technicznej. Dlatego ważne jest, aby użytkownicy czujników ruchu dobrze rozumieli, jakie zadanie pełnią poszczególne zaciski, aby uniknąć problemów w praktyce.

Pytanie 31

Jakie typy złączy są stosowane w kamerach IP w systemach monitoringu?

A. BNC
B. SMA
C. RJ11
D. RJ45
Kamera IP to urządzenie, które wykorzystuje protokół internetowy do przesyłania obrazu i dźwięku przez sieć. Złącze RJ45 jest standardowym interfejsem dla kabli Ethernet, który zapewnia szybkie połączenie sieciowe. Używanie złącza RJ45 w kamerach IP umożliwia łatwe podłączenie ich do sieci lokalnej, co jest kluczowe dla zdalnego monitorowania i zarządzania systemem dozorowym. Przykładowo, instalacja kamery IP w systemie przeciwpożarowym lub monitoringu budynku pozwala na łatwe przesyłanie obrazu do centralnego rejestratora lub zdalnego komputera. Złącza RJ45 są również zgodne z normą TIA/EIA-568, co zapewnia ich wysoką wydajność i niezawodność w przesyłaniu danych. W praktyce, użycie kabli kategorii 5e lub 6, które są kompatybilne z RJ45, umożliwia przesyłanie sygnałów wideo w wysokiej rozdzielczości, co jest kluczowe w nowoczesnych systemach monitoringu.

Pytanie 32

Jaką rolę w systemie monitoringu pełni UPS?

A. Gwarantuje zasilanie
B. Zarządza pracą
C. Nadzoruje działanie
D. Rejestruje obraz
Wybierając odpowiedzi, które sugerują, że UPS rejestruje obraz, kontroluje działanie lub steruje pracą, należy zrozumieć, jaką rolę pełni ten system w infrastrukturze monitoringu. Rejestracja obrazu to zadanie przypisane rejestratorom wideo (NVR lub DVR), które są odpowiedzialne za przechwytywanie i przechowywanie materiału wideo z kamer. Kontrolowanie działania to raczej funkcja systemów zarządzania, które monitorują i zarządzają operacjami w sieci, podczas gdy sterowanie pracą odnosi się do systemów automatyzacji, które mogą zarządzać funkcjami innych urządzeń. Zrozumienie różnicy pomiędzy tymi funkcjami jest kluczowe dla efektywnego projektowania systemów monitoringu. Typowym błędem jest mylenie zadań różnych komponentów systemu; każdy element pełni określoną rolę, która nie powinna być mylona z innymi funkcjami. UPS jest narzędziem zabezpieczającym, które zapewnia zasilanie, a nie aktywnie uczestniczy w rejestracji czy zarządzaniu pracą systemu, co może prowadzić do nieporozumień w kontekście jego zastosowania w systemach zabezpieczeń.

Pytanie 33

Utrzymanie w dobrym stanie elementów chłodzących w zasilaczach sprzętu elektronicznego polega na

A. pomalowaniu ich lakierem elektroprzewodzącym
B. przetarciu ich drobnym papierem ściernym
C. oczyszczeniu ich za pomocą sprężonego powietrza
D. zanurzeniu ich w wodnym roztworze detergentu
Zanurzenie elementów chłodzących w wodnym roztworze detergentu to podejście, które jest nie tylko niewłaściwe, ale także potencjalnie niebezpieczne. Woda jest przewodnikiem prądu, a kontakt z elementami elektronicznymi może prowadzić do zwarć, uszkodzenia komponentów lub nawet zniszczenia całego urządzenia. Oczyszczanie w takiej formie jest sprzeczne z podstawowymi zasadami bezpieczeństwa w elektronice, które sugerują unikanie wilgoci w miejscach, gdzie znajdują się obwody elektryczne. Pomalowanie elementów chłodzących lakierem elektroprzewodzącym również jest błędne, ponieważ takie lakiery są stosowane do tworzenia połączeń elektrycznych, a nie do konserwacji. Nałożenie ich na elementy chłodzące może prowadzić do niepożądanych efektów, takich jak zmniejszenie efektywności dissipacji ciepła. Z kolei przetarcie ich drobnym papierem ściernym to metoda, która w teorii miałaby na celu usunięcie brudu, jednak w praktyce, papier ścierny może powodować zarysowania i uszkodzenia powierzchni elementów, co z kolei pogarsza ich właściwości termiczne. Każda z tych metod ignoruje fundamentalne zasady konserwacji sprzętu elektronicznego, w tym znaczenie zachowania integralności fizycznej i funkcjonalnej komponentów. Dlatego kluczowe jest, aby podchodzić do konserwacji zasilaczy z odpowiednią wiedzą i stosować sprawdzone metody, takie jak oczyszczenie sprężonym powietrzem, które jest bezpieczne i skuteczne.

Pytanie 34

Podwyższenie dobroci Q filtru RLC w selektywnym wzmacniaczu doprowadzi do

A. wzrostu współczynnika prostokątności
B. spadku współczynnika prostokątności
C. spadku częstotliwości środkowej fo
D. wzrostu częstotliwości środkowej fo
Zwiększenie dobroci Q filtru RLC we wzmacniaczu selektywnym prowadzi do zwiększenia współczynnika prostokątności, co ma kluczowe znaczenie dla charakterystyki częstotliwościowej systemu. Wartość Q określa, jak 'ostro' filtr reaguje na częstotliwości bliskie częstotliwości środkowej f0. Wyższa wartość Q oznacza węższy pasmo przenoszenia, co skutkuje lepszą selektywnością filtru. W praktyce może to być użyteczne w zastosowaniach, gdzie istotne jest precyzyjne wyłapywanie sygnałów o określonych częstotliwościach, na przykład w telekomunikacji czy audiofilskim sprzęcie audio. Wartości Q są często dostosowywane do potrzeb konkretnego zastosowania, aby osiągnąć optymalną jakość sygnału. W branży wykorzystuje się standardy, takie jak IEEE 802.11, które uwzględniają parametry filtrów w kontekście transmisji danych. Zrozumienie tej zasady jest kluczowe w projektowaniu układów elektronicznych, gdzie precyzyjność parametrów filtrów ma fundamentalne znaczenie dla jakości sygnału.

Pytanie 35

W systemie wykorzystano przetwornik o rozdzielczości 8-bitowej. Jaka jest wartość rozdzielczości napięciowej, gdy zakres pomiarowy wynosi od 0 V do 2,56 V?

A. 100 mV
B. 10 mV
C. 320 mV
D. 32 mV
Odpowiedzi 100 mV, 32 mV oraz 320 mV są wynikiem niepoprawnych obliczeń dotyczących rozdzielczości napięciowej przetwornika 8-bitowego. Można zauważyć, że często popełnianym błędem jest mylenie jednostek oraz niewłaściwe interpretowanie zakresu przetwornika. Na przykład, rozdzielczość 100 mV sugerowałaby, że przetwornik reprezentuje tylko 25 poziomów napięcia w skali od 0 V do 2,56 V, co jest niezgodne z jego 256 poziomami. Z kolei rozdzielczość 320 mV w ogóle nie mieści się w zakresie od 0 V do 2,56 V, ponieważ jest większa od maksymalnego napięcia. Niektóre z tych odpowiedzi mogą wynikać z błędnej logiki dzielenia zakresu przez liczbę bitów, zamiast przez liczby poziomów. W praktyce, do obliczania rozdzielczości przetwornika, kluczowe jest zrozumienie, że różnice napięcia muszą być dzielone przez całkowitą liczbę poziomów, co prowadzi do dokładnych i wiarygodnych wyników. Ignorowanie tego fundamentalnego aspektu może prowadzić do poważnych błędów w projektach inżynieryjnych oraz zastosowaniach przemysłowych, gdzie precyzyjne pomiary mają bezpośredni wpływ na efektywność i jakość produkcji.

Pytanie 36

Który przewód powinien być użyty do połączenia z siecią elektryczną transformatora znajdującego się w metalowej obudowie systemu alarmowego?

A. YTDY 4 x 0,75 mm2
B. YDY 2 x 1,5 mm2
C. YDY 3 x 1,5 mm2
D. YTDY 2 x 0,75 mm2
Odpowiedź YDY 3 x 1,5 mm2 jest poprawna, ponieważ przewód ten cechuje się odpowiednią konstrukcją i parametrami technicznymi, które idealnie nadają się do podłączenia transformatora w metalowej obudowie centralki alarmowej. Przewód YDY jest przewodem o podwyższonej odporności na działanie czynników zewnętrznych oraz na uszkodzenia mechaniczne, co jest kluczowe w zastosowaniach związanych z systemami alarmowymi. Posiada trzy żyły o przekroju 1,5 mm2, co zapewnia dostateczną wydajność prądową oraz minimalizuje straty energii. W praktyce, zastosowanie przewodu YDY 3 x 1,5 mm2 jest zgodne z wytycznymi norm PN-IEC 60364, które regulują instalacje elektryczne, a także z zasadami dotyczącymi ochrony przeciwporażeniowej. Przewód ten pozwala na bezpieczne i efektywne połączenie transformatora z siecią energetyczną, co jest kluczowe dla prawidłowego działania systemu alarmowego.

Pytanie 37

Jakie przepisy prawne dotyczą zarządzania odpadami niebezpiecznymi?

A. Ustawa o zamówieniach publicznych
B. Ustawa dotycząca budownictwa
C. Ustawa o odpadach
D. Ustawa o energetyce
Ustawa o odpadach jest kluczowym aktem prawnym regulującym gospodarkę odpadami niebezpiecznymi w Polsce. Ustawa ta również implementuje dyrektywy unijne dotyczące zarządzania odpadami, w szczególności odpady niebezpieczne, co pozwala na harmonizację przepisów krajowych z normami europejskimi. Główne zasady wynikające z tej ustawy obejmują klasyfikację odpadów, obowiązki producentów oraz sposoby ich zbierania, transportu, przechowywania i unieszkodliwiania. Przykładem zastosowania tych przepisów jest konieczność posiadania odpowiednich zezwoleń na transport i unieszkodliwianie odpadów niebezpiecznych, które muszą być zgodne z wymaganiami ustawy. Dobre praktyki w zakresie gospodarki odpadami niebezpiecznymi obejmują również prowadzenie ewidencji tych odpadów, co pozwala na lepsze zarządzanie i kontrolę nad nimi. W kontekście międzynarodowym, Polska jest zobowiązana do przestrzegania konwencji takich jak Konwencja Bazylejska, co podkreśla znaczenie Ustawy o odpadach w kontroli i minimalizacji negatywnego wpływu na środowisko.

Pytanie 38

Na podstawie przeprowadzonych pomiarów pasma przenoszenia wzmacniacza ustalono dolną częstotliwość graniczną f<sub>d</sub> = 0,1 Hz oraz górną częstotliwość graniczną f<sub>g</sub> = 150 Hz. Jaki to typ wzmacniacza?

A. selektywny
B. szerokopasmowy
C. dla górnej części pasma akustycznego
D. dla dolnej części pasma akustycznego
Wybór odpowiedzi wskazujących na selektywny wzmacniacz, wzmacniacz dla górnej części pasma akustycznego czy szerokopasmowy wskazuje na pewne nieporozumienia dotyczące definicji i zastosowań wzmacniaczy w kontekście pasma przenoszenia. Selektywny wzmacniacz, który ma ograniczony zakres częstotliwości, jest używany głównie w radiach i systemach komunikacyjnych, gdzie kluczowe jest wzmocnienie konkretnych sygnałów, a nie ogólne pasmo. Natomiast wzmacniacz dla górnej części pasma akustycznego skupiałby się na wyższych częstotliwościach, co nie jest zgodne z podanymi wartościami f<sub>d</sub> i f<sub>g</sub>. Wzmacniacze szerokopasmowe są zaprojektowane do obsługi szerokiego zakresu częstotliwości, co również nie jest zgodne z charakterystyką wzmacniacza, który ma wąski zakres od 0,1 Hz do 150 Hz. Typowe błędy myślowe mogą obejmować niezrozumienie, że dolne pasmo akustyczne obejmuje niskie częstotliwości, co często prowadzi do pomylenia z pasmami wyższymi. W praktyce, dobór odpowiedniego wzmacniacza do konkretnego zastosowania jest kluczowy dla uzyskania optymalnej jakości dźwięku, co w przypadku niskich częstotliwości wymaga odpowiednich rozwiązań technicznych.

Pytanie 39

Który z elementów atmosferycznych wpływa na jakość sygnału telewizyjnego w standardzie DVB-T?

A. Porywisty podmuch wiatru
B. Duża wilgotność powietrza
C. Intensywny opad atmosferyczny
D. Wysoka temperatura powietrza
Czynniki atmosferyczne, takie jak wysoka temperatura powietrza, duża wilgotność oraz porywisty podmuch wiatru, mogą wpływać na wrażenia odbiorcze, lecz w inny sposób niż intensywne opady deszczu. Wysoka temperatura powietrza nie ma bezpośredniego wpływu na sygnał DVB-T, chociaż może wpływać na działanie sprzętu, takiego jak anteny i dekodery. Z kolei duża wilgotność powietrza, mimo że może prowadzić do pewnego stopnia tłumienia sygnału, nie jest tak znaczącym czynnikiem jak opady deszczu, które intensywnie absorbują i rozpraszają fale radiowe. Porywisty wiatr również nie jest czynnikiem determinującym jakość sygnału, aczkolwiek może wpływać na stabilność anteny, zwłaszcza jeśli nie jest odpowiednio zamocowana. Typowy błąd myślowy polega na utożsamianiu ogólnych warunków atmosferycznych z ich wpływem na sygnał telewizyjny, co prowadzi do nieprawidłowych wniosków. Dlatego kluczowe jest zrozumienie, że różne zjawiska atmosferyczne oddziałują na jakość sygnału w odmienny sposób, a w przypadku DVB-T intensywne opady deszczu są najważniejszym czynnikiem wpływającym na jego odbiór.

Pytanie 40

Tłumienność wynosząca 1 dB/km wskazuje, że na odcinku światłowodu o długości 10 km dochodzi do rozproszenia

A. 20% wartości mocy sygnału przychodzącego
B. 90% wartości mocy sygnału przychodzącego
C. 80% wartości mocy sygnału przychodzącego
D. 10% wartości mocy sygnału przychodzącego
Widzę, że wybrałeś odpowiedź, w której mówisz, że na 10 km światłowodu rozprasza się 80%, 20% czy 10% mocy sygnału. To trochę pomyłka, bo nie do końca ogarnąłeś, jak to jest z tłumiennością i mocą sygnału. Tłumienność 1 dB/km znaczy, że na każdy kilometr moc sygnału spada o 1 dB. W praktyce na 10 km to daje 10 dB straty mocy, ale łatwo się pomylić, licząc, że jest to liniowe. Jak myślisz, że to procenty, a nie decybele, to można sobie głupotę wytłumaczyć, jak byś sądził, że 20% sygnału to dużo, a w rzeczywistości na końcu zostaje tylko 10%. Rozumienie tego tematu jest istotne, szczególnie przy projektowaniu sieci światłowodowych, gdzie dobre obliczenia tłumienia są kluczowe do przewidywania, jak daleko sygnał dojdzie i jak dobrze będzie działać. Jeśli nie weźmiesz tego pod uwagę, to mogą być kłopoty z jakością usług.